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Mean Field Variational Bayes for Elaborate

Distributions

Matthew P. Wand∗, John T. Ormerod†, Simone A. Padoan‡ and Rudolf Frühwirth§

Abstract. We develop strategies for mean field variational Bayes approximate

inference for Bayesian hierarchical models containing elaborate distributions. We

loosely define elaborate distributions to be those having more complicated forms

compared with common distributions such as those in the Normal and Gamma

families. Examples are Asymmetric Laplace, Skew Normal and Generalized Ex-

treme Value distributions. Such models suffer from the difficulty that the param-

eter updates do not admit closed form solutions. We circumvent this problem

through a combination of (a) specially tailored auxiliary variables, (b) univariate

quadrature schemes and (c) finite mixture approximations of troublesome den-

sity functions. An accuracy assessment is conducted and the new methodology is

illustrated in an application.

Keywords: Auxiliary mixture sampling, Bayesian inference, Quadrature, Varia-

tional methods.

1 Introduction

We extend mean field variational Bayes (MFVB) so that Bayesian hierarchical models
containing elaborate distributions can be accommodated. MFVB is a general approach
to approximate inference in graphical models. Since Bayesian hierarchical models can
be couched within the graphical models infrastructure, MFVB is a fast deterministic
alternative to Markov chain Monte Carlo (MCMC) for approximate Bayesian inference.
MFVB approximates the posterior density function of the parameter vector by restrict-
ing the space of candidate density functions to have a particular product structure, and
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then maximizing a lower bound on the marginal likelihood over the restricted space via
a coordinate ascent algorithm. We refer to the iterations of this algorithm as “updates”.
The MFVB strategy results in fast and, for some models, quite accurate Bayesian infer-
ence. The idea originated in statistical physics (e.g., Parisi 1988), where it is known as
mean field theory. It was developed as a methodology for inference in graphical models
in the late 1990s (e.g., Jordan et al. 1999, Attias 1999) and during the 2000s it per-
meated further into the mainstream statistical literature (e.g., Teschendorff et al. 2005;
McGrory and Titterington 2007). Ormerod and Wand (2010) contains a summary of
MFVB from a statistical standpoint.

MFVB is one of many deterministic methods for approximate inference in graphical
models which have become known as variational methods. An early survey of this topic
is given by Jordan et al. (1999). Recently, Wainwright and Jordan (2008) showed that
several deterministic algorithms, such as the sum-product algorithm (e.g., Kschischang
et al. 2001), expectation propagation (e.g., Minka 2001) and semi-definite relaxations
based on Lasserre sequences (e.g., Lasserre 2001), can be couched within the variational
methodology framework. Varying degrees of accuracy can be achieved, depending on
the level of sophistication of the variational method. For instance, the most tractable
version of MFVB, in which the posterior distribution of the parameters are assumed
to fully factorize, referred to as näıve MFVB in Wainwright and Jordan (2008), is
susceptible to crude approximational performance. Improved performance results from
treating various sub-vectors of the parameter vector as blocks in the MFVB product
restriction. Section 3 contains further details on the trade-off between tractability and
accuracy.

A vital feature of MFVB, which allows it to be applied to a wide class of models, is the
locality property. The locality property means that calculations concerning a particular
parameter can be confined to ‘nearby’ parameters. It is best understood using graph
theoretic representations of hierarchical Bayesian models, although we postpone the
details on this to Section 3. Gibbs sampling also possesses the locality property and
the software package BUGS (Lunn et al. 2000) relies on it to efficiently handle highly
complex models. Recently software packages that make use of the locality property of
MFVB have emerged in an effort to streamline data analysis. The most prominent of
these is Infer.NET (Minka et al. 2010) which is a suite of classes in .NET languages such
as C].

Despite these developments, the vast majority of MFVB methodology and software
is restricted to models where the random components have common distributions such as
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Normal, Gamma and Dirichlet, and the required calculations are analytic. This imposes
quite stringent restrictions on the set of models that can be handled via MFVB. The
current release of Infer.NET is subject to such restrictions.

In this article we explain how the class of distributions for variables in MFVB al-
gorithms can be widened considerably. Specifically, we show how elaborate distribu-
tions such as t, Skew Normal, Asymmetric Laplace and Generalized Extreme Value can
be handled within the MFVB framework. The incorporation of such distributions is
achieved via a combination of

� specially tailored auxiliary variables,

� univariate quadrature schemes, and

� finite mixture approximation of troublesome density functions.

Auxiliary variables have already enjoyed some use in MFVB. Examples include Tipping
and Lawrence (2003) for t-based robust curve fitting with fixed degrees of freedom,
Archambeau and Bach (2008) and Armagan (2009) for Laplace and other exponential
power distributions and Girolami and Rogers (2006) and Consonni and Marin (2007)
for binary response regression. Quadrature and finite mixture approximations have
received little, if any, attention in the MFVB literature.

Quadrature is a classical numerical technique for evaluation of definite integrals
that do not admit analytic solutions. A simple and effective form of quadrature is the
trapezoidal rule which can be made arbitrarily accurate by increasing the number of
trapezoidal elements. However, if the integral is over an infinite or semi-infinite region,
rather than a compact interval, then it is important to determine the effective support
of the integrand for accurate computation. Overflow and underflow is another concern
with näıve application of the trapezoidal rule. Appendix B describes a quadrature-based
numerical integration strategy that handles these potential problems.

We identify four distinct families of univariate integrals which arise in MFVB for
the elaborate distributions treated here. The integrals within the families do not admit
analytic solutions and quadrature is required. However, the integrands are well-behaved
and we are able to tailor common quadrature schemes to achieve stable and accurate
computation. Use of accurate quadrature schemes corresponds to more efficient MFVB
updates than those based on Monte Carlo methods (e.g., Section 6.3 of Winn and Bishop
2005).
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Auxiliary mixture sampling was introduced for a Bayesian analysis of stochastic
volatility models by Shephard (1994) and has been applied in this context by, for ex-
ample, Kim et al. (1998), Chib et al. (2002), and Omori et al. (2007). More recently,
auxiliary mixture sampling has been extended to Bayesian inference for a broad class
of models for discrete-valued data such as binary, categorical data, and count data, see,
for example, Frühwirth-Schnatter et al. (2009) and Frühwirth-Schnatter and Frühwirth
(2010). The approach involves approximation of particular density functions by finite,
usually Normal, mixtures. The introduction of auxiliary indicator variables correspond-
ing to components of the mixtures means that MCMC reduces to ordinary Gibbs sam-
pling with closed form updates. The same idea is applicable to MFVB, and we use it
for troublesome density functions such as those belonging to the Generalized Extreme
Value family. A structured MFVB approach allows us to handle additional parameters
such as the Generalized Extreme Value shape parameter.

Recently, Braun and McAuliffe (2010) used yet another approach, a version of the
multivariate delta method, to handle elaborate distributions arising in discrete choice
models.

We confine much of our discussion to univariate location-scale models, since the
forms of many of the updates for multi-parameter extensions are essentially the same.
The locality property of MFVB means that these forms are unchanged when embedded
into larger models.

A critical issue of MFVB inference is accuracy compared with more exact approaches
such as MCMC. We address this through a simulation study for a selection of elaborate
distribution models. We find that the posterior densities of some parameters can be
approximated very well. However the accuracy is only moderate to good for param-
eters which possess non-negligible posterior dependence with the introduced auxiliary
variables. In particular, the spreads of posterior densities are often under-approximated
(e.g., Wang and Titterington 2005).

Section 2 contains all definitions and distributional results used in this article. Sec-
tion 3 summarizes MFVB and expands on the aforementioned locality property. In
Section 4 we treat several location-scale models having elaborate distributional forms.
Section 5 describes modifications when the alternative scale parameter priors are used.
Extension to regression models is discussed in Section 6. In Section 7 we discuss exten-
sion to other elaborate distributions including discrete response models. The accuracy
of MFVB for elaborate distribution models is assessed in Section 8. Section 9 applies
some of the methodology developed in this paper to analysis of data from a respiratory
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health study. Discussion of the methodology and its performance is given in Section 10.
Three appendices provide technical details.

2 Definitions and Distributional Results

MFVB for elaborate distributions relies on several definitions and distributional results.
We lay out each of them in this section. The results can be obtained via standard
distribution theoretic manipulations.

2.1 Non-analytic Integral Families

A feature of MFVB for elaborate distributions is that not all calculations can be done
analytically. Some univariate quadrature is required. The following integral families
comprise the full set of non-analytic integrals which arise in the models considered in
this article:

F(p, q, r, s, t)≡
∫ t

s

xp exp
[
q{x2 log(x2 )− logΓ(x2 )} − 1

2rx
]
dx, p ≥ 0, q, r, s, t > 0;

G(p, q, r, s, t)≡
∫ ∞
−∞

xp(1 + x2)q exp
(
−r x2 + s x

√
1 + x2 + tx

)
dx p, q ≥ 0, r > 0;

J (p, q, r, s)≡
∫ ∞
−∞

xp exp(qx− rx2 − se−x) dx, p ≥ 0, −∞ < q <∞, r, s > 0

and J +(p, q, r)≡
∫ ∞

0

xp exp(qx− rx2) dx, p ≥ 0, −∞ < q <∞, r > 0.

Since the integrals can take values that are arbitrarily large or small it is recom-
mended that logarithmic storage and arithmetic be used, to avoid underflow and over-
flow. Appendix B discusses stable and efficient numerical computation of the members
of each of these integral families.

Note that the last of these integrals can be expressed in terms of parabolic cylinder

functions. Specifically,

J +(p, q, r) = (2r)−(p+1)/2Γ(p+ 1) exp{q2/(8r)}D−p−1

(
−q√

2r

)
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where Dν is the parabolic cylinder function of order ν as defined in Gradshteyn and
Ryzhik (1994). Software for computation of parabolic cylinder functions is available
from web-sites associated with Zhang and Jin (1996). However, it is susceptible to
underflow and overflow when D−p−1(−q/

√
2r) is very small or large. The quadrature

approach described in Appendix B overcomes this problem for general J +(p, q, r).

2.2 Distributional Notation

The density function of a random vector v in a Bayesian model is denoted by p(v).
The conditional density of v given w is denoted by p(v|w). The covariance matrix of
v is denoted by Cov(v). If xi has distribution D for each 1 ≤ i ≤ n, and the xi are
independent, then we write xi

ind.∼ D.

We use q to denote density functions that arise from MFVB approximation. For a
generic random variable v and density function q we define:

µq(v) ≡ Eq(v) and σ2
q(v) ≡ Varq(v).

For a generic random vector v and density function q we define:

µq(v) ≡ Eq(v) and Σq(v) ≡ Covq(v).

2.3 Distributional Definitions

We use the common notation, N(µ, σ2), for the Normal distribution with mean µ and
variance σ2. The density and cumulative distribution functions of the N(0, 1) distribu-
tion are denoted by φ and Φ, respectively. Furthermore, we write (φ/Φ)(x) ≡ φ(x)/Φ(x)
for the ratio of these two functions.

The Inverse-Gaussian density function with mean µ > 0 and precision γ > 0 is given
by

p(x;µ, γ) = γ1/2(2π x3)−1/2 exp
{
− γ(x− µ)2

2µ2 x

}
, x > 0.

We write Inverse-Gaussian(µ, γ) for the corresponding family of distributions.

