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For many complex environmental processes such as air pollution, the
underlying physical mechanism usually provides valuable insights into the
statistical modeling. In this paper, we propose a statistical air quality model
motivated by a commonly used physical dispersion model, called the scalar
transport equation. The emission of a pollutant is modeled by covariates such
as land use, traffic pattern and meteorological conditions, while the trans-
port and decay of a pollutant are modeled through a convolution approach
which takes into account the dynamic wind field. This approach naturally es-
tablishes a nonstationary random field with a space–time nonseparable and
anisotropic covariance structure. Note that, due to the extremely complex in-
teractions between the pollutant and environmental conditions, the space–
time covariance structure of pollutant concentration data is often dynamic
and can hardly be specified or envisioned directly. The relationship between
the proposed spatial-temporal model and the physics model is also shown,
and the approach is applied to model the hourly ozone concentration data in
Singapore.

1. Introduction. Ground-level ozone is one of the major air pollutants regu-
lated by many governmental agencies, for example, the U.S. Clean Air Act [United
States Environmental Protection Agency (2012)] and World Health Organization
air quality guidelines [World Health Organization (2005)]. When ozone is inhaled,
it irritates the respiratory system, inflames the lining of lungs and increases the
susceptibility to respiratory infections. In particular, the 8-hour concentration ex-
ceeding 240 μg/m3 causes both healthy adults and asthmatics to experience signif-
icant reductions in lung function [United States Environmental Protection Agency
(2003)]. Several studies have also shown that ozone is correlated with various toxic
photochemical oxidants arising from similar sources, including the peroxyacyl ni-
trates, nitric acid and hydrogen peroxide [Han et al. (2011)]. In recent years, var-
ious statistical methods have been used for estimating ozone exposure [Shaddick
et al. (2008), Wilson et al. (2014)], evaluating ozone control strategies [Reich et al.
(2013)] and assessing health impact [Fuentes (2009)].
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Both physics-based and statistics-based methods have been proposed for mod-
eling ozone concentration data. Physical models, which are usually computation-
ally intensive, simulate the emission, transport, diffusion and removal processes of
ozone. A typical physics-based air quality modeling system consists of a set of sub-
models: a meteorological model that forecasts meteorological conditions (e.g., the
Weather Research and Forecasting Model [Skamarock et al. (2008)]), an emission
model that calculates emission processes from a set of known sources (e.g., the
Sparse Matrix Operator Kernel Emissions modeling system [Coats (1996)]), and
an air quality model that simulates the dispersion and deposition of ozone (e.g.,
the Community Multi-scale Air Quality modeling system [United States Environ-
mental Protection Agency (1998)]). Since physical air quality models are built on
fundamental physics and chemistry, such models are extremely useful in long-term
air quality planning; for example, the impact assessment of population growth and
emission controls on future air quality. However, physical models are less effec-
tive in handling the uncertainties associated with various model inputs including
source locations, emission rates and meteorological conditions. For example, in
many practical situations, it is impossible to pinpoint the exact locations of all
emission sources, and the errors of the estimated emission rates can reach the or-
der of 300% [Christakos and Vyas (1998)]. Also, physical models rarely incorpo-
rate the observed pollutant concentration data, and the measured concentrations
are often used for bias correction purposes only [Smith et al. (2013)].

Statistical air quality models, on the other hand, have advantages in handling
the uncertainties associated with both pollutant concentration and meteorological
conditions. Carroll et al. (1997) modeled the ozone distribution by a second-order
stationary Gaussian random field, and investigated the relationship between ozone
exposure and population density in Texas. Christakos and Vyas (1998) proposed
a composite space–time model with a polynomial covariance function to model
the ozone distribution over the Eastern United States. Sahu, Gelfand and Holland
(2007) proposed an autoregressive space–time model for the daily 8-hour maxi-
mum ozone level in the state of Ohio. Stein (2007) investigated the spatial varia-
tion of total column ozone through modeling the axially symmetric processes on
the sphere using expansions in spherical harmonics. Dou, Le and Zidek (2010) pro-
posed a dynamic linear state-space model as well as a Bayesian spatial predictor
for modeling hourly ozone concentrations over the eastern United States. Cameletti
et al. (2013) proposed a space–time air quality model by representing a Gaussian
field with the Matérn covariance function through stochastic partial differential
equations. Often, to keep the model mathematically tractable, assumptions such as
stationary, space–time separable and isotropic correlation structure are imposed.
These assumptions are appropriate when air quality measurements are aggregated
over a relatively large spatial area and time period (e.g., at daily, weekly or monthly
levels). By carefully constructing the mathematical structure of the chosen spatial-
temporal process (especially the covariance structure), the variation of pollutant
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concentration, including the spatial heterogeneity and the temporal nonstationar-
ity, can be approximated. However, for high-frequency air quality measurements
such as the hourly level data considered in our paper, assumptions above rarely
hold due to the high variability associated with pollutant concentrations and mete-
orological conditions. For example, hourly ozone concentrations measured at two
sites can be correlated in various ways depending on the combinations of hourly
wind direction and speed. In fact, there have been prolonged interests in the lit-
erature to provide flexible and effective ways to construct covariance functions
that take into account such phenomena. Some key results are reported in Cressie
and Huang (1999), Gneiting (2002), Banerjee, Carlin and Gelfand (2014), Fuentes
et al. (2005) and Reich et al. (2011). To capture the dynamics of the correlation
structure of daily ozone data, Reich et al. (2011) investigated an important class
of covariate-dependent space–time covariance functions. For air quality data at the
hourly level, the space–time covariance structures can be extremely complicated
given the interactions between pollutant concentration and dynamic meteorologi-
cal conditions (especially the wind conditions). It is always challenging to specify
appropriate space–time covariance functions that adequately model such compli-
cated covariance structures [Calder (2007), Ghosh et al. (2010)].

To leverage the strengths of both physics models and statistical modeling, differ-
ent physical-statistical modeling approaches have been proposed in the literature.
One important approach is based on the Bayesian Hierarchical Models (BHM)
which have been well studied to utilize knowledge about complex systems to
tackle environmental problems surrounding uncertainty. For example, Wikle et al.
(2001) and Berliner (2003) proposed an important BHM framework to include
physical knowledge into statistical analysis. Such a framework consists of three
components: a data model, a process model and a parameter model. Wilson et al.
(2014) employed this framework and studied the effect of temperature on ozone-
related mortality. Malmberg et al. (2008) investigated the interpolation of the car-
bon monoxide field using a statistical-physical model, and a Bayesian hierarchical
model was developed to integrate the deterministic physics model and remote sens-
ing observations. In general, BHM is a powerful statistical tool to fuse the physical
model output and observations.

