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Nonstationarity of the event rate is a persistent problem in modeling time
series of events, such as neuronal spike trains. Motivated by a variety of pat-
terns in neurophysiological spike train recordings, we define a general class
of renewal processes. This class is used to test the null hypothesis of station-
ary rate versus a wide alternative of renewal processes with finitely many rate
changes (change points). Our test extends ideas from the filtered derivative
approach by using multiple moving windows simultaneously. To adjust the
rejection threshold of the test, we use a Gaussian process, which emerges
as the limit of the filtered derivative process. We also develop a multiple
filter algorithm, which can be used when the null hypothesis is rejected in
order to estimate the number and location of change points. We analyze the
benefits of multiple filtering and its increased detection probability as com-
pared to a single window approach. Application to spike trains recorded from
dopamine midbrain neurons in anesthetized mice illustrates the relevance of
the proposed techniques as preprocessing steps for methods that assume rate
stationarity. In over 70% of all analyzed spike trains classified as rate nonsta-
tionary, different change points were detected by different window sizes.

1. Introduction. In neurophysiology, spike trains are often analyzed with sta-
tistical models based on point processes, for example, renewal processes Johnson
(1996), Kass, Ventura and Brown (2005), Nawrot et al. (2008), Perkel, Gerstein
and Moore (1967a), Rieke et al. (1999). A large field of statistical neuroscience
focuses on the coordination between parallel point processes [Brown, Kass and
Mitra (2004), Grün and Rotter (2010), Perkel, Gerstein and Moore (1967b)]. In
many models used for such analyses, rate stationarity is a crucial assumption, and
variations of the underlying firing rate can affect the results of the applied tech-
niques [e.g., Brody (1999), Grün, Riehle and Diesmann (2003)]. In order to avoid
such problems, several authors have suggested local techniques, which involve
the separate treatment of sections with approximately stationary rate [see, e.g.,
Grün, Diesmann and Aertsen (2002), Schneider (2008), Staude, Rotter and Grün
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(2008)] when spike trains show nonstationary properties. Therefore, it is impor-
tant to capture these nonstationary properties, that is, to detect the violation of rate
stationarity and to locate the changes in the firing rate of neurons.

In this paper we contribute to the change point analysis of point processes. Mo-
tivated by the modeling of empirical data from neurophysiology, we define a gen-
eral class of renewal processes. In this class, we test the null hypothesis of rate
stationarity versus a wide alternative of renewal processes with finitely many rate
changes. Our test extends ideas from the filtered derivative approach [Bertrand
(2000), Steinebach and Eastwood (1995)] by using multiple moving windows si-
multaneously instead of just one moving window. To adjust the rejection threshold
of the test, we use a Gaussian process, which emerges as the limit of the filtered
derivative process. Additionally, we develop a multiple filter algorithm, which can
be used when the null hypothesis is rejected in order to estimate the number and
location of change points. We analyze the benefits of our multiple filter algorithm
and study the increase in detection probability against single window techniques.
This procedure can serve as a preprocessing step, splitting up the time series into
sections, in which the analyses of interest can be performed separately. As an ex-
ample, Figure 1 illustrates a point process with nonstationary rate, in which we
aim to estimate the number and location of change points.

For identifying the number and positions of change points in time series, many
techniques are available in mathematical statistics. For an overview see, for ex-
ample, Basseville and Nikiforov (1993), Brodsky and Darkhovsky (1993), Csörgő
and Horváth (1997). Typically, these techniques are derived in the context of time
series models with independent and identically distributed (i.i.d.) random vari-
ables. The classical parametric test uses a maximized likelihood quotient in order
to analyze the entire process, which leads to so-called pontograms in point/renewal
process theory [see Csörgő and Horváth (1987, 1997), Kendall and Kendall (1980),
Steinebach and Zhang (1993)]. The resulting test statistics have extreme-value type
limits [Hušková and Slabý (2001)]. As a second approach, moving window analy-
ses in the context of renewal processes have been studied by Steinebach and East-
wood (1995). These local concepts successively investigate the life times of the
point process instead of referring to the entire process.

Motivated by applications, we present two extensions of existing methods: first,
the high variability of point processes observed empirically requires a sufficiently
general class of point process models. Accordingly, we first introduce in Section 2
a new class of renewal processes with varying variance (RPVV), which allow a
certain variability in the variance of the life time distributions. This generalization

FIG. 1. A time series of events for which visual inspection suggests a nonstationary rate. For a
general class of point processes, we present a statistical test and an algorithm based on multiple
windows in order to identify the number and location of change points in the rate.
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has the additional advantage that rate changes can be investigated irrespective of
variance changes and that the latter could then be analyzed in a subsequent, sepa-
rate analysis which respects the identified rate changes. As a second extension to
existing methods, we take into account that rate changes can occur on fast and slow
time scales within the same time series. We propose a multiple filter technique that
applies multiple windows simultaneously. This technique consists of a statistical
multiple filter test (MFT) for the null hypothesis of rate stationarity and a multiple
filter algorithm (MFA) for change point detection.

In Section 3 we first extend techniques introduced by Steinebach and Eastwood
(1995) to our class of RPVVs. In particular, we prove asymptotic results for a
moving average approach called filtered derivative, which is based on comparing
the number of events in adjacent windows. We then introduce a statistical test
that is based on a set of filtered derivative processes, each process corresponding
to one window size. The maximum over all processes serves as a test statistic,
indicating deviations from rate stationarity if this maximum exceeds a threshold Q.
By scaling each process, we attempt to give every window a similar impact on the
maximum distribution.

For practical application, we provide in Section 4 a multiple filter algorithm for
change point detection, in which the results obtained by multiple window sizes
are combined. For each individual window, the algorithm successively searches
for extreme values of the filtered derivative, similar to the techniques proposed by
Bertrand (2000), Bertrand, Fhima and Guillin (2011).

In Section 5 we evaluate the MFT, discuss the significance level in finite data
sets and compare it to bootstrap methods. Most importantly, we show by exem-
plary simulations that the MFA can have an increased detection probability over
single window techniques even when a best window size is known. Thus, by using
multiple window sizes, one can detect rate changes in fast and slow time scales si-
multaneously, increase the detection probability and avoid the problem of choosing
one near-optimal bandwidth [cf., e.g., Basseville and Nikiforov (1993), Csörgő and
Horváth (1997), Jones, Marron and Sheather (1996), Nawrot, Aertsen and Rotter
(1999), Shimazaki and Shinomoto (2007)].

Finally, we apply the MFT to a sample data set of spike train recordings ob-
tained as spontaneous single-unit activity from identified dopamine neurons in the
substantia nigra of anesthetized mice (Section 6). In the sample data set, the de-
tected change points agree closely with visual inspection. In over 70% of all spike
trains, which are classified to have a nonstationary rate, different change points are
detected by different window sizes.

2. The point process model. In this section we extend the assumptions of
classical renewal processes by introducing a class of renewal processes with vary-
ing variance (RPVV) (Section 2.1). These processes are assumed rate stationary,
but the variance of life times may show a certain degree of variability. Examples of
such processes are given in Section 2.2. For the alternative hypothesis (Section 2.3)
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we combine several null elements, resulting in processes with a piecewise station-
ary rate. In this model we aim to detect rate changes irrespective of other point
process properties, such as the variability of the life times or even changes in the
variability of life times.

2.1. Renewal processes with varying variance (RPVV). We write a point pro-
cess � as an increasing sequence of events

0 < S1 < S2 < S3 < · · · ,
where Si denotes the occurrence time of the ith event, for i = 1,2, . . . . Alterna-
tively, � is determined by its life times (ξi)i≥1, where

ξ1 = S1 and ξi = Si − Si−1 for i = 2,3, . . . ,

or by the counting process (Nt)t≥0, where

Nt = max{i ≥ 1|Si ≤ t}, t ≥ 0,(1)

with the convention max∅ := 0.
Under the null hypothesis, we assume that a spike train can be described as an

element � of the following family of rate stationary processes, which we term
renewal processes with varying variance (RPVV).