Table 1 provides the functional forms for the densities that are used for modelling
observed data in Section 4. For simplicity, we give the density with location µ equal to
zero and scale σ equal to one. The general location and scale density function involves
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the transition

f(x) 7→ 1
σ
f

(
x− µ
σ

)
where f(x) is as given in the second column of Table 1.

distribution density in x (µ = 0, σ = 1) abbreviation

t
Γ
(
ν+1

2

)
√
πν Γ(ν/2)(1 + x2/ν)

ν+1
2

t(µ, σ, ν) (ν > 0)

Asymmetric τ(1− τ) e−
1
2 |x|+(τ− 1

2 )x, Asymmetric-Laplace(µ, σ, τ)
Laplace (0 < τ < 1)

Skew Normal 2φ(x)Φ(λx) Skew-Normal(µ, σ, λ)

Finite Normal (2π)−1/2
∑K
k=1(wk/sk) Normal-Mixture(µ, σ,w,m, s)

Mixture ×φ((x−mk)/sk), (
∑K
k=1 wk = 1, sk > 0)

Generalized Extreme (1 + ξ x)−1/ξ−1 GEV(µ, σ, ξ)
Value ×e−(1+ξ x)−1/ξ

, 1 + ξ x > 0

Table 1: Density functions for modelling observed data. The functions φ and Φ are
the density and cumulative distribution functions of the N(0, 1) distribution. The scale
parameter is subject to the restriction σ > 0 in all cases. The density function argument
x and parameters range over R unless otherwise specified.

For the t, Asymmetric Laplace, Skew Normal and Generalized Extreme Value dis-
tributions the shape parameters are, respectively, ν, τ , λ and ξ. The shape parameter
for the Finite Normal Mixture family is the trio of K-vectors w, m and s. The vector
w contains the Finite Normal Mixture weights, whilst m and s contain the means and
standard deviations of each component. Figure 1 shows six members of each of the
density families. The Finite Normal Mixture density functions are a selection of those
defined in Table 1 of Marron and Wand (1992).

In Table 2 we describe density families that are used for modelling scale parameters
in the upcoming examples. Note that the Half-Cauchy(A) distribution corresponds to
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x

y

0.0
0.2
0.4
0.6
0.8
1.0

t ; ν = 0.5

−3 −2 −1 0 1 2 3

AL ; τ = 0.05 SN ; λ = − 10

−3 −2 −1 0 1 2 3

FNM ; MW 2 GEV ; ξ = − 0.9

t ; ν = 1 AL ; τ = 0.25 SN ; λ = − 5 FNM ; MW 3

0.0
0.2
0.4
0.6
0.8
1.0

GEV ; ξ = − 0.5

0.0
0.2
0.4
0.6
0.8
1.0

t ; ν = 2 AL ; τ = 0.45 SN ; λ = − 1 FNM ; MW 4 GEV ; ξ = 0

t ; ν = 4 AL ; τ = 0.55 SN ; λ = 1 FNM ; MW 8

0.0
0.2
0.4
0.6
0.8
1.0

GEV ; ξ = 0.5

0.0
0.2
0.4
0.6
0.8
1.0

t ; ν = 15 AL ; τ = 0.75 SN ; λ = 5 FNM ; MW 10 GEV ; ξ = 1

−3 −2 −1 0 1 2 3

t ; ν = 30 AL ; τ = 0.95

−3 −2 −1 0 1 2 3

SN ; λ = 10 FNM ; MW 12

−3 −2 −1 0 1 2 3

0.0
0.2
0.4
0.6
0.8
1.0

GEV ; ξ = 1.5

Figure 1: Example density functions for the families defined in Table 1 with varying
values of the family’s shape parameter. The location and scale parameters are chosen
so that the mode of each density function has coordinates (0, 1). The following abbrevi-
ations are used in the labels: AL for Asymmetric Laplace, SN for Skew Normal, FNM
for Finite Normal Mixture and GEV for Generalized Extreme Value. For the Finite
Normal Mixture density functions, the abbreviation ‘MW n’ is shorthand for the shape
parameter vectors w, m and s corresponding to density number n in Table 1 of Marron
and Wand (1992).

the Half-t(A, 1) distribution.
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distribution density in x abbreviation

Inverse Gamma BA

Γ(A) x
−A−1e−B/x Inverse-Gamma(A,B)

(A,B > 0)

Log Normal 1
Bx
√

2π
exp[− 1

2B2 {log(x)−A}2] Log-Normal(A,B) (B > 0)

Half Cauchy
2

πA{1 + (x/A)2}
Half-Cauchy(A) (A > 0)

Half t
2Γ
(
ν+1

2

)
√
πν Γ(ν/2)A{1 + (x/A)2/ν} ν+1

2

Half-t(A, ν) (A, ν > 0)

Table 2: Density functions used for modelling scale parameters. The density function
argument x ranges over x > 0.

2.4 Distributional Results Involving Auxiliary Variables

In this section we give a collection of distributional results that link elaborate distribu-
tions to simpler ones. Each result is established in the literature, and straightforward
to derive. However, they play vital roles in MFVB for elaborate distributions.

Result 1. Let x and a be random variables such that

x| a ∼ N
(
µ, aσ2

)
and a ∼ Inverse-Gamma(ν2 ,

ν
2 ).

Then x ∼ t(µ, σ, ν).

Result 1 is very well-known and used by, for example, Lange et al. (1989).

Result 2. Let x and a be random variables such that

x| a ∼ N
(
µ+

( 1
2 − τ)σ

aτ(1− τ)
,

σ2

aτ(1− τ)

)
and a ∼ Inverse-Gamma(1, 1

2 ).

Then x ∼ Asymmetric-Laplace(µ, σ, τ).

Result 2 follows from Proposition 3.2.1 of Kotz et al. (2001).
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Result 3. Let x and a be random variables such that

x| a ∼ N
(
µ+

σλ|a|√
1 + λ2

,
σ2

1 + λ2

)
and a ∼ N(0, 1).

Then x ∼ Skew-Normal(µ, σ, λ).

Result 3 is an immediate consequence of Proposition 3 of Azzalini and Dalla Valle
(1996). These authors trace the result back to Aigner et al. (1977).

The next result involves the Multinomial(1;π) distribution where π = (π1, . . . , πK)
is such that

∑K
k=1 πk = 1. The corresponding probability mass function is

p(x1, . . . , xK) =
K∏
k=1

πxkk , xk = 0, 1, for 1 ≤ k ≤ K.

This result is very well-known and forms the basis of normal mixture fitting via the
Expectation-Maximization algorithm (e.g., Bishop 2006).

Result 4. Let x be a random variable and a be a K × 1 random vector, having kth

entry ak, such that

p(x|a) =
K∏
k=1

[
(2πs2

k)−1/2 exp{− 1
2 (x−mk)2/s2

k}
]ak

, −∞ < x <∞,

and a ∼ Multinomial(1;w).

Then x ∼ Normal-Mixture(0, 1,w,m, s).

Our final result shows how a squared Half t random variable can be expressed as a
scale mixture of Inverse Gamma random variables. This result is related to the classical
representation of an F random variable as a scaled ratio of independent Chi-Squared
random variables.

Result 5. Let x and a be random variables such that

x| a ∼ Inverse-Gamma(ν/2, ν/a) and a ∼ Inverse-Gamma( 1
2 , 1/A

2).

Then
√
x ∼ Half-t(A, ν).
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2.5 Expectation Results

The following expectation results are useful in some of the MFVB problems treated in
Section 4. If v ∼ Inverse-Gamma(A,B) then

E(1/v) = A/B and E{log(v)} = log(B)− digamma(A).

If v ∼ Inverse-Gaussian(µ, γ) then

E(v) = µ and E(1/v) =
1
µ

+
1
γ
. (1)

3 Mean Field Variational Bayes

MFVB relies on product restrictions on posterior densities. This strategy also gives rise
to the locality property that we discussed in Section 1. We now provide fuller details
on MFVB and the locality property.

Consider the generic hierarchical Bayesian model:

x|θ1, θ2, θ3 ∼ p(x| θ1, θ2, θ3),

θ1| θ4 ∼ p(θ1| θ4), θ2| θ5, θ6 ∼ p(θ2| θ5, θ6), θ3| θ6 ∼ p(θ3| θ6) independently,

θ4 ∼ p(θ4), θ5 ∼ p(θ5), θ6 ∼ p(θ6) independently

(2)

where x is the observed data vector and

θ = (θ1, θ2, θ3, θ4, θ5, θ6)

is the vector of model parameters. For simplicity we assume that each of the θi assume
values over a continuum so that (joint) posterior density functions, rather than posterior
probability mass functions, are of central interest. The treatment of discrete-valued
parameters is similar. MFVB strategies begin with postulation that the joint posterior
density function p(x|θ) is approximated by a particular product density form. Examples
are

p(θ|x) ≈ q125(θ1, θ2, θ5) q346(θ3, θ4, θ6), (3)

p(θ|x) ≈ q12(θ1, θ2) q(θ5) q346(θ3, θ4, θ6), (4)

p(θ|x) ≈ q14(θ1, θ4) q25(θ2, θ5) q36(θ3, θ6) (5)

and p(θ|x) ≈ q1(θ1) q2(θ2) q3(θ3) q4(θ4) q5(θ5) q6(θ6). (6)
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Clearly there are very many options for the product density form, and the choice among
them is typically made by trading off tractability against accuracy. Product density form
(6), known as the näıve mean field approximation (Wainwright and Jordan 2008), will
lead to the most tractable MFVB algorithm. But it is also the least accurate since it
imposes the most stringent independence restriction on the approximation to p(θ|x).
Greater accuracy is achievable via less stringent product forms such as (3) and (4), but
the updates may not be as tractable. It is also possible, due to the notion of induced

factorizations (e.g., Bishop 2006, Section 10.2.5), that different product restrictions lead
to identical MFVB approximations.

In keeping with the notational conventions declared in Section 2.2 we will, from now
on, suppress the subscripts on the q density functions. The MFVB solutions can be
shown to satisfy

q∗(θi) ∝ exp{Eq(θ−i)logp(θi|x,θ−i)}, 1 ≤ i ≤ 6, (7)

where θ−i denotes the set {θ1, . . . , θ6} with θi excluded. Note that the expectation
operator Eq(θ−i) depends on the particular product density form being assumed. The
optimal parameters in these q density functions can be determined by an iterative
coordinate ascent scheme induced by (7) aimed at maximizing the lower bound on the
marginal log-likelihood:

logp(x; q) ≡ Eq(θ){logp(x,θ)− logq(θ)} ≤ logp(x).

If it is assumed that each iteration entails unique maximization of logp(x; q) with respect
to the current θi, and that the search is restricted to a compact set, then convergence to a
local maximizer of logp(x; q) is guaranteed (Luenberger and Ye 2008, p. 253). Successive
values of logp(x; q) can be used to monitor convergence. At convergence q∗(θi), 1 ≤
i ≤ 6, and logp(x; q) are, respectively, the minimum Kullback-Leibler approximations
to the posterior densities p(θi|x), 1 ≤ i ≤ 6, and the marginal log-likelihood logp(x).

The extension to general Bayesian models with arbitrary parameter vectors and la-
tent variables is straightforward. Summaries may be found in, for example, Chapter
10 of Bishop (2006) and Ormerod and Wand (2010). As described in these references,
directed acyclic graph (DAG) representations of Bayesian hierarchical models are very
useful when deriving MFVB schemes for large models. We make use of DAG represen-
tations in the remainder of this section. Each panel of Figure 2 displays the DAG of
model (2).