The model developed in this paper is motivated by the fundamental physi-
cal principle of pollutant dispersion known as convection–diffusion. Convection-
diffusion equations, which are given in the form of Partially Differential Equations
(PDE), are the building blocks of almost all physical pollutant dispersion models
and many other physical models for natural processes. Such equations describe the
transport of air-borne pollutants inside a physical system through three basic pro-
cesses: emission, convection and diffusion. Analogous to the physics model, our
statistical modeling approach expresses the ozone concentration at a particular lo-
cation and time as the sum of three components: ozone generated at the time, ozone
generated in the past but transported to the location of interest, and a noise term.
Since our approach does not require running an actual physics model as in BHM,
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the total computational cost is significantly reduced. In particular, the emission of
ozone is modeled by covariates such as land use, traffic pattern and meteorolog-
ical conditions, while the convection–diffusion (i.e., the transport of pollutant) is
modeled by a convolution approach which takes into account the dynamic wind
field. It can be shown that the modeling approach naturally leads to a random field
with a space–time nonseparable covariance structure. In spatial statistics, convo-
lution was initially introduced as a novel way to construct the covariance function
for complex nonstationary spatial processes [Higdon (2002, 2007)]. In the same
spirit, Calder (2007) proposed a dynamic space–time model, in which the pollutant
concentration is expressed as the convolution of a latent process. Such a model fits
into the general dynamic modeling framework for spatial-temporal data introduced
in Stroud, Müller and Sansó (2001). In particular, Brown et al. (2000) advocated
the use of convolution to approximate the transport of a pollutant under a con-
stant wind field. Huang and Hsu (2004) also proposed a nonstationary space–time
model for the transport of ozone but without considering the interaction between
emission and convection.

Recently, Sigrist, Künsch and Stahel (2015) presented a spatio-temporal Gaus-
sian process directly derived from the solution of a Stochastic Partial Differential
Equation (SPDE) describing the convection–diffusion process, and proposed to use
a Fourier spectral method for efficient computation. However, it is difficult for the
spectral method to deal with more complex practical scenarios with a nonstation-
ary random field. In fact, the key results in Sigrist, Künsch and Stahel (2015) are
developed under the assumption that the field is stationary. In this paper, we extend
the idea of Brown et al. (2000) to account for spatially-varying, dynamic wind and
pollution emission fields, and establish the relationship between the proposed con-
volution approach and the physical pollutant transport process by investigating the
analytical solutions of the convection–diffusion equation under special conditions.
In Section 3.2.1, we show the connection between our model and Sigrist, Künsch
and Stahel (2015) under the special condition of uniform and steady wind in a ho-
mogeneous medium. The proposed model provides a general statistical modeling
framework to explicitly model both the emission of pollutant and the interactions
between emission and convection–diffusion motivated by fundamental physics.
While Sigrist, Künsch and Stahel (2015) suggest that the pollutant generation pro-
cess may be modeled by the temporally white and spatially colored random forc-
ing term of the SPDE, we propose to model the generation of pollutant by a linear
function with covariates, which leads to, together with the convolution approach,
a linear air quality model in Section 4. We demonstrate the advantages of the pro-
posed statistical air quality model through a case study with real ozone data. The
case study also shows that the proposed model provides useful insights about the
effects of the complex environmental conditions on ozone concentration.

The remainder of the article is organized as follows. In Section 2, we describe
the study area and the data used in this paper. Section 3 provides the general mod-
eling framework and presents some numerical illustrations of the model. In Sec-
tion 4, the modeling details of the ozone data in Singapore are given. Discussions
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FIG. 1. Locations of the 7 air quality monitoring stations with station IDs indicated by the numbers
on the figure (the map is downloaded from www.openstreetmap.org).

on parameter estimation and numerical results are also provided in this section.
Finally, we give some concluding remarks in Section 5.

2. The study area and data. This section provides an introduction to the
study area and the data provided by the National Environmental Agency (NEA) of
Singapore. Section 2.1 describes the observed air quality data, while Section 2.2
describes the data which are used as covariates in our model. Details on how dif-
ferent datasets are preprocessed are also discussed.

2.1. The air quality data. As a tropical island country located 137 km north
of the equator, Singapore has a total land area of 716.1 km2 and a population close
to 5.4 million. The population density is about 7669/km2, ranked the third highest
in the world. The motor vehicle population had also reached 974,170 as of 2013.
The high population and vehicle densities, together with the warm tropical weather
(the annual mean temperature ranges from 24◦ to 32◦C), create ideal conditions for
ozone to be generated.

Hourly ozone concentrations (in μg/m3) are measured at air monitoring sta-
tions. In this paper, we use the data observed from seven stations. Locations of
these stations are available from the website of NEA and are marked in Figure 1.
The hourly ozone concentrations exhibit both temporal and spatial variation, and
are subject to a high degree of uncertainty. As an illustration, Figure 2 displays the
hourly ozone measurements from July 1, 2013 8AM to August 30, 2013 7AM. Due

http://www.openstreetmap.org
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FIG. 2. Hourly ozone concentration (the vertical axis) measured at the 7 air quality monitoring
stations from July 1, 2013 8AM to Aug 30, 2013 7AM (the horizontal axis). The station ID is shown
on the top of each subplot.

to the confidentiality agreement, the data is masked by multiplying a constant to all
original readings. The diurnal ozone variation is observed. As seen from the data
at stations 1 and 2, both the maximum hourly ozone concentration of a day and the
amplitude of the diurnal ozone variation vary substantially at different locations.
The data from stations 4 and 6 show that the maximum daily ozone concentration
and the amplitude of the diurnal ozone variation change over time. The temporal
variation is largely due to the fact that ground-level ozone is formed by photo-
chemical reactions in the presence of sunlight and precursor pollutants, such as
the oxides of nitrogen (NOx) and volatile organic compounds (VOCs). The spatial
variation, on the other hand, is much more complex because it depends on factors
such as land use, traffic and wind.

2.2. Other datasets and data preprocessing. In our model, the land use infor-
mation, traffic data and meteorological data are used as covariates to explain the
variation of hourly ozone concentration. Because these datasets are from different
sources with a different format, we briefly explain in this subsection how the data
is preprocessed.

