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NONPARAMETRIC BAYESIAN LEARNING OF HETEROGENEOUS
DYNAMIC TRANSCRIPTION FACTOR NETWORKS
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The Chinese University of Hong Kong

Gene expression is largely controlled by transcription factors (TFs) in
a collaborative manner. Therefore, an understanding of TF collaboration is
crucial for the elucidation of gene regulation. The co-activation of TFs can
be represented by networks. These networks are dynamic in diverse biolog-
ical conditions and heterogeneous across the genome within each biological
condition. Existing methods for construction of TF networks lack solid sta-
tistical models, analyze each biological condition separately, and enforce a
single network for all genomic locations within one biological condition, re-
sulting in low statistical power and misleading spurious associations. In this
paper, we present a novel Bayesian nonparametric dynamic Poisson graphical
model for inference on TF networks. Our approach automatically teases out
genome heterogeneity and borrows information across conditions to improve
signal detection from very few replicates, thus offering a valid and efficient
measure of TF co-activations. We develop an efficient parallel Markov chain
Monte Carlo algorithm for posterior computation. The proposed approach is
applied to study TF associations in ENCODE cell lines and provides novel
findings.

1. Introduction. For a single person, the same copy of a genome can give rise
to hundreds of distinct cell types [Lan et al. (1997), Lara-Marquez et al. (2001)]. To
understand this phenomenon, functional genomics aims to reveal gene regulation
mechanisms. Gene regulation is largely controlled by a family of proteins called
transcription factors (TFs), which bind to specific DNA sequences to either acti-
vate or repress the expression levels of nearby genes [Mitchell and Tjian (1989)].
Accurate gene expression regulation requires extensive collaborations among TFs
[Chen et al. (2012), Hobert (2008)]. As a result, TF cooperation plays a critical
role in diverse human diseases, such as renal disease [Zhou et al. (2008)], Parkin-
son disease [Scherzer et al. (2008)], Alzheimer disease [Kitamura et al. (1997)],
and pancreatic cancer [Shi et al. (1999)]. For example, in pancreatic cancer, the
collaboration between two TFs—AP-1 and NFκB—regulates the expression of
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FIG. 1. (a) Cartoon illustration of TF networks. Each node represents one TF, and each edge
indicates the co-activation of a pair of TFs. Each row corresponds to one genomic location. On the
one hand, the TF networks vary across cell types. On the other hand, genomic locations with the
same color share the same dynamic network. Thus, the TF networks are heterogeneous across the
genome. (b) Data structure of the observed ChIP-seq counts. Each row corresponds to one genomic
location in Figure 1(a). Two replicates are measured for each TF under each cell type. The goal is
to infer the underlying heterogeneous dynamic TF networks in Figure 1(a) from the observed data in
Figure 1(b).

interleukin-8 (IL-8), whose secretion is directly associated with the cancer pro-
gression [Shi et al. (1999)]. Therefore, an understanding of TF cooperation is cru-
cial for the elucidation of gene regulation and ultimately disease mechanisms. The
interactions of TFs at each genomic location can be represented by a network. Each
node of the network corresponds to one TF, and each edge characterizes the depen-
dence of the binding intensities for a pair of TFs. Because TF collaborations differ
among biological conditions (or cell types), the network at each genomic location
is dynamic. Moreover, as TF interactions change across the genome, all dynamic
networks are heterogeneous across the genome rather than sharing the same struc-
ture. Consequently, studying TF associations translates into learning genome-wide
dynamic TF networks [see Figure 1(a)].

Count data for inferring TF networks can be obtained from ChIP-seq ex-
periments, a technology that couples chromatin immunoprecipitation with high-
throughput sequencing [Johnson et al. (2007)]. Although each ChIP-seq experi-
ment can measure the genome-wide binding intensities only for a given TF under
a single condition, ChIP-seq data accumulate rapidly in public data repositories.
The Encyclopedia of DNA Elements (ENCODE) project [ENCODE Project Con-
sortium (2012)] has collected more than 1200 TF ChIP-seq datasets, which pro-
vides an unprecedented opportunity for systematic investigation of TF interactions.
However, from the ENCODE project, a typical ChIP-seq experiment has only two
to four replicates [see Figure 1(b)]. Consequently, the analysis of TF interactions
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separately at each genomic location under each biological condition suffers from
very low statistical power.

To improve graph inference, a large body of research has recently been devoted
to joint estimation of multiple graphical models to borrow strength across con-
ditions. There are two main classes of approaches. The penalized methods add
various types of penalty terms on the precision matrices of the Gaussian graph-
ical models (GGMs) [Chun, Zhang and Zhao (2015), Danaher, Wang and Wit-
ten (2014), Guo et al. (2011)], or in a similar fashion on other types of graphical
models [Guo et al. (2015), Xue et al. (2014)], to encourage the commonly shared
structures. The Bayesian methods instead incorporate the correlations of different
conditions into Markov random field priors [Lin et al. (2017), Mitra, Müller and Ji
(2016), Peterson, Stingo and Vannucci (2015)]. Although these methods all allow
the graph structures to vary across different conditions, they force all of the sam-
ples to share the same graph within each condition. As a result, the heterogeneity
of the graph structures within each condition is ignored.

In contrast, there is emerging literature that considers sample heterogene-
ity within a single condition via clustering approaches. For continuous data,
Rodriguez et al. (2011), Cheng and Lenkoski (2012), and Gao et al. (2016) as-
sume that all samples can be generated from several subpopulations, each associ-
ated with an unknown GGM. Accordingly, they estimate multiple Gaussian graphs
for one condition. For count data, Karlis and Meligkotsidou (2007) develop a finite
mixture model of multivariate Poisson distributions. However, they do not investi-
gate the network representation of the dependence structure among variables, and
the parameter estimation is impeded by cumbersome computation.