It remains to explain the locality property of MFVB. From graphical model theory
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(Pearl 1988) we have the result

p(θi|x,θ−i) = p(θi|Markov blanket of θi)

where the Markov blanket of a node on a DAG is the set of parents, co-parents and
children of that node. From this result we get the following simplification of (7):

q∗(θi) ∝ exp{Eq(θ−i)logp(θi|Markov blanket of θi)}, 1 ≤ i ≤ 6. (8)

The locality property of MFVB is encapsulated in Result (8). It affords considerable
simplification for the model at hand, but also allows MFVB results for one model to be
transferred to another. We now explain this graphically.

x

θ1 θ2 θ3

θ4 θ5 θ6

x

θ1 θ2 θ3

θ4 θ5 θ6

x

θ1 θ2 θ3

θ4 θ5 θ6

x

θ1 θ2 θ3

θ4 θ5 θ6

x

θ1 θ2 θ3

θ4 θ5 θ6

x

θ1 θ2 θ3

θ4 θ5 θ6

Figure 2: Markov blankets for each of the six parameters (hidden nodes) in the example
Bayesian hierarchical model (directed acyclic graph), given by (2). In each panel the
Markov blanket is shown for the thick-circled blue node, using dashed lines. The shaded
node x corresponds to the observed data (evidence node).

The panels in Figure 2 show the Markov blankets for the each of θ1, . . . , θ6. The θi are
known as hidden nodes in graphical models parlance and the data vector x comprises the
evidence node. The arrows convey conditional dependence among the random variables
in the model. The Markov blanket for θ1 is {θ2, θ3, θ4,x}, which means that q∗(θ1)
depends on particular q-density moments of θ2, θ3 and θ4, but not on their distributions.



860 Elaborate Distribution Mean Field

If, for example, p(θ2|θ5) is changed from Inverse-Gamma(0.07, θ5) to Log-Normal(25, θ5)
then this will not impact upon the form of q∗(θ1). The MFVB solution for q∗(θ4)
provides a more dramatic illustration of the locality property, since the Markov blanket
of θ4 is simply {θ1}. This means that q∗(θ4) is unaffected by the likelihood p(x|θ1, θ2, θ3).
Therefore, results established for q∗(θ4) for, say, xi| θ1, θ2, θ3

ind.∼ t(θ1, θ2, θ3) also apply
to xi|θ1, θ2, θ3

ind.∼ GEV(θ1, θ2, θ3).

The upshot of the locality property of MFVB is that we can restrict attention to the
simplest versions of models involving elaborate distributions with the knowledge that
the forms that arise also apply to larger models. For this reason, Section 4 deals only
with such models.

3.1 Extension to Structured Mean Field Variational Bayes

We now describe an extension of MFVB known as structured MFVB. It involves break-
ing down graphical models for which direct MFVB is difficult into sub-components for
which MFVB is tractable. Structured MFVB was first proposed by Saul and Jordan
(1996) and, subsequently, has been used in various Machine Learning contexts such as
coupled hidden Markov models (Jaakkola 2001). To the best of our knowledge, the
present article is the first to use structured MFVB for approximate statistical inference
in hierarchical Bayesian models. Therefore, we will explain the concept in the context
of such models. We will do this by building on the description of MFVB hierarchical
Bayesian models that we gave in Section 2.2 of Ormerod and Wand (2010).

Consider the Bayesian model

x|θ, η ∼ p(x|θ, η) (9)

where θ ∈ Θ and η ∈ N . The partition of the parameter space is such that MFVB
inference for θ is tractable when η is fixed at a constant, but is not tractable when the
full model (9) applies and η is a model parameter. For the purposes of this explanation
we will suppose that θ is a continuous parameter vector, but that η is discrete. Other
cases have similar treatment. Let p(θ), θ ∈ Θ, denote the prior density function of θ
and p(η), η ∈ N denote the prior probability mass function of η.

Let q(θ, η) be a general density/probability mass function in (θ, η). The Kullback-
Leibler-based lower bound on the marginal log-likelihood is

logp(x; q) =
∑
η∈N

∫
Θ

q(θ, η) log
{
p(x,θ, η)
q(θ, η)

}
dθ
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(cf. (4) of Ormerod and Wand, 2010). For each η ∈ N suppose that we approximate
the posterior density function of θ as follows:

p(θ, η|x) ≈ q(η)
M∏
i=1

q(θi|η)

where {θ1, . . . ,θM} is a partition of θ. Then the lower bound on the marginal log-
likelihood becomes

logp(x; q) =
∑
η∈N

q(η)
[∫

Θ

q(θ|η) log
{
p(x,θ|η)
q(θ|η)

}
dθ + log

{
p(η)
q(η)

}]
.

Using arguments similar to those in the ordinary MFVB situation (see e.g., Section
2.2 of Ormerod and Wand 2010, where similar notation is used) the optimal q(θi|η)
densities satisfy

q∗(θi|η) ∝ exp{Eq(θ−i|η)logp(θi|x,θ−i, η)}, 1 ≤ i ≤M, η ∈ N.

As before, θ−i denotes θ with the θi component omitted. It follows that q∗(θi|η)
densities can be found by applying the MFVB coordinate ascent algorithm separately
for each η ∈ N . Upon substitution of these solutions into the marginal log-likelihood
lower bound we obtain

logp(x; q∗(·|η)) =
∑
η∈N

q(η)log
{
p(x, η)

/
q(η)

}
(10)

where
p(x, η) ≡ p(x|η)p(η) ≡

∫
θ

q∗(θ|η) log
{
p(x,θ|η)
q∗(θ|η)

}
dθ p(η).

The minimizer of (10) over q(η) is (e.g., Result 1 of Ormerod and Wand 2010)

q∗(η) = p(η|x) =
p(η) p(x|η)∑

η′∈N p(η′) p(x| η′)
.

The overall approximations of p(θi|x) and logp(x) are then

q∗(θi) ≡
∑
η∈N

q∗(η) q∗(θi|η) and p(x; q) ≡
∑
η∈N

q∗(η) p(x|η).

4 Univariate Location-Scale Models

Consider univariate Bayesian models of the form

x1, . . . , xn|µ, σ,θ
ind.∼ 1

σ
f

(
x− µ
σ

;θ
)

(11)
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where f is a fixed density function, µ ∈ R is the location parameter, σ > 0 is the
scale parameter and θ ∈ Θ is a set of shape parameters. We call (11) a univariate

location-scale model.

We will take the prior on µ to be Gaussian:

µ ∼ N(µµ, σ2
µ), −∞ < µµ <∞, σ2

µ > 0

throughout this article. Gaussian priors for location parameters are generally adequate,
and have a straightforward multi-parameter extension. Prior specification for scale
parameters is somewhat more delicate (Gelman 2006). In the current section we take
the prior for σ to be of the form

p(σ) ∝ σ−2A−1e−B/σ
2
, A,B > 0. (12)

This is equivalent to the squared scale, σ2, having an Inverse-Gamma prior. Due to
conjugacy relationships between the Gaussian and Inverse-Gamma families, use of (12)
results in MFVB algorithms with fewer intractable integrals. In Section 5 we treat
alternative scale parameter priors. Let p(θ) denote the prior on θ. The form of p(θ)
will change from one model to another.

The exact posterior density function for µ is

p(µ|x) =
exp{− 1

2σ2
µ

(µ− µµ)2}
∫
Θ

∫∞
0
σ−n

∏n
i=1 f{(xi − µ)/σ;θ} dσ dθ∫∞

−∞ exp{− 1
2σ2
µ

(µ− µµ)2}
∫
Θ

∫∞
0
σ−n

∏n
i=1 f{(xi − µ)/σ;θ} dσ dθ dµ

.

Similar expressions arise for p(σ|x) and p(θ|x). For elaborate f forms, the integrals in
the normalizing factors are almost always intractable. For multi-parameter extensions
we get stuck with multivariate integrals of arbitrary dimension.

The remainder of this section involves case-by-case treatment of the univariate
location-scale models that arise when f is set to each of the densities in Table 1. These
cases allow illustration of the difficulties that arise in MFVB inference for elaborate dis-
tributions, and our strategy for overcoming them. Discussion concerning other f forms
is given in Section 7.

For each univariate location model we

� specify the product restriction that defines the form of the MFVB approximation,

� describe a coordinate ascent algorithm for determining the solution, and

� provide the lower bound on the marginal log-likelihood for monitoring convergence.
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4.1 t Model

A Bayesian t model for a univariate random sample is

xi|µ, σ, ν
ind.∼ t(µ, σ, ν),

µ ∼ N(µµ, σ2
µ), σ2 ∼ Inverse-Gamma(A,B), ν ∼ Uniform(νmin, νmax)

(13)

where µµ and A,B, νmin, νmax, σ
2
µ > 0 are hyperparameters. For low values of ν > 0,

the t distribution has very heavy tails, so it is commonly used to model data containing
gross outliers. This aspect of model (13) and its regression extensions (Section 6)
translates to attractive robustness properties (e.g., Lange et al. 1989). Section 9 contains
a nonparametric regression example that uses the t distribution to achieve robustness.

Using Result 1 we can re-write (13) as

xi|ai, µ, σ
ind.∼ N(µ, ai σ2), ai|ν

ind.∼ Inverse-Gamma(ν2 ,
ν
2 ),

µ ∼ N(µµ, σ2
µ), σ2 ∼ Inverse-Gamma(A,B), ν ∼ Uniform(νmin, νmax).

For MFVB inference we impose the product restriction

q(µ, σ, ν,a) = q(µ, ν)q(σ)q(a).

This yields the following forms for the optimal densities:

q∗(µ) ∼ N(µq(µ), σ
2
q(µ))

q∗(σ2) ∼ Inverse-Gamma
(
A+ n

2 , B + 1
2

∑n
i=1 µq(1/ai){(xi − µq(µ))2 + σ2

q(µ)}
)

q∗(ai)
ind.∼ Inverse-Gamma

(
µq(ν)+1

2 , 1
2

[
µq(ν) + µq(1/σ2){(xi − µq(µ))2 + σ2

q(µ)}
])

q∗(ν) =
exp

[
n
{
ν
2 log(ν/2)− logΓ(ν/2)

}
− (ν/2)C1

]
F(0, n, C1, νmin, νmax)

, νmin < ν < νmax.

(14)
The last density uses the definition: C1 ≡

∑n
i=1{µq(logai) + µq(1/ai)}. The parameters

in (14) are determined from Algorithm 2. Appendix A.1 contains the derivations of (14)
and the parameter update expressions.
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Algorithm 2: Coordinate ascent scheme for obtaining the parameters in the
optimal densities q∗(a), q∗(µ), q∗(ν) and q∗(σ) for the t model.

Initialize: µq(µ) ∈ R, σ2
q(µ) > 0, µq(ν) ∈ [νmin, νmax] and µq(1/σ2) > 0.