DEFINITION 2.1 [Renewal process with varying variance (RPVV)]. Let
T > 0, and let � be a renewal process restricted on (0, T ] whose life times,
ξ1, ξ2, . . . , are assumed to be independent, positive and square-integrable random
variables with positive variances, such that for some μ,σ, c > 0 and all ε > 0, with
asymptotics as n → ∞, we have

rate stationarity: E[ξi] = μ for all i ∈N,(2)

variance regularity:
1

n

n∑
i=1

Var (ξi) → σ 2,(3)

Lindeberg condition:
(4) ∑n

i=1 E[(ξi − μ)21{(ξi−μ)2>ε2 ∑n
i=1 Var (ξi )}]∑n

i=1 Var (ξi)
→ 0,

uniform variance bound: sup
i∈N

Var (ξi) < c,(5)

SLLN for squared life times:
1

n

n∑
i=1

(
ξ2
i −E

[
ξ2
i

]) → 0 a.s.(6)
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Thus, an RPVV can be a renewal process with i.i.d. life times, and thus con-
stant variance of life times. This applies, for example, to Poisson processes or to
processes with independent and �(p,λ)-distributed life times, called here Gamma-
processes. In addition, the variance of life times can also show a certain variability
as specified in (3) and (5). Assumptions (2)–(6) are technically sufficient for the
asymptotic results that support our methods: condition (3) imposes a regularity of
the life times’ variances over time. The Lindeberg condition (4) is later used for
process convergence to Brownian motion that allows to deduce asymptotics for the
related counting process. There, condition (5) will be used additionally. Assump-
tion (6) is the strong law of large numbers (SLLN) for the squares of the life times,
which will be needed for strong consistency of an estimation of σ 2 below. Note
that by Kolmogorov’s conditions [Petrov (1995), Theorem 6.8] (ξ2

i )i≥1 satisfying
the SLLN is equivalent to

∞∑
i=1

P
(∣∣ξ2

i −E
[
ξ2
i

]∣∣ ≥ i
)

< ∞,(7)

∞∑
i=1

1

i2E
[(

ξ2
i −E

[
ξ2
i

])21{|ξ2
i −E[ξ2

i ]|<i}
]

< ∞,(8)

1

n

n∑
i=1

E
[(

ξ2
i −E

[
ξ2
i

])
1{|ξ2

i −E[ξ2
i ]|<n}

] → 0 as n → ∞.(9)

The most important assumption (2) states that in an RPVV, the mean rate 1/μ

is constant across time. We therefore also use the short notation �(μ).

2.2. Examples of RPVVs. Here, we give examples of point processes that sat-
isfy the assumptions of an RPVV from Definition 2.1. We assume rate station-
arity [condition (2)]. Figure 2 shows examples of such processes. Panels A–D
indicate the evolution of variances of life times, and panels E–F illustrate point
processes with the corresponding variances and Gamma-distributed life times. Be-
cause Gamma-processes have been used frequently in order to describe neuronal
spiking activity [cf., and the references therein, Nawrot et al. (2008)], we also use
Gamma processes for all simulations in the present article, choosing suitable com-
binations of rate and regularity parameters for each simulation.

The most simple example of an RPVV is a process with i.i.d. life times (Fig-
ure 2A and E). As a second example (Figure 2B and F), an RPVV can be a process
in which the variances of life times converge to a constant. Third, the variance
of life times can alter regularly between two different values (Figure 2C). The
corresponding point process (panel G) shows regular and irregular sections. This
example can be extended such that the mean variance of life times is constant at
equidistant grid points g,2g, . . . (Figure 2D and H).



2032 M. MESSER ET AL.

FIG. 2. Examples of RPVVs according to Definition 2.1. (A–D) The variances Var(ξi) of life times
ξi is indicated by points. Var(ξi) can be constant (σ 2) (A), can converge to a constant σ 2 (B), or
can be a step function alternating between different, fixed values in a regular manner (C). In (D),
the mean variance of the g life times (ξ1, . . . , ξg), (ξg+1, . . . , ξ2g), etc., is a constant σ 2. (E–H) Re-
alizations (T = 100) of point processes with �(pi, λi)-distributed life times ξi with constant ex-
pectation E[ξi ] = pi/λi = 1, that is, pi = λi . The variances Var(ξi ) = pi/λ

2
i = 1/λi are given

in (A–D), respectively. (E) Independent and �(5,5)-distributed life times with constant variance
Var(ξi ) = σ 2 = 1/5. (F) Var(ξi ) = 1/λi → σ 2 = 0.1. (G) The variance alternates in a regular man-
ner, changing after g/2 = 20 life times between pi = λi = 1 (Poisson process) and pi = λi = 20
(a regular Gamma process). (H) For g = 40, the mean variance of the g life times (ξ1, . . . , ξg),
(ξg+1, . . . , ξ2g), etc., equals unity.

2.3. The full model. In contrast to the null assumption, the alternative hypoth-
esis assumes that � is piecewise an RPVV, where the mean rate can change be-
tween the different sections. Formally, we assume that under the alternative hy-
pothesis, a spike train is an element of the class constructed in Construction 2.2.

CONSTRUCTION 2.2. Let T > 0, and let C denote the set of all finite subsets
of (0, T ]. Assume C := {c1, . . . , ck} ∈ C, with c1 < · · · < ck .

At time 0 start k + 1 independent RPVVs �1(μ1), . . . ,�k+1(μk+1) with

μi �= μi+1 for i = 1, . . . , k.

Let c0 := 0, ck+1 := T and define

� :=
k+1⋃
i=1

�i |(ci−1,ci ],(10)

where �i |(ci−1,ci ] denotes the restriction of �i to the interval (ci−1, ci].
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FIG. 3. The change point model combines a set of RPVVs. A realization of a process � on (0, T ]
that results from Construction 2.2. � has three change points c1, c2, c3 and originates from the four
RPVVs �1, . . . ,�4, jumping from process �i to �i+1 at change point ci .

The times c1, . . . , ck are called change points. An example of a point process
generated according to this construction is shown in Figure 3. The resulting rate of
� is a step function with change points c1, . . . , ck .

We now define a model set M := M (T ) to be the family of processes that
derive from Construction 2.2 and test the null hypothesis:

H0: � ∈ M with C = ∅, that is, � is an RPVV, in particular rate stationary,
against the alternative.

HA: � ∈ M and C �=∅, that is, there is at least one change point.

3. The multiple filter test (MFT). In order to test the above null hypothe-
sis of rate stationarity in the model set M , we derive here a multiple filter test
(MFT). Section 3.1 summarizes the construction of the test. Details on parameter
estimation and limit results are given in Sections 3.2 and 3.3.

