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New representations of tree-structured data objects, using ideas from
topological data analysis, enable improved statistical analyses of a popula-
tion of brain artery trees. A number of representations of each data tree arise
from persistence diagrams that quantify branching and looping of vessels at
multiple scales. Novel approaches to the statistical analysis, through various
summaries of the persistence diagrams, lead to heightened correlations with
covariates such as age and sex, relative to earlier analyses of this data set.
The correlation with age continues to be significant even after controlling for
correlations from earlier significant summaries.

1. Introduction. Statistical analysis is particularly challenging when the sam-
ple points are not vectors but rather objects with more intrinsic structure. In the
present case, each data point is a tree, embedded in 3-dimensional space, with ad-
ditional attributes such as thickness. Background and additional information con-
cerning these data objects, which represent arteries in human brains (isolated via
magnetic resonance imaging [Aylward and Bullitt (2002)]), occupy Section 2. Ear-
lier analyses of this data set have correlated certain features with age and produced
hints of sex effects (Section 2.1).

Topological data analysis (TDA) reveals anatomical insights unavailable from
earlier approaches to this data set (Section 3). In particular, TDA shows age to be
correlated with certain measures of how brain arteries bend through space (Sec-
tions 3.1 and 3.2). This contrasts with a previous study [Bullitt et al. (2010)]
that correlates age with total artery length and, furthermore, the TDA correlations
are independent of that earlier one (Section 3.3). TDA in our context also finds
stronger sex effects than the only other study [Shen et al. (2014)] to find any sex
difference at all (Section 3.4).

Two TDA methods (Section 4) allow us to quantify the bending of arteries in
space. One of our methods records how the connectedness of the subset of the
vessels beneath a given horizontal plane changes as the plane rises from below the
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brain to above it (Section 4.1). Another of our methods records the evolution of
independent loops contained in the ε-neighborhood of the tree as ε increases from
0 to ∞ (Section 4.2). Each method encodes the topological information contained
in a given tree as a persistence diagram, which is a finite set of points above the
main diagonal in the positive quadrant of the Cartesian plane. These diagrams
are turned into feature vectors in a variety of ways, resulting in several statistical
analyses, detailed in Section 5.

2. Brain artery trees. Each data point in this study is a geometric construct
that represents the tree of arteries in the brain of one person. More precisely, the
data result from a tube-tracking vessel segmentation algorithm that was applied
to 3-dimensional Magnetic Resonance Angiography (MRA) images followed by
a combination of automatic and manual assembly into trees. Aylward and Bullitt
(2002) and Aydin et al. (2009) describe this process. A visual rendering of one
such reconstructed tree is shown in Figure 1. The full data set consists of n = 98
such trees, with subject ages from 18 to 72. While the long-term goal of study
is to develop methods for exploring stroke tendency, and perhaps to develop di-
agnostics for brain cancer based on vasculature, pathological cases were deliber-
ately excluded before MRA scanning, the purpose being to understand variation in
the population of nonpathological cases. The central goal of this study is to char-
acterize correlations between these brain diagnostics and the two covariates, age
and sex.

FIG. 1. Tree of arteries from the brain of one person, showing one data object. Thickest arteries
appear near the bottom. Arteries bend, twist and branch through three dimensions, which results in
meaningful aspects of the data being captured by persistent homology representations. The resolution
is 0.5 × 0.5 × 0.8 mm3.
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2.1. Earlier analyses. Bullitt et al. (2010) studied simple summaries of each
data tree, such as overall branch length and average branch thickness. These were
both seen to be significantly correlated with age. Their approach can be refined
through better use of the large amount of additional information available in this
rich data set, such as the tree topologies, and also the multiple individual branch
locations, structures, widths and so on. Early approaches to this, such as Wang and
Marron (2007) or Aydin et al. (2009), chose to focus solely on the combinatorics of
the branching structure, ignoring other aspects such as thickness or the geometry
of the 3-dimensional embedding. The latter paper found statistically significant
age effects. These age effects were studied more deeply using the notion of tree
smoothing developed by Wang et al. (2012).

Shen et al. (2014) approach this data set using representations of planar binary
trees via Dyck paths, which arise in branching processes [Harris (1952)]. The bi-
jection represents each planar binary tree as a function of one real variable, allow-
ing application of standard asymptotic methods when trees are viewed as random
objects. Adaption to the brain artery tree data set had the goal of making available
the large array of methods available for Functional Data Analysis (FDA), where
the data objects are curves such as graphs of univariate functions; see Ramsay
and Silverman (2002) and Ramsay (2006). Dyck path analysis of the brain tree
data found more significant correlation with age as well as the first indication of a
significant sex effect.