Cycle:

For i = 1, . . . , n:

Bq(ai) ← 1
2

[
µq(ν) + µq(1/σ2){(xi − µq(µ))2 + σ2

q(µ)}
]

µq(1/ai) ← 1
2 (µq(ν) + 1)/Bq(ai)

µq(logai) ← log(Bq(ai))− digamma( 1
2 (µq(ν) + 1))

σ2
q(µ) ←

(
µq(1/σ2)

∑n
i=1 µq(1/ai) + 1

σ2
µ

)−1

µq(µ) ← σ2
q(µ)

(
µq(1/σ2)

∑n
i=1 xiµq(1/ai) + µµ

σ2
µ

)
C1 ←

∑n
i=1{µq(logai) + µq(1/ai)}

µq(ν) ← exp{logF(1, n, C1, νmin, νmax)− logF(0, n, C1, νmin, νmax)}

Bq(σ2) ← B + 1
2

∑n
i=1 µq(1/ai){(xi − µq(µ))2 + σ2

q(µ)} ; µq(1/σ2) ←
A+

n
2

Bq(σ2)

until the increase in p(x; q) is negligible.
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An explicit expression for log p(x; q) is:

log p(x; q) = 1
2 −

n
2 log(2π) + 1

2 log(σ2
q(µ)/σ

2
µ)−

(µq(µ) − µµ)2 + σ2
q(µ)

2σ2
µ

+Alog(B)− logΓ(A)− (A+ n
2 )log(Bq(σ2)) + logΓ(A+ n

2 )

+logF(0, n, C1, νmin, νmax)− log(νmax − νmin) + nlogΓ( 1
2 (µq(ν) + 1))

+ 1
2µq(ν)

n∑
i=1

µq(logai) +
n∑
i=1

Bq(ai)µq(1/ai) − 1
2 (µq(ν) + 1)

n∑
i=1

log{Bq(ai)}

although it is only valid after each of the updates in Algorithm 2 have been performed.

Figure 3 shows the results from application of Algorithm 2 to a simulated data set
of size n = 500 from the t(4, 0.5, 1.5) distribution. The algorithm was terminated when
the relative increase in log p(x; q) was less than 10−6. As shown in the first panel of
Figure 3, this required about 75 iterations. The true parameter values are within the
high probability regions of each approximate posterior density function, and this tended
to occur for other realizations of the simulated data.

4.2 Asymmetric Laplace Model

The Asymmetric Laplace model for a univariate random sample is

xi|µ, σ
ind.∼ Asymmetric-Laplace(µ, σ, τ),

µ ∼ N(µµ, σ2
µ), σ2 ∼ Inverse-Gamma(A,B)

(15)

where µµ ∈ R and A,B, σ2
µ > 0 are hyperparameters.

We treat the case where the asymmetry parameter 0 < τ < 1 is a fixed number to
be specified by the user. Note that, µ equals the τ quantile of the distribution of the
xis. Regression model extensions of (15), of the type described in Section 6, correspond
to Bayesian quantile regression (Yu and Moyeed 2001). Laplacian variables also arise
in Bayesian representations of the lasso (Park and Casella 2008) and wavelet-based
nonparametric regression (Antoniadis and Fan 2001).

Using Result 2 we can re-write model (15) as

xi|ai, µ, σ
ind.∼ N

(
µ+

( 1
2 − τ)σ

aiτ(1− τ)
,

σ2

aiτ(1− τ)

)
, ai

ind.∼ Inverse-Gamma(1, 1
2 ),

µ ∼ N(µµ, σ2
µ), σ2 ∼ Inverse-Gamma(A,B).



866 Elaborate Distribution Mean Field

0 10 20 30 40 50 60 70

−
80

0
−

70
0

−
60

0
convergence assessment

number of iterations

lo
g{

p(
x;

q)
}

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

3.95 4.00 4.05

0
5

10
15

approx. posterior density of µ

µ

de
ns

ity

0.20 0.22 0.24 0.26 0.28 0.30

0
5

10
15

20
25

approx. posterior density of σ2

σ2

de
ns

ity

1.3 1.4 1.5 1.6 1.7 1.8

0
1

2
3

4

approx. posterior density of ν

ν

de
ns

ity

Figure 3: Results of application of Algorithm 2 to a simulated random sample of size
n = 500 from the t(4, 0.5, 1.5) distribution. The upper-left panel shows successive values
of log p(x; q), up until the meeting of a stringent convergence criterion. The other panels
show the approximate posterior density functions for the three model parameters. The
vertical lines correspond to the true values of the parameters from which the data were
generated.

For MFVB inference we impose the product restriction

q(µ, σ,a) = q(µ)q(σ)q(a). (16)
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The optimal densities take the forms:

q∗(µ) ∼ N(µq(µ), σ
2
q(µ)),

q∗(σ) =
σ−(2A+n+1) exp(C2/σ − C3/σ

2)
J +(2A+ n− 1, C2, C3)

, σ > 0

and q∗(ai)
ind.∼ Inverse-Gaussian(µq(ai), {4τ(1− τ)}−1).

The parameters are determined from Algorithm 3. See Appendix A.2 for the derivations.

An expression for log p(x; q), valid at the bottom of the loop in Algorithm 3, is:

log p(x; q) = 1
2 + log(2) + nlog{τ(1− τ)} −

∑n
i=1{1/µq(ai)}
8τ(1− τ)

+ 1
2 log(σ2

q(µ)/σ
2
µ)

−
(µq(µ) − µµ)2 + σ2

q(µ)

2σ2
µ

+Alog(B)− logΓ(A)

+logJ +(2A+ n− 1, C2, C3).

4.3 Skew Normal Model

A Bayesian Skew Normal model for a univariate random sample is

xi|µ, σ
ind.∼ Skew-Normal(µ, σ, λ),

µ ∼ N(µµ, σ2
µ), σ2 ∼ Inverse-Gamma(A,B), λ ∼ N(µλ, σ2

λ)

(17)

where µµ, µλ ∈ R and A,B, σ2
µ, σ

2
λ > 0 are hyperparameters. Model (17) is based on

the version of the Skew Normal distribution used by Azzalini and Dalla Valle (1996).
The Skew Normal distribution can be used to model skewed data when it is desirable
to have the Normal distribution as a special case. This distribution also arises from the
bivariate normal distribution when one component is conditioned on the other being
positive and, hence, is appropriate for modelling data arising from such a mechanism.

Using Result 3 we can re-write model (17) as

xi|ai, µ, σ, λ
ind.∼ N

(
µ+

λ|ai|√
1 + λ2

,
σ2

1 + λ2

)
, ai

ind.∼ N(0, 1),

µ ∼ N(µµ, σ2
µ), σ2 ∼ Inverse-Gamma(A,B), λ ∼ N(µλ, σ2

λ).
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Algorithm 3: Coordinate ascent scheme for obtaining the parameters in the
optimal densities q∗(a), q∗(µ) and q∗(σ) for the Asymmetric Laplace model.

Initialize: µq(µ) ∈ R and σ2
q(µ), µq(1/σ), µq(1/σ2) > 0.

Cycle:

For i = 1, . . . , n:

µq(ai) ←
[
4τ2(1− τ)2µq(1/σ2){(xi − µq(µ))2 + σ2

q(µ)}
]−1/2

.

µq(1/ai) ← 1/µq(ai) + 4τ(1− τ)

σ2
q(µ) ←

{
τ(1− τ)µq(1/σ2)

∑n
i=1 µq(ai) + 1/σ2

µ

}−1

µq(µ) ← σ2
q(µ)

{
τ(1− τ)µq(1/σ2)

∑n
i=1 xiµq(ai) + n(τ − 1

2 )µq(1/σ) + µµ/σ
2
µ

}
C2 ← n(x− µq(µ))( 1

2 − τ)

C3 ← B + 1
2τ(1− τ)

∑n
i=1 µq(ai){(xi − µq(µ))2 + σ2

q(µ)}

µq(1/σ2) ← exp{logJ +(2A+ n+ 1, C2, C3)− logJ +(2A+ n− 1, C2, C3)}

µq(1/σ) ← exp{logJ +(2A+ n,C2, C3)− logJ +(2A+ n− 1, C2, C3)}

until the increase in p(x; q) is negligible.
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For MFVB inference we impose the product restriction

q(µ, σ, λ,a) = q(µ)q(σ)q(λ)q(a).

This leads to the following forms for the optimal densities:

q∗(µ) ∼ N(µq(µ), σ
2
q(µ))

q∗(σ) =
σ−(2A+n+1) exp(C4/σ − C5/σ

2)
J +(2A+ n− 1, C4, C5)

q∗(λ) =
(1 + λ2)n/2 exp

{
−C6 λ

2 + C7λ
√

1 + λ2 + (µλ/σ2
λ)λ
}

G(0, 1
2n,C6, C7, (µλ/σ2

λ))
, −∞ < λ <∞

and q∗(a) =
n∏
i=1

√
1 + µq(λ2) exp

{
− 1

2 (1 + µq(λ2))a2
i + Ci8|ai|

}
2(Φ/φ)(Ci8/

√
1 + µ2

q(λ))
, −∞ < ai <∞.

The parameters are determined from Algorithm 4. Justification is provided in Appendix
A.3.

Note the simplified expression for use in Algorithm 4:

log p(x; q) = 1
2 + nlog(2)− (n+ 1

2 )log(2π) +Alog(B)− logΓ(A)

−
(µq(µ) − µµ)2 + σ2

q(µ)

2σ2
µ

+ 1
2 log(σ2

q(µ)/σ
2
µ)− 1

2 log(σ2
λ)− µ2

λ

2σ2
λ

+ 1
2µq(λ2)

[
µq(1/σ2)

{
n∑
i=1

(xi − µq(µ))2 + σ2
q(µ)

}
+

n∑
i=1

µq(a2
i )

]
+logG(0, 1

2n,
1
2C6, C7, (µλ/σ2

λ)) + logJ +(2A+ n− 1, C4, C5)

+nlog(2) +
n∑
i=1

logJ +(0, Ci8, 1
2 (1 + µq(λ2))).

4.4 Finite Normal Mixture Model

Consider the model

xi|µ, σ
ind.∼ Normal-Mixture(µ, σ;w,m, s),

µ ∼ N(µµ, σ2
µ), σ2 ∼ Inverse-Gamma(A,B)

(18)

where µµ and A,B, σ2
µ > 0 are hyperparameters. In model (18), w, m and s are

each fixed vectors and do not require Bayesian inference. Hence, we are not concerned
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Algorithm 4: Coordinate ascent scheme for obtaining the parameters in the
optimal densities q∗a, q∗(µ), q∗(σ) and q∗(λ) for the Skew Normal model.

Initialize: µq(µ) ∈ R and σ2
q(µ), µq(1/σ), µq(1/σ2) > 0.

Cycle:

For i = 1, . . . , n:

Ci8 ← µq(1/σ)µq(λ
√

1+λ2)(xi − µq(µ))

µq(|ai|) ←
Ci8

1+µq(λ2)
+

(φ/Φ)(Ci8/
√

1+µq(λ2))√
1+µq(λ2)

µq(a2
i )
← 1+µq(λ2)+C

2
i8

(1+µq(λ2))
2 +

Ci8(φ/Φ)(Ci8/
√

1+µq(λ2))

(1+µq(λ2))
√

1+µq(λ2)

σ2
q(µ) ←

{
1
σ2
µ

+ nµq(1/σ2)(1 + µq(λ2))
}−1

µq(µ) ← σ2
q(µ)

{
µµ
σ2
µ

+ nµq(1/σ2)(1 + µq(λ2))x− µq(1/σ)µq(λ
√

1+λ2)

∑n
i=1 µq(|ai|)

}
C4 ← µq(λ

√
1+λ2)

∑n
i=1 µq(|ai|)(xi − µq(µ))

C5 ← B + 1
2 (1 + µq(λ2))

{∑n
i=1(xi − µq(µ))2 + nσ2

q(µ)

}
µq(1/σ2) ← J+(2A+n+1,C4,C5)

J+(2A+n−1,C4,C5) ; µq(1/σ) ← J+(2A+n,C4,C5)
J+(2A+n−1,C4,C5)

C6 ← µq(1/σ2)

{∑n
i=1(xi − µq(µ))2 + nσ2

q(µ)

}
+
∑n
i=1 µq(a2

i )
+ 1

σ2
λ

C7 ← µq(1/σ)

∑n
i=1 µq(|ai|)(xi − µq(µ)).

