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Imaging mass spectrometry (IMS) has transformed proteomics by pro-
viding an avenue for collecting spatially distributed molecular data. Mass
spectrometry data acquired with matrix assisted laser desorption ionization
(MALDI) IMS consist of tens of thousands of spectra, measured at regular
grid points across the surface of a tissue section. Unlike the more standard
liquid chromatography mass spectrometry, MALDI-IMS preserves the spa-
tial information inherent in the tissue.

Motivated by the need to differentiate cell populations and tissue types in
MALDI-IMS data accurately and efficiently, we propose an integrated clus-
ter and feature extraction approach for such data. We work with the derived
binary data representing presence/absence of ions, as this is the essential in-
formation in the data. Our approach takes advantage of the spatial structure of
the data in a noise removal and initial dimension reduction step and applies
k-means clustering with the cosine distance to the high-dimensional binary
data. The combined smoothing-clustering yields spatially localized clusters
that clearly show the correspondence with cancer and various noncancerous
tissue types.

Feature extraction of the high-dimensional binary data is accomplished
with our difference in proportions of occurrence (DIPPS) approach which
ranks the variables and selects a set of variables in a data-driven manner. We
summarize the best variables in a single image that has a natural interpre-
tation. Application of our method to data from patients with ovarian cancer
shows good separation of tissue types and close agreement of our results with
tissue types identified by pathologists.

1. Introduction. Mass spectrometry (MS) has become a versatile and power-
ful tool in proteomics for the analysis of complex biological systems, including the
identification and quantification of proteins and peptides [Ong and Mann (2005)].
Many different technologies have been developed under the collective field of pro-
teomics mass spectrometry [Aebersold and Mann (2003)]. The focus in this paper
is the more recent development [see Aoki et al. (2007), Groseclose et al. (2006)] of
matrix assisted laser desorption ionization (MALDI) imaging mass spectrometry
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(IMS), also known as MALDI imaging, and, in particular, an analysis of MALDI-
IMS data acquired from tissue samples of patients with ovarian cancer.

Unlike the more common 2D gel electrophoresis (2D-GE) and liquid chro-
matography (LC) based techniques in proteomics, MALDI-IMS preserves the spa-
tial distribution inherent in the tissue; and the tens of thousands of spatially dis-
tributed spectra acquired from a single tissue sample in a MALDI-IMS experiment
provide new challenges for statisticians and bioinformaticians as well as having the
potential to lead to breakthroughs in biological research [see Casadonte and Capri-
oli (2011)]. We propose a combined cluster and feature extraction method for such
data which exhibits cancer-specific variables whose protein associations can be
inferred by parallel LC-MS experiments such as those of Meding et al. (2012).

Standard proteomics mass spectrometry methods such as 2D-GE and LC-MS
have been described in the literature for some time; see Wasinger et al. (1995). We
briefly explain LC-MS and important differences with MALDI-IMS in Section 2.
For an overview and review of recent approaches in LC-MS, see America and
Cordewener (2008). Statistical challenges of proteomics mass spectrometry data
are outlined in Wu et al. (2003). The statistics and bioinformatics literature on the
analysis of 2D-GE and LC-MS data is growing fast and covers a range of statisti-
cal methods. Testing and classification of such data are described in Morris (2012),
Morris et al. (2005), Yu et al. (2006) and references therein. Other statistical ap-
proaches that have been proposed and applied to 2D-GE and LC-MS data include
peak identification, alignment and feature selection [see Yu et al. (2006)], identi-
fication of proteins [see Yu et al. (2006) and Karpievitch et al. (2010)], wavelet-
based methods [see Morris and Carroll (2006), America and Cordewener (2008),
Du, Kibbe and Lin (2006) and references therein] and methods from survival anal-
ysis for the detection of differentially expressed proteins [see Tekwe, Carroll and
Dabney (2012)].

Contrasting these developments in the analyses of 2D-GE and LC-MS data, the
newer MALDI-IMS methods which have been introduced into routine research
practice have not yet attracted as much attention in the statistics literature, although
MALDI-IMS methods are covered in proteomics/mass spectrometry journals—see
Alexandrov and Kobarg (2011), Alexandrov et al. (2010, 2013), Gessel, Norris and
Caprioli (2014), Jones et al. (2012), Norris et al. (2007), Stone et al. (2012) and
references therein. The potential of MALDI-IMS is described in Alexandrov and
Kobarg (2011): “IMS is one of the most promising innovative measurement tech-
niques in biochemistry which has proven its potential in discovery of new drugs
and cancer biomarkers. . . . IMS was used in numerous studies leading to under-
standing chemical composition and biological processes. . . . As for many modern
biochemical techniques, in particular in proteomics, the development of computa-
tional methods for IMS is lagging behind the technological progress.” In addition
to presenting our approach and analyses of MALDI-IMS data, we hope to motivate
other statisticians and bioinformaticians to explore this exciting and promising new
area and to develop novel statistical methods for the analysis of such data.
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Related to our research are the papers by Alexandrov et al. (2010), Deininger
et al. (2008) and Bonnel et al. (2011) who cluster their MALDI-IMS data us-
ing principal component analysis and hierarchical clustering, or Gaussian mixture
models. Our proposal, outlined in Figure 1, differs from their research in a number
of important aspects. Unlike these authors, we derive suitably binned binary data,
which we describe in Section 3, instead of working with the raw or intensity data.
Following [Koch (2013), Chapter 6], who demonstrates the success of using such
binary data in finding biologically meaningful tissue clusters, we apply k-means

FIG. 1. Data processing workflow for our proposed combined clustering-DIPPS approach. The
background arrows (in light grey) represent parallel workflows for the three sections from each of
the three patients, each leading to a “list of tumor specific masses.” In the final step the lists are
compared as described in Section 6.
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clustering to the binary data. Analysis of the binary data has the added advan-
tage of being computationally more efficient. Furthermore, parallel computation is
possible for all steps in the approach we propose. Our approach combines cluster-
ing with explicit feature extraction conceptually similar to the approach of Jones
et al. (2011), although based on a different principle—our Difference in Propor-
tions of Occurrence (DIPPS) statistic which ranks and selects the “best” variables
in a data-driven way. Our use of binary data allows the feature extraction results to
be visualized as a single heat map with a natural interpretation. The ability to visu-
alize the selected features as a single easily interpretable image has not been a part
of the above-mentioned papers and gives a significant advantage to our approach.