Despite the recent statistical development, rigorous and applicable statistical
methods for modeling heterogeneous dynamic TF networks have not yet been es-
tablished. Previous analysis of ENCODE TF ChIP-seq data attempts to build a sin-
gle network to represent the co-associations of TFs for each biological condition
[Gerstein et al. (2012)]. This approach requires a fixed reference TF and inspects
the co-associations of other TFs only within the binding regions of the selected
reference TF. Moreover, the resulting networks are not based on a rigorous proba-
bilistic model. For histone modification (HM) ChIP-seq data rather than TF ChIP-
seq data, Mitra et al. (2013) build a Markov random field graph to characterize the
conditional independence of various types of HMs. Nevertheless, their approach
is also constrained to a single condition and ignores the heterogeneity of the net-
works across genomic locations. Consequently, according to Mitra et al. (2013),
their learned graph is highly connected: “In a few cases, however, the strength of
the association do not match the hypothesized relationships.” These “spurious” as-
sociations are likely to be caused by heterogeneity. With the genome classified into
several groups, even though the binding events of a TF pair are totally independent
within each group, the enforcement of a single network for all genomic locations
may induce an edge, indicating the dependence of the two TFs in the network.
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Therefore, there is an urgent need to develop statistically rigorous methods to
infer heterogeneous dynamic TF networks. The major challenges are summarized
as follows. First, ChIP-seq data are count data. Even if we transform the count
data into continuous values by adding one and then taking the logarithm, the re-
sulting distribution is right-skewed and heavy-tailed (see the Q–Q plot in Sup-
plementary Material Figure S1 [Luo and Wei (2018)]), thus violating the normal-
ity assumption. Therefore, the methods proposed for GGM are not applicable to
ChIP-seq count data. Second, due to genome heterogeneity, a single dynamic TF
network cannot be assumed for the whole genome. Heterogeneous dynamic TF
networks must be estimated across the genome. Third, ChIP-seq experiments con-
sist of very few replicates, and the obtained data are highly noisy. Consequently,
to improve signal detection, information should be borrowed across different con-
ditions. However, there is no temporal ordering between biological conditions for
the TF association problem. As a result, the relationships among conditions are
much more complicated than those for time series data.

To tackle these challenges, we propose a novel Bayesian nonparametric dy-
namic Poisson graphical model that handles heterogeneity simultaneously across
the genome and multiple biological conditions. We design a Markov chain Monte
Carlo (MCMC) algorithm to conduct posterior inference and develop a parallel
scheme to handle the large data volume. We evaluate the performance of our model
via simulation. Finally, we apply the proposed method to ENCODE Tier 1 cell
lines to construct TF networks.

2. Model formulation. In this section, we first review the traditional Pois-
son co-activation graphical model [Xue et al. (2014)], then we generalize it to the
dynamic Poisson graphical model for taking multiple conditions into account. Fi-
nally, we introduce our hierarchical dynamic Poisson graphical model to deal with
multiple conditions and genome heterogeneity at the same time.

2.1. Poisson co-activation graphical model. The Poisson co-activation graph-
ical model (PGM) was previously applied successfully to infer the dependence
structure of multivariate count data [Karlis (2003), Xue et al. (2014)]. Let
X = {X1,X2, . . . ,Xp} denote the p-dimensional count data. The dependence
of X1,X2, . . . ,Xp can be represented by an undirected graph G = (V ,E). In
graph G, V = {1, . . . , p} is the node set, with node i corresponding to Xi , and
E = (eij )1≤i<j≤p is the edge set, indicating the dependence or independence of
Xi and Xj . Specifically, eij = 0 if and only if Xi and Xj are independent. The
PGM assumes that X follows a two-way multivariate Poisson distribution [Karlis
(2003)]. Although the general m-way multivariate Poisson is available [Kawamura
(1979)] to model higher-order interactions, such as three-way or four-way interac-
tions, as the literature shows, the two-way multivariate Poisson is often sufficient
to model the real data reasonably well [Karlis (2003), Karlis and Meligkotsidou
(2007), Xue et al. (2014)]. With respect to computation, the time complexity for
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estimating a general m-way Poisson distribution is O(pm) where p is the number
of nodes. Hence, the computational time increases dramatically with m, especially
when p is large. Therefore, we follow the PGM to focus on two-way multivariate
Poisson distributions from this point forward.

For the application of Poisson co-activation graphs to TF networks, p denotes
the number of TFs; each node represents a TF; and an edge between nodes i and
j indicates that TF i collaborates with TF j when they bind to the DNA.

Recently, there has been active research on the Poisson conditional graphical
model (PCGM) [Yang et al. (2013, 2015), Inouye et al. (2017)] as well, which
studies whether Xi and Xj are independent conditioning on all the other variables
X \ {Xi,Xj }. Just as both co-expression networks [Carter et al. (2004), Zhang
and Horvath (2005), Bickel and Levina (2008)] and Gaussian graphical models
[Friedman, Hastie and Tibshirani (2008), Meinshausen and Bühlmann (2006),
Yuan and Lin (2007)], measured by covariance and precision matrices, respec-
tively, can characterize different aspects of the gene regulatory mechanism, both
PGM and PCGM can offer insights into TF networks. However, for TF coopera-
tion, most existing literature focuses on whether the binding of a given pair of TFs
is independent or not without considering other transcription factors [MacArthur
et al. (2009), Bickel et al. (2010), Wei and Wu (2016)], which is a close anal-
ogy to co-activating brain connectivity networks [Xue et al. (2014)]. Moreover, if
only a subset of nodes is measured, the learned partial PCGM network does not
reflect the true conditional independence among all nodes. In contrast, the edges
in PGM learned on a subset of nodes are the same as the corresponding edges in
the complete network learned with data from all of the nodes (see details in Sup-
plementary Material Section 1 [Luo and Wei (2018)]). In the ENCODE project,
despite the accumulation of more than 1000 ChIP-seq samples, for each biologi-
cal condition only a small number of TFs have been assayed: https://genome.ucsc.
edu/encode/dataMatrix/encodeChipMatrixHuman.html. In other words, there are
many unmeasured nodes in the TF networks. PGM studies whether two TFs are
independent or not by themselves, and such interpretations will not change if addi-
tional TFs are assayed in the future. Therefore, the currently available data allows
a legitimate inference for PGM but not PCGM.

The explicit form of the joint probability function for X in the PGM is very
complicated. For instance, even when p = 2, the joint probability for bivariate
Poisson distribution [Kocherlakota and Kocherlakota (1992)] is:

(2.1)

P(X1 = x1,X2 = x2)

= e−(λ11+λ22+λ12)
λ

x1
11

x1!
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x2!
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s=0

(
x1

s

)(
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s

)
s!