A drawback of the above approaches to tree data analysis is that they require
2-dimensional embedding of the given 3-dimensional tree structure, as noted in
Aydin et al. (2009), Section 2.1 and Shen et al. (2014), Section 2.1. For each non-
leaf node, a choice must be made as to which child node goes on the left and which
goes on the right (if the tree is not binary, then an ordering of the node’s children
is required). While ad hoc methods were used to reasonable effect in those papers,
it is natural to suspect that they result in loss of statistical efficiency. This issue can
be seen as an instance of the correspondence problem: planar embedding necessar-
ily violates any consistent, anatomically meaningful assignment of 3-dimensional
features across objects in this data set.

An approach to overcoming this problem is based on the concept of the phyloge-
netic tree from evolutionary biology; see Holmes (1999) and Billera, Holmes and
Vogtmann (2001). A major challenge in applying this idea to a set of brain artery
trees is that phylogenetic trees require a fixed underlying set of leaves, while brain
artery trees have leaves that appear where the vessel thickness passes below the
imaging resolution of MRA, locations of which vary across cases. Skwerer et al.
(2014) attempted to resolve this problem by using additional cortical surface infor-
mation plus a correspondence technique to produce a common set of landmarks,
which became the leaves. They found statistically significant age and gender ef-
fects, some of which were stronger than those previously found.

Additional treatments of tree-structured data objects did not analyze this data
set. For instance, Feragen et al. (2011) developed an approach that avoids both the
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planar embedding and fixed-leaf-set problems, and Nye (2011) invented an ana-
logue of principal component analysis for phylogenetic trees. Hotz et al. (2013),
followed by Barden, Le and Owen (2013, 2014), investigated surprising nonstan-
dard central limit theory in phylogenetic tree spaces. Finally, an analysis [Wright
et al. (2013)] of a different, and smaller, set of MRA brain artery images also found
a connection between vessel length and healthy aging.

3. Persistent homology analysis of brain arteries. In this paper we use topo-
logical data analysis (TDA); see Edelsbrunner and Harer (2010) for a good in-
troduction. We postpone to Sections 4 and 5 a review of precise definitions of
key terms from TDA and the detailed extraction of useful features for statistical
analysis. This section contains an intuitive description of these features, and a de-
scription of the striking age and sex effects found using this new feature set. We
also demonstrate that these effects are independent of coarser geometric measures,
such as total artery length or average branch thickness, used in the earliest analyses
[Bullitt et al. (2010)].

3.1. Intuition. The methodology developed here provides a direct and quanti-
tative description, in the form of numerical features usable for statistical analysis,
of the way arterial structure occupies space within the 3-dimensional geometry of
the brain. We illustrate some of what this means here, with the aid of the tree in
Figure 2.

Notice a large S-shaped bend in the arterial structure near the bottom of Fig-
ure 2. Bends such as these, and other much tighter bends, occur throughout the
tree. The technique of zero-dimensional persistent homology locates these bends

FIG. 2. A MATLAB rendering of the brain artery tree of Patient 1. Indicated by the thick grey curve
is one of the loops formed by thickening the artery tree within the brain. Also found are some of the
loops and bends made by the artery tree within the 3-dimensional geometry of the brain.
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and measures their sizes, which is returned as a sequence p1 > p2 > · · · of non-
negative numbers, where pi is the size (in mm) of the ith largest bend in a partic-
ular brain.

For a different flavor of geometry, imagine gradually thickening each artery so
that the tree begins to fill the 3-dimensional space containing it. Loops start to form
(for example, the one outlined in thick grey in the figure) and then eventually fill in.
The time between when a loop forms and when it fills in is called its persistence.
The technique of one-dimensional persistent homology locates these loops and
measures their persistences (again in mm), resulting in another sequence q1 >

q2 > · · · of non-negative numbers.
Rigorous definitions of the above terms are given in the next two sections. For

the rest of this section, we suppress such details and focus on the analysis of fea-
tures derived from persistence.

3.2. Age effects. Figure 3 depicts a first population-level view of the sets of
numbers p1, . . . , p100 across the entire data set of n = 98 brain trees. Two out of

FIG. 3. PCA of vector representations. Raw data, mean and mean residuals are in the top row.
Other rows show loadings and scores for the first 3 PCs, that is, modes of variation. Rainbow colors
indicate age. Correlation of PC1 and age is apparent, with warmer colors generally at the bottom
and cooler colors generally at the top.
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three panels in each row contain a set of n = 98 overlaid curves, each of which
is a parallel coordinates plot [see Inselberg (1997)]: the coordinates of each data
vector are plotted as heights on the vertical axis as a function of the index, in this
case i = 1, . . . ,100. Color denotes age via a rainbow scheme starting with magenta
for the youngest (19), ranging smoothly through blue, green, yellow to red for the
oldest (79). The upper left panel shows the data curves. Potential age structure is
already apparent, with blues nearer the top and reds nearer the bottom.