This paper is organized in the following way. We briefly describe relevant back-
ground on proteomics in Section 2, and discuss advantages of MALDI-IMS for
the biological research fields. We describe MALDI-IMS data and how to derive
the binned binary data in Section 3. Section 4 covers the spatial smoothing and
clustering steps of our method. The DIPPS approach (including a feature extrac-
tion step) is described in Section 5. Finally, in Section 6 we apply our combined
cluster and DIPPS approach in order to compare several patients by considering
several datasets. The results discussed in Section 6 allow us to demonstrate how
these data could be used to address biologically relevant questions such as the iden-
tification of potential tissue-specific protein markers and classification of patients
based on their response to treatment.

2. Proteomics background. Ovarian cancers are virtually asymptomatic and,
as a result, the vast majority of cases are detected when the disease has metasta-
sized. For these patients, radical surgery and chemotherapy are often insufficient to
address the disease adequately and many patients relapse. The combination of late-
stage diagnosis and unsuccessful treatments makes ovarian cancer the most lethal
gynecological cancer, with advanced stage patients exhibiting a five year survival
rate of less than 30% [Jemal et al. (2011), Ricciardelli and Oehler (2009)]. The
keys to addressing ovarian cancer will be as follows: increasing our understand-
ing of the mechanisms driving cancer progression, identifying molecular markers
which can predict treatment success and identifying new treatment targets. As pro-
teins are key functional components of cells and tissues, determining protein dis-
tributions in cancer tissue represents a crucial step in addressing these key aims.

Proteins are synthesized within cells as linear amino acid sequences and folded
into more complex 3D structures that determine function and intracellular location.
The complete set of proteins which exist in a given cell, tissue or biological fluid,
under defined conditions, is termed its proteome [Wilkins et al. (1996)]. Proteomes
vary considerably between different cellular states and understanding these vari-
ations allows insight into the development and progression of cancer. Proteomics
characterizes proteome changes using a combination of fractionation, identifica-
tion and quantitation strategies. Proteomics will use either a top-down or bottom-
up approach. Top-down approaches analyze intact proteins, whereas bottom-up
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approaches use proteolytic enzymes (e.g., trypsin) to digest proteins into peptides
prior to analysis. The data we present is on tryptic peptides, so our discussion is
in the context of a bottom-up approach. Proteome fractionation can be achieved
using gel electrophoresis [Gygi et al. (2000)] or liquid chromatography (LC), with
LC being the predominant fractionation technique [Rogowska-Wrzesinska et al.
(2013)]. LC makes use of columns to affinity-bind molecules to a stationary phase.
The molecules are subsequently eluted over time with a changing gradient of mo-
bile phase solvent. In a bottom-up LC experiment peptides in a hydrophilic mobile
phase are bound to a hydrophobic stationary phase. The peptides are eluted using
an increase in the percentage of hydrophobic solvent in the mobile phase. To char-
acterize the fractioned peptides, the LC eluant is often directly coupled to an MS
instrument (LC-MS).

MS instruments contain an ion source, mass analyzer and detector. So-called
“soft” ionization sources such as electrospray ionization (ESI) and matrix-assisted
laser desorption/ionization (MALDI) are favored in proteomics, as they prevent
significant molecular fragmentation during ionization. LC-MS instruments usually
employ ESI to produce gaseous ions for mass analysis. The mass-to-charge ratio
(m/z) of these ions is measured by the mass analyzer and detector to produce a
mass spectrum of measured intensity as a function of m/z. Peptides analyzed by
LC-MS can be fragmented to produce spectra which correspond to amino acid
composition. Identification of these spectra is attempted using search algorithms,
such as MASCOT [see Koenig et al. (2008) and references therein], which match
measured spectra to expected fragmentation spectra. The combination of LC-MS
with bottom-up strategies is what allows proteomic studies to identify and quantify
thousands of unique proteins in a given biological sample.

LC-MS suffers from two method-specific limitations:

1. Tissue samples are homogenized and solubilized, which removes all spatial
information inherent in the tissue, and

2. An LC-MS run usually takes more than an hour, precluding the rapid
(≤1 day) analysis of large sample numbers (≥20).

Given that tissues are a mix of different cell populations and their organization
is directly related to their functions, point 1 above can be crucial. Typically, tissue
structure is visualized by a pathologist using histological stains such as haema-
toxylin and eosin (H&E) followed by light microscopy, as shown in Figure 2(a).
Such histological stains allow visualization of the spatial distribution of cellular
morphology and can provide an understanding of the way in which the cellular
morphology relates to cancer behavior and, ultimately, the cancer’s effect on the
patient. The spatial information is essential in these histological stains, and it is
reasonable to assume it would be equally crucial in mass spectrometry. The loss
of spatial information that occurs during sample preparation for LC-MS analysis
therefore motivated the development of direct tissue analysis using MALDI-IMS
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FIG. 2. Left, (a) shows the H&E stained tissue section, arrows indicate the four cancer nodules.
Right, (b) shows pixels plotted in their relative spatial locations, color identifies the cluster member-
ship produced by 4-means clustering of the binary spatially smoothed data.