(
λ12
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)s

,

where x1 ∧ x2 is the minimum of x1 and x2. Fortunately, by data argumen-
tation [Tanner and Wong (1987)], the multivariate Poisson distribution can

https://genome.ucsc.edu/encode/dataMatrix/encodeChipMatrixHuman.html
https://genome.ucsc.edu/encode/dataMatrix/encodeChipMatrixHuman.html
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be equivalently formulated using a set of independent latent Poisson vari-
ables Y = {Yij }1≤i≤j≤p with corresponding dependence intensity parameters
� = {λij }1≤i≤j≤p [Karlis (2003)]. The observed data are decomposed as Xi =∑p

j=1 Yij , i = 1, . . . , p. Here, Yij = Yji for any node pair, representing the sym-
metry of interaction. Consequently, each Xi marginally follows a Poisson distri-
bution Pois(

∑p
j=1 λij ). λij (i �= j ) characterizes the interaction of TFs i and j ,

which determines the graph structure. The graph contains an edge eij = 1 if and
only if λij > 0. To learn � and ultimately the graph G, treating Y as missing data,
the joint probability mass function for the complete data can be written as

(2.2)

f (x,y|�) = Pr(X = x,Y = y|�)

=
p∏

i=1

e−λii
λ

xi−∑
j �=i yij

ii

(xi − ∑
j �=i yij )! · ∏

1≤i<j≤p

e−λij
λ

yij

ij

yij ! .

An expectation maximization (EM) algorithm [Dempster, Laird and Rubin (1977)]
can be derived for the estimation according to the complete log-likelihood. When
sparsity is assumed for the graph G, Xue et al. (2014) add a L1-penalty term∑

1≤i<j≤p λij to the negative of the complete log-likelihood to shrink the small
values in � to zero, which enforces a sparse graph structure.

2.2. Dynamic Poisson graphical model. For a specific genomic location g,
the collaboration pattern of TFs under a given condition d can be characterized
by a PGM. Let X

(g)
dr,i denote the number of ChIP-seq reads for TF i aligned to

genomic location g under condition d for replicate r , representing TF i’s bind-
ing intensity. Without loss of generality, N genomic locations are measured in R

replicates for each of the D conditions. In the same fashion as equation (2.2), the
joint distribution for count data X(g)

dr = {X(g)
dr,i}i=1,...,p can be decomposed using

latent Poisson random variables Y(g)
dr = {Y (g)

dr,ij }1≤i≤j≤p as X
(g)
dr,i = ∑p

j=1 Y
(g)
dr,ij for

1 ≤ i ≤ p with Y
(g)
dr,ij = Y

(g)
dr,j i . The collaborative efforts of the p TFs are thus

characterized by the dependence intensity parameters �
(g)
d = {λ(g)

d,ij }1≤i≤j≤p asso-

ciated with Y(g)
dr . �

(g)
d reflects the graph structure E(g)

d with λ
(g)
d,ij > 0 if and only if

e
(g)
d,ij = 1.

Because the co-activation patterns of TFs for genomic location g change from
one biological condition to another, the condition-specific graph structure E(g)

d also

varies from condition to condition. Collecting E(g)
d over all of the D conditions into

E(g) = {E(g)
d }d=1,...,D , the graph for TFs at genomic location g becomes a dynamic

one: G(g) = (V ,E(g)). Our task is to infer the dynamic graph E(g) [Figure 1(a)] and
the dependence intensity parameters �(g) = {�(g)

d }d=1,...,D from the observed data

X(g) = {X(g)
dr }d=1,...,D;r=1,...,R [Figure 1(b)].
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According to the PGM, the joint probability mass function for the observed data
X(g) and missing data Y(g) under multiple conditions becomes

(2.3)

f
(
x(g),y(g)|�(g),E(g))

=
D∏

d=1

R∏
r=1

[ p∏
i=1

e
−λ

(g)
d,ii

(λ
(g)
d,ii)

(x
(g)
dr,i−

∑
j �=i y

(g)
dr,ij )

(x
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dr,i − ∑
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e
−λ

(g)
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(λ
(g)
d,ij )

y
(g)
dr,ij

y
(g)
dr,ij !

]
.

Although the statistical inference of the dynamic graph can be carried out as be-
fore for each single genomic location g separately with the joint probability mass
function, the number of replicates of ChIP-seq data for each TF under each condi-
tion is very small. The replicate number R is only around two for most ENCODE
experiments [ENCODE Project Consortium (2012)]. As a result, analyzing each
genomic location individually suffers from low statistical power, and the resulting
graph is not only very unstable but is also prone to errors. To improve edge detec-
tion for the dynamic graph at each location, the hierarchical model proposed in the
next subsection captures the variation of dynamic graphs across the genome and
borrows information accordingly.

2.3. Hierarchical dynamic Poisson graphical model. The genome is well
known to be heterogeneous in terms of GC content, gene density, and HM [Ernst
and Kellis (2012)]. Therefore, the co-activation patterns of TFs can be expected to
differ among genomic locations. Ignoring the genome heterogeneity and assuming
a single dynamic graph for the whole genome, “spurious” associations among TFs
will be claimed completely due to heterogeneity as illustrated in Section 4. In the
cases where all the genomic locations do share the same dynamic network, our
following proposed model will also automatically detect the homogeneity.

To capture the heterogeneity of {X(g) : g = 1, . . . ,N}, where N is the number of
genomic locations, we impose a Dirichlet process (DP) prior [Ferguson (1973)] on
(�(g),E(g)): P ∼ DP(αH); (�(g),E(g)) ∼ P i.i.d. for g = 1, . . . ,N . The DP is es-
sentially a probability distribution over a measurable space of probability distribu-
tions. The Dirichlet process DP(αH) is determined by two parameters: α and H .
The base distribution H serves as the expected distribution for (�(g),E(g)), and
the concentration parameter α controls the deviation from the base distribution.
Specifically, as P ∼ DP(αH), for any measurable set A defined on the range space
of (�(g),E(g)), the probability P(A) of set A as a random variable follows a beta
distribution Beta(αH(A),α[1 −H(A)]) with expectation H(A). The DP prior for
the dependence intensity parameters in dynamic PGMs helps to build a hierarchi-
cal dynamic Poisson graphical model (HDPGM) to characterize the variations and
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similarities of TF collaborations across the genome. The general version of the
HDPGM is formulated as follows:

P ∼ DP(αH);(
�(g),E(g)) ∼ P i.i.d.;(
X(g),Y(g)) ∼ f

(
x(g),y(g)|�(g),E(g)),

where f is specified in Equation (2.3).
The Chinese restaurant process metaphor [Aldous (1985)] for DP naturally

offers a procedure for clustering genomic locations. Accordingly, the HDPGM
can be described by the following data-generating process. There are infinitely
many tables in a Chinese restaurant, and table k is associated with parame-
ters �∗

k = {�∗
kd}d=1,...,D sampled from the base distribution H , where �∗

kd =
{θkd,ij ,Lkd,ij }1≤i≤j≤p . Lkd,ij (i < j) indicates whether there is an edge between
nodes i and j under condition d for table k. When Lkd,ij = 0, θkd,ij = 0. When
Lkd,ij = 1, θkd,ij is positive and describes the association degree between nodes
i and j under condition d for table k. Genomic location one randomly chooses a
table and sits there. The genomic location g (g ≥ 2) is assigned to an occupied
table with a probability proportional to the number of previous genomic locations
sitting at that table and allocated to a new table with a probability proportional
to α. After obtaining its table label C(g), genomic location g generates its latent
variables Y(g)

dr for condition d according to a multivariate Poisson with parame-

ters �∗
C(g)d

, respectively. In other words, for 1 ≤ d ≤ D, (�
(g)
d ,E(g)

d ) = �∗
C(g)d

=
(�C(g)d ,LC(g)d) in equation (2.3). Finally, the observed data X(g)

dr come from the

latent Y(g)
dr . On the one hand, genomic locations that belong to the same table share

the same multivariate Poisson distributions and dynamic graph structure. On the
other hand, the different tables capture the heterogeneity.