High-resolution land use information is of great importance in explaining the
spatial variation of ozone concentration. The land use type is highly correlated with
the VOCs emission, which affects how much ozone can be generated at a given
area [Xu, Vizuete and Serre (2012)]. The raw dataset of land use is similar to a map
in which Singapore is divided into 110,830 areas with irregular boundaries. Each
area is referred to as a spatial polygon in the Geographic Information System (GIS)
and the land use type of each area is uniquely specified. In total, there are 32 land
use categories. To model the spatial and temporal variation of ozone concentration
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FIG. 3. Subplot (a) is an illustration of the calculated land use index for residential areas. For a
grid point in figure (a), the figure shows the total residential areas (in km2) within a 5 km radius of
that point. Subplot (b) is an illustration of the computed land use index for industrial areas. For a
grid point in figure (b), the figure shows the total industrial areas (in km2) within a 5 km radius of
that point. For both subplots, the land use index is computed for equal-spaced grid points and the
spacing is approximately 0.7 km.

in downtown and suburban areas, industrial and residential areas, as well as urban
and nature reserve areas, we regroup the 32 categories into four main land use
types: residential, nature reserve, commercial and industrial. Then, for any location
s and land use type p (p = 1,2,3,4), we define the land use index, denoted by
l(p)(s), for that location as the total spatial area of land use of type p within a 5 km
radius of location s. The radius, 5 km, is chosen empirically. In our exploratory
analysis, we vary the radius from 1 km to 10 km, and find that the model fitting
error is the smallest when the radius is close to 5 km.

As an illustration, Figure 3(a) and 3(b) respectively show the land use index
for residential areas (i.e., {l(1); s ∈ S}) and industrial areas (i.e., {l(4); s ∈ S}) of
Singapore, where S ⊆ R

2 is the spatial domain of interest. In this figure, we create
approximately 10,000 grid points within the spatial domain, and compute the land
use index for each grid point. The size of a grid is roughly 0.7 km × 0.7 km.

Vehicles are the main sources of ozone precursor pollutants such as NOx and
VOCs. Hence, the traffic pattern of Singapore is more essential information that
explains the spatial and temporal variations of ozone concentrations. Vehicle speed
data are available from applications such as Google Map and OneMap. Figure 4
shows the median traffic speed (km/hour) at 8AM for major road links. Similar
to how the land use index is defined, for any location s and traffic characteristic
p (p = 1 if only traffic speed is used), we define the traffic index, r(p)(s), by the
median value of that traffic characteristic p within a 2 km radius of location s
at a given hour of day. Again, the radius is empirically chosen after exploratory
analysis. In this paper, the traffic index on each grid point is computed based on
the same grid setting described above.

Hourly measurements of meteorological variables, such as temperature, wind
speed and direction, are recorded at meteorological stations. Given the size of
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FIG. 4. An illustration of the median traffic speed on road links at 8AM (km/hour), where the speed
is shown by the color on road links.

Singapore and its proximity to the equator, the spatial variation of temperature
is small, and the temperature field for the entire island can be well constructed
from station observations using statistical techniques such as Kriging. The wind
field, however, could vary over space and time dramatically because of the com-
plex dynamics due to the dense urban canopy and the small-scale coastal influ-
ences. Instead of generating the wind field using station observations using spatial-
temporal statistics [Haslett and Raftery (1989), Reich and Fuentes (2007), Stein
(2009), Wikle et al. (2001)], we obtain the wind field from the Weather Research
and Forecasting (WRF) model, which is one of the mainstream numerical weather
prediction models [Skamarock et al. (2008)]. Our WRF model incorporates both
the high-resolution land use data and the sea surface temperature data respectively
obtained from the NASA Moderate Resolution Imaging Spectroradiometer project
and the Jet Propulsion Laboratory. The model generates a 1 km by 1 km high-
resolution surface wind field with 30-min temporal resolution, which is one of the
key inputs to the air quality model proposed in this paper. Figure 5 shows both the
observed wind vectors at meteorological monitoring stations and the surface wind
field obtained from our own WRF model. It is seen from Figure 5 that the WRF
model is particularly useful in capturing the small-scale dynamics of the wind field
and the phenomena of wind convergence.

Table 1 provides a summary of the datasets described above.

3. The model. In this section we first present the statistical spatio-temporal
model in Section 3.1. Then, we show in Section 3.2 the connection between the
statistical model and a physical dispersion model which is widely used.

3.1. The spatio-temporal model. Our goal is to build a statistical model moti-
vated by the fundamental ideas behind physical dispersion models. A typical phys-
ical dispersion model consists of four major components, including the emission,
convection, diffusion and decay of pollutants. For example, consider a widely used
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FIG. 5. A snapshot of the observed wind vectors and the wind field generated by the WRF model,
where red and grey arrows represent the observed wind vectors and the wind vectors generated by
the WRF model, respectively.

scalar transport equation for the dispersion of air-borne pollutants:

∂ϕ(s, t)
∂t

= Q(s, t) − ∇ · [
v(s, t)ϕ(s, t)

] + ∇ · [
K(s, t) · ∇ϕ(s, t)

]
(3.1)

− 1

τ
ϕ(s, t),

TABLE 1
A summary of the settings of different datasets

Data Raw data Processed data

Air quality Hourly observations at 7 stations N.A.
Land use Available on 110,830 spatial polygons Land use index computed at equally

spaced grids for 4 major land use cate-
gories

Traffic Speed on road links Traffic index computed at equally spaced
grids

Weather WRF output with 1 km spatial resolution
and 30-min temporal resolution

N.A.
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where ϕ is the pollutant concentration at some location s and time t , Q is the
pollution emission rate from a pollution source, v is the wind vector, K is a second-
order tensor of the eddy diffusivity, and τ is the relaxation timescale of pollution
removal. Note that the second and the third terms on the right-hand side of (3.1)
respectively represent the pollutant convection and diffusion processes. In physics,
convection is used to describe the transport mechanism of a pollutant due to the
flow of air (i.e., wind), while the diffusion process describes the mixing of the
pollutant by local turbulent flow. The last term in (3.1) models either the physical
(e.g., deposition on a surface or absorption in water) or chemical (e.g., photo-
chemical decomposition of ozone) removal process of the airborne pollution.

Let {Y(s, t); s ∈ R
2, t ∈ N

+} be a spatial-temporal random field that represents
the pollution concentration over continuous space and discrete time. Following the
idea of (3.1), we model the pollutant concentration at location s and time t , Y(s, t),
by

Y(s, t) = g(s, t) + Z(s, t) + ε(s, t).(3.2)

The first term g(s, t) is the pollutant emission over the time interval [t − �, t] at
location s. Depending on the pollutant of interest, g(s, t) is determined by various
factors such as land use, traffic density, meteorological conditions and so on. The
second term Z(s, t) corresponds to the physical convection–diffusion and decay
process, and is used to model the pollutant generated in the past but transported to
location s at time t . The last term ε corresponds to an error process that accounts
for the noise over the time interval [t − �, t]. For example, the noise occurs dur-
ing the pollutant emission and transport processes. We further assume that ε is
a white-in-time isotropic Gaussian random field with spatial covariance function
c(·; θ). Here, general spatial covariance functions can be used, such as Exponen-
tial, Matern, Gaussian, etc.