[Cornett et al. (2007), Groseclose et al. (2008), Gustafsson et al. (2011)]. To pre-
pare a sample for MALDI-IMS, a tissue block is thinly sectioned (2–10 µm thick
slices) and mounted onto conductive microscopy slides. For analysis of peptides,
the tissue section is coated with a homogeneous layer of proteolytic enzyme to
digest endogenous proteins. The digest is then overlaid with a matrix compound
which co-crystallizes with the tissue-derived peptides. A MALDI source is used
to ionize these peptides directly from the tissue and facilitate the collection of a
mass spectrum from each (x, y) position on a regular grid across the tissue sec-
tion. An acquisition spacing of 20–250 µm is typical and balances the requirements
for high quality MS data, practical data size and measurement time. In the datasets
presented here, we used a spacing of 100 µm. The availability of spatial infor-
mation in MALDI-IMS offers a unique perspective on tissue analysis, which is
complementary to LC-MS.

In this context, the advantages of MALDI-IMS are as follows:

1. Hundreds of biological molecules can be measured in a single experiment in
an untargeted manner, as compared to immunohistochemistry.

2. Tissue sections can be H&E stained post-acquisition of MALDI-IMS data
[Deutskens, Yang and Caprioli (2011)] and spatial changes in protein abundance
measured by MALDI-IMS can be compared to the histology visible in the H&E
stain of the same tissue (see Figure 2). This makes the technique compatible with
pathology.

3. MALDI-IMS provides a capacity for rapid interrogation of large sample
numbers. This can be achieved using tissue microarrays (TMAs) [see Groseclose
et al. (2008), Steurer et al. (2013)]; construction of TMAs involves the extraction
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TABLE 1
Selection of peptide m/z values, the DIPPS score of the m/z bins containing them, and their

inferred parent proteins. Peptide sequences and parent proteins were inferred by mass
matching to concurrent LC-MS/MS analyses and validated by both in situ

MALDI-MS/MS and immunohistochemistry as shown
in Supplement A [Winderbaum et al. (2015a)]

LC-MS/MS DIPPS UniProtKB/SwissProt Protein
mass [M + H]+ statistic entry name name

1628.8015 0.662 ROA1_HUMAN Heterogeneous nuclear
ribonucleoprotein A1

2854.3884 0.910 K1C18_HUMAN Keratin 18

of cylindrical cores from multiple tissue blocks and arrangement of these cores
within a new block. A one-day sample preparation of sections from such a block
allows an overnight MALDI-IMS experiment to collect data for ≥50 samples.

A caveat of MALDI-IMS analyses is that the proteome cannot be fractionated,
and the masses measured using MALDI-IMS are not fragmented to provide se-
quence information. LC-MS based proteomics is required in order to infer parent
proteins, as in Table 1. MALDI-IMS, however, places this information in a struc-
tural context and is therefore a crucial link between molecular composition and
morphology.

MALDI-IMS therefore provides unprecedented capacities for both proteomics
and pathology and, as a consequence, has important implications for research into
human cancers [Gorzolka and Walch (2014)]. For example, ovarian cancers are
known to be quite heterogeneous tissues [Deininger et al. (2008)]. Spatial analy-
sis by MALDI-IMS allows this heterogeneity to be addressed explicitly [Gorzolka
and Walch (2014)]. Furthermore, if TMAs are used, hundreds of patients can po-
tentially be analyzed in a single day. MALDI-IMS provides the opportunity to
(i) screen preprepared cancer samples rapidly, targeting regions of interest and,
(ii) employ complementary LC-MS methods to characterize the tumor proteome
of these tissues.

To exploit these capabilities in the future, it will be crucial to understand and
distinguish differences between patients. As proof of the concept, in this paper we
take data including multiple tissue types (e.g., tumor, adipose, connective) from
full sections of tissue from each of three patients, and consider the problem of
separating tumor-specific masses.

3. The data and binary binning. In Section 6 we consider a selection of
datasets from three surgically excised ovarian cancers, each from a different pa-
tient; see Gustafsson (2012). An overview for our data analysis workflow is de-
scribed in Figure 1. Thin cross-sections of tissue are obtained from each cancer,
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and MALDI-IMS data are collected using a Bruker Ultraflex III and a m/z range of
1000–4500. Multiple sections are taken from each cancer, and we refer to the data
collected from each section as a “dataset.” Initially, we consider a single typical
dataset (shown in Figure 2) and will refer to it as the “motivating dataset” through-
out. A typical dataset might have 5000–100,000 spectra, the motivating dataset
consists of 13,916. The motivating dataset will serve to illustrate our proposed
method which we describe in Sections 4 and 5, completing the workflow illus-
trated in Figure 1. In Section 6 we consider the remaining datasets (represented by
grey background arrows in Figure 1 and including the motivating dataset), three
from each cancer, and compare datasets within and between patients. Although we
have access to more datasets, we show only nine, as these suffice for comparisons
both within and between patients while still illustrating our method concisely.

As discussed in Section 2, each dataset contains mass spectra collected at reg-
ularly spaced points on the surface of a thin tissue section. Each mass spectrum
has annotation meta-data corresponding to the spatial (x, y) coordinates of its
acquisition. The mass spectrum itself is a set of ion-intensity, m/z value pairs,
and can be thought of as a discrete approximation of ion-intensity as a func-
tion of m/z. We will not explicitly address this functional aspect. Each mass
spectrum typically contains between 5 and 200 intensity-peaks (local maxima),
each corresponding to the m/z of a biological analyte such as a peptide or en-
dogenous protein. A number of preprocessing steps are involved in extracting the
peaks; we use methods available in proprietary software (flexAnalysis, Bruker Dal-
tonik, http://www.bruker.com): smoothing (Gaussian kernels), baseline reduction
(TopHat), and, finally, peak-picking (SNAP). The SNAP algorithm isolates mono-
isotopic peaks and defines significant peaks as those peaks with a signal-to-noise
ratio of two or higher. Representing the data as peak lists significantly reduces the
amount of data involved, often by as much as two orders of magnitude, and this
can be very important due to the amount of data involved (>10 GB). We will be
concerned only with these extracted peaks from here on.