By accounting for network heterogeneity, the HDPGM inherently models over-
dispersion. Over-dispersion is a major concern when the sequencing data are fit-
ted with a single Poisson distribution. As a result, the negative binomial is often
used instead [Robinson, McCarthy and Smyth (2010)]. A negative binomial can
be viewed as a continuous mixture of Poisson distributions whose mixing distri-
bution of the Poisson rate is a gamma distribution. In comparison, in the HDPGM,
the marginal distribution of X(g)

dr is a Poisson mixture in which the mixing distribu-
tion is nonparametric and hence more flexible. Therefore, the HDPGM naturally
handles over-dispersion.

Moreover, although the traditional PGM has been criticized for allowing only
positive dependencies [Inouye et al. (2017)], HDPGM is able to model both pos-
itive and negative dependencies for count data. The heterogeneity considered by
HDPGM helps to relax the strictly positive correlation between variables imposed
by PGM. We illustrate this concept with a simple example in the Supplementary
Material Section 2 [Luo and Wei (2018)].
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In addition to tackling over-dispersion and positive correlation restriction, our
model automatically borrows information across both biological conditions and
genomic locations to improve the signal detection for dependence intensity pa-
rameters. Let us look at the joint distribution of latent variables Y

(g)
cr,ij and Y

(g)

dr ′,ij
which correspond to the interaction strength between nodes i and j at genomic
location g under conditions c and d , respectively. The stick-breaking representa-
tion [Ishwaran and James (2001)] of DP allows us to construct P ∼ DP(αH) as
follows: P(·) = ∑∞

k=1 πkδ�∗
k
(·),πk = Vk

∏
l<k(1−Vl),Vk ∼ Beta(1, α),�∗

k ∼ H ,
where δa(·) is the Dirac distribution at a. Conditioning on V = {V1,V2, . . .}, and
hence equivalently π = {π1, π2, . . .}, we have p(Y

(g)
cr,ij = a,Y

(g)

dr ′,ij = b|π ,�∗) =∑
k[πke

−θkc,ij
(θkc,ij )a

a! e−θkd,ij
(θkd,ij )b

b! ]. However, on the other hand, p(Y
(g)
cr,ij =

a|π ,�∗) · p(Y
(g)

dr ′,ij = b|π ,�∗) = [∑k πke
−θkc,ij

(θkc,ij )a

a! ][∑k πke
−θkd,ij

(θkd,ij )b

b! ] �=
p(Y

(g)
cr,ij = a,Y

(g)

dr ′,ij = b|π ,�∗). Therefore, Y
(g)
cr,ij and Y

(g)

dr ′,ij are no longer inde-
pendent under the HDPGM, and strong signals under one condition improve the
edge detection under the other. For instance, suppose the network structures of
clusters 1 and 2 are very similar under condition 1 but more distinct under condi-
tion 2. Compared to the separate analysis under condition 1, the joint analysis of-
fers better clustering accuracy by using data from condition 2, which in turn helps
to detect the subtle edge difference between clusters 1 and 2 under condition 1.
Thus, the joint analysis of D conditions differs from analyzing each condition
separately and improves edge detection. In the simulation study, we demonstrate
the advantages of the joint analysis with an even more difficult scenario where the
network structures between two clusters are always close across all the conditions.
Meanwhile, according to the DP, genomic locations assigned to the same table are
governed by the same �∗

k . Thus, information is also shared across genomic loca-
tions. Because of the two-way information pooling, the proposed model is able to
learn the underlying dynamic graph from the highly noisy ChIP-seq data.

3. Statistical inference. In this section, we conduct statistical inference for
our model HDPGM in the full Bayesian framework.

3.1. Prior specification. We now specify the base distribution H for the
Dirichlet Process DP(αH). Recall that in the Chinese restaurant process table k

is associated with a dynamic TF network structure �∗
k = {�∗

kd}d=1,...,D , which is
sampled from H . Here, we assume independent priors for parameters related to
each edge and node:

(3.1) H
(
�∗

kd

) =
p⊗

i=1

Hii(θkd,ii)
⊗

1≤i<j≤p

Hij (θkd,ij ,Lkd,ij ) for 1 ≤ d ≤ D.

For each node, we assume Hii(θkd,ii) is a gamma distribution �(τ2, γ2). For each
edge, we assign a Bernoulli prior Ber(q) to the edge indicator Lkd,ij . If Lkd,ij = 0,
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θkd,ij is assumed to follow a gamma distribution �(τ0, γ0) with a mean close to
zero and a small variance; if Lkd,ij = 1, then θkd,ij comes from a gamma distri-
bution �(τ1, γ1) with a relatively large mean and a large variance. In this way, the
base distribution H assumes that θkd,ij (i �= j) marginally follows a spike-slab
prior [George and McCulloch (1993), Ishwaran and Rao (2005)] in the form of a
gamma mixture q�(τ1, γ1) + (1 − q)�(τ0, γ0).

3.2. Posterior computation. To explore the posterior distribution, we propose
a hybrid MCMC algorithm, built on the blocked Gibbs sampler developed for the
truncation approximation to the DP [Ishwaran and James (2001)]. Specifically,
based on the stick-breaking representation, the DP can be approximated accurately
by setting VM = 1 for a sufficiently large M so that πk = 0 for k ≥ M + 1.