µq(λ2) ← exp{logG(2, 1
2n,

1
2C6, C7, (µλ/σ2

λ))− logG(0, 1
2n,

1
2C6, C7, (µλ/σ2

λ))}

µq(λ
√

1+λ2) ← exp{logG(1, 1
2 (n + 1), 1

2C6, C7, (µλ/σ2
λ)) −

logG(0, 1
2n,

1
2C6, C7, (µλ/σ2

λ))}

until the increase in p(x; q) is negligible.
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with the classical normal mixture fitting problem in this section. Model (18) is not of
great interest in its own right. However, as illustrated in Section 4.5, it becomes relevant
when a troublesome response variable density function is replaced by an accurate normal
mixture approximation.

Using Result 4 we can rewrite model (18) as

p(x|µ, σ,ai) =
∏n
i=1

∏K
k=1

[
σ−1(2πs2

k)−1/2 exp
{
− 1

2 (xi−µσ −mk)2/s2
k

}]aik
,

ai
ind.∼ Multinomial(1;w), µ ∼ N(µµ, σ2

µ), σ2 ∼ Inverse-Gamma(A,B)

and aik denotes the kth entry of ai. The auxiliary random vectors ai, 1 ≤ i ≤ n,
facilitate more tractable MFVB calculations as is apparent from the derivations given
in Appendix A.4. Under the product restriction

q(µ, σ,a) = q(µ)q(σ)q(a)

the optimal densities take the form:

q∗(µ) ∼ N(µq(µ), σ
2
q(µ)),

q∗(σ) =
σ−2A−n−1 exp(C9/σ − C10/σ

2)
J +(2A+ n− 1, C9, C10)

, σ > 0,

and q∗(ai)
ind.∼ Multinomial(1;µq(ai)).

The parameters are determined from Algorithm 5. Appendix A.4 contains the deriva-
tions.

An explicit expression for log p(x; q) is:

log p(x; q) = 1
2 −

n
2 log(2π) + log(2) +Alog(B)− logΓ(A)

+logJ +(2A+ n− 1, C9, C10, 0)

+
K∑
k=1

µq(a• k){log(wk)− 1
2 log(s2

k)− 1
2 (m2

k/s
2
k)}

+ 1
2 log

(
σ2
q(µ)

σ2
µ

)
−

(µq(µ) − µµ)2 + σ2
q(µ)

2σ2
µ

−
n∑
i=1

K∑
k=1

µq(aik)log(µq(aik)).
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Algorithm 5: Coordinate ascent scheme for obtaining the parameters in the
optimal densities q∗(a), q∗(µ) and q∗(σ) for the Finite Normal Mixture model.

Initialize: µq(µ) ∈ R and σ2
q(µ), µq(1/σ), µq(1/σ2) > 0

Cycle:

For i = 1, . . . , n, k = 1, . . . ,K:

νik ← log(wk)− 1
2 log(s2

k)− 1
2s2
k

[
µq(1/σ2){(xi − µq(µ))2 + σ2

q(µ)}

−2µq(1/σ)mk(xi − µq(µ)) +m2
k

]
For i = 1, . . . , n, k = 1, . . . ,K: µq(aik) ← exp(νik)

/∑K
k=1 exp(νik)

For k = 1, . . . ,K: µq(a• k) ←
∑n
i=1 µq(aik)

σ2
q(µ) ←

(
1/σ2

µ + µq(1/σ2)

∑K
k=1

µq(a• k)

s2k

)−1

µq(µ) ← σ2
q(µ)

{
µq(1/σ2)

∑n
i=1

∑K
k=1

µq(aik)xi

s2k
− µq(1/σ)

∑K
k=1

µq(a•k)mk

s2k
+ µµ

σ2
µ

}
C9 ←

∑n
i=1

∑K
k=1

µq(aik)mk(xi − µq(µ))
s2
k

C10 ← B + 1
2

∑n
i=1

∑K
k=1

µq(aik){(xi − µq(µ))2 + σ2
q(µ)}

s2
k

µq(1/σ2) ← exp{logJ +(2A+ n+ 1, C9, C10)− logJ +(2A+ n− 1, C9, C10)}

µq(1/σ) ← exp{logJ +(2A+ n,C9, C10)− logJ +(2A+ n− 1, C9, C10)}

until the increase in p(x; q) is negligible.
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4.5 Generalized Extreme Value Model

Now consider the case where f is the standard Generalized Extreme Value density
function with shape parameter −∞ < ξ <∞, ξ 6= 0:

f(x; ξ) = (1 + ξ x)−1/ξ−1e−(1+ξ x)−1/ξ
, 1 + ξ x > 0.

Letting ξ → 0 results in the standard Gumbel density

f(x; 0) = exp(−x− e−x), −∞ < x <∞.

The Generalized Extreme Value distribution is commonly used to model sample ex-
tremes.

Direct MFVB is problematic for the location-scale model (11) when f is GEV(0, 1, ξ),
since the likelihood induced by f(; ξ) has complicated dependence on the parameters.
A reasonable way out is to work with normal mixture approximations to the f(·; ξ):

f(x; ξ) ≈
K∑
k=1

wk,ξ
sk,ξ

φ

(
x−mk,ξ

sk,ξ

)
. (19)

Approximations for f(x; 0) have been employed successfully by Frühwirth-Schnatter and
Wagner (2006) for Markov chain Monte Carlo-based inference. A number of extensions
of this work now exist, such as Frühwirth-Schnatter et al. (2009). In Appendix C we
describe normal mixture approximation for other members of the GEV(0, 1, ξ) family
of density functions.

Let Ξ be a finite parameter space for the ξ parameter and consider the univariate
GEV location-scale model:

xi|µ, σ
ind.∼ GEV(µ, σ, ξ),

µ ∼ N(µµ, σ2
µ), σ2 ∼ Inverse-Gamma(A,B), ξ ∼ p(ξ)

(20)

where µµ ∈ R and A,B, σ2
µ > 0 are hyperparameters and p(ξ) is a fixed probability

mass function over ξ ∈ Ξ.

For any fixed ξ ∈ Ξ, suppose we have a normal mixture approximation to f(·; ξ).
Then we can use Algorithm 5 to obtain MFVB approximations, with the restrictions

q(µ, σ, ξ) = q(ξ)q(µ|ξ)q(σ|ξ).

Let these approximations be denoted by q∗(µ|ξ) and q∗(σ|ξ), respectively.
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Using results from Section 3.1 with θ = (µ, σ) and η = ξ we get the structured
MFVB approximations

q∗(ξ) ≡
p(ξ) p(x|ξ)∑

ξ′∈Ξ p(ξ′) p(x|ξ′)
, q∗(µ) ≡

∑
ξ∈Ξ

q∗(ξ)q∗(µ|ξ) and q∗(σ) ≡
∑
ξ∈Ξ

q∗(ξ)q∗(σ|ξ).

The approximate marginal log-likelihood is

p(x; q) ≡
∑
ξ∈Ξ

q∗(ξ)p(x|ξ).

Algorithm 6 summarizes this structured MFVB approach to inference for (µ, σ, ξ)
in (20). The algorithm assumes that finite normal mixture approximations of the form
(19) have been obtained for each ξ ∈ Ξ. Such calculations only need to be done once
and can be stored in a look-up table. As described in Appendix C, we have done them
for ξ ∈ {−1,−0.995, . . . , 0.995, 1} with K = 24.

Algorithm 6: Structured MFVB scheme for approximation of the posteriors
p(ξ|x), p(µ|x) and p(σ|x) for the Generalized Extreme Value model.

For each ξ ∈ Ξ:

1. Retrieve the normal mixture approximation vectors: (wk,ξ,mk,ξ, sk,ξ), 1 ≤
k ≤ K, for approximation of the GEV(0, 1, ξ) density function.

2. Apply Algorithm 5 with (wk,mk, sk) set to (wk,ξ,mk,ξ, sk,ξ), 1 ≤ k ≤ K.

3. Store the parameters needed to define q∗(µ|ξ) and q∗(σ|ξ).

4. Store the converged marginal likelihood lower bound p(x|ξ).

Form the approximations to the posteriors p(ξ|x), p(µ|x) and p(σ|x) as follows:

q∗(ξ) =
p(ξ)p(x|ξ)∑

ξ′∈Ξ p(ξ′)p(x|ξ)
, q∗(µ) =

∑
ξ∈Ξ

q∗(ξ)q∗(µ|ξ), q∗(σ) =
∑
ξ∈Ξ

q∗(ξ)q∗(σ|ξ).

4.6 General Univariate Location-Scale Models

As demonstrated in the previous section for the GEV univariate location-scale model,
the auxiliary normal mixture approach offers itself as a viable ‘last resort’ for trouble-
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some density functions. Provided f in (11) is reasonably smooth, one can approximate
it arbitrarily well by a finite normal mixture and then use Algorithm 5. If additional
parameters are present, such as the GEV shape parameter ξ, then there is the option
of imposing a discrete finite prior and using the approach exemplified by Algorithm 6.

Hence, the auxiliary mixture approach can be used for MFVB inference for general
univariate location-scale models.

5 Alternative Scale Parameter Priors

The Inverse Gamma distribution is the conjugate family for variance parameters in
Normal mean-scale models. Since, after the introduction of auxiliary variables, many
of the models in Section 4 involve Normal distributions the conjugacy property helps
reduce the number of non-analytic forms. However, alternative scale parameter priors
are often desirable. Gelman (2006) argues that Half t densities are better for achieving
non-informativeness of scale parameters, and pays particular attention to Half Cauchy
scale priors. The Bayesian variable selection models of Cottet et al. (2008) use Log
Normal priors for scale parameters. In this section we briefly describe the handling of
these alternative scale parameter priors in MFVB inference.

5.1 Half t Prior

Consider the following alternative to (13):

xi|µ, σ
ind.∼ t(µ, σ, ν),

µ ∼ N(µµ, σ2
µ), σ ∼ Half-t(A,ω), ν ∼ Uniform(νmin, νmax)

(21)

where µµ ∈ R and σ2
µ, A, ω, νmin, νmax > 0 are hyperparameters. The only difference is

σ2 ∼ Inverse-Gamma(A,B) is replaced with σ ∼ Half-t(A,ω). As before, we introduce
auxiliary variables of the form ai|ν

ind.∼ Inverse-Gamma(ν2 ,
ν
2 ). In addition, we introduce

b ∼ Inverse-Gamma( 1
2 , 1/A

2). Then Results 1 and 5 allow us to write (21) as

xi|ai, µ, σ
ind.∼ N(µ, ai σ2), ai|ν

ind.∼ Inverse-Gamma(ν2 ,
ν
2 ),

µ ∼ N(µµ, σ2
µ), σ2|b ∼ Inverse-Gamma(ω/2, ω/b),

b ∼ Inverse-Gamma( 1
2 , 1/A

2), ν ∼ Uniform(νmin, νmax).
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The optimal q densities are the same as (14), but with

q∗(σ2) ∼ Inverse-Gamma

(
n+ ω

2
, ωµq(1/b) + 1

2

n∑
i=1

µq(1/ai){(xi − µq(µ))2 + σ2
q(µ)}

)
.

The optimal parameters can be obtained using a coordinate ascent algorithm similar to
Algorithm 2. The only change is that

Bq(σ2) ← B + 1
2

n∑
i=1

µq(1/ai){(xi − µq(µ))2 + σ2
q(µ)} ; µq(1/σ2) ←

A+ n
2

Bq(σ2)

is replaced with

µq(1/b) ← 1
2 (ω + 1)A2{ωA2µq(1/σ2) + 1}−1 ;

Bq(σ2) ← ωµq(1/b) + 1
2

∑n
i=1 µq(1/ai){(xi − µq(µ))2 + σ2

q(µ)} ; µq(1/σ2) ←
n+ ω

2Bq(σ2)
.