In (3.2), the stochastic transport process of pollutant, Z(s, t), largely determines
the spatial and temporal correlation of the pollutant concentration data. We use a
convolution model to approximate such a process:

Z(s, t) = ζ�

{
ω� ∗ Y(s, t − �)

}
= ζ�

{∫
R2

ω�(x)Y (s − x, t − �)dx
}

(3.3)

= ζ�

{
ω� ∗ Z(s, t − �) + ω� ∗ g(s, t − �) + ω� ∗ ε(s, t − �)

}
,

where ∗ denotes the convolution operation and ζ� is a scaling (decay) factor. As
shown in Section 3.2, it is possible to establish the link between the statistical
model and the physical dispersion model (3.1) if we respectively define the scaling
factor ζ� and the convolution kernel ω� as

ζ� = exp(−λ�),(3.4)
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ω�(x) = 1

2π |��|1/2 exp
{
−(x − μ�)��−1

� (x − μ�)

2

}
(3.5)

= φ(x;μ�,��),

where φ denotes the probability density function of a bivariate Gaussian distribu-
tion, and �� is the covariance matrix of the Gaussian convolution kernel. Because
the transport of pollutant is affected by wind speed and direction, we let both μ�

and �� depend on the wind vector, v(s, t), at location s and time t as follows:

μ�(s, t) = v(s, t)�(3.6)

and

��

(
v(s, t)

) = R−1
(

ρ1� 0
0 ρ2�

)(
R�)−1

,(3.7)

R =
(

cos(αv) − sin(αv)

sin(αv) cos(αv)

)
.(3.8)

Here, αv ∈ [0,2π) is the counterclockwise rotation angle of the wind vector from
the horizontal axis, and R is the rotation matrix. The parameters, ρ1 and ρ2, re-
spectively control the standard deviations of the convolution kernel ω� in direc-
tions which are parallel and perpendicular to the wind direction. In Section 3.2,
we show that the parameters ρ1 and ρ2 can be interpreted in terms of the eddy
diffusivities in the physical dispersion model (3.1).

Further, discretizing � in (3.3) into a number of n small time intervals (δ =
�/n) gives

Z(s, t) =
n∑

i=1

exp(−iλδ)ω∗i
δ ∗ g(s, t − iδ)

+ exp(−nλδ)ω∗n
δ ∗ Z(s, t − �)(3.9)

+
n∑

i=1

exp(−iλδ)ω∗i
δ ∗ ε(s, t − iδ),

with ∗n denoting the n-fold convolution operation. Substituting (3.9) into (3.2),
we have

Y(s, t) = g(s, t) +
n∑

i=1

exp(−iλδ)ω∗i
δ ∗ g(s, t − iδ)

+ exp(−λ�)ω� ∗ Z(s, t − δ)(3.10)

+
n∑

i=1

exp(−iλδ)ω∗i
δ ∗ ε(s, t − iδ) + ε(s, t).



A STATISTICAL MODELING APPROACH FOR AIR QUALITY DATA 767

Since the convolution of Gaussians is still a Gaussian, we rewrite (3.10) to obtain
the expression of the pollutant concentration over continuous space and discrete
time:

Y(s, t) = g(s, t)

+
n∑

i=1

{
exp(−iλδ)φ(s) ∗ g(s, t − iδ)

}
(3.11)

+ exp(−nλδ)φ(s) ∗ Z(s, t − �)

+
n∑

i=1

{
exp(−iλδ)φ(s) ∗ ε(s, t − iδ)

} + ε(s, t),

where

φ(s) = φ

(
s;

i−1∑
j=0

μδ

(
v(s, t − jδ)

)
,

i−1∑
j=0

�δ

(
v(s, t − jδ)

))
.(3.12)

Let

�i,t (s) =
{

exp(−iλδ)φ(s), i > 0,

1, i = 0,
(3.13)

then the covariance between the pollutant concentration at location s1 and time t1
and the concentration at location s2 and time t2 (assuming t1 ≤ t2 and t2 − t1 = jδ

for some j = 0,1,2, . . .) can be obtained from (3.11) as follows (the derivation is
given in the Appendix):

cov
(
Y(s1, t1), Y (s2, t2)

)
= I{j=0}c(d)(3.14)

+
n∑

i=0

(�̃i,t1 ∗ �j+i,t2 ∗ c)(d),

where d = s2 − s1, �̃(s) = �(−s), and the function I{j=0} = 1 if j = 0, oth-
erwise, I{j=0} = 0. Note that, since the random field ε(s, t) is isotropic, c(d) =
c(‖d‖) with ‖d‖ representing the distance between s1 and s2. It is seen from
(3.14) that the covariance, cov(Y (s1, t1), Y (s2, t2)), is determined by not only
the separation of time and space, but also the dynamic wind conditions be-
tween times t1 and t2. This is due to the fact that wind conditions determine
the transport of pollutant through convolution in our model. Since both wind
speed and direction change over time, the resultant covariance structure is no
longer isotropic and space–time separable. In a special case when the wind field
is uniform, that is, the wind speed and direction are the same everywhere at
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a given time, � does not depend on location s any longer. Hence, (3.14) be-
comes

cov
(
Y(s1, t1), Y (s2, t2)

)
(3.15)

= I{j=0}c(d) +
n∑

i=0

(�i,t1 ∗ �j+i,t2 ∗ c)(d).

As an extension, we could obtain the random field, {Y(s, t); s ∈ R
2, t ∈ R},

which is continuous in both space and time from equation (3.11), by letting n → ∞
and δ → 0. The expression is given by

Y(s, t) =
∫ ∞

0
exp(−λu)φ(x; μ̄u, �̄u) ∗ g(s, t − u)du

(3.16)
+

∫ ∞
0

exp(−λu)φ(x; μ̄u, �̄u) ∗ dB(x, t − u)du,

where μ̄u = ∫ u
0 R(s, t − x)v(s, t − x)dx, �̄u = ∫ u

0 R(s, t − x)�(s, t − x)dx, and
B(s, t) is a spatially correlated Brownian motion. In reality, since air quality mea-
surements are sampled at discrete times, we only focus on the discrete case in this
paper.