3.1. Derivation of the MFT. The main idea of the MFT is to extend a fil-
tered derivative technique [see the contributions Basseville and Nikiforov (1993),
Brodsky and Darkhovsky (1993), Csörgő and Horváth (1997)], which slides two
adjacent windows of size h and compares the number of events in the left and
right window. Formally, let T > 0 and � be an element of the model set M . For
h ∈ (0, T /2] we define an analysis region τh := (h, T − h]. Let N(a,b](�) denote
the number of elements of � in the interval (a, b] ⊂ (0, T ]. For each point t ∈ τh

we compare the number of events

Nle := N(t−h,t](�) and Nri := N(t,t+h](�)

in the left and right window (Figure 4A).
A large difference Nri − Nle can indicate deviations from the null hypothesis

of rate stationarity. But because the variance of the difference depends on process
parameters, the difference Nri − Nle will be normed as follows:

Gh,t := Gh,t (�) := Nri − Nle

ŝ
if ŝ > 0,(11)

and Gh,t := 0 if ŝ = 0 for all t ∈ τh (Figure 4B). The term ŝ denotes an estimator
of

√
Var[Nri − Nle], which is defined in (20). We will show in Section 3.3 that the



2034 M. MESSER ET AL.

FIG. 4. Illustration of the computational steps and processes involved in the MFT. The MFT is
applied here to a stationary process on (0,700] with independent and �(0.25,5)-distributed life
times. (A) For one window size h = 75, the number of events in the left and right window, Nle,Nri, are
derived for every t ∈ τh. (B) The process (Gh,t )t∈τh for one window h = 75. (C) The scaled process
(Rh,t )t∈τh for one window h = 75. (D) All scaled processes (Rh,t )t∈τh for h ∈ H = {25,75,125}.
Different gray shades indicate different window sizes, the asymptotic threshold Q is represented by
a dashed line. Here, the test statistic M = maxh,t Rh,t < Q and, thus, the null hypothesis of rate
stationarity is not rejected.

process (Gh,t )t∈τh
converges to a 2h-dependent Gaussian process (Lh,t )t∈τh

. The
limit process (Lh,t )t∈τh

is a continuous functional of a standard Brownian motion
and depends only on T and h. In particular, it is independent from the parameters
of � such as, for example, the rate or regularity.

Large absolute values of Gh,t indicate potential deviations from rate stationarity.
Therefore, the maximum

Mh := max
t∈τh

|Gh,t |

can serve as a test statistic for a single window.
In order to combine multiple window sizes of a finite set H ⊂ (0, T /2], we

consider a set of stochastic processes {(Gh,t )t∈τh
|h ∈ H }, which are all derived

from the same underlying point process �. Each process (Gh,t )t∈τh
results in one

maximum Mh. Instead of using the raw maxima Mh, we suggest to standardize
Mh because the distribution of Mh depends on h. As mentioned above, the pro-
cess (Gh,t )t∈τh

is 2h-dependent, and a smaller h results in weaker temporal de-
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pendencies of the process. This leads to higher chance fluctuations in (Gh,t )t for
smaller h, and thus a higher rejection threshold.

If the expectation and variance of Mh were known, we could use the term

Mh −E[Mh]√
Var(Mh)

(12)

in order to give every window a similar impact on the global maximum of all
processes. Here, we approximate the expectation and variance using simulations
of the set of limit processes {(Lh,t )t∈τh

|h ∈ H }. Defining M∗
h := supt∈τh

|Lh,t |, we
approximate the expectation E[Mh] by the empirical mean �M∗

h and the variance
Var(Mh) by the empirical variance v(M∗

h). The resulting test statistic M across all
windows is defined as the global maximum

M := max
h∈H

(
Mh − �M∗

h√
v(M∗

h)

)
.(13)

Finally, we reject the null hypothesis at level α if M > Q := Q(α,T ,H). The
threshold Q is defined such that under the null hypothesis, M > Q with probabil-
ity α. In order to derive Q, one can again use the limit processes {(Lh,t )t∈τh

|h ∈ H }
and approximate Q by the empirical quantile of

M∗ := sup
h∈H

(
M∗

h − �M∗
h√

v(M∗
h)

)
.(14)

Note that all limit processes (Lh,t )t are derived from the same Brownian motion
in order to ensure comparability with the processes (Gh,t )t , which result from the
same point process �.

For change point detection explained later in Section 4 and for graphical illus-
tration, we use the scaled process

Rh,t :=
( |Gh,t | − �M∗

h√
v(M∗

h)

)
(Figure 4C),(15)

which scales (Gh,t )t∈τh
and accounts for the scaling of the maxima. Because the

maximum of all processes (Rh,t ),

M = max
h∈H

max
t∈τh

Rh,t(16)

is identical to the above global test statistic, it can be read directly from the graph.
The processes (Rh,t )t∈τh

and their comparison with the threshold Q are illustrated
in Figure 4D.
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3.2. Variance estimation. By definition of our auxiliary variables Gh,t

[see (11)], we need to specify an estimator ŝ2 for the variance of Nri − Nle. The
idea is to estimate the variance from the life times of the elements in the left and
right windows of Gh,t .

Let ξ1, ξ2, . . . be the life times of an RPVV with constant μ and σ 2 as in
(2) and (3). Given T and h, for every t ∈ τh we define

γle(t, h) := {
ξi :Si, Si−1 ∈ (t − h, t], i = 1,2, . . .

}
,(17)

the set of all life times that correspond to events in the left window. We relabel
this set of life times ξ le

1 , ξ le
2 , . . . . Analogously for the right window, we obtain

γri(t, h) = {ξ ri
1 , ξ ri

2 , . . .}.
The empirical mean of the life times in the left window is denoted by

μ̂le := μ̂le(t, h) := γle(t, h) if |γle| > 0,(18)

and μ̂le := 0 if |γle| = 0. The empirical variance of the life times is

σ̂ 2
le := σ̂ 2

le(t, h) := v
(
γle(t, h)

)
if |γle| > 1,(19)

and σ̂ 2
le := 0 if |γle| ≤ 1. The bar denotes the empirical mean, v(·) denotes the

corrected sample variance of γle(t, h), and | · | denotes the number of elements.
Analogously, we define μ̂ri and σ̂ 2

ri for the right window.
As an estimator for the variance of Nri − Nle we propose

ŝ2 := ŝ2(t, h) :=
(

σ̂ 2
ri

μ̂3
ri

+ σ̂ 2
le

μ̂3
le

)
h if μ̂le ∧ μ̂ri > 0,(20)

and ŝ2 := 0 otherwise, where ∧ denotes the minimum. Note that ŝ2 is zero by defi-
nition if the number of events is less than two in any window. We prove strong con-
sistency of these estimators in an appropriate asymptotic setting in Appendix A.3.
Heuristically, this estimator is suggested by the fact that under our conditions on
the life times of the RPVV we obtain for the number Nt of events up to time t that,
as t → ∞, we have

Nt − t/μ√
tσ 2/μ3

d−→ N(0,1) and Var[Nt ] ∼ σ 2t/μ3,(21)

where
d−→ denotes convergence in distribution. Hence, we obtain

Var[Nri − Nle] ≈
(

σ 2

μ3 + σ 2

μ3

)
h.
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3.3. Limit distribution of (Gh,t ) under H0. In order to compute the test statis-
tic M and choose the rejection threshold Q, we derive a limit of the process
(Gh,t )t∈τh

, choosing an asymptotic setting in which time T and window size h

grow proportionally. As the limit we identify a 2h-dependent Gaussian process
(Lh,t )t∈τh

on τh that does not depend on the parameters of the process �.
To make this asymptotic statement precise, let � be an element of H0 with life

times ξ1, ξ2, . . . . We consider an extended version (G
(n)
h,t )t∈τh

of (Gh,t )t∈τh
,

G
(n)
h,t := (Nn(t+h) − Nnt) − (Nnt − Nn(t−h))

ŝ(nt, nh)
if ŝ(nt, nh) > 0,(22)

and G
(n)
h,t := 0 otherwise, for all t ≥ h and n = 1,2, . . . . Recall that Nt denotes the

number of life times up to time t and the estimator ŝ is defined in (20). We con-
sider the processes (Gh,t )t∈τh

and (G
(n)
h,t )t∈τh

as càdlàg processes in the Skorokhod
topology.

The asymptotic analysis is given by letting n → ∞. To define the limit process,
let W = (Wt)t≥0 denote a standard Brownian motion on [0,∞). For h > 0 we
define for all t ≥ h

Lh,t := (Wt+h − Wt) − (Wt − Wt−h)√
2h

.(23)

The process (Lh,t )t≥h is a 2h-dependent Gaussian process, with zero mean and
autocovariance given as

�h
v := �h

u,u+v :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 − 3

2h
|v|, if |v| ∈ [0, h],

−1 + 1

2h
|v|, if |v| ∈ (h,2h],

0, if |v| ≥ 2h,

(24)

for all suitable u, v (Figure 5). Note that the autocovariance only depends on the
window size h and the time lag v of two elements Lh,t and Lh,t+v .