As shown by Ramsay and Silverman (2002) and Ramsay (2006), Principal
Component Analysis [PCA, see Joliffe (2005)] can reveal deeper structure in a
sample of curves. PCA starts at the center of the data: the mean shown as a curve
in the top center panel. Variation about the mean is studied through the mean resid-
uals, which are the data curves minus the mean, shown in the top right panel. PCA
next investigates modes of variation by finding orthogonal projections in the curve
space that represent maximal amounts of variation. Projections corresponding to
the first principal component (PC) are shown in the left panel of the second row,
which gives a more focused impression of younger people on the top and older
people near the bottom. In PCA terminology, this is called a loadings plot because
each curve is merely a multiple of the first eigenvector, whose entries are called
loadings. The shape of the curve gives insight concerning this principal compo-
nent (or mode of variation). In this case the variation is all values moving in uni-
son, being either large or small together. The center plot in the second row shows
the remaining variation, after subtracting the first component from the centered
residuals. Careful study of the vertical axes shows much less variation there. The
second row right panel shows the PC1 scores as horizontal coordinates of points
(with age ordering for the vertical coordinates) in corresponding rainbow colors.
These scores are the coefficients of the projections shown in the left panel; they
show a clear correlation between age and PC1.

The second PC explains as much variation in the data as possible among direc-
tions orthogonal to PC1, similarly for PC3 (orthogonal to both earlier directions)
in the bottom row. Neither PC2 nor PC3 seems to have much visual connection
with age, suggesting that most age effects have been captured by PC1.

The left portion of Figure 4 depicts an alternate PCA view of the data in a scores
scatterplot, where the scores are the coefficients of the projections. Here each sym-
bol represents a person (same rainbow coding for age color scheme as in Figure 3),
with the PC1 score plotted on the vertical axis and the PC2 score on the horizon-
tal. This scatterplot is the most variable two-dimensional projection of the data
and thus is generally useful for understanding relationships between data objects.
Here the rainbow color suggests an age gradient in the horizontal (PC1) direction.
This figure also allows study of sex using symbols, with females represented by
circles and males by plus signs. No gender differences can be visualized here, but
there may be higher dimensional patterns which are hidden, since Figure 4 is only
a two-dimensional view of a 100-dimensional data space. This issue is explored
more deeply at the end of this section.
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FIG. 4. Left: Scatterplot of PC1 vs. PC2. Shows joint distribution of scores. Main lesson is PC1
appears strongly correlated with age, but PC2 does not. Middle: PC1 vs. age for the zero-dimen-
sional topological features verifies strong correlation of PC1 with age. Right: PC1 vs. age for the
one-dimensional topological features exhibits even stronger correlation.

A more direct study of the correlation between PC1 and age appears in the
middle portion of Figure 4, which plots the PC1 score as a function of age. The
correlation is visually present, and the Pearson correlation of ρ = 0.53 reflects it.
A simple Gaussian-based hypothesis test against the null hypothesis of no correla-
tion shows a strongly significant p-value < 10−7.

The same analysis can be repeated for the loop-persistence-based numbers
q1, . . . , q100. The key result is shown on the right of Figure 4, namely, that the
correlation between PC1 and age is even stronger for this feature set: ρ = 0.61
with a p-value < 10−10.

3.3. Total artery length. Bullitt et al. (2010) demonstrated that younger pa-
tients tend to have longer total artery length L. This might lead the reader (as it
led us) to justifiable skepticism about the novelty of our findings. More precisely,
we quantify the sizes of artery bends and loops at different scales, and these sizes
could plausibly be controlled by the total artery length of the tree.

To ensure we were not merely applying a complicated TDA machine to de-
tect a simple geometric phenomenon, we performed a more sophisticated analysis.
For each i, linear regression between the variables pi and L yields a residual p̂i .
Replacing pi by p̂i in the analysis from Section 3.2 results in an equally strong
Pearson correlation of ρ = 0.52, with a p-value on the order of 10−8.

Geometrically motivated methods to control for effects of total artery length
yield similarly negligible increases or decreases in Pearson correlation and p-
value. These methods simply divide the numbers pi by (i) L or (ii)

√
L or (iii) 3

√
L

before running the analysis in Section 3.2. The exponents on L correspond to
physical models where vessel length (i) scales according to total linear skull size,
(ii) has constant flux (i.e., number of arteries passing) through each unit of cross-
sectional area, or (iii) remains constant per unit volume.