3.2. The connection between the statistical model and physics.

3.2.1. The transport of pollutant. It is possible to show that the convolution
model above is an approximation to the physical convection–diffusion process by
establishing the relationship between equations (3.3), (3.5) and the scalar transport
equation (3.1). Note that, under a uniform and steady wind field in a homogeneous
medium without any source, the scalar transport equation (3.1) can be simplified
as

∂ϕ(s, t)
∂t

= −v · ∇ϕ(s, t) + K∇2ϕ(s, t) − 1

τ
ϕ(s, t).(3.17)

Then, applying the Fourier transform, equation (3.17) becomes

dϕ̃η(t)

dt
= −i(η · v)ϕ̃η(t) − η2Kϕ̃η(t) − 1

τ
ϕ̃η(t),(3.18)

in which η is the wave number and ϕ̃η is the Fourier coefficient of ϕ. It is not
difficult to show that the solution of equation (3.18) is given by

ϕ̃η(t + �) = exp
{
−1

τ
� − [

i(η · v) + Kη2]
�

}
ϕ̃η(t).(3.19)

Finally, the backward Fourier transform leads to

ϕ(s, t) = exp
{
−1

τ
�

}∫
R2

��(x)ϕ(s − x, t − �)dx,(3.20)
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in which the kernel ��(x) is

��(x) = 1

2π |��|1/2 exp
{
−(x − v�)��−1

� (x − v�)

2

}
,(3.21)

with the covariance matrix given by

�� =
(

2K� 0
0 2K�

)
.(3.22)

The covariance matrix (3.22) is known as the eddy diffusivity tensor in physics.
The comparison between (3.3) and (3.20) justifies why the decay term and the
convolution kernel can be defined in ways shown in equations (3.4) and (3.5) with
λ = τ−1. Equation (3.22) also suggests that

ρ1 = 2K‖(s, t), ρ2 = 2K⊥(s, t),(3.23)

where K‖ and K⊥ are the eddy diffusivities respectively parallel and perpendicular
to the wind direction, and can be obtained from the wind field through a physics pa-
rameterization of atmospheric turbulent mixing. In a special case when an isotropic
diffusion model is used (i.e., K = K‖ = K⊥), the covariance matrix reduces to
equation (3.22). The connection shown above shows that the proposed statistical
model is well motivated when the wind direction and speed do not change dramat-
ically within a certain spatial region.

3.2.2. The emission of pollutant. To see the relationship between g(s, t) in
(3.2) and the source term Q(s, t) in (3.1), we now consider the limit situation with
zero diffusion and no decay, that is, K → 0 and τ → ∞. Then, equation (3.1)
reduces to

∂ϕ(s, t)
∂t

= −∇ · [
v(s, t)ϕ(s, t)

] + Q(s, t).(3.24)

At the same time, it is obvious that ζ� = 1 and the convolution kernel ω� in (3.5)
in this limit becomes a Dirac delta function,

ω�(x) = δ(x − v�).

Hence, substituting (3.3) into (3.2) and omitting the error process yields

Y(s, t) = {
ω� ∗ Y(s, t − �)

} + g(s, t)
(3.25)

= Y(s − v�, t − �) + g(s, t).

Since Y(·, t) in the statistical model corresponds to the pollution concentration
ϕ at t in the physical model, equation (3.25) can be rewritten as

ϕ(s, t) = ϕ(s − v�, t − �) + g(s, t).(3.26)
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Applying the Taylor expansion and assuming the mass conservation [i.e., ∇ ·
v(s, t) = 0], equation (3.26) yields

�

(
∂ϕ(s, t)

∂t
+ ∇ · [

v(s, t)ϕ(s, t)
] − [

g(s, t)/�
]) = O

(
�2)

.(3.27)

By comparing (3.24) and (3.27), it is clear that the convolution model (3.25) is
a first-order approximation to the scalar transport equation (3.24), that is, (3.27)
converges to (3.24) as � → 0. Hence, the source term, g(s, t), in the convolution
model (3.2), is related to the pollution emission source in the physics model (3.1)
through the following relationship: g(s, t) = Q(s, t)�.

3.3. Illustration. Before a case study is presented in Section 4, two illustrative
examples are presented here to help the readers develop a better understanding of
our model through the visualization of model output. In both examples, we com-
pute the pollutant concentration based on equation (3.11) with arbitrarily chosen
values of model parameters, for illustrative purposes.

Figure 6 shows the computed pollutant concentration given a fixed-location
point emission source. We see that the output of the proposed statistical model
mimics the pollutant dispersion process. The direction of the pollutant dispersion
changes as the wind direction gradually changes from west to south. Similarly,
Figure 7 shows a hypothetical pollutant dispersion from a moving point emission
source under the same wind field. The solid line in Figure 7 represents a major
highway in Singapore.

The two examples illustrate how the proposed statistical air quality model mim-
ics the physical phenomenon of pollutant dispersion. However, unlike a pure physi-
cal model with model parameters directly specified, we describe in the next section
a procedure for estimating the unknown model parameters based on data. Anima-
tions based on the two illustrative examples are also available from the online
supplementary materials [Liu et al. (2016)].

4. Application: The modeling of hourly ozone data.

4.1. The modeling. A real case study is presented to demonstrate how the
modeling framework is applied to model the hourly ozone concentration data in
Singapore. Because the model is motivated by the basic physics behind the pollu-
tion process, the case study also shows that the model provides useful insights into
the effects of the complex environmental conditions on ozone concentration.

First, based on the basic physics and chemistry of how ground-level ozone is
generated in an urban area, we model the emission of ozone, g(s, t), by a linear
function of land use types and weather conditions. In particular,

g(s, t) = l0(s, t)A�
τ(t) + r0(s, t)B�

τ(t) + m0(s, t)C�
τ(t),(4.1)

where τ(t) : t → τ ∈ [1, . . . ,24] returns the hour of a calendar time t at which the
measurements are taken. The covariates in (4.1) are described as follows:
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FIG. 6. Illustration of the computed pollutant dispersion from a point source at times
t = 1,10,15,20. The wind field is shown by the arrows.

• The vector l0(s, t) = (l(1)(s, t), . . . , l(k1)(s, t)) represents the land use index, as
defined in Section 2, at location s for the four land use types (i.e., k1 = 4). Then,
Aτ(t) = (a

(1)
τ (t), . . . , a

(k1)
τ (t)) are the effects of different land use types on ozone

emission at different hours of day.
• The vector r0(s, t) = (r(1)(s, t), . . . , r(k2)(s, t)) represents the traffic characteris-

tics at location s and time t as defined in Section 2, and Bτ(t) = (b
(1)
τ (t), . . . , b

(k2)
τ (t))

are the effects of each traffic characteristic on ozone concentrations at different
hours of day. In the case study, only the traffic speed is used and k2 = 1.

• The vector m0(s, t) = (m(1)(s, t), . . . ,m(k3)(s, t)) represents a number of k3
types of meteorological conditions at location s and time t , and Cτ(t) =
(c

(1)
τ (t), . . . , c

(q)
τ (t)) are the effects of each type of meteorological condition on

ozone concentrations at different hours of day. We only retain temperature,
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FIG. 7. Illustration of the computed pollutant dispersion from a moving source along a trajectory
at times t = 10,20,30,40. The wind field is shown by the arrows.

which turns out to be the most important meteorological condition for the gen-
eration of ozone and, hence, k3 = 1. Although wind affects the transport of the
pollutant, it does not affect the emission of ozone.