We augment a random variable C(g) for each genomic location, indicating its
table label as described in the Chinese restaurant process metaphor. In other words,
C(g) = k if and only if (�(g),E(g)) = �∗

k . Collectively, C = {C(g)}g=1,...,N record
the class memberships for all genomic locations. We can derive the following
blocked hybrid Gibbs sampler at iteration t :

1. Update the dynamic TF network structure �∗
k for k = 1, . . . ,M : let C∗[t−1]

be the unique set of C[t−1]. If k /∈ C∗[t−1], sample �
∗[t]
k from the base distribu-

tion H of the DP. If k ∈ C∗[t−1], sample �
∗[t]
k ∝ H(�

∗[t]
k )

∏
{g:C(g),[t−1]=k} f (x(g),

y(g),[t−1]|�∗[t]
k ), where f follows equation (2.3) and H is specified as in equa-

tion (3.1).
2. Update the class membership C(g) for g = 1, . . . ,N .
3. Update the class proportion π = (π1, . . . , πM): sample the stick-breaking

weights V ∗
k ∼ Beta( α

M
+ M

[t]
k , M−k

M
α + ∑M

l=k+1 M
[t]
l ) for k = 1, . . . ,M − 1.

M
[t]
l = #{g : C(g),[t] = l} is the number of genomic locations assigned to table

l in iteration t . Once all of the Vk , k = 1, . . . ,M − 1, are sampled, the cluster
abundance π [t] is updated as π

[t]
1 = V ∗

1 , π
[t]
k = (1 − V ∗

1 ) . . . (1 − V ∗
k−1)V

∗
k for

k = 2, . . . ,M − 1, and π
[t]
M = 1 − ∑M−1

k=1 π
[t]
k .

4. Update the underlying latent counts Y: sample matrix Y(g),[t]
dr from f (x(g)

dr ,

Y(g),[t]
dr |�∗[t]

C(g),[t]) based on a Metropolis–Hastings step.

Sampling �∗ = (�,L), C, and π from exponential families is straightforward.
However, the conditional functions for Y do not belong to any standard distribu-
tion, so we incorporate a Metropolis–Hastings step [Metropolis et al. (1953)] with
a computational complexity of O(DRp2) for each genomic location. Therefore,
the overall computational complexity for one Gibbs cycle is O(MNDRp2). The
details of the MCMC algorithm are listed in the Supplementary Material Section 3
[Luo and Wei (2018)].
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3.3. Parallel computing. The large volume of data requires intensive com-
putation and a large amount of memory. Therefore, the fast computation for the
posterior calls for parallelization. Fortunately, unlike general MCMC, which is
constrained to sequential operations, our blocked hybrid Gibbs sampler allows ef-
ficient parallel programming.

We develop a parallel programming algorithm under the message-passing
framework [Gropp, Lusk and Skjellum (1999)]. In our system, there are a “mas-
ter” processor and S “worker” processors. The whole genome is divided into
S portions, and all of the X(g)s within the same portion and their correspond-
ing Y(g)s and C(g)s are assigned to a single worker processor. In contrast, V =
{Vk}k=1,...,M−1 and �∗ = {�∗

k}k=1,...,M are stored on both the master processor
and all of the S worker processors. For each genomic location, Steps 2 and 4 of
the sampler rely only on local X(g) and Y(g) information as well as the copies of
V and �∗ on its own assigned worker. Therefore, Steps 2 and 4 can be conducted
simultaneously across all genomic locations on all of the S worker processors.
Steps 1 and 3 involve updating global parameters for the model. For the proposed
model, summary statistics can be computed at each worker first and then sent to
the master via message-passing. For instance, in Step 3, updating Vk asks for sam-
pling from Beta( α

M
+ Mk,

M−k
M

α + ∑M
l=k+1 Ml). To count Ml , on each processor

s, the number of genomic locations assigned to table l can be counted as Ml,s .
After the master processor receives all Ml,s, s = 1, . . . , S, Ml can be computed as
Ml = ∑S

s=1 Ml,s . Next, a new Vk is sampled at the master and broadcasted back
to each worker processor. Each worker processor updates its local copy of Vk after
receiving the message from the master processor. Step 1 can be implemented in
the same way. The proposed algorithm is highly scalable.

3.4. Graph inference. We make posterior inferences based on the samples
from the MCMC algorithm. We assume that there are a total of T iterations and
that the samples in the last B iterations are collected after a burn-in period. Note
that the DP allows the number of occupied tables, or cluster number K , to be ran-
dom. From the posterior samples, we take the posterior mode K̂ as the estimated
number of dynamic networks presented in the data.

For edge selection, conditional on K̂ and given an occupied table k, we cal-
culate the posterior marginal probability of including edge eij (i < j), denoted
by PPIkd,ij [Peterson, Stingo and Vannucci (2015)], using the posterior samples

of L
[T −t+1]
kd,ij (t = B,B − 1, . . . ,1). Specifically, PPIkd,ij = P(Lkd,ij = 1|X) ≈

1
B

∑B
t=1 L

[T −t+1]
kd,ij . Accordingly, following Peterson, Stingo and Vannucci (2015),

the expected false discovery rate (FDR) for edge detection can be estimated as

(3.2) FDR(κ) =
∑D

d=1
∑K

k=1
∑

i<j ξkd,ij I (ξkd,ij ≤ κ)∑D
d=1

∑K
k=1

∑
i<j I (ξkd,ij ≤ κ)

,
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where ξkd,ij = 1 − PPIkd,ij [Newton et al. (2004)], κ is the cutoff value to call an
edge, and I (·) is the indicator function. We select κ such that FDR(κ) ≤ α0, where
α0 is a small value, such as 0.01. If ξkd,ij ≤ κ , there is an edge between nodes i and
j in the cluster k under condition d; otherwise, there is no edge. In other words,
when ξkd,ij ≤ κ , we believe that TF i collaborates with TF j in the TF network
k under biological condition d; otherwise, there is no co-activation between them.
When an edge is learned, we also estimate its intensity parameter θkd,ij with the
posterior mean θ̂kd,ij ; otherwise, θkd,ij is estimated to be zero. Throughout the
paper, we follow the tradition of taking κ = 0.5 as default [Peterson, Stingo and
Vannucci (2015)] unless it fails to control the estimated FDR in equation 3.2 below
the target threshold α0. In the latter case, we state κ explicitly. For clustering,
genomic location g is assigned according to the posterior mode of C(g),[t]s.

4. Simulation. We conduct a simulation study to evaluate the performance
of HDPGM in correct detection of heterogeneous subpopulations, accurate esti-
mation of model parameters, and precise recovery of the underlying TF network
structures.