The strength and significance of correlation after controlling for total length
breaks new ground in the analysis of the brain artery data. In particular, the persis-
tent homology analysis here is sensitive to genuine multi-scale geometrical struc-
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ture in the arterial systems; it does not simply reflect coarse size aspects of the
data.

Controlling for total length in the one-dimensional persistence analysis from
Section 3.2 yields decidedly weaker (but still non-negligible) age correlation: re-
placing the qi features with their residuals q̂i , after running a linear regression
between each qi and L, results in Pearson correlation ρ = 0.35.

3.4. Sex effects. We also studied sex difference in brain artery structure. Fig-
ure 4 (left) provides a preliminary view: male cases are indicated by plus signs,
females by circles. As noted in Section 3.2, meaningful sex difference is not appar-
ent in this plot, perhaps because PC1 seems to be driven more by the independent
age difference. However, in high-dimensional data analysis, simple visualization
of the first few PC components is frequently revealed to be an inadequate method
of understanding all important aspects of such data, because it is driven entirely by
variation.

A way to focus on desired effects in a higher dimension is to calculate the arith-
metic mean of the vectors (p1, . . . , p100) corresponding to male subjects, to do
the same for the female subjects, and then compute the Euclidean distance be-
tween these means in R

100. The size of this mean difference alone does not tell
much as a raw number, but a simple permutation test on the mean-difference statis-
tic reveals more: randomly reassign the 98 vectors into two groups of equal size,
compute the difference between the means of the two groups, and repeat this pro-
cedure 1000 times. This method has been called DiProPerm in Wei et al. (2015),
and is illustrated in Figure 5. In our test, 119 of the reassignments led to a larger
mean-difference than the original male–female split, giving an unimpressive esti-
mated p-value of 0.1. However, repeating the entire procedure for the loop-vectors
(q1, . . . , q100) gives a more compelling p-value of 0.03.

In Section 5 we demonstrate that a more thorough analysis of feature selection
results in even lower p-values for sex difference. These results are stronger than

FIG. 5. Illustration of DiProPerm results on the one-dimensional persistence features. The left
panel shows the result of projecting the data onto the direction vector determined by the means,
suggesting some difference. The results of the permutation test are shown on the right, with the
proportion of simulated differences that are bigger than that observed in the original data giving an
empirical p-value.
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those in Shen et al. (2014), the only other study to find a statistically significant
sex difference in this data set.

4. Topological data analysis methods. We now give a more thorough discus-
sion of the TDA methods we used. Edelsbrunner and Harer (2010) and Carlsson
(2009) are good background sources for TDA. Chazal et al. (2009) give a fully
detailed and rigorous exposition.

A persistence diagram provides a compact two-dimensional record of the geo-
metric and topological changes that occur as an object in space is built in stages.
The applications in this paper involve the simplest type of persistence diagram,
which tracks the appearance and disappearance of connected components in a fil-
tered graph, as well as a slightly more complicated diagram, which tracks the for-
mation and destruction of loops in a thickening object. This section contains a fully
rigorous description of the first type of diagram, a broadly intuitive description of
the second, and the details of how our initial artery tree data objects produce both
types. Interpretation of these diagrams across a population requires the statisti-
cal analysis outlined in Section 5, but the current section demonstrates, via a few
examples, the major features they are meant to isolate.

4.1. Height functions and connected components.

4.1.1. Graphs and critical values. Let G be a graph: a set V of vertices with
specified pairs from V joined by edges. Fix a real-valued function h : V → R.
For simplicity of exposition, assume h(v) = h(w) only if v = w. As a working
example, let G be the graph on the left side of Figure 6, and let h(v) be the height
of vertex v as measured in the vertical direction. Extend h to a function on the
edge set by setting h((v,w)) = max(h(v), h(w)) for each edge (v,w) of G.

FIG. 6. On the left, a graph G. The function h measures height in the vertical direction, and the
persistence diagram Dgm0(h) is shown on the right. The coordinates of the dots are, reading from
right to left, (h(A),∞), (h(B),h(H)), (h(C),h(F )) and (h(D),h(E)).
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The persistence diagram Dgm0(h) takes G and h as input and returns as out-
put a multi-scale summary of the component evolution of the threshold sets of h.
This output is robust with respect to small perturbations of h, as shown in Cohen-
Steiner, Edelsbrunner and Harer (2007), Section 3. We now give a precise mathe-
matical description of how persistence diagrams are robust to such perturbations.