Improved peak-picking is of interest for two reasons. First, peak-picking is
currently the most computationally intensive step in our workflow, taking longer
than the remainder of the data analysis combined. Conveniently, the Bruker peak-
picking can be run simultaneously with the data acquisition, which typically takes
6–14 hours depending on the number of spectra acquired. Second, the choice of
peak-picking algorithm will affect all subsequent data analysis and so improve-
ments to the peak-picking algorithm would be expected to carry through and
produce improved results downstream. Comparing the Bruker peak-picking that
we have used with other existing methods and making improvements based on
these comparisons is important, but is beyond the scope of this paper. All the
code used to generate our results from the peaklist data is included in Supple-
ment B [Winderbaum et al. (2015b)], and the peaklist data itself is in Supple-
ment C [Winderbaum et al. (2015c)]. Software packages that implement existing
peak-peaking algorithms and other relevant analysis tools include the R package

http://www.bruker.com
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MALDIquant (http://strimmerlab.org/software/maldiquant/), the MATLAB bioin-
formatics toolbox (http://au.mathworks.com/help/bioinfo/index.html) and Biocon-
ductor (http://www.bioconductor.org). For other mass-spectrometry based soft-
ware resources, see http://www.ms-utils.org.

We bin the peaks by partitioning the m/z range into equal size intervals or bins,
and identifying each peak with the bin it belongs too. Using a data-independent
partitioning for the binning makes comparisons between datasets straightforward.
The disadvantage is that peaks detected at very similar m/z values will be iden-
tified with different bins if a boundary happens to fall between them. In order to
address this, we suggest running all analyses in tandem with shifted bin locations
and combining the results in order to capture any analytes whose m/z is too close
to a bin boundary. Using larger bin sizes also helps limit this effect. For the sake
of brevity, we will omit the tandem analysis from the results, as it provides only
a small improvement. We call the data after binning “binned intensity data,” as in
this form the variables correspond to the intensity (height) of peaks in particular
m/z bins. We further reduce the “binned intensity data” to “binary binned data”
where the variables (m/z bins) are binary (one/zero) valued—corresponding to
presence/absence of peaks as described by Koch (2013), Example 6.12. The num-
ber of m/z bins in the binned data will vary depending on the choice of bin size.
Our analyses are not sensitive to choice of bin size, provided the bin size chosen is
within a reasonable range (0.05–2 m/z). We use an intermediate bin size of 0.25
m/z, which yields 5891 (nonempty) m/z bins in the motivating dataset. The prin-
cipal effect that choice of bin size has is on the total number of m/z bins, and the
number that are removed in the dimension reducing steps of our method—smaller
bin sizes will result in more m/z bins initially, and more being removed, larger bin
sizes result in fewer m/z bins initially, and fewer being removed.

The use of the binary data has a number of advantages, including separation
of tissue types, computational efficiency, and allowing the use of the easily in-
terpretable DIPPS approach we describe in Section 5. Extraneous variables such
as matrix crystal morphology can have an adverse effect on the intensity mea-
surements by adding noise [Garden and Sweedler (2000)]. Deininger et al. (2011)
attempt to address these effects by normalization of their intensity values. One ad-
ditional advantage of using the binary transformation suggested by [Koch (2013),
Example 6.12] is that it circumvents the effects of such extraneous variables by
avoiding direct use of the intensity values, and in this sense can be considered a
data cleaning step. All subsequent analyses will concern only the binary data, as
indicated in Figure 1, and we will refer to these simply as “the data” from here on.
Similarly, we will refer to the variables in these data as “m/z bins,” as we have
done in this section.

4. Clustering spatially smoothed data. We propose a two-step method for
separating spectra into groups corresponding to tissue types: first, a smoothing step
which acts as a data cleaning and dimension reduction step, and incorporates the
spatial information from MALDI-IMS into the data. Second, a clustering step.

http://strimmerlab.org/software/maldiquant/
http://au.mathworks.com/help/bioinfo/index.html
http://www.bioconductor.org
http://www.ms-utils.org
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4.1. Smoothing step. The spatial information available in MALDI-IMS data
can be used to clean the data and remove m/z bins that are spatially dispersed. We
incorporate this spatial information through a spatial smooth.

Let X be a d × n binary matrix; the rows of X correspond to m/z bins and
are denoted xi•, the columns of X correspond to spectra and are denoted x•j , and
the entries of X are denoted xij . These entries xij take the value one if peaks
are present, and zero if no peaks are present in the m/z bin i in spectrum j . Let
0 ≤ τ < 1

2 be a smoothing parameter and δ ≥ 0 a distance cutoff.
We iteratively update the values of X. Let X(k) denote the updated matrix at

the kth iteration. Similarly, let x(k)
i• , x(k)

•j and x
(k)
ij denote the rows, columns and

values of X(k), respectively. At the kth iteration, the proportion of spectra, T
(k)
ij , in

a spatial δ-neighborhood of the j th spectrum x(k)
•j whose values at the ith m/z bin

x(k)
i• agree with x

(k)
ij is

T
(k)
ij =

{(
1 − x

(k−1)
ij

) + (
2x

(k−1)
ij − 1

)(x(k−1)
i• dᵀ

j − x
(k−1)
ij

11×ndᵀ
j − 1

)}
.(1)

This proportion determines if the value x
(k)
ij should be changed. In (1), dj denotes

a 1 × n indicator vector with entry 1 if the corresponding indexed spectrum is in
a δ-neighborhood of x•j and zero otherwise. If this proportion T

(k)
ij is less than τ ,

we update the value x
(k)
ij as in (2).