The expression for log p(x; q) becomes:

log p(x; q) = 1
2 −

n
2 log(2π) + 1

2 log(σ2
q(µ)/σ

2
µ)−

(µq(µ) − µµ)2 + σ2
q(µ)

2σ2
µ

+ 1
2 ωlog(ω)

+logΓ( 1
2 (n+ ω)) + logΓ( 1

2 (ω + 1))− logΓ(ω/2)− 1
2 log(π)− log(A)

− 1
2 (n+ ω)log{Bq(σ2)} − 1

2 (ω + 1)log{ωµq(1/σ2) +A−2}

+ωµq(1/b)µq(1/σ2) + logF(0, n, C1, νmin, νmax)− log(νmax − νmin)

+nlogΓ( 1
2 (µq(ν) + 1)) + 1

2µq(ν)

n∑
i=1

µq(logai) +
n∑
i=1

Bq(ai)µq(1/ai)

− 1
2 (µq(ν) + 1)

n∑
i=1

log{Bq(ai)}.

5.2 Log Normal Prior

Next, consider the following alternative to (13):

xi|µ, σ
ind.∼ t(µ, σ, ν),

µ ∼ N(µµ, σ2
µ), σ ∼ Log-Normal(A,B), ν ∼ Uniform(νmin, νmax)

where µµ ∈ R and A,B, νmin, νmax, σ
2
µ > 0 are hyperparameters. Once again, we intro-

duce auxiliary variables ai|ν
ind.∼ Inverse-Gamma(ν2 ,

ν
2 ), and work with

xi|ai, µ, σ
ind.∼ N(µ, ai σ2).
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The optimal q densities are the same as (14), but with

q∗(σ) =
2σ(A/B2)−n−1 exp{−C11/σ

2 − (logσ)2/(2B2)}
J (0, A

2B2 − n
2 ,

1
8B2 , C11)

, σ > 0.

The optimal parameters can be obtained using a coordinate ascent algorithm similar to
Algorithm 2. The only change is that

Bq(σ2) ← B + 1
2

n∑
i=1

µq(1/ai){(xi − µq(µ))2 + σ2
q(µ)} ; µq(1/σ2) ←

A+ n
2

Bq(σ2)

is replaced with

C11 ← 1
2

n∑
i=1

µq(1/ai)

{
(xi − µq(µ))2 + σ2

q(µ)

}
; µq(1/σ2) ←

J (0, A
2B2 − 1− n

2 ,
1

8B2 , C11)
J (0, A

2B2 − n
2 ,

1
8B2 , C11)

.

The expression for log p(x; q) becomes:

log p(x; q) = n+1
2 + n

2µq(ν) − n
2 log(2π) + 1

2 log(σ2
q(µ)/σ

2
µ)−

(µq(µ) − µµ)2 + σ2
q(µ)

2σ2
µ

− 1
2 log(2π)− 1

2 (A2/B2)− log(B) + logJ (0, A
2B2 − n

2 ,
1

8B2 , C11)

+logF(0, n, C1, νmin, νmax)− log(νmax − νmin)

+nlogΓ( 1
2 (µq(ν) + 1))− n

2 (µq(ν) + 1) digamma{ 1
2 (µq(ν) + 1)}.

6 Extension to Regression Models

Up until now we have restricted attention to univariate models. This has the advantage
that the various issues that arise with elaborate distributions in MFVB can be addressed
with minimal notational effort. The locality property of MFVB means that the non-
analytic forms that were identified in Sections 4 and 5 still apply for larger models. In
this section we examine the most common multiparameter extension: from univariate
models to regression models. For shape parameters such as ν, the t distribution degrees
of freedom, this extension has no impact on the updates. The scale parameter updates
are only mildly impacted. The location parameter µ is replaced by a vector of regression
coefficients β. Algebraically, this involves replacement of

1µ by Xβ

in the model specification. The updates for β then involve matrix algebraic counterparts
of µq(µ) and σ2

q(µ). We will provide details on this extension for the t-distribution model
with Inverse Gamma priors. Extensions for other models are similar.
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A Bayesian t regression model (e.g., Lange et al. 1989) is

yi|β, σ
ind.∼ t((Xβ)i, σ, ν),

β ∼ N(µβ,Σβ), σ2 ∼ Inverse-Gamma(A,B), ν ∼ Uniform(νmin, νmax)

(22)

where µβ and Σβ hyperparameters for β. We can re-write (22) as

yi|ai, µ, σ
ind.∼ N((Xβ)i, ai σ2), ai|ν

ind.∼ Inverse-Gamma(ν2 ,
ν
2 ),

β ∼ N(µβ,Σβ), σ2 ∼ Inverse-Gamma(A,B), ν ∼ Uniform(νmin, νmax).

For MFVB inference we impose the product restriction

q(β, σ, ν,a) = q(β, ν)q(σ)q(a).

This yields the following forms for the optimal densities:

q∗(β) ∼ N(µq(β),Σq(µ)),

q∗(σ2) ∼ Inverse-Gamma
(
A+ n

2 ,

B + 1
2 µq(1/σ2)

[
(y −Xµq(β))TC12(y −Xµq(β)) + tr{Σq(β)X

TC12X}
])
,

q∗(ai)
ind.∼ Inverse-Gamma

(
µq(ν)+1

2 ,

1
2

[
µq(ν) + µq(1/σ2){(y −Xµq(β))2

i + (XΣq(β)X
T )ii}

])
and q∗(ν) =

exp
[
n
{
ν
2 log(ν/2)− logΓ(ν/2)

}
− (ν/2)C1

]
F(0, n, C1, νmin, νmax)

, νmin < ν < νmax.

(23)

The last density uses the same definition for C1 that was used in the univariate case:
C1 ≡

∑n
i=1{µq(logai) +µq(1/ai)}. The parameters in (23) are determined from Algorithm

7.

The lower bound on the marginal log-likelihood admits the expression:

log p(y; q) = 1
2 −

n
2 log(2π) + 1

2 log|Σ−1
β Σq(β)|

− 1
2

{
(µq(β) − µβ)TΣ−1

β (µq(β) − µβ) + tr(Σ−1
β Σq(β))

}
+Alog(B)− logΓ(A)− (A+ n

2 )log(Bq(σ2)) + logΓ(A+ n
2 )

+logF(0, n, C1, νmin, νmax)− log(νmax − νmin) + nlogΓ( 1
2 (µq(ν) + 1))

+ 1
2µq(ν)

n∑
i=1

µq(logai) +
n∑
i=1

Bq(ai)µq(1/ai)

− 1
2 (µq(ν) + 1)

n∑
i=1

log{Bq(ai)}.
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Algorithm 7: Coordinate ascent scheme for obtaining the parameters in the
optimal densities q∗(a), q∗(β), q∗(ν), q∗(σ) for the t regression model.

Initialize: µq(β) ∈ Rk+1, µq(ν) ∈ [νmin, νmax] and µq(1/σ2) > 0.
Cycle:

For i = 1, . . . , n:

Bq(ai) ← 1
2

[
µq(ν) + µq(1/σ2){(y −Xµq(β))2

i + (XΣq(β)X
T )ii}

]
µq(1/ai) ← 1

2 (µq(ν) + 1)/Bq(ai)

µq(logai) ← log(Bq(ai))− digamma( 1
2 (µq(ν) + 1))

C12 ← diag1≤i≤n{µq(1/ai)} ; Σq(β) ←
{
µq(1/σ2)X

TC12X + Σ−1
β

}−1

µq(β) ← Σq(β)

{
µq(1/σ2)X

TC12y + Σ−1
β µβ

}
C1 ←

∑n
i=1{µq(logai) + µq(1/ai)}

µq(ν) ← exp{logF(1, n, C1, νmin, νmax)− logF(0, n, C1, νmin, νmax)}

Bq(σ2) ← B+ 1
2 µq(1/σ2)

[
(y−Xµq(β))TC12(y−Xµq(β))+tr{Σq(β)X

TC12X}
]

µq(1/σ2) ← (A+ n
2 )/Bq(σ2)

until the increase in p(x; q) is negligible.
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7 Other Elaborate Response Models

Many other elaborate continuous response distributions could be entertained. Examples
include Skew t (e.g., Azzalini and Capitanio 2003), Generalized Inverse Gaussian and
Generalized Hyperbolic distributions. There are also numerous elaborate distributions
appropriate for discrete responses, such as Negative Binomial and Beta Binomial dis-
tributions. In the multiparameter case, corresponding to Bayesian generalized additive
models, the link function also impacts tractability of MFVB schemes (e.g., Girolami
and Rogers 2006).

Clearly we cannot cover all possible elaborate response distributions. However, we
note that the strategies used in Sections 4 to 6 involving judicious use of auxiliary
variables, quadrature and finite mixture approximations apply generally. For example,
equation (25) of Azzalini and Capitanio (2003) suggests a useful auxiliary variable rep-
resentation for Skew t response models. As mentioned in Section 4.6, finite mixture
approximation to the response density is always available as a last resort.

8 Accuracy Assessment

We conducted a simulation study to assess the accuracy of the univariate location-scale
MFVB algorithms described in Sections 4 and 5. One hundred random samples of size
n = 500 were drawn from the t distribution, Asymmetric Laplace, Skew Normal and
Generalized Extreme Value distributions. Without loss of generality we set the location
and scale parameters to be µ = 0 and σ = 1. The shape parameters were:

ν = 1.5 for the t-distribution models,

τ = 0.75 for the Asymmetric Laplace distribution model,

λ = 5 for the Skew-Normal distribution model

and ξ = 0.5 for the Generalized Extreme Value distribution model.

The hyperparameters for µ were fixed at µµ = 0 and σ2
µ = 108. For Inverse Gamma

priors on the squared scale we used A = B = 0.01. For the Half Cauchy prior on the
scale we used A = 25 and for the Log Normal prior on the scale we used A = 100 and
B = 10. Shape parameter hyperparameters were νmin = 0.01, νmax = 100, µλ = 0 and
σ2
λ = 108. Finally, p(ξ) was a uniform discrete distribution on Ξ = {0, 0.01, . . . , 0.99, 1}.

The accuracy of MFVB approximate posterior density functions was measured via
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L1 distance. Let θ be a generic parameter in any one of the models considered in Section
4 or 5. Then the L1 error, or integrated absolute error (IAE) of q∗, given by

IAE(q∗) =
∫ ∞
−∞

∣∣ q∗(θ)− p(θ|x)
∣∣ dθ.

Note that L1 error is a scale-independent number between 0 and 2 and is invariant to
monotone transformations on the parameter θ (Devroye and Györfi 1985). The latter
property implies, for example, that the IAEs for q∗(σ) and q∗(σ2) are identical. The
accuracy of q∗ is defined to be

accuracy(q∗) = 1− {IAE(q∗)/ sup
q a density

IAE(q)} = 1− 1
2 IAE(q∗). (24)

Since 0 ≤ accuracy(q∗) ≤ 1 we express this measure as a percentage in our accuracy
assessments. Exact computation of p(θ|x) is difficult so we worked with MCMC samples
obtained using BRugs (Ligges et al. 2011) with a burnin of size 10000. A thinning
factor of 5 was applied to post-burnin samples of size 50000. This resulted in MCMC
samples of size 10000 for density estimation. Density estimates were obtained using the
binned kernel density estimate bkde() function in the R package KernSmooth (Wand
and Ripley 2010). The bandwidth was chosen using a direct plug-in rule, corresponding
to the default version of the dpik() function in KernSmooth.