For each real number r , define G(r) to be the full subgraph on the vertices
with h-value at most r . For example, in Figure 6, G(r) is empty if r < h(A) and
G(r) = G whenever r ≥ h(H). The graph G itself consists of only one connected
component, but we are far more interested in what happens for values of r be-
tween h(A) and h(H). To that end, label the vertices v1, . . . , vN by ascending
order of h-value, choose real numbers ri such that h(vi) < ri < h(vi+1), and set
G(i) = G(ri). Define the lower link L(i) of the vertex vi to be the set of vertices
adjacent to vi that have lower h-value than vi does. Persistent homology records
how the connected components of G(i) evolve as i increases. In particular, the
number β0(i) of connected components of G(i) is easily extracted from persis-
tent homology.

Observe that G has a nested sequence of subgraphs, starting with the empty
subgraph,

∅ = G(0) ⊂ G(1) ⊂ G(2) ⊂ · · · ⊂ G(N) = G.(4.1)

New components appear and then join with older components as the threshold
parameter increases. For the graph in Figure 6, four snapshots in this evolution
appear in Figure 7.

If β0(i) = β0(i − 1), then h(vi) is a regular value; this happens precisely when
L(i) is a single vertex. Otherwise, h(vi) is a critical value. In Figure 6 the critical
values are the h-values of the letter-labeled vertices. When h(vi) is a critical value,
precisely one of the following two things happens upon passage from G(i − 1) to
G(i):

• β0(i) = β0(i − 1) + 1: this happens when L(i) is empty. In this case, a new
component Ci is born at h(vi), and we associate Ci with vi for the rest of its

FIG. 7. Four threshold sets for the function shown in Figure 6, with increasing threshold value from
left to right. The component born at the far left only dies as it enters the far right, while the much
shorter-lived component born left of center dies entering the very next step.
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existence. The first birth in our example happens at h(A), where the threshold
graph changes from the empty set to a single vertex. Subsequent component
births can be seen in the far left and center left of Figure 7.

• β0(i) = β0(i − 1) − k for some integer k ≥ 1: this happens when L(i) consists
of k + 1 vertices. In this case, k components die at h(vi); the only one that
remains alive is the one associated to the vertex in L(i) with lowest h-value.
For example, referring again to Figure 7, the components born at the far left and
center left die when entering the far right and center right, respectively.

4.1.2. Persistence diagrams. The evolution of connected components is com-
pactly summarized in the persistence diagram Dgm0(h), a multiset of dots in the
plane R

2, that is, meaning that each dot occurs with positive integer (or infinite)
multiplicity. A dot of multiplicity k at the planar point (a, b) indicates that k com-
ponents are born at h-value a and die at h-value b. A component that is born at a

but never dies corresponds to a dot (a,∞) in the diagram, so R
2 is extended to al-

low such points. All of the dots in Dgm0 lie above the major diagonal y = x, since
birth must always precede death. For technical reasons that will become clear in
Section 4.1.3, we also add a dot of infinite multiplicity at each point (x, x) on the
major diagonal itself. The diagram for our example is on the right side of Figure 6.
We note that all off-diagonal dots have multiplicity 1 in this example.

The persistence of a dot u = (a, b) is defined to be pers(u) = b − a, the vertical
distance to the major diagonal. Each such dot corresponds to a component C that

• is not present in any of the graphs below threshold value a,
• exists as its own independent component for every threshold value between a

and b, and
• joins with another component, born at or before a, exactly at the threshold

value b.

Hence, the persistence b−a indicates the lifetime of this feature as an independent
component. The actual geometric meaning of this lifetime can vary. For example,
in Figures 6 and 7, the small-persistence dot u = (h(D),h(E)) points to the exis-
tence of a small wobble in the graph, as seen by the height function h. On the other
hand, the large-persistence dot v = (h(C),h(F )) reflects an arm of the tree that is
very long, again as measured in the vertical direction.

A general heuristic says that the features corresponding to small-persistence
dots are likely to be caused by noise. A small change in the values of h, for ex-
ample, could remove the small wobble that u indicates. This interpretation can
be given more rigor by the Stability Theorem described below. That said, there is
no guarantee of persistence being correlated with importance, just with reliabil-
ity. Indeed, one of the findings in Section 5 is that dots of not-particularly-high
persistence have the most distinguishing power in our specific application.
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FIG. 8. On the left, functions f and g, shown in black and grey, respectively. On the right, their per-
sistence diagrams: the f -diagram consists of stars and the g-diagram consists of dots. The optimal
bijection between Dgm0(g) and Dgm0(f ) matches the three high-persistence star-classes together,
and it matches the extra low-persistence dot-classes to the black diagonal.