In the Appendix we show the following process convergence, extending results
obtained by Steinebach and Eastwood (1995).

FIG. 5. The autocovariance structure �h
v of (Lh,t )t≥h as a function of the time lag v for a fixed

window size h.
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THEOREM 3.1. Let T > 0 and h ∈ (0, T /2] be a window size. Let � be an
element of the null hypothesis. Then for the processes (G

(n)
h,t ) and (Lh,t ) defined

in (22), and (23), as n → ∞, we have(
G

(n)
h,t

)
t∈τh

d−→ (Lh,t )t∈τh
,(25)

where
d−→ denotes weak convergence in the Skorokhod topology.

4. Multiple filter algorithm (MFA) for change point detection. In Section 3
the first part of the MFT was presented as a test for the null hypothesis of rate
stationarity versus the alternative of at least one rate change. After rejection of the
null hypothesis, we intend to identify the number and location of change points.
To this end, we propose an algorithm that combines the results of multiple window
sizes. It consists of a procedure for change point detection on the basis of individual
windows (single filter algorithm—SFA, Section 4.1) and a multiple filter algorithm
(MFA) for the combination of individual windows (Section 4.2).

4.1. Single filter algorithm (SFA). For the detection of change points with a
single window of size h, we apply a common method to the scaled filtered deriva-
tive process (Rh,t )t∈τh

, which successively estimates change points from the max-
ima of the process [see the contributions Antoch and Hušková (1994), Basseville
and Nikiforov (1993), Bertrand (2000), Bertrand, Fhima and Guillin (2011)]. Sim-
ilar procedures have been shown to give consistent estimates of the number and
location of the change points under mild conditions in Gaussian sequence change
point models [Hušková and Slabý (2001), Muhsal (2013)].

The SFA for one h ∈ H works as follows. First, observe the maximum of the
process (Rh,t )t∈τh

. If maxt Rh,t > Q, this indicates deviations from rate stationar-
ity. The time ĉ1 at which this maximum is taken is an estimate of a change point
because the maxima are expected at the change points if the difference between
change points is sufficiently large (Figure 6A). More precisely, one should note
that the sample path of (Rh,t )t∈τh

is a step function, so that the set of maximizers
is an interval. We define ĉ1 as the infimum of this interval

ĉ1 := inf
{
arg max

t∈τh

Rh,t

}
.

Second, we observe that a change point which occurs at time c affects the behavior
of the process (Rh,t )t∈τh

within the h-neighborhood of c,

Bh(c) := (c − h, c + h) ∩ τh (Figure 6A),(26)

while leaving all points outside of Bh(c) unaffected. Therefore, the h-neighbor-
hood of ĉ1 is omitted in the subsequent analysis. If the remaining process
(Rh,t )t∈τh\Bh(c) outside of Bh(c) exceeds Q, this indicates another deviation from
rate stationarity because a change point at c cannot cause this deviation. Therefore,
we successively identify change points as the maxima of (Rh,t )t outside the union
of all Bh(ĉi) of detected change points, until the process (Rh,t )t is smaller than Q

in all remaining intervals (Figure 6B).
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FIG. 6. The SFA and MFA. (A) A change point at time c affects the process (Rh,t )t within the
h-neighborhood of c, and the maximum of (Rh,t )t is expected at c. (B) The SFA successively searches
for maxima of (Rh,t )t . When the maximum is larger than Q, the maximizer ĉ1 is the first change
point estimator. Then the h-neighborhood of ĉ1 is omitted, and the procedure is iterated on the
remaining process until the maximum remains smaller than Q (underlying process different from A).
(C) Schematic representation of the MFA for a window set H = {h1, h2, h3} (underlying process
different from A and B). The change points detected by SFA are marked as vertical bars, and their
hi -neighborhoods are indicated by horizontal lines (h1, black, h2, gray, h3, light gray). The MFA first
accepts all change points detected with the smallest window h1 (black diamonds). Among the change
points detected by h2 (gray), only the first one is rejected because its h2-neighborhood contains an
accepted change point. Among the change points detected by the largest window (light gray), only
the second one is added to the list of accepted change points because its h3-neighborhood does not
contain formerly accepted change points. Diamonds indicate finally accepted change points.

4.2. Multiple filter algorithm (MFA). We now propose a multiple filter algo-
rithm with which the results of the SFA of different windows can be combined.
This integrates the advantages of multiple time scales because large windows are
more likely to detect small rate changes and small windows can be more sensitive
to fast changes. In particular, using only a large window of size h, the SFA can
fail or mislocate change points c1, c2 with distance smaller than h. This suggests
to prefer change point estimates of smaller windows.

The MFA can be summarized as follows (Figure 6C). Let H = {h1, h2, . . . , hn}
be the set of involved windows, with h1 < · · · < hn. Derive the threshold Q for
this set H as described in Section 3. For all hi , detect change points via SFA.
Let Ĉi := {ĉi

1, . . . , ĉ
i
ki
} denote the set of change points estimated with window hi .

Then, define a set of accepted change points Ĉ, which is first set to Ĉ := Ĉ1, that
is, all change points estimated by the smallest window. Among the change points
Ĉ2 associated with h2, only those are added to Ĉ whose h2-neighborhood does not
include a formerly accepted change point c1

j ∈ Ĉ. The remaining estimates c2
j ∈ Ĉ2

are assumed to be affected by change points that have already been estimated and
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FIG. 7. Application of the MFT to a simulated point process on (0,700] with three change points
at c1 = 150, c2 = 180 and c3 = 500. The life time distributions were exp(8) in [0, c1], �(2,26)

in [c1, c2], exp(18) in [c2, c3] and �(2,33) in [c3, T ], corresponding to rates of 8,13,18 and
16.5 in the respective intervals. (A) Gray curves indicate the processes (Rh,t ) for window sizes
h ∈ H = {10,25,50,75,100,125,150}. The simulated threshold Q = 2.75 is indicated by the
dashed line. The estimated change points ĉ1 = 149, ĉ2 = 182, ĉ3 = 511 are marked by diamonds.
As indicated by the grayscale of the diamonds, each change point was detected by a different window
size. (B) Rate histogram of the underlying point process with real (gray) and estimated (dashed) rate
profiles.

therefore omitted in the further analysis. This procedure is iterated by successively
increasing the window sizes up to hn.

4.3. Application to a simulated point process. Figure 7 illustrates the appli-
cation of the MFA to a simulated point process with three change points. All
change points are detected by the MFA, and the estimated change points corre-
spond closely to the true change points. Consequently, the rate estimates agree
closely with the true rates.

Figure 7 also shows that different window sizes were used for the detection of
different change points: while the first change point was detected by the smallest
window h1 = 10, the second was detected by h2 = 25 and the third by h3 = 150.
This supports the idea of combining several windows: if change points are close
together (e.g., c1 and c2 in Figure 7), small windows are preferable because large
windows tend to be affected by both change points, and thus lead to imprecise
estimates. On the other hand, small rate changes require large windows, which
have a higher test power. Indeed, none of the individual windows could detect all
change points (data not shown).

4.4. Choosing the window set H . The previous example and the simulations
that follow in Section 5.2 show that multiple filters can increase the probability
to detect change points. This is because rate changes in fast and slow time scales
can be detected simultaneously using multiple windows. However, using too many
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FIG. 8. Dependence of Q on H and T for α = 5%. (A) For SFA, the threshold Q basically does
not depend on T or h (connected points at about Q ≈ 1.8, color codes for T as in B). Choosing
h1 = 10, the second window h2 increases Q to about 2.23, with a stronger increase for larger
h2 (points at about Q = 2.2, color codes for T as in B). (B) Adding more windows from the set
H = {10,25,50,75,100,125,150} leads to only slight increases in Q. Dependence on the recording
time T is weak. 10,000 simulations were used to calculate the empirical mean and standard deviation
for the standardization of the limit process (Lh,t )t [equation (14)].

windows increases the threshold Q applied for change point detection, which can
also decrease the test power in certain settings. Therefore, we discuss here in which
way Q depends on the window set H and give recommendations for the choice
of H .