We simulate N = 5000 genomic locations coming from K = 4 subpopulations,
that is, four clusters. A genomic location is assigned to cluster 1 with a probabil-
ity of 30%, to cluster 2 with 20%, to cluster 3 with 25%, and to cluster 4 with
25%. For each genomic location, we simulate read counts for p = 10 TFs un-
der D = 3 conditions with R = 2 replicates. In other words, the TF network on
each genomic location consists of ten nodes and varies across three conditions.
The TF network structures Lkd and underlying true dependence intensity parame-
ters �kd, d = 1, . . . ,D, k = 1, . . . ,K are presented in Figure 2(a) and Figure 3(a),
respectively. Note that the difference between clusters 1 and 2 is slight, and the
differential edges are highlighted in red in Figure 2(a). The detailed steps for gen-
erating the simulation data are listed in the Supplementary Material Section 4 [Luo
and Wei (2018)].

We set the truncation parameter for DP as M = 10 and run the MCMC algo-
rithm for 100,000 iterations, which took 4.72 hours for parallel computing with 10
cores. The hyper-parameters (τ0, γ0, τ1, γ1, τ2, γ2) are taken as (2,20,2,1,3,1),
and q is set as 0.25. We discard the first 50,000 iterations as burn-in. The trace
plots indicate that our algorithm has a good convergence property (see Supple-
mentary Material Figure S4 (a–b) [Luo and Wei (2018)]). From the collected sam-
ples, the mode for cluster number K (the number of occupied tables in the Chinese
Restaurant metaphor) is four. Thus, our algorithm correctly identifies the number
of heterogeneous subpopulations in the data. After accounting for label switching,
we then focus on all MCMC samples for which K = 4. For simulation data, as
we know the underlying true status of each edge, we can calculate the true FDR
by counting the number of false positives among all claimed edges, which turns
out to be zero. The corresponding intensity parameters are estimated accordingly.
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FIG. 2. The underlying true and estimated TF network structures in the simulation study. (a) The
underlying true TF networks. TF networks in cluster 1 are similar to TF networks in cluster 2, and
the differential edges between cluster 1 and cluster 2 are highlighted in red. (b) The estimated TF
networks by the joint analysis. The graph in cluster k and condition d in panel (b) is an estimation
of the graph in cluster k and condition d in panel (a). Although the differential signals between
cluster 1 and cluster 2 are slight under each condition, borrowing information across all of the three
conditions can detect the differential edges which are colored in red.

The estimated TF network structures and associated dependence intensity param-
eters across multiple conditions are demonstrated in Figure 2(b) and Figure 3(b),
respectively. From Figures 2 and 3, we can see that the underlying graph struc-
tures are well recovered. Moreover, 98.6% of the samples are correctly grouped
based on class membership indicator estimates Ĉ(g)s. To quantify the precision
of the estimation for �kd , we simulate the dataset five times and then obtain five
sets of �kd estimations. Subsequently, the root mean square errors (RMSEs) for
each dependence intensity parameter are calculated (see Supplementary Material
Tables S1–S12 [Luo and Wei (2018)]). Most of the RMSEs are small, indicating
that HDPGM performs well on the estimation of dependence intensity parameters.

We compare HDPGM with three traditional approaches to estimating TF net-
works: (I) learning a TF network for each genomic location under each condition
separately, (II) learning a single TF network for all genomic locations given an
individual condition, and (III) learning multiple heterogeneous TF networks for
an individual condition without pooling information across conditions. For Type
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FIG. 3. The underlying true and estimated dependence intensities in the simulation study. (a) The
underlying true dependence intensities. (b) The estimated dependence intensities. The heatmap in
cluster k and condition d in panel (b) is an estimation of the truth in cluster k and condition d in
panel (a).

I analysis, we run the MATLAB program of the EM algorithm provided by Xue
et al. (2014) to each genomic location under each condition. As a result, we ob-
tain estimations of dependence intensity parameters for 5000(genomic locations)∗
3(conditions) TF networks. For Type II analysis, we learn a single TF network for
each condition with the same MATLAB program [Xue et al. (2014)] again, which
results in parameter estimations for 3(conditions) TF networks. To verify the im-
portance of borrowing strengths across multiple conditions (D > 1) in HDPGM,
we carry out Type III analysis by separately applying our HDPGM algorithm to
the data under each condition.

For both Type I and Type II analyses, given a cutoff δ, we claim an edge exists
between node i and j if its corresponding dependence intensity parameter estimate
is greater than δ. By varying δ, we obtain receiver operating characteristic (ROC)
curves [Hanley and McNeil (1982)] for the two methods, respectively. For Type III
analysis and HDPGM, since an edge is called according to κ in equation (3.2), we
can also draw the ROC curves by varying κ . Figure 4(a) shows that the ROC curve
for HDPGM is above the other three ROC curves. Type I analysis suffers from the
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FIG. 4. (a) ROC curves in terms of edge detection for HDPGM and three traditional types of
analyses; (b) Partial ROC curves by controlling FPR less than 0.05; (c) The three TF networks
learned by Type II analysis where the cutoff δ to call an edge is 0.01.

very low replicate numbers for a single genomic location under a single condition.
In contrast, Type II analysis pools information across all genomic locations within
a condition, but it ignores the inherent heterogeneity among genomic locations,
leading to many spurious associations [see Figure 4(c)]. For Type III analysis, as
the assumed network structures are similar for clusters 1 and 2 across the three
conditions [see Figure 2(a)], it becomes hard for the single condition-based anal-
ysis to distinguish between the two clusters and to detect differential weak signal
edges between clusters 1 and 2 as shown in Supplementary Material Table S13
[Luo and Wei (2018)]. In comparison, when applying HDPGM to jointly model
multiple conditions, the misclassification rate is only 1.4% and the joint analysis
successfully detects all of the differential edges between clusters 1 and 2 as shown
in red in Figure 2(b). We further examine the ROC curves where the false positive
rate (FPR) is controlled less than 0.05 [Figure 4(b)], which is of prime interest for
edge detection. Figure 4(b) shows that at low FPRs HDPGM can achieve much
larger statistical power than the other three types of analyses. Hence, borrowing
strengths across conditions and genomic locations improves edge detection sub-
stantially.

The simulation study illustrates that the HDPGM is able to discover hetero-
geneous subpopulations and borrow information across conditions and genomic
locations to improve edge detection. In particular, it highlights the danger of ig-
noring heterogeneity across the genome and emphasizes the urgency of adopting
the HDPGM to examine TF associations.