It is worth mentioning that the actual ozone generation process is a complicated
photo-chemical process which mainly involves solar ultraviolet radiation, volatile
organic compounds (VOCs) and oxides of nitrogen (NOx). Hence, there might be
a potential bias or lack of fitting if the covariates in (4.1) are not properly chosen.
In (4.1), the emission term g(s, t) is modeled by a pure statistical approach with
all covariates carefully chosen: temperature serves as a proxy of solar radiation
when the solar radiation data is not available, while the land use and traffic data
are mainly used to capture the emission of VOCs and NOx .
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Substituting (4.1) into (3.11), we obtain the expected ozone concentration at
location s and time t :

E
(
Y(s, t)

) ≈ g(s, t) +
n∑

i=1

{
�i,t (s) ∗ (

l0(s, t − iδ)A�
(τ (t−iδ))

)}

+
n∑

i=1

{
�i,t (s) ∗ (

r0(s, t − iδ)B�
(τ (t−iδ))

)}

+
n∑

i=1

{
�i,t (s) ∗ (

m0(s, t − iδ)C�
(τ (t−iδ))

)}

= l0(s, t)A�
τ(t) + r0(s, t)B�

τ(t) + m0(s, t)C�
τ(t)(4.2)

+
n∑

i=1

{
k1∑

p=1

a
(p)
τ(t−iδ)

[
�i,t (s) ∗ l(p)(s, t)

]}

+
n∑

i=1

{
k2∑

p=1

b
(p)
τ(t−iδ)

[
�i,t (s) ∗ r(p)(s, t)

]}

+
n∑

i=1

{
k3∑

p=1

c
(p)
τ(t−iδ)

[
�i,t (s) ∗ m(p)(s, t)

]}
.

Since the hourly-level ozone concentration data are considered in this case study,
we let δ = 1, and t − iδ refers to the time which is a number of i hours ahead of
the time t .

In fact, if we let

li (s, t) = (
�i,t (s) ∗ l(1)(s, t), . . . ,�i,t (s) ∗ l(k1)(s, t)

)
,

ri (s, t) = (
�i,t (s) ∗ r(1)(s, t), . . . ,�i,t (s) ∗ r(k2)(s, t)

)
,

mi (s, t) = (
�i,t (s) ∗ m(1)(s, t), . . . ,�i,t (s) ∗ m(k3)(s, t)

)
,

for i = 0, . . . , n, the expression of (4.2) is further simplified to a linear form as
follows,

E
(
Y(s, t)

) = x(s, t)β,(4.3)

where β = (A1,B1,C1, . . . ,A24,B24,C24)
� is a 24k × 1 column vector (k = 6),

and x(s, t) is a 1 × 24k row vector given by

x(s, t) = (
x(1)(s, t), . . . ,x(24)(s, t)

)
,

where

x(j)(s, t) = ∑
i∈Ij

xi (s, t)(4.4)
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with Ij = {i; τ(t − iδ) = j} and xi (s, t) = (li (s, t), ri(s, t),mi(s, t)) for i =
0, . . . , n and j = 1, . . . ,24. Equation (4.3) implies that the covariates in (4.1) are
first transformed by convolution under the wind field, and the expected ozone con-
centration is given by a linear combination of the transformed covariates. Note that
each xi (s, t) contains the following: four transformed land use index, the trans-
formed traffic speed and the transformed temperature.

Finally, supposing that ozone concentrations are monitored at Ns stations over
Nt hours, we obtain from (4.3) a linear model as follows:

Y = Xβ + e,(4.5)

where Y = (Y (s1, t1), . . . , Y (sNs , t1), . . . , Y (sNs , tNt ))
� is a column vector of

length Ns × Nt and X = (x(s1, t1),x(s2, t1), . . . ,x(sNs , t1), . . . ,x(sNs , tNt ))
� is a

NsNt × (kn + k) matrix, and e is the error process with mean zero and variance
�Y given by (3.14).

4.2. Parameter estimation. The model in (4.5) contains the following param-
eters: the decay parameter λ, the eddy diffusivity K, the parameter θ in the spatial
covariance function c(·; θ), and the parameters β . The physical parameters, includ-
ing λ and K, can be determined according to their physical meanings described in
Section 3. In particular, the eddy diffusivity K represents the mixing of pollutants
due to turbulent wind conditions. Hence, we choose a widely used parameteriza-
tion [Byun and Schere (2006)]:

K = 0.28(δ1δ2)

√(
∂v1

∂s1
− ∂v2

∂s2

)2

+
(

∂v1

∂s2
+ ∂v2

∂s1

)2

,

in which v1 and v2 are the horizontal and vertical components of wind [v =
(v1, v2)]; s1 and s2 are x- and y-coordinates of a location s; and δ1 and δ2 are
the computational resolution of the wind field. To model the decay of ozone, we
set the relaxation timescale τ = 2 hours or, equivalently, λ = 0.5 (hour−1), corre-
sponding to about 50% decay after one and a half hours, and 95% decay after 6
hours.

The remaining parameters β and θ can be estimated using the Iteratively Re-
Weighted Generalized Least Squares (IRWGLS) which consists of the following
steps:

Step 0 : Set the initial �̂Y to an identify matrix of size Ns × Nt .
Step 1 : Estimate β using the Feasible General Least Squares (FGLS):

β̂ = (
X��̂

−1
Y X

)−1X��̂YY.

Step 2 : Based on r = Y − Xβ̂ = (r(s1, t1), . . . , r(sNs , tNt ))
�, estimate θ̂ of the

parameter θ associated with the covariance function c(·; θ), and obtain the estimate
of the covariance matrix, �̂Y, from equation (3.14).
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Step 3 : Iterate steps 1 and 2 until the relative changes of β̂ and θ̂ are small.

Schabenberger and Gotway (2005) provide some useful discussions on both the
advantages and disadvantages of the procedure above. To obtain θ̂ in step 2, we use
the fast cross-validation-type method [Carroll et al. (1997)]. In this case study, an
Exponential model is chosen for c(·; θ), and c(d; θ) = θ2

1 exp(−θ2‖d‖) where ‖d‖
represents the spatial distance (in kilometer) between two locations. Specifically,
let r(−s0,−t0) be a column vector of residuals with the residual at location s0 and
time t0 removed, and let η(s0, t0) be the leaving-one-station-out prediction error,
that is, the error in predicting the residual r(s0, t0) using only r(−s0,−t0) given by

η(s0, t0) = r(s0, t0) − r̂(s0, t0),

where r̂(s0, t0), given below, is the well-defined Simple Kriging predictor which is
known to be the best linear estimator of r(s0, t0) under squared-error loss,

r̂(s0, t0) = γ�−1
r(−s0,−t0)

r(−s0,−t0).