Figure 4 summarizes the accuracy measures obtained from 100 replications of each
of six models. The left-hand panels show the accuracy of MFVB for the three t models.
The results are similar, regardless of form of the scale parameter prior. There is also very
little between sample variability in the accuracy measures and, hence, we will simply
quote average accuracy here. The location parameter µ has its posterior approximated
with about 84% accuracy. For the degrees of freedom parameter ν the accuracy drops
to about 71%, while it is only about 65% for the scale parameter σ. The results for the
Asymmetric Laplace show an approximate reversal with the scale parameter having 74%
accuracy, but the location parameter posterior at 66% accuracy. The accuracy values
for the Skew Normal model are between 37% and 42% for the three model parameters
µ, σ and λ, indicating that this distribution is particularly challenging for MFVB. For
the Generalized Extreme Value model the location and scale have accuracy each around
50%. But the accuracy for the shape parameter ξ is excellent at 93%.

The nature of the inaccuracies is shown in Figure 5, in which the approximate
densities are shown for the first replication of the simulation study. Since there is very
little variability in the accuracies, these plots show typical performance. There is a
pronounced tendency for the MFVB densities to be too narrow.
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Figure 4: Boxplots of accuracy measurements for the simulation study described in the
text.

Figure 6 provides some insight into why MFVB is prone to inaccuracy for the models
in Sections 4–6. It shows pairwise scatterplots of the MCMC output when fitting the
asymmetric Laplace model to a simulated random sample of size 100. The shape pa-
rameter was set at τ = 0.95. It is apparent from Figure 6 that the posterior correlation
between σ and a1 is quite strong. The MFVB approximation with product restriction
(16) ignores this dependence and, consequently, its accuracy suffers.
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Figure 5: Comparison of MFVB and ‘exact’ (MCMC-based) posterior density functions
and probability mass function for several parameters from the simulation study. In
each case, the approximate posterior densities are obtained from the first replication of
the simulation study. For the density function comparisons, MFVB approximations are
shown as blue curves and the ‘exact’ densities are shown as orange curves. Analogous
colour-coding applies to the probability mass functions.

9 Application

MFVB for elaborate distributions has enormous potential for use in applications. The
locality property means that the results for the simpler models in Sections 4–6 can be
used in larger models tailored to the data at hand. In this section we provide a brief
illustration: robust nonparametric regression based on the t-distribution for data from
a respiratory health study. The data, shown in Figure 7, correspond to measurements
on one human subject during two separate respiratory experiments, during which the
subject was exposed to residual oil fly ash, as part of a study conducted by Professor
Russ Hauser at Harvard School of Public Health, Boston, USA. In each panel, the
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Figure 6: Pairwise scatterplots and sample correlations of MCMC output for µ, log(σ)
and log(a1) when fitting a univariate asymmetric Laplace model to a sample of size
n = 100 with shape parameter τ = 0.95. The MCMC sample size is 5000.

(xi, yi) predictor/response pairs are:

xi = time in seconds since exposure to air containing particulate matter

yi = log(adjusted time of exhalation).
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The adjusted time of exhalation is obtained by subtracting the average time of exha-
lation at baseline, prior to exposure to filtered air. Interest centres upon the mean
response as a function of the time, so an appropriate model is

yi = f(xi) + εi.

However, the yis contain outlying values due to an occasional cough or sporadic breath
and it is appropriate to model the errors as εi

ind.∼ t(0, σε, ν). A penalized spline model
for f is

f(x) = β0 + β1 x+
K∑
k=1

ukzk(x), uk
ind.∼ N(0, σ2

u)

where {z1(x), . . . , zK(x)} is an appropriate set of spline basis functions (e.g., Wand and
Ormerod 2008). Staudenmayer et al. (2009) considered a non-Bayesian version of this
model and described fitting via an Expectation-Maximization (EM) algorithm. Here
we consider the Bayesian hierarchical model

yi|β,u, σε
ind.∼ t((Xβ + Zu)i, σε, ν), u|σu

ind.∼ N(0, σ2
uI),

β ∼ N(0, σ2
βI), σε ∼ Half-Cauchy(Aε),

σu ∼ Half-Cauchy(Au), ν ∼ Uniform(νmin, νmax)

(25)

where

X = [1 xi]1≤i≤n and Z = [z1(xi) · · · zK(xi)]1≤i≤n.

We used the following product density assumption in our MFVB approximation:

q(β,u, ν, σu, σε) = q(β,u, ν)q(σu, σε).

Up until now, MFVB fitting of (25) has been challenging due to the elaborate form
of the response and the non-conjugate prior distributions on the standard deviation
parameters. However, simple extension of the methodology in Sections 5.1 and 6 permits
its fitting. In particular, all calculations are either analytic or involve members of the
F(p, q, r, s, t) integral family.

The hyperparameters are set at σ2
β = 108, Au = Aε = 25, νmin = 0.1 and νmax = 10

with standardized versions of the (xi, yi) data used in the fitting. This imposes non-
informativeness for all parameters (Gelman 2006). The results were then transformed
back to the original units.
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Figure 7: Comparison of MFVB and MCMC fits for robust t-based nonparametric re-
gression, corresponding to (25). The panels correspond to measurements on one subject
during two separate respiratory experiments, described in the text.

Inspection of Figure 7 shows that the MFVB fits and pointwise 95% credible sets
are quite close to those obtained using MCMC (with burnin of size 15000, retained
sample of size 15000, and thinning factor of 5). This high accuracy is aligned with
that exhibited by q∗(µ) for the univariate t-distribution model (upper left-hand panel
of Figure 4). Staudenmayer et al. (2009) admit that EM-based fitting of these data
requires several hours of computing time. The MCMC fits shown in Figure 7 took 80
seconds on the first author’s laptop computer (Mac OS X; 2.33 GHz processor, 3 GBytes
of random access memory). A simplistic R implementation of the MFVB approximation
took about 3 seconds. Lastly, we point out that the robustness gains from using t-based
nonparametric regression for these data are apparent from Figure 1 of Staudenmayer
et al. (2009).

10 Closing Discussion

Mean field variational Bayes provides an alternative to MCMC when speed is at a
premium. In this article we have enriched significantly the class of models which can be
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handled via the MFVB paradigm. The numerical studies in Section 8 show that, as with
simpler distributions, MFVB for elaborate distributions entails a loss in accuracy for
the convenient product restrictions used in our illustrations. Yet to be explored are less
stringent product restrictions for elaborate distribution models of the type considered in
Sections 4–6. These promise higher accuracy, but at the expense of higher computational
overhead.

Appendix A: Derivations

The derivations in this appendix make use of the following convenient shorthand. By
‘rest’ we mean all other random variables in the Bayesian model at hand. Additive
constants with respect to the function argument are denoted by ‘const’. The sample
mean of x1, . . . , xn is denoted by x ≡ 1

n

∑n
i=1 xi.

A.1. t Model

Each of the full conditional density functions satisfy:

log p(µ|rest) = − 1
2

[{∑n
i=1(1/ai)
σ2

+
1
σ2
µ

}
µ2 − 2

{∑n
i=1 xi/ai
σ2

+
µµ
σ2
µ

}
µ

]
+const,

log p(σ2|rest) = −(A+ 1
2 n)log(σ2)−

{
B + 1

2

n∑
i=1

(xi − µ)2

ai

}/
σ2 + const,

logp(ν|rest) = n{ν2 log(ν/2)− logΓ(ν/2)}

−(ν/2)
n∑
i=1

{log(ai) + (1/ai)}+ const, νmin < ν < νmax,

and logp(a|rest) =
n∑
i=1

[
− 1

2 (ν + 1)log(ai)− 1
2 (1/ai)

{
ν +

(xi − µ)2

σ2

}]
+ const.
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Then

q∗(µ) ∝ exp
{
Eq(σ2,a)log p(µ|rest)

}
= exp

(
− 1

2

[{
µq(1/σ2)

n∑
i=1

µq(1/ai) +
1
σ2
µ

}
µ2

−2

{
µq(1/σ2)

n∑
i=1

xiµq(1/ai) +
µµ
σ2
µ

}
µ
])
.

Standard manipulations lead to q∗(µ) being the N(µq(µ), σ
2
q(µ)) density function, where

σ2
q(µ) =

(
µq(1/σ2)

n∑
i=1

µq(1/ai) +
1
σ2
µ

)−1

and

µq(µ) = σ2
q(µ)

(
µq(1/σ2)

n∑
i=1

xiµq(1/ai) +
µµ
σ2
µ

)
.

The derivations for q∗(σ2), q∗(ν) and q∗(a) involve similar and standard manipulations.

A.2. Asymmetric Laplace Model

The full conditionals satisfy:

logp(µ|rest) = − 1
2

{
1
σ2
µ

+
τ(1− τ)

∑n
i=1 ai

σ2

}
µ2

+
{
µµ
σ2
µ

+
τ(1− τ)

∑n
i=1 aixi)

σ2
+
n(τ − 1

2 )
σ

}
µ+ const,

logp(σ|rest) = −(2A+ n+ 1)log(σ)− 1
σ2

(
B + 1

2τ(1− τ)
n∑
i=1

ai(xi − µ)2

)

+
1
σ
n(x− µ)( 1

2 − τ) + const

and logp(a|rest) =
n∑
i=1

[
− 3

2 log(ai)− 1
2

{
ai

(xi − µ)2τ(1− τ)
σ2

+
1

ai4τ(1− τ)

}]
+const.

The derivation of q∗(µ) is similar to that given in Section A.1 for the t model. The
optimal q-density for σ satisfies

q∗(σ) ∝ exp[Eq(µ,a){p(σ|rest)}] = exp(C2/σ − C3/σ
2), σ > 0,
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where

C2 ≡ n(x− µq(µ))( 1
2 − τ) and C3 ≡ B + 1

2τ(1− τ)
n∑
i=1

µq(ai){(xi − µq(µ))2 + σ2
q(µ)}.

Noting that∫ ∞
0

σ−(2A+n+1+k) exp(C2/σ − C3/σ
2) dσ = J +(2A+ n− k − 1, C2, C3)

for each of k ∈ {−2,−1, 0} we get the normalizing factor for q∗(σ) being J +(2A+ n−
1, C2, C3) and the expressions for µq(1/σ2) and µq(1/σ) appearing in Algorithm 3. Lastly,

q∗(a) ∝
n∏
i=1

a
−3/2
i exp

[
− 1

2

{
aiµq(1/σ2)(xi − µ)2τ(1− τ) +

1
ai4τ(1− τ)

}]
, ai > 0.

After a little algebra, it becomes clear that q∗(a) is a product of Inverse Gaussian
densities q∗(ai) with means

µq(ai) =
[
4τ2(1− τ)2µq(1/σ2){(xi − µq(µ))2 + σ2

q(µ)}
]−1/2

, 1 ≤ i ≤ n,

and common precision parameter γq(ai) = {4τ(1− τ)}−1. The expression for µq(1/ai) in
Algorithm 3 follows from the expectation results (1).