4.1. Sensitivity analysis. In this subsection, we investigate how different
choices of hyper-parameters affect the performance of HDPGM. There are seven
hyper-parameters in HDPGM: (q, τ0, γ0, τ1, γ1, τ2, γ2). q is the prior probability
that an edge is present in the TF network. (τ0, γ0), (τ1, γ1), and (τ2, γ2) correspond
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to the “(shape, rate)” parameters in the prior gamma distributions. Accordingly, τ0
γ0

and τ1
γ1

are the prior means of θkd,ij (i �= j) for Lkd,ij = 0 and Lkd,ij = 1, respec-
tively. When Lkd,ij = 0, θkd,ij should be small enough and well separated from
θkd,ij when Lkd,ij = 1. Following a similar approach in [George and McCulloch
(1993)], we let the prior mean ratio τ0/γ0

τ1/γ1
be c. The hyper-parameter c partially

describes how far �(τ0, γ0) is away from �(τ1, γ1). The smaller c, the closer
�(τ0, γ0) is to zero compared to �(τ1, γ1). Taking this into account, we let c be
between 0 and 0.5. We set τ0 = τ1 = 2 to guarantee the existence of the modes
of gamma distributions and set γ0 to 20 such that τ0

γ0
= 0.1, close to zero. Con-

sequently, (q, τ0, γ0, τ1, γ1, τ2, γ2) = (q,2,20,2,20c, τ2, γ2). Compared to q and
c, the choices of τ2 and γ2 are not so important in terms of network recovery
because they correspond to the diagonals in the TF networks. Therefore, we set
(τ2, γ2) = (3,1). Finally, we investigate the influence of the different choices of q

and c.
We let the hyper-parameter q vary from 0.1 to 0.9 with step 0.1, and let c change

from 0.1 to 0.5 with step 0.1, so we have a total of 45 choices for (q, c). Given a
set of (q, c), we then run the HDPGM algorithm. We compare the different choices
of (q, c)s in clustering (ARI) and network recovery (TPR, FPR, and FDR) accu-
racy. Supplementary Material Figure S5(a) [Luo and Wei (2018)] shows that the
clustering result was robust to the different choices of (q, c). For edge detection,
on the one hand, the large q and c lead to a large FPR or FDR (see Supplementary
Material Figure S5(c–d) [Luo and Wei (2018)]); on the other hand, when q is be-
tween 0.1 and 0.4, TPR is not very sensitive to the choice of c (see Supplementary
Material Figure S5(b) [Luo and Wei (2018)]). Therefore, to achieve reasonable
performance, we recommend setting the hyper-parameter q to be smaller than 0.5
and the ratio c to be less than 0.3.

4.2. Model misspecification. Now we investigate how HDPGM performs
when the model is misspecified. First, we consider a scenario where the count
data are generated from three-way multivariate Poisson distributions. We let
X

(g)
i = ∑p

j=1 Y
(g)
ij + ∑p

j,k=1 Y
(g)
ijk in this case rather than X

(g)
i = ∑p

j=1 Y
(g)
ij as in

the two-way multivariate Poisson distribution. Y
(g)
ijk represents the three-way in-

teraction for TFs i, j , and k. We introduce δ to denote the number of three-way
interactions present in the model-misspecified dataset. From Supplementary Ma-
terial Figure S6 [Luo and Wei (2018)], we can see that as long as there are not too
many three-way interactions and their intensities are moderate, HDPGM can still
provide proper clustering accuracy.

We further investigate another misspecified setting where there exist spatial cor-
relations between nearby genomic locations (and each genomic location follows a
two-way multivariate Poisson). We designed two datasets. In the first dataset, we
encourage the nearby genomic locations to come from the same cluster with high
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probability. Moreover, we let the observed count data of nearby locations be cor-
related (see Supplementary Material Section 5 [Luo and Wei (2018)] for details on
the data generation procedure). In the second dataset, the cluster memberships for
all of the locations are drawn independently. Given the cluster indicators, nearby
genomic locations have independent counts. We then applied the proposed model
HDPGM to both datasets. It turns out that not considering the spatial correlations
in HDPGM can lose some power when inferring the network structure (see Sup-
plementary Material Figure S7 [Luo and Wei (2018)]). However, the power loss is
not substantial, and HDPGM can still give a good clustering result.

5. Application. By August 30, 2017, a total of 30 TFs in the ENCODE
project are assayed in all of the three Tier 1 cell lines: GM12878, H1-hESC,
and K562 (see ENCODE ChIP-seq data matrix: https://genome.ucsc.edu/encode/
dataMatrix/encodeChipMatrixHuman.html). Thus, we apply the HDPGM to study
the collaborations of the 30 TFs across the three cell lines. Each TF under each con-
dition has two replicates. We download p × D × R = 30 × 3 × 2 = 180 aligned
BAM files from the ENCODE project. Here we are specifically interested in the
TF collaborations at promoter regions. Therefore, we take the aforementioned ge-
nomic locations as the 1000 base-pair-long bins upstream of the transcription start
sites and count the number of reads aligned to each genomic location (i.e., pro-
moter region). Consequently, we obtain a ChIP-seq count table as illustrated in
Figure 1(b) for 30 TFs at a total of 22,402 genomic locations. Details of the data
preprocessing are presented in Supplementary Material Section 6 [Luo and Wei
(2018)].

When applying HDPGM, we set the truncation number M = 40, the hyper-
parameters in the gamma distributions (τ0, γ0, τ1, γ1, τ2, γ2) = (2,20,2,1,3,1),
and the hyper-parameters in the Bernoulli distribution q = 0.25. Sensitivity anal-
ysis (see Supplementary Material Figure S8 [Luo and Wei (2018)]) shows that the
clustering results are robust to q when q is between 0.05 and 0.45. After 50,000
burn-in iterations, we collected another 50,000 samples for posterior inference.
In total, the HDPGM algorithm took 4.11 days with parallel computing using
15 cores. The trace plots are shown in Supplementary Figure S9 [Luo and Wei
(2018)]. The HDPGM discovers 37 clusters of dynamic TF networks for all of the
promoter regions. We let κ = 0.08 such that the estimated FDR is 0.0092 based on
equation 3.2. Therefore, few claimed edges are false positives. Four representative
dynamic TF networks are shown in Figure 5.

Figure 5 confirms that TF collaborations vary across conditions. In cluster
3, MXI1 interacts with MAX and MAX collaborates with MYC in cell lines
GM12878 and H1-hESC, but the interaction between MXI1 and MAX is broken
in K562. It is noteworthy that K562 is a cancer cell line while GM12878 and H1-
hESC are normal cell lines. Meanwhile, it is known that MXI1-MAX heterodimers
hinder the function of MYC [Zervos, Gyuris and Brent (1993)], and MYC is as-
sociated with various human cancers [Grandori et al. (2000)]. Consequently, our

https://genome.ucsc.edu/encode/dataMatrix/encodeChipMatrixHuman.html
https://genome.ucsc.edu/encode/dataMatrix/encodeChipMatrixHuman.html
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FIG. 5. Four representative TF networks from three types of Tier 1 cell lines: GM12878, H1-hESC, and K562. The number in the parentheses indicates
the estimated proportion of the corresponding cluster.
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analyses suggest that the carcinogenesis of K562 may be related to the broken
collaboration between MAX and MXI1, which activates MYC and triggers the
expression of its target oncogenes.