4.1.3. Stability. Consider the left side of Figure 8, which shows two functions
f (black) and a noisy version g (grey) defined on the same interval. In this case,
imagine that G is a simple path and the curves drawn indicate function values as
height. Examining the right side of the same figure, the major features of the two
diagrams are fairly close, the only difference being the extra grey dots that lie near
the diagonal, corresponding to the low-persistence wobbles in the graph of g.

There are several sensible metrics on the set of all persistence diagrams, but
all of them see these diagrams as being close to one another. For example, let
D and D′ be two diagrams and choose a number p ∈ [1,∞). For each bijection
φ : D → D′, define its cost to be

Cp(φ) =
(∑

u∈D

∥∥u − φ(u)
∥∥
p

)1/p

.

Such bijections always exist, due to the infinite multiplicity of every diagonal dot in
each diagram. The pth Wasserstein distance Wp(D,D′) between the two diagrams
is the infimum cost Cp(φ) as φ ranges over all possible bijections. Many technical
results [Cohen-Steiner et al. (2010) give the most complete results] all basically
say that, under mild conditions, Wp(Dgm0(f ),Dgm0(g)) ≤ K‖f − g‖∞.

4.2. Thickening and loops. We now describe one-dimensional persistence di-
agrams. Let Y be a compact subset of some Euclidean space R

D . For each non-
negative α ∈ R, define Yα to be the set of points in R

D whose distance from Y

is at most α. As α increases, loops appear and then subsequently fill in. The birth
and death times of these loops are plotted as dots in the plane, and the multiset of
all such dots forms the one-dimensional persistence diagram Dgm1(Y).

4.2.1. Example. Suppose that Y is the point cloud shown on the left of Fig-
ure 9. Each Yα is the union of closed balls of radius α centered at the points of Y;
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FIG. 9. Point cloud to persistence diagram.

one such thickening is depicted in the middle of the same figure. The persistence
diagram Dgm1(Y) is on the right.

To explain the diagram, pretend that Y has been sampled from an underlying
space suggested by the point cloud. The two dots of highest persistence correspond
to the two larger loops; the one with later birth time corresponds to the leftmost
loop, which reflects the sparser density of sampling there. The smaller loops are
indicated by the two dots of next highest persistence. Finally, the group of dots that
sit almost on the diagonal are caused by little loops that quickly come and go as
the points thicken, as the result of holes between small, increasingly overlapping
convex sets. Dots like these would appear no matter what shape underlies the point
cloud.

4.2.2. Stability. As with connected components, these loop diagrams are
stable with respect to perturbations of the input, in the following sense. The
Hausdorff distance dH (Y,Y′) between two compact sets is the smallest ε such
that Y ⊆ Y

′
ε and Y

′ ⊆ Yε . The stability results referred to above imply that
Wp(Dgm1(Y),Dgm1(Y

′)) ≤ K · dH (Y,Y′). A powerful consequence of this re-
sult arises when Y

′ is a small but dense subsampling of Y: stability ensures that
the persistence diagram Dgm1(Y) can be well approximated by the diagram de-
rived from the subsample, a fact we apply in our analysis of brain artery trees.

4.3. From trees to diagrams. The trees under study here can be found in the
supplementary material [Pieloch et al. (2016)]. More precisely, each tree is repre-
sented as a MATLAB .mat file that gives the (x, y, z)-coordinates of each vertex
and the adjacency matrix. The files contain other data, such as branch thickness,
but that additional information is not used in our topological analysis. Pipelines for
running all of the analyses on the persistence diagrams can be found at the same
link.

For persistence via connected components, our function h on each tree T

is height: the value h(v) at each vertex v = (x, y, z) is its third coordinate z,
and on each edge (u, v) the value is h(u, v) = max{h(u),h(v)}. We computed
Dgm0(h) as in Section 4.1, with a simple and fast union-find algorithm, running
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FIG. 10. Persistent homology data objects from a 24-year-old. Left: brain tree. Middle: zero-di-
mensional diagram. Right: one-dimensional diagram.

in O(N logN)—a few seconds per tree—where N is the number of vertices of T .
We computed Dgm0(h) as in Section 4.1, with a simple and fast union-find algo-
rithm, running in O(N logN) time (a few seconds per tree), where N is the number
of vertices of T . To compute the one-dimensional diagram from the original tree
is much harder. Fortunately, one-dimensional persistence for a thickening point
cloud behaves well under subsampling (see Section 4.2.2), so one-dimensional
persistence on a sampled tree with 3000 nodes took roughly one minute.