Because Q depends only on T , H and α, we investigate its dependency on T

and H for α = 5%. Figure 8A shows that if only one window is used, the single
window threshold Q does essentially not depend on h or T . Because the test statis-
tic is normed for every h [equation (12)], any window size h and any simulated
time T results in a threshold of about Q ≈ 1.8. In order to study the influence of
one additional window on Q, we fix h1 = 10 and illustrate the double window
threshold Q for h2 ∈ {11,12, . . . ,15,20, . . . ,150} in Figure 8A. The threshold Q

increases to about 2.23. Smaller h2 close to h1 = 10 lead to smaller increases than
larger windows because the processes (Rh1,t )t and (Rh2,t )t show higher correlation
if |h1 − h2| is small. In Figure 8B we successively add windows of increasing size
to the set H7 = {10,25,50,75,100,125,150}. The increase in Q from H1 = {h1}
to H2 = {h1, h2} is about the same as from H2 to H7. Similarly, adding more win-
dows between 10 and 150 would only slightly increase Q (data not shown).

Because additional windows have minor impact on Q, we recommend the fol-
lowing window choice: the smallest window h1 should be restricted such that the



2042 M. MESSER ET AL.

asymptotic significance level is approximately kept. To this end, Section 5.1.1 in-
vestigates the empirical significance level for stationary Gamma processes with
different regularity and rate parameters. The maximal window hmax is only lim-
ited by T/2. The choice of the grid between h1 and hmax can be guided by the
following principles: choosing a narrow grid can detect change points in a broad
class of time scales. However, it will also slightly increase the threshold Q, and
thus reduce the probability to detect change points at all. Additionally, it increases
the computational effort required for the performance of the test. Here, we study
the performance for the window set H = {10,25,50,75,100,125,150}.

5. Evaluation of the MFT.

5.1. Practical applicability of the MFT.

5.1.1. Empirical significance level in simulations. As discussed in Sec-
tion 3.3, the proposed MFT is an asymptotic procedure, providing asymptotic sig-
nificance level α. Therefore, we use simulations in order to investigate under which
conditions the asymptotic significance level is kept for small rates in the finite set-
ting. We simulate rate stationary renewal processes with Gamma-distributed life
times in order to investigate the empirical significance level of the asymptotic
MFT. We focus on the parameters T = 700, H = {10,25,50,75,100,125,150}
and an asymptotic significance level α = 5%.

Figure 9 shows the empirical significance level obtained in 10,000 simulations
as a function of the mean (μ) and standard deviation (σ ) of the independent and
Gamma-distributed life times. Under high irregularity, that is, if σ is high, the test
remains conservative. With increasing regularity, the rate required to obtain an em-
pirical significance level of 5% is increasing. For low rates and high regularity, the
percentage of false positives of the MFT tends to be slightly larger than the asymp-
totic significance level. In the very extreme case of almost perfect regularity and

FIG. 9. Simulated rejection probability of the MFT for processes with i.i.d. Gamma-distributed life
times (T = 700, H = {10,25,50,75,100,125,150}, 10,000 simulations). For high irregularity, the
test tends to be conservative. With increasing regularity, the rate required to keep the asymptotic 5%
significance level increases. μ and σ denote the mean and standard deviation of life times.
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low rates (white area in the bottom right corner), the MFT should not be applied
because the empirical significance level is largely enhanced. In all but these ex-
treme parameter combinations, the detection of more than one change point was
very unlikely under the null hypothesis (detection of at least 2 change points in
<1%, of at least 3 change points in <0.1% of 1000 simulations, data not shown).
Thus, the detection of more than one change point can almost always be considered
a strong indication of rate nonstationarity.

In summary, one needs to keep in mind for practical applications that the error
rate can be slightly enhanced for regular processes with low rates. However, a false
estimation of a nonexisting change point is not problematic if one primarily intends
to split up the time series into rate stationary sections. If the significance level
needs to be kept strictly even for small rates, the window size needs to be increased.
This has the same effect as increasing the rate because the approximation of (Gh,t )t
to the limit process (Lh,t )t [equation (3.1)] mainly depends on the mean number
of events per window.

5.1.2. Comparison of the MFT to a bootstrap test. The preceding section
shows that the MFT should be treated carefully in situations with limited rates
and high regularity because the asymptotic significance level is not precisely kept.
Therefore, one might consider deriving Q with a bootstrap procedure, as sug-
gested, for example, by Hušková and Slabý (2001). The distribution of M can
then be derived directly by permutation of the life times and recalculation of M

in the permuted process. By construction, this procedure yields an empirical sig-
nificance level of 5% if the underlying process is a classical, stationary renewal
process. However, it has two shortcomings: first, it requires high computational ef-
fort because the process (Rh,t )t [equation (15)] needs to be recalculated for every
realization. Second, permutation can only be applied if the life times are indepen-
dent and identically distributed.

Therefore, we compare the MFT with a bootstrap test when the underlying
process does not comply with the assumption of independent and identically dis-
tributed life times, that is, when the underlying process is a rate stationary RPVV
but not a classical renewal process. To this end, we simulate rate stationary pro-
cesses with Gamma-distributed life times. The variance of life times changes ev-
ery g/2 life times, alternating between two values. As shown in Section 2.2 (Fig-
ure 2C), the resulting process is an RPVV.

In order to reduce computational effort for the bootstrap test, we replace Rh,t

by only computing |Nri(t, h)−Nle(t, h)|, the absolute difference of the number of
events in the left and right windows, for every h and t , and derive the maximum
of these values as a test statistic. The 95%-quantile of the distribution of this test
statistic is then estimated in permutations, and the null hypothesis is rejected if the
maximum is larger than its estimated quantile.

Table 1 shows the resulting significance levels for the MFT and the bootstrap
procedure. The MFT roughly keeps the 5% significance level in all simulated sce-
narios, whereas the bootstrap test rejects the null hypothesis in about 3%, 7% and
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TABLE 1
Comparison of the significance level of the MFT and a bootstrap test

for simulated RPVVs. Here, the distribution of life times changes
every g/2 life times from �(0.5,15) to �(5,150), leading to

alternations between regular and irregular patterns. The grid size
is (A) g = 5000, (B) g = 10,000, (C) g = 20,000. 1000 simulations

with H = {10,25,50,75,100,125,150} and T = 700 at level
α = 5% were performed in all cases, 1000 permutations were used

for the construction of the bootstrap threshold

�(0.5,15) � �(5,150) MFT Bootstrap

(A) g = 5000 (5.9 ± 0.7)% (3.0 ± 0.5)%
(B) g = 10,000 (4.7 ± 0.7)% (6.6 ± 0.8)%
(C) g = 20,000 (5.5 ± 0.7)% (15.1 ± 1.1)%

15% of the simulations. This indicates, as expected, that permutation tests are not
necessarily robust against changes in the variance of life times and should therefore
not be applied under such conditions.

5.1.3. True change points do not increase the frequency of falsely detected
change points. The previous paragraphs show that the proposed MFT keeps the
asymptotic significance level also in empirical point processes with a finite time
horizon, that is, rejecting the null hypothesis of stationary rate with probability
about α. In contrast, the proposed MFA for change point detection is a heuris-
tic procedure that is not associated with a specific significance level. However, as
mentioned in Section 4.1, the SFA is a common method which yields consistent
change point estimates under mild conditions in Gaussian models [Hušková and
Slabý (2001)]. In addition, we explain here why the MFA, after taking into account
the typical number of falsely detected change points (false positives, FP), should
not overestimate the number of true change points. More precisely, a true change
point does not increase the number of FPs. This is because a true change point can
only affect its h-neighborhood, which is cut out in the SFA after detection. Outside
this h-neighborhood, the remaining process should resemble a process derived un-
der the null hypothesis, and thus produce about as many FPs as under the null
hypothesis with the same threshold Q. For the MFA with multiple windows, a
similar argument holds because change points are only added when no accepted
change point lies within their h-neighborhood (cf. Section 4.2). Thus, one change
point should usually lead to at most one detection.