We generate the smoothed data by iteratively calculating the entries of X(k):

x
(k)
ij =

⎧⎨
⎩

x
(k−1)
ij , if T

(k)
ij > τ ,

1 − x
(k−1)
ij , if T

(k)
ij ≤ τ ,

(2)

for k = 1,2, . . . , starting with X
(0) = X. We stop when convergence is reached,

that is, when k = k∗ = min{k : X(k) = X
(k−1)}. The spatially smoothed data

are X
(k∗).

Remarks on the smoothing process:

1. Without loss of generality, we let the distance between adjacent pixels be
one. We choose δ = √

2 which results in a range 1 Moore neighborhood; see Gray
(2003). This neighborhood is used in the cellular automata literature including
Gardner (1970). It is worth noting that acquiring the range 1 Moore neighborhood
by using the Euclidean distance and δ = √

2 on a regular grid is equivalent to using
the Tchebychev distance, and δ = 1.

2. The smoothing parameter τ defines the proportion of neighboring spectra
needed to agree in order for a particular value to remain unchanged at any given
step. Small values of τ smooth less (τ = 0 leaves the data unmodified), while larger
values smooth more. Results will not significantly change if τ is within the same
1
8 -wide interval, as changing τ within these intervals will affect spectra only on the



FEATURE EXTRACTION FOR IMS 1983

boundary of the acquisition region (spectra with less than 8 neighbors). The limit
τ → 1

2 results in maximum smoothing and is equivalent to the intuitive median
smooth. In practice, the median smooth tends to yield over-smoothed data and
often fails to converge. We chose an intermediate smoothing parameter, τ = 1

4 , for
these analyses. The values 1

8 and 3
8 could also be used, for less or more smoothing,

respectively.
3. Alternative smoothing options include kernel methods [Wand and Jones

(1995)] which apply to continuous data. These methods produce continuous values
when applied to binary data, for which there is no clear interpretation. Our method
produces binary smoothed data, maintaining the interpretability of the binary val-
ues.

4. At each smoothing iteration k, m/z bins are smoothed independently, and
within each m/z bin all observations are smoothed simultaneously at each step.
This means that it is possible to parallelize the smoothing algorithm, making effi-
cient use of computational resources.

5. Our smoothing step plays a similar role in our approach to the combined two-
step method of Alexandrov and Bartels (2013). Alexandrov and Bartels (2013)
use first an edge-preserving smooth [Tomasi and Manduchi (1998)] and then a
measure of spatial chaos to remove spatially chaotic images. Our method also
removes spatially chaotic images by reducing them to empty. Improvements could
potentially be achieved by combining the two approaches.

Bins that exhibit occurrence of peaks in a small number of spatially delocalized
spectra or in almost all spectra constitute a large proportion of all m/z bins. These
bins tend not to be relevant, as they are usually internal calibrants [Gustafsson
et al. (2012)], errors, contaminants or tissue regions that are too small to be of
interest due to the spatial (lateral) resolution used (100 µm). This last point could
be improved by using a finer lateral resolution, as discussed by Schober et al.
(2012). In these data, however, biological structures which are the same size as or
smaller than the acquisition resolution, in this case 100 µm, will be removed by the
smoothing. These m/z bins have zero variance after the smoothing step. Following
the smoothing, these zero-variance m/z bins are removed, reducing the dimension
of the data. The motivating dataset has 5891 m/z bins before the smoothing step.
After the smoothing step 1022 of these m/z bins have nonzero variance and the
remainder are discarded.

4.2. Clustering step. The second step in our approach concerns clustering of
the spatially smoothed data. We use k-means clustering. Based on the information
available from the histology, there are three broad tissue types present which could
be labeled as fatty, connective and cancer tissue, respectively. Further, there are
spectra that were acquired off-tissue. Thus, we perform k-means clustering with
k = 4. We choose initial cluster centers at random from the sample, repeat this
process 100 times and choose the clustering with minimum within-cluster sum of
spectra-to-centroid distances.
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k-means clustering of the binned intensity data with the default Euclidean dis-
tance does not lead to interpretable or spatially localized clusters [Koch (2013),
Example 6.12]. In contrast, k-means clustering of the binned intensity data with
the cosine distance, and of the binary data with the Euclidean or cosine distance,
leads to clusters that correspond to the different tissue regions. Since there is no
clear superiority of one distance over the other for the binary data, we continue
with only the cosine distance, which has the added advantage of having become an
established measure of closeness for high-dimensional data and associated consis-
tency results [see Koch (2013), Sections 2.7, 13.3 and 13.4, and references therein].

For data with associated spatial information (such as MALDI-IMS data), it is
natural to display the cluster membership in the form of cluster maps or cluster im-
ages: colored pixels at the (x, y) coordinates of the spectra which show the cluster
membership of each spectrum using different colors to identify clusters. The H&E
stained tissue cross-section and result of 4-means cluster analysis (by cosine dis-
tance) of the motivating dataset are shown in Figure 2(a) and (b), respectively.
The cluster membership in Figure 2(b) corresponds well with tissue types as de-
termined by the histology in Figure 2(a): cyan corresponds to fatty tissue, green to
cancer-associated connective tissue and orange to four cancer nodules [indicated
by arrows in Figure 2(a)]. The fourth cluster in pink corresponds well with off-
tissue spectra, apart from a small amount of “bleed-out” from the cyan cluster pos-
sibly caused by nonspecific or “leakage” analytes. The correspondence between
cluster results and histology demonstrates that the spatial smooth and cluster anal-
ysis isolate key molecular information which allows differentiation of tissue types
by their mass spectra.