The running time for one-dimensional persistence is much slower, so we did not
compute the full-resolution persistence diagrams Dgm1(T ) associated to the thick-
ening of each tree T within the brain. Instead, we subsampled each tree branch to
produce a set of 3000 total vertices per tree; each diagram then took a bit less than
a minute to compute. In contrast, each tree in the original data set has on the order
of 105 vertices, spread among roughly 200–300 tree branches. The stability theo-
rem for persistent homology provides theoretical guarantees for our subsampling
procedure.

Figure 10 shows the results of this analysis on the brain tree of a 24-year-old
subject: from left to right are the brain tree, the 0-dimensional diagram and the
1-dimensional diagram. Compare this to Figure 11, which shows a 68-year-old
subject. Some qualitative differences might be noticed from these two diagrams,

FIG. 11. Persistent homology data objects from a 68-year old. Left: brain tree. Middle: zero-di-
mensional diagram. Right: one-dimensional diagram.
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but to give them any quantitative backing requires actual statistical analysis of the
diagram population, which we describe in the next section.

5. Detailed analysis of brain artery data. The methods in prior sections
generate persistence diagrams to summarize brain artery trees. From there, sta-
tistical analysis can proceed either with further summarization or without. As the
analysis in Section 3 shows, vector-based summaries can capture substantial struc-
ture while maintaining the possibility to apply the full range of standard statistical
analyses. This section describes our approach in more detail and then examines the
effect of changes in feature selection.

Our admittedly ad hoc method to turn diagrams into feature vectors is justified
somewhat by the nature of the geometry it is intended to capture, but also by the
excellent age and sex effects it reveals. Other approaches to the same problem
include analyzing the diagram as an image, as in Bendich et al. (2014), or bas-
ing features on more sophisticated algebraic geometry, as advocated in Adcock,
Carlsson and Carlsson (2013).

We settled on vector-based analyses as a middle ground. In general, simple nu-
merical summaries, such as total persistence or total number of dots, miss too
much useful information to be potent. At the opposite extreme, it is possible to
work directly with populations of persistence diagrams, basing the analysis on
metrics such as the Wasserstein metric Wp in Section 4.1.3. For example, Gamble
and Heo (2010) found interesting structure using multidimensional scaling with
a Wp-dissimilarity matrix computed from a set of persistence diagrams, each one
associated with a set of landmarks on a single tooth. One could go further, using
methods such as the Fréchet mean approach of Mileyko, Mukherjee and Harer
(2011) or Munch et al. (2015) to find the center of the data followed by multidi-
mensional scaling to analyze variation about the mean. We opted not to go that
route because computation of the Wp-metric is generally expensive.

Two other possibilities, which we have not yet investigated, would be to use
Bubenik’s theory of persistence landscapes [Bubenik (2015)] to translate the prob-
lem into one of functional data analysis or to experiment with recently developed
kernel methods for persistence diagrams by Reininghaus et al. (2015).

Initial approach. For each of the n = 98 zero-dimensional persistence dia-
grams, we computed the persistence of each dot; recall a dot has coordinates (b, d),
where b is birth and d is death, and that its persistence is d − b. We then sorted
these persistences in descending order and picked the first 100 to produce a vector
(p1,p2, . . . , p100) for each brain. In other words, the ith coordinate of this vector
represents the size of the ith largest “bend” in the brain, as measured in the vertical
direction. The same procedure on the one-dimensional diagrams led to the vector
(q1, q2, . . . , q100), in which the number qj represents the size of the j th most per-
sistent loop in the brain. Both sets of vectors were used in the age and sex analyses
in Section 3.
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Feature scale. Are the observed age correlations being driven more by the high
persistence features or by the lower-scale ones? In addition, does restricting to the
100 most persistent dots miss useful information? To pursue these questions, we
created the following sets of vectors, for each pair of positive integers n < N ≤
200:

• pn,N = (pn, . . . , pN) ∈R
N−n+1,

• qn,N = (qn, . . . , qN) ∈ R
N−n+1.

In this notation, the original vectors used in our analysis were p1,100 and q1,100.
Extensive analysis of this feature set led to the heat map shown in Figure 12.

The horizontal and vertical axes indicate n and N , respectively, while the color at
coordinates (n,N) shows the age correlation value ρ(n,N) obtained by running
our analysis on the vectors pn,N . Color in the lower diagonal part of the plot codes
correlation, ranging from very dark red (lowest) through hotter colors to white
(highest correlation). The bottom of the color range is 0.29 and the top is 0.56,
chosen to maximize use of the color scale.