In order to support these considerations, Table 2 shows simulation results of
Gamma processes of length T = 700 with a change point at c = 350 in which we
investigate the number of correctly and of falsely detected change points. A change
point is called correctly detected if its h-neighborhood overlaps a true change
point, whereas h corresponds to the window used for detection in the MFA. Rate
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TABLE 2
Simulation results of �(2, λ)-processes of length T = 700 with a rate change at c = 350. Life times

are �(2,24)-distributed on [0,350) and �(2, λi)-distributed on [350,700] with
λi ∈ {25,26,28,30}. The respective rates are given on the left, 10,000 simulations per scenario

Rates Detection prob. Mean number of FPs % of processes
of true cp per process with ≥1 FP

12 � 12.5 0.119 0.051 4.9
12 � 13 0.653 0.048 4.6
12 � 14 0.996 0.050 4.9
12 � 15 0.999 0.048 4.6

changes of different heights are simulated in order to account for different detec-
tion probabilities of the inserted change point (first column). In this setting, the
MFA does not falsely detect more change points than under the null hypothesis.
The number of FPs (second column) and the number of processes with at least one
falsely detected change point (third column) even decrease slightly because after
cutting h-neighborhoods, the remaining process is shorter, and thus less likely to
cross the threshold by chance.

5.2. Multiple filters increase the detection probability. We have already seen
in the example in Section 4.3 that multiple windows can increase the probability
to detect a change point. One explanation is that the simultaneous use of multiple
filters avoids the problem of choosing the most appropriate single window size.
But, more importantly, the combination of multiple filters is advantageous because
large windows have a higher detection probability, whereas small windows can be
more precise or sensitive to fast changes. Accordingly, we show here in simulations
that the MFA can even detect more change points than the best single window.

In order to quantify this effect, we investigate the following random change
point model. We simulate processes � on (0,700] in which the rate fluctuates be-
tween four different values. The model includes rate changes of different size and
in different time scales. Each process � is a piecewise composition of four in-
dependent renewal processes �1, . . . ,�4 with Gamma-distributed life times with
event rates μ−1

1 = 14, μ−1
2 = 12, μ−1

3 = 10 and μ−1
4 = 9. The change points for

switches between the processes �1 to �4 are given by a stationary renewal pro-
cess �c on (0, T ] with change points c1, . . . , c|�c|. In order to simulate change
points in different time scales, the life times of �c are uniformly distributed on
[0,100]. The observed process � is constructed from �1, . . . ,�4 as follows: set
�||(0,c1] := �1|(0,c1], that is, start in process �1. At the first change point c1 choose
independently and uniformly a process from {�2,�3,�4} and jump into this pro-
cess, such that, for example, �|(c1,c2] = �2|(c1,c2]. Third, jump back deterministi-
cally to �1 at c2, that is, set �|(c2,c3] = �1|(c2,c3]. Repeat the procedure, choosing
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FIG. 10. Multiple filtering increases detection rate. (A) A random realization of the rate of
a process � used in the simulations. Intervals between change points are independent and
unif(0,100]-distributed. Simulated processes �1, . . . ,�4 have independent and �(2, λi)-distributed
life times with rate parameters λ1 = 28, λ2 = 24, λ3 = 20 and λ4 = 18, leading to rates μ−1

1 = 14,

μ−1
2 = 12, μ−1

3 = 10 and μ−1
4 = 9 (indicated on the left). (B) Mean relative frequency of correct

change point detections in simulated processes as a function of the chosen window size. The points
represent the mean percentages of correct detections derived in 1000 simulations using SFA. The
curve shows a filtered average. The window size with maximal detection probability of about 0.59 is
about h̃ ≈ 28. The horizontal line marks the mean relative detection probability of about 0.66 for a
set of multiple windows H = {10,15, . . . ,150}.

uniformly a process from {�2,�3,�4} at odd-valued change points and returning
to �1 at even-valued change points. An example of the rate of the resulting process
� is shown in Figure 10A.

Figure 10B indicates the percentage of correctly detected change points in 1000
simulations of the described processes. A change point is called correctly detected
if its h-neighborhood overlaps a true change point, whereas h corresponds to the
window used for detection in the MFA. In order to identify the best individual
window, the detection rate for the SFA is shown as a function of the window size
h ∈ {10,11, . . . ,100}. The percentage of correct detections is maximal at about
59% for a window size of about h̃ = 28. Using the MFA with a set of multiple
windows chosen here arbitrarily as H = {10,15, . . . ,150}, the correct detection
rate increases to about 66%.

6. Application to spike train recordings.

6.1. Data analysis. In this section we apply the proposed MFT to a data set
of 72 empirical spike train recordings that were reported partly in Schiemann et al.
(2012). The recording time T was 540–900 seconds per spike train, and the mean
firing rate was about 6 spikes per second. The significance level was set to α = 5%.
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In order to choose the set of windows, we use the results from Section 5.1.1,
Figure 9. Briefly, a mean number of about 100–200 events in the smallest window
is required in order to keep the asymptotic significance level for point processes
with medium irregularity. Therefore, we choose a minimal window of h1 = 25 for
a mean rate of 6 Hz and H = {25,50,75,100,125,150}.

Figure 11 shows two spike train analyses in which multiple change points have
been detected. As indicated by the different grayscales, different window sizes
were used for change point estimation. From the set of 72 spike trains, 62 were
identified as nonstationary. In 50 spike trains, at least two change points were
detected, and in 37 spike trains, more than one window was necessary for the de-
tection of these change points. Across all spike trains, the mean rate of detected
change points was about 0.32 per minute. The lengths of intervals between de-
tected change points followed a right-skewed distribution with median 75 s and

FIG. 11. Application of the MFT to two spike train recordings; T = 720, H = {25,50,75,

100,125,150}, α = 5%. (A) and (D) The scaled processes (Rh,t )t . Grayscales of the different win-
dow sizes are indicated on the right. The dashed line marks the threshold Q, the detected change
points are marked by diamonds. In spike train 1, 10 change points are detected with two different
windows; in spike train 2, 5 change points are detected with four different windows. (B) and (E) Rate
histograms of the spike trains. Black step function indicates estimated firing rate. (C) and (F) Short
sections of the spike trains. Arrows mark the estimated change points.
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FIG. 12. Examples of data analyses applying the MFT. (A) Sections of spike train 1 (above) and
2 (below) indicating changes in the variance of the life times. Left parts of illustrated sections show
higher irregularity than right parts. (B) Application of Poisson Surprise (PS) and Rank Surprise (RS)
algorithms to spike train 1, using standard parameters (only sections with surprise value S > 10
marked as bursts in both methods). Horizontal lines indicate bursts identified with PS and RS meth-
ods, respectively. Because sections with high rate (left) and low rate (right) are jointly analyzed,
high-rate sections are identified as long bursts. (C) Analyzing serial correlations globally yields spu-
rious positive rank correlation (left), whereas serial correlations within different sections (right, two
sections indicated by point characters) can be slightly negative and nonsignificant.

quartiles q1 = 44 s and q3 = 123 s. The height of a detected rate change, measured
as the difference of estimated rates μ̂−1

1 and μ̂−1
2 at the change point in relation

to their mean, |μ̂−1
1 − μ̂−1

2 |/(0.5(μ̂−1
1 + μ̂−1

2 )), ranged between about 0.5% and
173%. As one can see from the illustrations of the rate profiles in Figure 11B and E,
the estimated rate profile corresponds well to a rate estimate that is obtained from
visual inspection. Figure 12A illustrates that both spike trains show varying vari-
ance in their inter-spike intervals.