Moreover, the TF collaborations are also heterogeneous across the genome. For
cell line K562, MAX and CTCF strongly co-activate at the promoter regions in
cluster 17, but they bind to the genome independently at promoters in clusters 3,
5, and 22. Meanwhile, MYC and REST interact with each other in cluster 17 but
not in clusters 3, 5, or 22. Similarly, in H1-hESC and K562, CREB1 does not
collaborate with RFX5 in clusters 3, 9, and 22, but they interact in cluster 17.
A previous study discovered that the interaction of CREB and RFX5 regulates
the expression of MHC class II genes [Lochamy, Rogers and Boss (2007)]. In
cluster 17, we find the promoter regions of 12 out of the total 15 MHC class II
genes, implying a significant enrichment of cluster 17 for MHC class II genes
(p-value = 2.2 × 10−16 with Fisher’s exact test) and confirming the findings of
Lochamy, Rogers and Boss (2007). These phenomena justify that the heterogeneity
of TF networks does exist among genomic locations.

We further conduct the pathway enrichment analysis [Subramanian et al.
(2005)] for genes in each cluster on http://software.broadinstitute.org/gsea/msigdb/
annotate.jsp using KEGG gene sets [Ogata et al. (1999)]. The enriched pathways
for each cluster are listed in Supplementary Material Tables S14–S22 [Luo and Wei
(2018)]. One interesting discovery is that there are 10 clusters (including cluster
3 and cluster 22) enriched with the KEGG HUNTINGTONS DISEASE pathway.
SP1 and TBP are two of the main TFs that can interact with the huntingtin pro-
tein, and their abnormal interactions may lead to Huntington’s disease [Li and Li
(2004)]. In the networks of the 10 clusters associated with the KEGG HUNTING-
TONS DISEASE pathway, TBP firmly connects to TAF1 across all networks, and
SP1 associates with CHD2 in most of the networks.

To evaluate how well HDPGM fits the data, we compare the marginal distri-
bution of Xdr,i estimated by the HDPGM to the observed distribution for each
TF i under each condition d . The marginal distribution of Xdr,i is generated as
follows. First, we estimate the dependence intensity parameters θ̂kd,ij and the
cluster indicators Ĉ(g). Next, for each genomic location g, we sample pseudo-
data X

∗(g)
dr,i from Pois(

∑p
j=1 θ̂

Ĉ(g)d,ij
) for r = 1, . . . ,R. Finally, for each TF i and

under each condition d , we compare the quantiles of the real data {X(g)
dr,i : g =

1, . . . ,N; r = 1, . . . ,R} to those of the pseudo-data {X∗(g)
dr,i : g = 1, . . . ,N; r =

1, . . . ,R}, which is summarized in Supplementary Material Tables S23–S52 [Luo
and Wei (2018)]. From these tables, we can see that the marginal distribution of
X

∗(g)
dr,i closely matches the distribution of X

(g)
dr,i , thus HDPGM fits the real data

well.

http://software.broadinstitute.org/gsea/msigdb/annotate.jsp
http://software.broadinstitute.org/gsea/msigdb/annotate.jsp
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6. Discussion. In this paper, we develop a rigorous statistical model, the
HDPGM, to provide a legitimate measure of TF co-activation patterns across dif-
ferent cell types. On the one hand, the HDPGM simultaneously integrates infor-
mation across biological conditions and the genome to improve signal detection
from experiments with very few replicates. On the other hand, the HDPGM au-
tomatically teases out heterogeneity within each cell type, thus avoiding spurious
associations, which can be very severe if a single network is assumed for all of the
genomic locations. As a result, the HDPGM helps to achieve a valid and robust
recovery of TF networks.

In our current model, the information is borrowed across the genome and bio-
logical conditions via the DP prior as discussed in Section 2.3. However, no further
structure similarity is imposed for �k1, . . . ,�kd, . . . ,�kD within a cluster. In prin-
ciple, we can incorporate another layer of Markov random field prior to promote
structure similarities across conditions as done in literature ignoring heterogeneity
among samples [Lin et al. (2017), Mitra, Müller and Ji (2016), Peterson, Stingo and
Vannucci (2015)]. We choose to focus on the current model here for the clarity of
presentation. In addition, HDPGM can also consider the spatial correlations among
genomic locations by employing the hidden Markov Dirichlet Process [Xing, Sohn
et al. (2007)]. However, it will be much more computationally demanding. Fortu-
nately, although HDPGM can lose some power in inferring the network structures
when applied to datasets with spatial correlations, the power loss is not substantial,
and HDPGM still provides good clusterings as discussed in Section 4.2.

Although thousands of ChIP-seq data have already been stored in public data
repositories, such as ENCODE, we are still hungry for more ChIP-seq data to
comprehensively study TF networks. The major obstacle is that the number of TFs
whose ChIP-seq experiments are available for a large number of common biologi-
cal conditions is still very small. Nevertheless, given the exponentially decreasing
sequencing costs and statistical developments in imputation methods for genomic
data [Ebert and Bock (2015)], TF networks with a larger number of nodes and con-
ditions can be expected in the near future. As more data accumulate, our scalable
HDPGM model will continue to update our understanding of TF co-activation,
gene regulation, and ultimately phenotype diversity and diseases.

In addition to the TF association problem, many real-world networks are het-
erogeneous and dynamic while adopting the count data format. For example,
the click numbers of news websites can be used to construct news networks
that represent associations between different news categories. News networks are
heterogeneous in relation to the readers’ geographical locations, and they also
change over time. We envision that our model will stimulate further statistical
methodological research on heterogeneous dynamic networks for count data un-
der the same framework. We also provide the C code implementing HDPGM on
GitHub https://github.com/XiangyuLuo/HDPGM. More generally, we hope this
study raises concerns about sample heterogeneity before blind application of all
types of graphical models to real-world problems.

https://github.com/XiangyuLuo/HDPGM
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SUPPLEMENTARY MATERIAL

Supplementary Materials to “Nonparametric Bayesian learning of hetero-
geneous dynamic transcription factor networks” (DOI: 10.1214/17-
AOAS1129SUPP; .zip). The zip file provides the supplementary details referenced
in the main text, the C code that implements HDPGM, and the datasets used in the
simulation study and the real application.
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