This correspondence between cluster results and histology, particularly for the
cancer tissue-type, is important for the interpretation of results that follow, and
so we took extra steps to validate its accuracy. A pathologist annotated the H&E
stained tissue section for the motivating dataset [shown in Figure 2(a)], indicating
regions of cancerous tissue. In order to avoid ambiguity in annotation, we then
created an annotation subset identifying spectra whose origin is unambiguously
cancerous tissue (omitting spectra from tissue regions of mixed tissue types, or
tissue of ambiguous type). This allows us to be confident that spectra in this anno-
tation subset are definitely from cancerous tissue, giving us a diagnostic measure
of accuracy for our cancer cluster. The annotation subset we obtained for the mo-
tivating dataset contained 515 spectra, 499 (97%) of which where also contained
in the 778 spectra of the orange cancer cluster of Figure 2(b).

5. The difference in proportions of occurrence (DIPPS) approach. In Sec-
tion 4 we mention the good agreement between tissue types visible in the histology
of Figure 2(a) and clusters of Figure 2(b). From the biological perspective it is of
great interest to be able to quantify the differences between these tissue types in
an easily interpretable way. At a mathematical level, a characterization of the dif-
ferences between the tissue types translates into an identification of m/z bins that
discriminate them. We propose the DIPPS approach for identifying discriminat-
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ing m/z bins. Other methods for determining m/z values exist in the supervised
learning literature, for example, support vector machines and PCA-based linear
discriminant analysis. A comprehensive comparison of the DIPPS approach with
these methods in determining the “best” and “correct number” of discriminating
m/z values is needed, but such a comparison is beyond the scope of this paper.
Instead we restrict attention to the new DIPPS approach which we first explain for
an arbitrary subset of binary data, and then apply to the motivating dataset using
spectra from the cancer cluster as the subset of interest, as distinguishing these
spectra from the noncancer spectra is particularly important.

We define the DIPPS statistic for a fixed subset of data in (3), and show how
this new statistic introduces a ranking of the m/z bins based on their ability to
characterize the subset of interest. This DIPPS statistic leads to a natural heuristic,
introduced in (4), for selecting a number of the ranked m/z bins, which we call
DIPPS features, that “best” characterize the subset of interest. The extraction of
these DIPPS features can be interpreted as a dimension reduction step. For data
with spatial meta-data, such as MALDI-IMS data, we propose a way of displaying
graphically the information obtained from the statistic in an easily interpretable
summary image. These maps make this technique useful in exploratory analyses,
as combining the DIPPS features into a single interpretable image allows for broad
conclusions to be drawn quickly and easily. When the amount of data becomes
large, the approach commonly used in proteomics, namely, of considering each
m/z bin individually, is of limited use and the ability to produce a single image
that summarizes many m/z bins becomes particularly useful.

Let S be a subset of observations (columns) of the data, X. We let p(S) denote
the mean of the observations in S and, similarly, let p(Sc) denote the mean of
the observations in its compliment Sc. As the data are binary, the kth entry of the
vector p(S) is the proportion of observations in S that take the value one for the
kth m/z bin. The interpretation of binary data as the occurrence of an event—here
existence of peaks—allows the mean p(S) to be interpreted as the proportions of
occurrence (for each m/z bin) in S . Considering occurrence (presence of peaks) in
each m/z bin as a predictor of which spectra should be in S allows us to interpret
the corresponding entry of p(S) as the “sensitivity” or true positive rate of this
prediction. Similarly, each entry of the vector 1d×1 − p(Sc) is the proportion of
observations in Sc that take the value zero for the corresponding m/z bin, and,
from the perspective of treating each m/z bin as a predictor for which spectra
should be in S , can be considered the “specificity” or true negative rate. In order
to characterize S , both sensitivity and specificity should be high. We sum these
measures of sensitivity and specificity, and subtract one to give a range of [−1,1]
and define the vector of DIPPS statistics d for S as

d(S) = p(S) − p
(
Sc).(3)

For convenience of notation we omit the dependence on S , and write d(S) = d. We
will similarly omit the S dependence for ta , na , c and a∗ below, as we are treating



1986 WINDERBAUM ET AL.

S as fixed. We use the entries of the vector d to rank the m/z bins: the entry with
the greatest value corresponds to the m/z bin that characterizes S best.

Next we determine the set of m/z bins that collectively best characterize S , that
is, the DIPPS features. We do this by finding a cutoff value in a data-driven way
as follows. For a > 0 let ta be the d × 1 vector that takes the value one if the
corresponding element of d is ≥ a, and takes the value zero otherwise. Let na be
the number of entries in the vector ta equal to one. Let c be the centroid of S .
For the cosine distance, D, this is the average of the normalized (to length one)
vectors. We use the cutoff

a∗ = arg min
a

{
D(c, ta)

}
.(4)

ta is a binary “template” vector for representing observations in S . The centroid c
represents the “center” of observations in S . In (4) we choose a∗ such that ta∗ is
as close to c as possible. The na∗ DIPPS features are the m/z bins whose corre-
sponding entry in ta∗ is one.