Here, γ = cov(r�
(−s0,−t0)

, r(s0, t0)), and the covariance matrix of r(−s0,−t0),
�r(−s0,−t0)

, can be calculated using equation (3.14).
The optimum value of θ is found by minimizing the sum of squared leaving-

one-station-out prediction errors, that is,

min
θ

Ns∑
i

Nt∑
j

η2(si , tj ; θ).(4.6)

A few remarks can be made as follows:

• In the first iteration, since �̂Y is an identify matrix, β̂ in step 1 is the Ordi-
nary Least Squares (OLS) estimator and is unbiased. In subsequent iterations,
the finite-sample properties of the FGLS estimator, β̂ , are usually unknown and
can be studied case-by-case via Monte Carlo experiments. Asymptotically, the
FGLS estimator possesses the asymptotic properties of the Maximum Likeli-
hood estimator, and is equivalent to the Generalized Least Squares (GLS) esti-
mator under regularity conditions.

• The cross-validation-type method is adopted for practical reasons. As noted by
Carroll et al. (1997), due to the decay of pollutant concentration, the temporal
correlation of pollutant concentration becomes extremely weak over a certain
time lag. Hence, when solving the simple Kriging problem above, it is possible
to only retain the data within certain time units of the time of interest (i.e., local
Kriging). In that case, the dimension of the covariance involved in the simple
Kriging problem can be significantly reduced. For example, because ozone is
only formed during daylight and destroyed over night, we could only use the
data within 24 hours of the time of interest, t0, when solving the simple Krig-
ing problem. This leads to a significant reduction of both the dimension of the
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covariance matrix and the computational time compared with MLE which re-
quires repeated inversion of a large covariance matrix. The cross-validation-type
method has also been studied by Zhang and Wang (2010).

• Simulation studies can be used to study the finite-sample property of the esti-
mators. The readers may refer to the online supplementary materials [Liu et al.
(2016)]. In general, the simulation results do not suggest any systematic bias
associated with β̂ , while the estimators, θ̂1 and θ̂2, seem to be negatively and
positively biased, respectively.

• It is worth noting that the values of unknown model parameters are obtained
using a hybrid approach, in which some parameters are computed from physical
knowledge while the others are estimated using statistical methods. Recall that
one of the main goals of this paper is to build a statistical model which is mathe-
matically tractable and also reflects the fundamental physics of the air pollution
process. In reality, the decay parameter λ is dynamic and depends on factors
such as land use type, solar radiation, rainfall, pressure, temperature, concentra-
tion of other pollutants, etc. From the modeling point of view, if we allow λ to
be dependent on other factors, then the linear form of (4.5) does not hold and the
model becomes much less tractable. If the decay parameter λ is assumed to be
an unknown constant, then it is still possible to estimate the value of λ using the
same procedure above. However, the computational cost will be much higher
because the design matrix X in (4.5) needs to be repeatedly computed for dif-
ferent values of λ. Note that, when λ is specified using the physical knowledge,
we only need to compute X once.

4.3. Results and interpretation. Figure 8, as an illustration of the results,
shows both the observed and fitted hourly ozone concentrations from July 20,
2013 9AM to July 30, 2013 8AM. Results from other time periods are similar.
It is seen from Figure 8 that the model well captures the diurnal variation of hourly
ozone concentration at different sites. Note that the temporal variation of hourly
ozone concentrations at different sites can be very different. One might also note
some lack of fit of the ozone concentration at station 6, which shows the diffi-
culty of short-term ozone data modeling. One key challenge in modeling the ur-
ban air quality data for a metropolitan area like Singapore is that urban structures
(say, buildings) affect the air quality, as urban structures greatly change the wind
field. The wind field generated by our Numerical Weather Prediction model, or
many other numerical weather models, does not take into account the effects of
urban structures. As a result, there often exists some systematic bias between the
numerically simulated and the actual wind field at some particular locations, for
example, at the location of station 6. Another important reason is that the ozone
generation and decay is a complicated photo-chemical process that involves many
other chemicals in the air. Suppose that there is an unknown emission source of
oxides of nitrogen (NOx) near station 6, and, as a result, the behavior of ozone
concentration can be very different at that location. Unlike most of the existing
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FIG. 8. Fitted (solid line) and observed (circle) hourly ozone concentrations at the 7 stations from
20 July 2013 9AM to 30 July 2013 8AM, where the circles and lines represent the observed and fitted
values respectively. The station ID is shown on the top of each subplot.

literature that focuses on daily or 8-hour average ozone modeling, we consider in
this paper the modeling of hourly ozone concentration which is subject to a much
higher variability. Incorporating an additional dataset, if available, will certainly
be helpful in explaining more uncertainties.

It is highly desirable that the estimated parameters can be interpreted associated
with the physics behind the pollution generation process. The left panel of Figure 9
shows the estimated effects of temperature on ozone concentration at different
hours of day. Because ozone can only be generated under solar radiation and is
destroyed after sunset, we clearly see that the estimated effects of temperature on
ozone concentration are positive during daylight (8AM–8PM), and are negative
during night time (9PM–7AM). In particular, the effects are the largest around
3PM in the afternoon when the ozone concentration usually reaches the peak value
of a day. The right panel of Figure 9 shows the estimated effects of traffic speed on
ozone concentrations at each hour of day. An exactly opposite pattern is observed.
During daytime, the estimated effects of traffic speed are negative, which indicates
that higher traffic speed leads to lower ozone concentration. This is because higher
traffic speed usually implies lower traffic volume. During nighttime, on the other
hand, traffic speed has positive effects on ozone concentration. Recall that ozone
is destroyed by nitric oxide (NO) at night and higher traffic speed usually implies a
lower emission rate of NO. As a result, the ozone concentration remains relatively
high when traffic speed is high.

Similarly, Figure 10 shows the estimated effects of different types of land use
on ozone concentrations at different hours of day. The effects of residential area,
nature reserve (including woods, forests, gardens and parks), commercial area and
industrial area have similar effects on ozone concentrations in the sense that ozone
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FIG. 9. Estimated hourly effects of temperature (shown on the left) and traffic speed (shown on the
right) on ozone concentrations

is generated during daylight and destroyed at night. Particularly, it is clearly seen
that the commercial area has the largest effects on the ozone concentration. Since
most of the commercial areas are in downtown Singapore, such a conclusion is
consistent with the well-known fact that ozone concentration in an urban area is
strongly correlated with human activities.

We smooth the effects of different factors over time using the nonparametric Lo-
cally Weighted Scatterplot Smoothing (LOESS), and the smoothed curves are also
shown in Figures 9 and 10. Alternatively, one might choose to refit the model by
imposing some parametric relationships that describe the time-dependent effects
of different factors, although there is no relevant physical or chemical knowledge
that may help in choosing appropriate parametric forms to our knowledge.