The identification of changes in the firing rate within neuronal spike trains
can facilitate their interpretation and avoid pitfalls. Most importantly, the detected
change points can be used for the separation of a spike train into sections of vir-
tually stationary firing rate. This is important for multiple analysis techniques that
assume rate stationarity for the description and statistical analysis of single or
multiple spike trains, for example, techniques that study temporal coordination
between processes [e.g., Grün, Diesmann and Aertsen (2002), Schneider (2008),
Staude, Rotter and Grün (2008)]. Here, we show two simple analysis examples for
individual spike trains.

First, variability of variance in the inter-spike intervals in dopamine (DA) neu-
rons is often expressed as a switching of firing between a low-rate single spike
background pattern and short events with relatively many spikes, so-called “bursts”
(cf. also Figure 12A, bottom spike train: higher irregularity in the left part). For
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DA neurons, burst firing has been shown to possess important behavioral signif-
icance, as it is coupled to an increase of DA release [Gonon (1988), Redgrave
et al. (2010), Schiemann et al. (2012)]. Such bursts usually span very short periods
with up to about 10 spikes and can thus not be detected with the asymptotic MFT,
which requires about 100–200 spikes per window. However, the MFT can be an
essential preprocessing step in burst detection when existing methods require rate
stationarity. In two common methods for burst detection, bursts are described as
short periods with “surprisingly many” spikes [Gourévitch and Eggermont (2007),
Legéndy and Salcman (1985)]. These methods, called Poisson Surprise (PS) and
Rank Surprise (RS), assume rate stationary Poisson or renewal processes and iden-
tify the “surprising” nature of a burst by comparison to the overall mean life time.
If periods of different rates are jointly analyzed, the number of spikes in high-rate
sections that are assigned to bursts can be much larger than when applying the al-
gorithms to separate sections with approximately stationary firing rate. Figure 12B
illustrates this effect by exemplary application of PS and RS burst detection al-
gorithms to spike train 1, for which visual inspection indicates nonbursty firing
activity (see also Figures 11C, 12A, top panel). The horizontal lines in Figure 12B
indicated by PS and RS indicate the bursts identified by applying the two methods
to the whole spike train. Almost all spikes in the high-rate section are assigned
to long “bursts” consisting of 50 and more spikes (in illustrated sections: PS: one
long burst with 160 spikes, RS: three long bursts with 18, 54 and 38 spikes). This
is, however, inconsistent with the assumed physiological function and short dura-
tion of DA bursts. In agreement with these considerations, practically no bursts are
identified in spike train 1 when applying the MFT first and separately analyzing
the sections with different rates (PS: no bursts, RS: one burst with three spikes,
not in illustrated section). Thus, by separating between multiple longer sections of
different and unknown firing rates, the present algorithm for change point detec-
tion complements burst detection methods which aim at separating the two states
“bursty” and “nonbursty” [e.g., Tokdar et al. (2010)].

Second, rate changes might cause potential misinterpretations of serial correla-
tions of life times, which has also been discussed in the context of neuronal spike
train analysis by Farkhooi, Strube-Bloss and Nawrot (2009). Consider a renewal
process consisting of two periods with different rates. In each period, correlation
between adjacent life times is zero, but in the high-rate section, short life times
follow short life times, and in the low-rate section, long life times follow long life
times. This induces a positive correlation in the global analysis. A similar result
is obtained in spike train 1, in which we exemplarily analyze the correlation be-
tween adjacent life times with Kendall’s rank correlation τ (Figure 12C). A global
analysis falsely indicates a significant positive correlation (left panel, τ = 0.13,
p < 0.001) due to rate changes, whereas most correlations in individual sections
are slightly negative and not significantly different from zero. The right part of Fig-
ure 12C shows two separate data pieces with different rates and slightly negative
correlations and illustrates how the joint analysis of such data sets can produce a
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spurious positive global correlation. Because serial correlations may reflect intrin-
sic neuronal properties [Benda and Herz (2003)], the application of the MFT as a
preprocessing step can also be helpful in this context.

Finally, apart from improving statistical analysis by detecting periods of roughly
constant rate, the detected rate changes themselves might contain important infor-
mation. For example, in addition to bursts, periods of very low rate (“pauses,” see,
e.g., Figure 11F) may also have behavioral relevance. A recent study showed that
the duration of these periods in DA neurons can be associated with the expression
of fear [Mileykovskiy and Morales (2011)], and a modeling study demonstrated
that synchronized pauses in spiking activity of many DA neurons can reduce in-
formation transmission in DA type 2 receptors [Dreyer et al. (2010)]. In addition
to pauses, more complex change point sequences, such as multiple successive in-
creases in the firing rate, could reflect specific prolonged changes in the typical
DA activity that have been described recently [Howe et al. (2013)].

6.2. Practical issues and R-code. In practice, the described procedures can be
applied easily. Depending on a rough estimate of the overall rate and irregularity
of the process, one needs to choose the smallest window such that the asymptotic
properties are kept. One can then choose a set of windows up to the largest inter-
esting time scale. Then, the threshold Q can be estimated by repeated simulation
of the limit process (Lh,t )t [equation (14)].

In the supplementary material Messer et al. (2014) we provide an R code that
performs these steps efficiently within one single routine and returns an illustration
comparable to Figure 11. It also suggests a set of window sizes for a given time
series of events. The code can be applied easily, using as input only a time series
of events and (optional) a significance level and a set of windows, and returning a
set of estimated change points.

7. Discussion. In this paper we have developed a multiple filter technique for
the detection of change points in the event rate of time series. Motivated by the
problem that rate stationarity of the underlying processes is crucial to many statis-
tical analysis techniques, the multiple filter test (MFT) tests the null hypothesis of
rate stationarity against the alternative of finitely many change points. In a second
step, a multiple filter algorithm (MFA) identifies and locates an unspecified num-
ber of change points in the rate of the process. In addition, it includes a graphical
representation in which strong deviations from rate stationarity can be visualized.

As a first extension to existent approaches, we introduce a general class of point
processes called renewal processes with varying variance (RPVV). In addition to
standard renewal assumptions reflected, for example, in Poisson or Gamma pro-
cesses, an RPVV assumes that the variance of life times can show a certain degree
of variability, which includes, for example, mixtures of Gamma processes in the
simplest case. We propose RPVVs in order to account for the high variability of



A MULTIPLE FILTER TEST 2051

patterns observed empirically and to allow for the detection of rate changes irre-
spective of variance changes, which may be analyzed in subsequent, separate steps
when rate changes have been identified.

In order to test the null hypothesis of rate stationarity against the alternative of
finitely many change points, we extend a standard filtered derivative method which
compares the number of events in adjacent windows in a moving window manner.
Due to the general RPVV assumptions, statistical significance of deviations from
rate stationarity cannot be tested by standard bootstrap approaches because the life
times are not necessarily identically distributed. Therefore, we extend an asymp-
totic result of Steinebach and Eastwood (1995) to RPVVs and show that the limit
(Lh,t )t of the filtered derivative process is a 2h-dependent and zero mean Gaus-
sian process. Notably, this limit (Lh,t )t is independent of the underlying RPVV
parameters such as the rate or the variances. By using the limit process, thresholds
for testing the statistical significance of deviations from rate stationarity can be
obtained by simulation.