In the motivating dataset we are interested in characterizing the cancer spectra,
and thus we choose S to be the set of spectra belonging to the orange cluster
shown in Figure 2(b). The cutoff of (4) is a∗ = 0.126 and results in na∗ = 70
DIPPS features being selected from the 1022 m/z bins remaining after smoothing.
For each spectrum x•j , the sum of the DIPPS features tᵀa∗x•j , can be visualized
spatially in a “DIPPS map,” as shown in Figure 3(b). We construct the DIPPS
map pointwise at each (x, y) location. The value of the DIPPS map at each (x, y)

location, or pixel, represents the number of DIPPS features exhibiting occurrence

FIG. 3. H&E stained tissue section (a) and DIPPS map (b) for the cancer cluster of the motivating
dataset. The DIPPS map shows the sum of the na∗ = 70 m/z bins with DIPPS score greater than
a∗ = 0.126. The legend relates the counts in heat colours: cold (blue) indicating spectra in which
none of the selected ‘DIPPS feature’ m/z bins contain peaks, hot (red) indicating spectra in which
all “DIPPS feature” m/z bins contain peaks. . . .
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for the spectrum at (x, y). These counts are visualized in heat colours: cold (blue)
indicating spectra in which none of the selected ‘DIPPS feature’ m/z bins contain
peaks, hot (red) indicating spectra in which all ‘DIPPS feature’ m/z bins contain
peaks. The ability to visualize results in a DIPPS map, which is easy to interpret,
is attractive, as considering so many m/z bins individually can be time consuming
and fail to provide a “big-picture” perspective.

The 70 DIPPS features characterize the cancer tissue, and thus deserve inspec-
tion. Follow-up analysis can be done to identify the peptides that these m/z bins
correspond to, and to draw inference as to their parent proteins. To illustrate the
biological significance of these m/z bins, we compared their m/z values to the pre-
viously published results of Gustafsson (2012). Two of the highly ranked m/z bins
(listed in Table 1, along with inferred parent proteins) were previously identified
as highly expressed in cancer by manual assessment of spatial distributions. The
identifications were achieved through both mass matching to LC-MS/MS as well
as in situ MS/MS [Gustafsson (2012)]. The identity and histological distribution of
these analytes (corresponding to m/z bins in our data) were successfully validated
using immunohistochemistry (see Supplement A [Winderbaum et al. (2015a)]).
This confirms that the DIPPS approach can find features of known importance.
Crucially, the DIPPS approach produces a list of characterizing m/z bins more
rapidly and comprehensively than manual inspection of individual m/z bins.

A DIPPS map such as that shown in Figure 3(b) has an intuitive interpretation
that the results of cluster analysis do not. The DIPPS map highlights gradations
which reveal finer detail than is possible in cluster maps. We discuss this point
further in Section 6. This visualization using DIPPS maps becomes increasingly
important in exploratory analyses when the number of patients and datasets in-
creases, as it quickly becomes infeasible to consider each of the selected m/z bins
individually. The DIPPS approach also allows m/z bins crucial to cluster/tissue
differentiation to be isolated and summarized. This selection of DIPPS features in-
herent in the DIPPS approach can also be thought of as a variable reduction step by
reducing the data to 70 m/z bins. More importantly, it successfully separates tissue
type-specific m/z bins, addressing the heterogeneity of the tissue. This facilitates
the comparison of datasets, which is the focus of Section 6.

6. Application to multiple datasets. In this section we consider nine data-
sets, including the motivating dataset. Of these datasets, three are from each of
three different patients which we will refer to as patients A, B and C, respectively.
We will refer to the three datasets from patient A as A1, A2 and A3, and similarly
for the datasets from patients B and C. Dataset A1 is the motivating dataset. Each
of the three datasets arising from the same patient is acquired from thin (6 µm)
tissue sections of a single surgically excised tissue. Because of this experimental
setup, we expect the cluster and DIPPS maps of datasets from the same cancer to be
similar in terms of the location of the cancer clusters and the selected m/z bins. We
aim to separate within-patient from between-patient variability among the datasets.
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The results of our analyses of the nine datasets are displayed in Figures 4, 5
and 6 for patients A, B and C, respectively. Each figure corresponds to one patient
and shows the three datasets in rows. Each row consists of an H&E stain on the

FIG. 4. H&E stains (left column), cluster maps (center column), and DIPPS maps for the cancer
cluster (right column) for the three datasets A1, A2, and A3 (each represented in a row). Note
that na∗ = 70,45,61 m/z bins are visualized in the DIPPS maps for the datasets A1, A2, and A3,
respectively.
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FIG. 5. H&E stains (left column), cluster maps (center column), and DIPPS maps for the cancer
cluster (right column) for the three datasets B1, B2, and B3 (each represented in a row). Note that
na∗ = 173,117,111 m/z bins are visualized in the DIPPS maps for the datasets B1, B2, and B3,
respectively.

left, a cluster map in the center and a DIPPS map for the cancer cluster on the
right. The first row of Figure 4 repeats the results for the motivating dataset shown
in Figures 2 and 3.

In all nine datasets, as visually judged by comparison with the H&E stained im-
ages, the clustering results correspond well with the tissue morphology. In patients
B and C the connective tissue was more difficult to separate from the fatty tissue
than in patient A, and so 3-means clustering was used instead of 4-means cluster-
ing. Disagreements between clustering results of datasets from the same patient
serve to highlight the ability of the DIPPS maps to find and extract information in
the data that is not available in the cluster maps, in a way that is remarkably robust
to the clustering. For an example of this robustness property of the DIPPS maps,
consider Figure 6—although the cluster map for dataset C2 shows a noticeable
difference in the shape of its orange cancer cluster, the DIPPS maps show compar-
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FIG. 6. H&E stains (left column), cluster maps (center column), and DIPPS maps for the can-
cer cluster (right column) for the three datasets C1, C2, and C3 (each represented in a row). Note
that na∗ = 74,38,17 m/z bins are visualized in the DIPPS maps for the datasets C1, C2, and C3,
respectively.

atively consistent spatial distributions. Similarly, in Figure 5 datasets B1 and B3
show solid orange cancer clusters, failing to detect the clear vertical divide shown
in the H&E stains, yet this divide is still apparent in the DIPPS maps.