Figure 12 contains a lot of useful information. First, the small red area in the
upper left indicates that the highest persistence features alone had far less distin-
guishing power with respect to age; indeed, the two highest persistences p1 and

FIG. 12. Age correlation heat map for features extracted from zero-dimensional persistent homol-
ogy analysis. Color indicates the value of the function ρ(n,N), which is the age correlation derived
from the vectors pn,N , with n on the horizontal axis and N on the vertical. The upper-right black
triangle is meaningless, as n > N does not lead to a vector in our scheme.
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p2 lead only to an age correlation of ρ = 0.26. On the other hand, the rest of
the lower triangle shows a fairly uniform—and high—age correlation, leading to
the surprising conclusion that one need only include some of the more medium-
scale persistence features to obtain good age effects. In fact, the length of the 28th
longest bar alone is a numerical feature that yields near-optimal correlation. The
same analysis performed on the one-dimensional features produced a remarkably
similar pattern, not shown here.

The medium scale at which age correlation is optimized suggests a reason why,
in the initial stages of our connected component analysis (Section 4.1), we found
negligible differences in the strength of correlation or significance upon filtering
in various directions other than upward. Probably it is due to the stochastic nature
of blood vessel formation in the brain at the relevant scale: while large features
common to all human brains might have natural ventral-dorsal orientation—such
might be the case for major arteries that branch from the circle of Willis and arch
up to the top of the brain and back down—the medium-sized features driving the
observed correlations are apparently random enough to be devoid of natural orien-
tation, statistically speaking.

Recall from Section 3 that a permutation test on the vectors q1,100 found a sig-
nificant (p = 0.031) separation between male and female subjects. One can also
calculate the sex-difference significance p(n,N) obtained by running an identical
analysis on the vectors qn,N . The resulting pattern is similar to the findings for age
correlation, but even more stark. Analyses that use only the most persistent loops
do not give clear sex separation; for example, p(1,2) is only 0.21. On the other
hand, every single value of p(n,N) with N > 30 lands below the significance
level of 0.05, with the minimum value being p(189,192) = 0.013. The heat map
in Figure 13 displays all of these values at once (darker is lower, and hence more
significant), and the near uniformity of the sex-difference significance is evident.

6. Discussion. This paper takes analysis of the brain artery tree data in the
entirely new direction of persistent homology. This topological data analysis ap-
proach to tree representation gives stronger results than those from alternative rep-
resentations used in earlier studies and is the first to find significant results even
after controlling for total artery length.

The lessons here are intended to suggest the power of these tools, rather than
to be anatomically conclusive, so multiple comparison issues have not been taken
into account. Our aim was to emphasize the main ideas. The important issue of
multiplicity should be considered carefully, and we leave it as future work. Inter-
esting future work is to apply these powerful new methods to other data sets of
tree-structured (or otherwise 1-dimensional) objects, such as the airway data set of
Feragen et al. (2013).

Finally, we recall that the original data objects under consideration in this pa-
per were not the actual sets of arteries in 98 human brains; rather, they were the
outputs of 98 runs of the tube-tracking algorithm from Aydin et al. (2009). Like
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FIG. 13. Sex-difference significance heat map for features extracted from one-dimensional persis-
tent homology analysis. Color indicates the value of the function p(n,N), which is the significance,
derived via permutation test, of the difference between the male and the female vectors qn,N , with
n on the horizontal axis and N on the vertical. The upper-right black triangle is meaningless, as
n > N does not lead to a vector in our scheme. To provide good contrast between the values, a color
scheme running from 0.1 (white) to 0 (black) was chosen. A few values are actually above 0.1 and
are simply shown as white in this scheme.

all algorithms that process raw data, that algorithm introduces artifacts, leading to
the worry that analysis of its output data objects may be picking up more on error
than on signal. In our case, this worry applies to the zero-dimensional analysis,
which looks at component evolution in a given tree. In contrast, the loop analysis
thickens a point sample from each tree into three-dimensional space, so the sta-
bility theorem for persistent homology ensures that replacing the given tree with a
slightly modified version—even one whose connectivity properties differ from the
output of the tube-tracking algorithm—does not cause great changes in the persis-
tence diagram. An interesting new paper by Molina-Abril and Frangi (2014) uses
persistent homology methods to aid in artifact-reduction in the actual “upstream”
production of the artery trees. It would be valuable to run our analytical methods
on these new data objects to see if significant changes result.
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Supplement to “Persistent homology analysis of brain artery trees” (DOI:
10.1214/15-AOAS886SUPP; .zip). This archive contains brain tree data, persis-
tence diagrams and statistical analysis pipeline for the paper.
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