A.3. Skew Normal Model

The full conditionals satisfy

logp(µ|rest) = − 1
2

{
1
σ2
µ

+
n(1 + λ2)

σ2

}
µ2

+

{
µµ
σ2
µ

+
n(1 + λ2)x

σ2
−
λ
√

1 + λ2
∑n
i=1 |ai|

σ

}
µ+ const,

logp(σ|rest) = −(2A+ n+ 1)log(σ)− 1
σ2

(
B + 1

2 (1 + λ2)
n∑
i=1

(xi − µ)2

)

+
1
σ
λ
√

1 + λ2

n∑
i=1

|ai|(xi − µ) + const,

logp(λ|rest) = n
2 log(1 + λ2)− 1

2

[
1
σ2

n∑
i=1

(xi − µ)2 +
n∑
i=1

a2
i +

1
σ2
λ

]
λ2

+
λ
√

1 + λ2

σ

n∑
i=1

|ai|(xi − µ) +
µλλ

σ2
λ

+ const

and logp(a|rest) =
n∑
i=1

{
− (1 + λ2)a2

i

2
+
λ
√

1 + λ2(xi − µ)|ai|
σ

}
+ const.
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The derivation for q∗(µ) is similar to that given for each of the previous models. The
derivation for q∗(σ) is similar to that given for the Asymmetric Laplace model.

To obtain q∗(λ) note that

Eq{logp(λ|rest)} = n
2 log(1 + λ2)

− 1
2

[
µq(1/σ2)

{
n∑
i=1

(xi − µq(µ))2 + nσ2
q(µ)

}
+

n∑
i=1

µq(a2
i )

+
1
σ2
λ

]
λ2

+

[
µq(1/σ)

n∑
i=1

µq(|ai|)(xi − µq(µ))

]
λ
√

1 + λ2 +
µλλ

σ2
λ

+ const.

Hence

q∗(λ) ∝ (1 + λ2)n/2 exp
{
−C6 λ

2 + C7λ
√

1 + λ2 + (µλ/σ2
λ)λ
}
, −∞ < λ <∞,

where

C6 ≡ µq(1/σ2)

{
n∑
i=1

(xi − µq(µ))2 + nσ2
q(µ)

}
+

n∑
i=1

µq(a2
i )

+
1
σ2
λ

and

C7 ≡ µq(1/σ)

n∑
i=1

µq(|ai|)(xi − µq(µ)).

The normalizing factor is∫ ∞
−∞

(1 + λ2)n/2 exp
{
−C6 λ

2 + C7λ
√

1 + λ2 + (µλ/σ2
λ)λ
}
dλ

= G(0, 1
2n,

1
2C6, C7, (µλ/σ2

λ)).

The expressions for µq(λ2) and µq(λ
√

1+λ2) involve similar manipulations. Finally,

Eq(µ,σ,λ){logp(a|rest)} =
n∑
i=1

{
− 1

2 (1 + µq(λ2))a2
i + µq(1/σ)µq(λ

√
1+λ2)(xi − µq(µ))|ai|

}
+ const.

Hence,

q∗(a) ∝
n∏
i=1

exp
{
− 1

2 (1 + µq(λ2))a2
i + Ci8|ai|

}
, −∞ < ai <∞, 1 ≤ i ≤ n,

where
Ci8 ≡ µq(1/σ)µq(λ

√
1+λ2)(xi − µq(µ)).

The normalizing factors and moment expressions follow from standard manipulations
involving the normal density and cumulative distribution functions.
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A.4. Finite Normal Mixture Model

The full conditionals satisfy:

log p(µ|rest) = − 1
2

[{ 1
σ2

K∑
k=1

a•k
s2
k

+
1
σ2
µ

}
µ2

−2

{
1
σ2

n∑
i=1

K∑
k=1

aikxi
s2
k

− 1
σ

K∑
k=1

a•kmk

s2
k

+
µµ
σ2
µ

}
µ
]

+const

log p(σ|rest) = − (2A+ n+ 1) log(σ)− 1
σ2

{
B + 1

2

n∑
i=1

K∑
k=1

aik(xi − µ)2

s2
k

}

+
1
σ

n∑
i=1

K∑
k=1

aikmk(xi − µ)
s2
k

+ const

and log p(a|rest) =
n∑
i=1

K∑
k=1

aik

{
log(wk)− 1

2 log(s2
k)− (xi − µ− σmk)2

2σ2s2
k

}
+ const

where a•k ≡
∑n
i=1 aik. The derivation for q∗(µ) is similar to that given for each of the

previous models. The derivation for q∗(σ) is similar to that given for the Asymmetric
Laplace and Skew Normal models. To obtain q∗(a), first note that

Eq(µ,σ){log p(a|rest)} =
n∑
i=1

K∑
k=1

aikνik + const

where νik is given in Algorithm 5. It follows that q∗(a) ∝
∏n
i=1

∏K
k=1{exp(νik)}aik .

The requirement that
∑K
k=1 µq(aik) = 1 for all 1 ≤ i ≤ n then leads to

q∗(a) =
n∏
i=1

K∏
k=1

{µq(aik)}aik where µq(aik) = exp(νik)
/ K∑
k=1

exp(νik).

Appendix B: Numerical Integration

Many of the non-analytic integrals that arise in variational Bayes for elaborate distri-
butions are of the form

I(θ) =
∫ b

a

exp{h(x;θ)} dx

where h′′(x;θ) < 0 for all a < x < b and θ. In other words, the integrand is log-concave

over the domain for all values of its parameters which, as explained in Appendix B.1.,
aids numerical integration strategies. This is the case for the integral families J (p, q, r, s)
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and J +(p, q, r) defined in Section 2.1. The family F(p, q, r, s, t) does not have this
property, so needs to be treated more carefully. We will give the details for log-concave
integrands.

The value of I(θ) can be arbitrarily small or large for various values of θ. Hence, it
is prudent to work with log{I(θ)} instead, to avoid underflow and overflow.

B.1. Transforming the integrand to a ‘nice’ scale

In this section, we suppress the dependence of I and h on the parameters θ. We trans-
form the integrand to a nice scale by borrowing from the ideas of Laplace approximation
and Gauss-Hermite quadrature (e.g., Liu and Pierce 1994). The log-concavity property
means that the equation

h′(x) = 0

has a unique solution. Using the ideas of Laplace approximation, we use the substitution

u =
x− µ0

σ0

√
2

where

µ0 ≡ the solution to h′(x) = 0 and σ0 ≡ 1/
√
−h′′(µ0).

These choices aim to make the integrand close to a multiple of the standard normal
density function. On substitution into the logI expression we get

logI = h(µ0) + log(σ0

√
2) + log(I0)

where

I0 ≡
∫ (b−µ0)/(σ0

√
2)

(a−µ0)/(σ0
√

2)

exp{h(µ0 + uσ0

√
2)− h(µ0)} du.

B.2. Quadrature for I0

We have now reduced the problem to one involving numerical integration for I0. The
integrand for I0 has the properties of being unimodal, bounded above by unity and
has support ‘similar’ to the standard normal density. For the families G(p, q, r, s, t),
J (p, q, r, s) and J +(p, q, r) the integrands have exponentially decaying tails. Therefore,
even simple quadrature such as the trapezoidal or Simpson’s rules can be very accurate
provided we (a) determine the effective support of the integrand; and (b) use a high
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number of quadrature points. For (a) a reasonable way to do this is to sequentially
enlarge the support (L,U) until

max{exp{h(µ0 + Lσ0

√
2)− h(µ0)}, exp{h(µ0 + Uσ0

√
2)− h(µ0)}} < ε

for some ‘small’ ε such as 10−15. For (b) we use doubling of the number of quadrature
points until the relative error is below some nominal threshold such as 10−5.

Appendix C: Finite Normal Mixture Approximation

In this appendix we describe our strategy for finite normal mixture approximation of
Generalized Extreme Value density functions, as required for Algorithm 6.

Recall that the GEV(0, 1, ξ) family of density functions is given by

f(x; ξ) =

{
(1 + ξ x)−1/ξ−1e−(1+ξ x)−1/ξ

, 1 + ξ x > 0, ξ 6= 0
exp(−x− e−x), ξ = 0.

The support is [−1/ξ,∞) for ξ > 0, R for ξ = 0 and (−∞,−1/ξ] for ξ < 0. For
ξ = −1 the density function has a jump discontinuity at x = 1 and for ξ < −1 it has
a pole at x = −1/ξ. In the present article we have restricted attention to −1 ≤ ξ ≤ 1.
In applications, this sub-family is usually found to be adequate for modelling sample
extremes.

Let

fNM(x;wξ,ξ , sξ) ≡
K∑
k=1

wk,ξ
sk,ξ

φ

(
x−mk,ξ

sk,ξ

)
be a normal mixture approximation to f(x; ξ). The notation is the same as that used
in Table 1, with the addition of a ξ subscript. After fixing K, we considered choice of
(wξ,ξ , sξ) by minimizing both L1 distance:

IAE(wξ,ξ , sξ; ξ) ≡
∫ ∞
−∞
|fNM(x;wξ,ξ , sξ)− f(x; ξ)| dx

and χ2 distance

χ2(wξ,ξ , sξ; ξ) ≡
∫
S

{fNM(x;wξ,ξ , sξ)− f(x; ξ)}2/fNM(x;wξ,ξ , sξ) dx

where S is the effective support of fNM(·;wξ,ξ , sξ). The Nelder-Mead simplex algo-
rithm (Nelder and Mead 1965) was used for optimization via the MATLAB function
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fminsearch. The entries of wξ were constrained to be at least 10−6. The compo-
nent means and variances were constrained to compact intervals. The algorithm was
terminated after convergence to a local minimum.

The integrals were approximated using the trapezoidal rule on an adaptive grid. For
ξ < 0 we used 540 grid points to the left of the mode at x = {(1+ξ)−ξ−1}/ξ and 540 grid
points between the mode at the upper end of the support at x = −1/ξ. An additional
120 grid points were used in the interval [−1/ξ,−1/ξ + 4] since fNM(·;wξ,ξ , sξ) may
have a small amount of probability mass above −1/ξ. For ξ ≥ 0 the grid point strategy
required more care due to the heavy right-hand tail. An equi-spaced grid between the
10−8 and 1−10−6 quantiles of fNM(·;wξ,ξ , sξ), but right-truncated at 100000, was used.
The grid sizes increased linearly from 1100 for ξ = 0 to 7500 for ξ = 0.3 and were fixed
at 7500 for 0.3 < ξ ≤ 1. Approximating mixtures were determined for ξ ∈ [−1, 1] over
an equally-spaced grid of size 401.

Figure 8 shows some indications of the accuracy of K = 24 mixture normal mixture
approximations to the f(·; ξ) density functions. The top panel shows the accuracy of
the L1-based approximation. Since the L1 distance between two density functions is a
scale-independent number between 0 and 2, the vertical axis is immediately meaningful.
The fact that the L1 distance is uniformly below 0.01 implies that the accuracy measure
defined by (24) always exceeds 99.5%. The second panel shows accuracy of χ2-based
approximation. The bottom panel compares the two types of approximation in terms
of Kullback-Leibler distance and shows that the χ2-based approximation is almost uni-
formly better. Further error analyses reveal that χ2 distance leads to better accuracy in
the tails. This is particularly important for ξ > 0 since the upper tail of f(·; ξ) is heavy
compared with those of normal densities. Hence, we recommend the χ2-based normal
mixture approximations and these are used in Section 4.5.

A text file containing the fitted normal parameters over the fine grid of ξ values is
available as web-supplement to this article.
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Figure 8: Accuracy of both L1-based and χ2-based approximation to GEV(0, 1, ξ) den-
sity functions using K = 24 normal mixtures. The top panel plots L1 distance versus
−1 ≤ ξ ≤ 1 for L1-based approximation. The second panel shows an analogous plot for
χ2 distance. The bottom panel plots Kullback-Leibler distance versus −1 ≤ ξ ≤ 1 for
both types of approximation.