The DIPPS maps are also more representative of the data, as they reveal grad-
ual changes and fine detail that cannot be represented by the “hard” boundaries
in a cluster map. For example, consider the bottom left region of tissue in Fig-
ure 5. The DIPPS maps highlight (subtly) a line following the bottom of the tissue
corresponding to heterogeneous cancer-associated connective tissue. This is par-
ticularly interesting, as this “partial” highlighting in the DIPPS map indicates that
there exists a subset of the selected m/z bins that exhibit presence in this region.

In addition to producing the DIPPS maps, the DIPPS approach yields a set of
m/z bins that characterize the subset of the data in question. This set of DIPPS
features can be used to compare tissue types across several datasets. We implement
the DIPPS approach as described in Section 5 to identify DIPPS features for the
cancer cluster in each of the nine datasets. To determine how similar these sets of
characterizing m/z bins (DIPPS features) are, we use the Jaccard distance [Jaccard
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FIG. 7. The 9 × 9 grid shows pairwise Jaccard distances between the sets of m/z bins character-
izing the cancer clusters. Rows (and columns) correspond to the 9 datasets. The color of each pixel
indicates the value of the Jaccard distance—white corresponding to a value of one, black to zero.

(1901)]. For a pair of sets Si, Sj , the Jaccard distance is

J (Si, Sj ) = 1 − |Si ∩ Sj |
|Si ∪ Sj | .(5)

Figure 7 shows the pairwise Jaccard distances between the DIPPS features char-
acterizing cancer. The “colors” range from darkest for a Jaccard distance of zero
(indicating equality of sets) to white for a Jaccard distance of one, which indicates
disjoint sets.

The block diagonal of Figure 7 is notably dark—this illustrates that differences
within patients are smaller than differences between patients. This difference al-
lows DIPPS features common to a particular patient to be separated from features
that characterize cancer across multiple patients. Dataset C3 is an exception to this
trend, as it shows notably less similarity to other datasets across the board (both
within patient C and to datasets from other patients). Further inquiry into the raw
data acquisition reveals that there was likely some problem at the sample prepa-
ration step for this slide, possibly in either the digestion or matrix deposition, as
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fewer peaks are observed from spectra in dataset C3 in general when compared to
typical spectra from any of the other datasets. In this way, our proposed exploratory
analyses are also capable of alerting quality control issues, which would not have
been obvious from the clustering results alone.

There are a number of DIPPS features common to all 3 patients, including the
m/z bin centered at 1628.75, mentioned in Section 5. The peptide sequence and
inferred parent protein of this feature (listed in Table 1) have been validated by in
situ MS/MS and immunohistochemistry (shown in Supplement A [Winderbaum
et al. (2015a)]), respectively, indicating that the protein from which this peptide
derives is highly expressed in the cancer tissue of these patients. This protein could
therefore be investigated further as a marker for ovarian cancer in a larger patient
cohort.

Patient specific DIPPS features could be further investigated for their ability
to classify cancers according to clinical or diagnostic criteria such as response to
treatment. There appears to be a difference between patients A/C and B, as can be
seen in Figure 7. This difference could be a consequence of the relatively larger
number of DIPPS features identified in patient B datasets. The discrepancy in the
number of selected m/z bins between patients A/C and B could be explained by
the large amount of necrotic tissue in the patient B sample. Mass spectra from
necrotic tissue are expected to be vastly different from those of other cancer tissue,
which would indicate that the patient-specific m/z bins in patient B are likely to
be markers for necrotic tissue.

Other tissue types could be considered (fatty and connective tissues), and a fig-
ure similar to Figure 7 could be produced for each of them. Such figures do not
show a notably darker block-diagonal in the way that Figure 7 does. This tells us
that the main differences between patients are in the patients’ cancer, rather than
in their other tissues, and reinforces how crucial it is to address the heterogeneity
of these data by separating tissue types before conducting comparisons between
patients.

7. Conclusion. This paper proposes an integrated approach to clustering and
feature extraction for spatially distributed high-dimensional data. This approach
is based on our difference in proportions (DIPPS) statistic and includes novel vi-
sualizations which enhance the cluster maps. For the MALDI-IMS cancer data,
these maps have a natural interpretation in terms of the features that characterize
cancer tissue. Application of our approach to different datasets from a number of
patients allowed us to differentiate within-patient variability from between-patient
variability.

In proteomics, the ability to automate feature extraction and to present these
features as DIPPS maps provides an opportunity for holistic appraisal of MALDI-
IMS data. This is crucial due to the size and number of such datasets and their
high-dimensional nature. By isolating features important to specific tissue types
and reporting similarities across patients, it will be easier to identify m/z bins for
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further validation as tissue markers and to build models for addressing clinical
questions such as predicting chemotherapy response and patient survival.
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SUPPLEMENTARY MATERIAL

Supplement A: Immunihistochemical Validation (DOI: 10.1214/15-
AOAS870SUPPA; .zip). Optical images of immunohistochemical (IHC) tissue
stains, validating three proteins as cancer-specific, including the two inferred par-
ent proteins of Table 1. Top row are patient A replicates, bottom row patient C
replicates.

Supplement B: Source Code (DOI: 10.1214/15-AOAS870SUPPB; .zip). Sour-
ce code including cache and intermediate data files capable of reproducing all
analyses up to and including compiling this document. Computations where done
in MATLAB, and results compiled in LATEX using the R package knitr.

Supplement C: Peaklist Data (DOI: 10.1214/15-AOAS870SUPPC; .zip). Raw
peaklist data, used to generate the intermediate data files in Supplement B
[Winderbaum et al. (2015b)].
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