The estimates of the parameters of the covariance function c(·; θ) are given by
θ̂1 = 0.5 and θ̂2 = 0.2. Based on (3.2), θ1 captures the uncertainty associated with
the pollutant emission, transport and decay processes at a particular location and

FIG. 10. Estimated hourly effects of different land use type on ozone concentrations. The land use
type is shown on the top of each subplot.
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FIG. 11. Ozone map at different hours on July, 28 2013: (a) 6AM, (b) 12PM, (c) 6PM, (d) 11PM.
The concentration is represented by the color.

within a one-hour time interval. From the estimate θ̂2 = 0.2, the practical range of
the semivariogram is 3θ̂−1

2 = 15 kilometers. Of course, it is the stochastic transport
process, Z(s, t), that largely determines the spatial and temporal correlation of the
pollutant concentration data.

Once the model has been constructed, the ozone concentration at any location
can be predicted and the ozone map of an entire Singapore is constructed. As
an example, Figure 11 shows the ozone map at 6AM, 12PM, 6PM and 11PM of
a particular day obtained by Universal Kriging. The daily change of the ozone
pattern of that day is clearly seen. In the early morning before sunrise, the ozone
concentration remains at a low level, and the concentration is slightly higher in the
southern region. During the day, as temperature rises, ozone is generated and starts
to build up. Figure 11(b) shows that ozone is mainly generated from the center of
the island (i.e., downtown Singapore), and is gradually transported to the outskirts
of Singapore due to pollutant dispersion. At 6PM of the day, ozone has been fully
dispersed and the concentration over most parts of the island is almost uniform. At
11PM, the ozone concentration drops back to a low level; and it is interesting to
see that the ozone removal rate is higher in some areas. It turns out those areas are
either the nature reserves or the low-population density areas of Singapore, which
are mainly located at the northwest part of the island.
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FIG. 12. Cross-validation-based comparison between the proposed approach and other spatial
interpolation methods.

To further demonstrate the utility of the proposed model, a cross-validation-
based comparison is performed between the proposed method and those com-
monly used spatial interpolation methods. For illustrative purposes, Figure 12
shows the cross-validation results at station one (see Figure 1 for the location of
this station). In this figure, the observed hourly ozone concentrations (in square
root) are shown by dots. The solid line, obtained from the proposed method, shows
the leave-one-station-out predictions of the hourly ozone using only the data from
the remaining 6 stations. The long- and short-dashed lines show the leave-one-
station-out predictions, respectively obtained from the ordinary spatial Kriging
with Matérn covariance function and the Inverse Distance Weighted interpolation
(IDW). The proposed method successfully reduces the prediction error by approx-
imately 40% compared with the ordinary spatial Kriging and IDW. This is mainly
because the proposed method incorporates the dynamic environmental conditions
and basic physics into the statistical modeling.

5. Conclusions. This paper proposed a spatial-temporal air quality model,
and demonstrated the application of the model through a real case study. In the
modeling of many complex environmental processes such as hourly level air qual-
ity, physical knowledge and principles can be extremely useful in model selection,
construction and interpretation, although a pure physical model may not perform
well in data fitting and prediction due to the uncertainty associated with many
physical parameters. The model presented in this paper successfully established
the link between the statistical air quality model and physical pollutant disper-
sion models, and can be seen as an example of how physics and statistics can be
integrated in solving real-world problems. Although the paper focuses on the mod-
eling of hourly ozone, the general framework can be applied for other pollutants
or environmental processes.
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APPENDIX

In the appendix, we show how equation (3.14) is derived. It follows from (3.11)
and (3.13) that the covariance, cov(Y (s1, t1), Y (s2, t2)) for t1 ≤ t2, can be written
as

cov
(
Y(s1, t1), Y (s2, t2)

)
= cov

(
n∑

i=1

(
�i,t1(s1) ∗ ε(s1, t1 − iδ)

)
, ε(s2, t2)

)

+ cov
(
ε(s1, t1), ε(s2, t2)

)
(A.1)

+ cov

(
n∑

i=1

(
�i,t2(s2) ∗ ε(s2, t2 − iδ)

)
, ε(s1, t1)

)

+ cov

(
n∑

i=1

(
�i,t1(s1) ∗ ε(s1, t1 − iδ)

)
,

n∑
i=1

(
�i,t2(s2) ∗ ε(s2, t2 − iδ)

))
.

In what follows, we obtain the expression for each term on the right-hand side
(RHS) of (A.1). Since ε(s, t) is a white-in-time isotropic random field with spatial
covariance function c(·), we immediately obtain the expressions of the first two
terms on the RHS of (A.1):

cov

(
n∑

i=1

(
�i,t1(s1) ∗ ε(s1, t1 − iδ)

)
, ε(s2, t2)

)
= 0, t1 ≤ t2(A.2)

and

cov
(
ε(s1, t1), ε(s2, t2)

) =
{

c(d), if t1 = t2,

0, otherwise,
(A.3)

where d = s2 − s1 is a vector. Note that, since the random field ε(s, t) is isotropic,
c(d) = c(‖d‖) with ‖d‖ representing the distance between s1 and s2.

Letting t1 = t2 − jδ for some j ≥ 0, the expression of the third term on the RHS
of (A.1) is derived as follows:

cov

(
n∑

i=1

(
�i,t2(s2) ∗ ε(s2, t2 − iδ)

)
, ε(s1, t1)

)

= cov
(
�j,t2(s2) ∗ ε(s2, t1), ε(s1, t1)

)
(A.4)

= cov
(∫

R2
�j,t2(x)ε(s2 − x, t1) dx, ε(s1, t1)

)

= (�j,t2 ∗ c)(d).
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The expression of the fourth term on the RHS of (A.1) can be derived in a
similar way as follows:

cov

(
n∑

i=1

(
�i,t1(s1) ∗ ε(s1, t1 − iδ)

)
,

n∑
i=1

(
�i,t2(s2) ∗ ε(s2, t2 − iδ)

))

=
n∑

i=1

cov
(
�i,t1(s1) ∗ ε(s1, t1 − iδ),�j+i,t2(s2) ∗ ε(s2, t2 − jδ − iδ)

)
(A.5)

=
n∑

i=1

(�̃i,t1 ∗ �j+i,t2 ∗ c)(d),

where �̃i,t1(s) = �i,t1(−s).
Since �̃i,t = �i,t = 1 when i = 0, we have

cov
(
Y(s1, t1), Y (s2, t2)

)
=

n∑
i=0

(�̃i,t1 ∗ �j+i,t2 ∗ c)(d) + I{j=0}c(d)

where I{j=0} = 1 when j = 0, otherwise, I{j=0} = 0.
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SUPPLEMENTARY MATERIAL

A simulation study and some useful animations (DOI: 10.1214/15-
AOAS901SUPP; .zip). Because the finite-sample properties of the estimators pre-
sented in Section 4.2 are usually unknown, a Monte Carlo simulation study is
performed to investigate the statistical properties, such as unbiasedness, of the es-
timators. In addition, some useful animations are also provided to illustrate the
proposed modeling approach.
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