As a second extension to existent approaches, we combine multiple window
sizes h ∈ H in order to detect rate changes at fast and slow time scales simultane-
ously. In the present asymptotic setting, multiple window sizes can be combined
easily because the set of processes {(Gh,t )t |h ∈ H } depends on one underlying
RPVV. In the same way, the set of limit processes {(Lh,t )t |h ∈ H } depends on one
underlying Brownian motion. In addition, the use of multiple windows requires
two considerations: first, the statistical properties of (Lh,t )t depend on the window
size h. Therefore, we standardize the processes in order to give similar impact to
every window size h. Second, change point detection requires an extended algo-
rithm that combines the change points detected by multiple windows. Our multi-
ple filter algorithm is based on the idea of preferring change points estimated by
smaller windows to those estimated by larger windows. In a random change point
model with multiple time scales that we used here for simulation, the MFA could
detect more rate changes than the best individual window.

The presented methods can be particularly relevant for practical applications.
First, the general assumptions of RPVVs cover a high variability of patterns ob-
served in empirical time series. Second, multiple filtering can take into account
that rate changes in empirical time series can occur at fast and slow time scales si-
multaneously. In practice, one should keep in mind that the MFA always estimates
a step function even when applied to a rate profile with gradual changes, and that
very short time scales, for example, bursts with a few spikes, cannot be investi-
gated by this asymptotic method. Third, in order to enable an easy application of
the MFA, we provide an R code that includes all necessary steps within one single
routine. It can be computed efficiently, and it also includes a graphical illustration
of the resulting filtered derivative processes, in which large values indicate devia-
tions from rate stationarity. In an exemplary application of the MFA to single unit
neuronal recordings, we illustrate that the detection of rate changes can be impor-
tant for the understanding of neuronal information processing and show that the
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MFA can be a useful preprocessing step for data analysis techniques that assume
rate stationarity.

In summary, we believe that the present multiple filter technique can be useful
for the estimation of change points in the event rate of time series of events. It may
be used as a universal preprocessing step whenever statistical analysis methods are
sensitive to deviations from rate stationarity.

APPENDIX

In this Appendix we prove Theorem 3.1. Main ingredients of this proof are
first the convergence of the normalized counting process (Nt)t≥0 which is shown
in Section A.2 (cf. Proposition A.6), and second the consistency of the estimator
(ŝ2)t∈τh

defined in (20). This is shown in Section A.3 (cf. Proposition A.13). First,
in Section A.1 elementary facts are collected which are later needed repeatedly
and for which we do not claim originality. The pieces are finally put together in
Section A.4 to prove Theorem 3.1.

The following notation is used: for τ > 0 the set of all real-valued continuous
functions on [0, τ ] is denoted by C[0, τ ] and the set of all càdlàg functions by
D[0, τ ]. We abbreviate the metric induced by the supremum norm by d‖·‖, the
Skorokhod metric on D[0, τ ] by dSK. Analogously, we define C[0,∞) and use
the metric d‖·‖ which induces the topology of compact convergence. Further, we
use D[0,∞) and D[h,T − h] with dSK. Note that convergence in (D[0,∞), d‖·‖)
implies convergence in (D[0,∞), dSK).

A.1. Technical preliminaries. The lemmas in this subsection have different
assumptions on the renewal processes occurring. However, note that the assump-
tions of all lemmas in this subsection are fulfilled for an RPVV as in Definition 2.1.

First, we want to assure that the number of events Nt in an RPVV tends to
infinity almost surely (a.s.), while explosion is avoided.

LEMMA A.1. Let {ξi}i≥1 be a sequence of independent, positive, integrable
random variables, interpreted as the life times of a point process on the positive
line, and (Nt )t≥0 the associated counting process as in (1). Then we have almost
surely

Nt → ∞ (t → ∞).(27)

If the {ξi}i≥1 are square integrable and satisfying conditions (2) and (5), then for
all t ≥ 0 we have almost surely

Nt < ∞.(28)

PROOF. For (27) note that Nt is increasing in t . For all fixed k > 0 we have

{Nn < k} =
{

k∑
i=1

ξi > n

}
↓ ⋂

n≥1

{
k∑

i=1

ξi > n

}
(n → ∞).
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Since the ξi are integrable, we have P(ξi < ∞) = 1. Continuity from above (ap-
plied twice) yields

P

( ⋂
n∈N

{Nn < k}
)

= lim
n→∞P

(
k∑

i=1

ξi > n

)
≤ lim

n→∞P

(
k⋃

i=1

{
ξi >

n

k

})

≤ lim
n→∞

k∑
i=1

P

(
ξi >

n

k

)
= 0.

This implies (27).
For (28) first note that (2) and (5) imply Kolmogorov’s conditions (7)–(9) with

ξ2
i replaced by ξi . Hence, we have the SLLN for {ξi}i≥1, that is, (1/n)

∑n
i=1 ξi →

μ a.s. as n → ∞. This implies
∑n

i=1 ξi → ∞ a.s. and

P(Nt < ∞) = P

( ∞⋃
n=1

{
n∑

i=1

ξi > t

})
= P

(
lim

n→∞
n∑

i=1

ξi > t

)
= 1.

�

Now we show that the number of events in successively increased windows,
scaled with the widths of the windows, tends to the stationary rate 1/μ almost
surely.

LEMMA A.2. Let {ξi}i≥1 be a sequence of independent, positive, square-
integrable random variables satisfying conditions (2) and (5), which are inter-
preted as the life times of a point process on the positive line, and (Nt )t≥0 the
associated counting process as in (1). Then for all 0 ≤ s < t we have, as n → ∞,
almost surely

Nnt − Nns

n(t − s)
−→ 1

μ
.

PROOF. As in the proof of Lemma A.1, conditions (2) and (5) imply the SLLN
for {ξi}i≥1, that is, with Sn = ∑n

i=1 ξi for n ≥ 1, we have Sn/n → μ a.s. for n →
∞. By Lemma A.1 we have Nt → ∞ a.s. as t → ∞, hence, SNt /Nt → μ a.s. as
t → ∞. Now, for all t ≥ 0 we find SNt ≤ t ≤ SNt+1, so that (for all t sufficiently
large such that Nt ≥ 1)

SNt

Nt

≤ t

Nt

≤ SNt+1

Nt + 1

Nt + 1

Nt

.

Since the left-hand side and the right-hand side tend to μ a.s., we obtain Nt/t →
1/μ a.s. as t → ∞. This implies, as n → ∞, almost surely

Nnt − Nns

n(t − s)
= t

t − s

Nnt

nt
− s

t − s

Nns

ns
−→ t

t − s

1

μ
− s

t − s

1

μ
= 1

μ
. �

The next result will secure that the events in the different windows will evolve
properly in time.
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LEMMA A.3. Let (Nt)t≥0 be a counting process with N0 = 0 such that for
some μ > 0 and for all 0 ≤ s < t we have Nnt − Nns ∼ n(t − s)/μ almost surely.
Further, let V1,V2, . . . be a sequence of independent random variables that satis-
fies the SLLN. Then for all 0 ≤ s < t we have, as n → ∞, almost surely

1

Nnt − Nns

Nnt∑
i=Nns+1

Vi −→ c.

PROOF. Note that choosing s = 0 in the statement of the lemma implies Nt ∼
t/μ a.s., such that we find Nt → ∞ as t → ∞. Then we calculate (for Nns > 0,
the case Nns = 0 being similar)

1

Nnt

Nnt∑
i=1

Vi = Nns

Nnt

1

Nns

Nns∑
i=1

Vi + Nnt − Nns

Nnt

1

Nnt − Nns

Nnt∑
i=Nns+1

Vi,

so that, for n → ∞,

1

Nnt − Nns

Nnt∑
i=Nns+1

Vi

= Nnt

Nnt − Nns

(
1

Nnt

Nnt∑
i=1

Vi − Nns

Nnt

1

Nns

Nns∑
i=1

Vi

)

−→ t

t − s

(
c − s

t
c

)
= c a.s. �

COROLLARY A.4. Let (vi)i≥1 be a sequence in R with (1/n)
∑n

i=1 vi → c as
n → ∞. Then for all 0 ≤ s < t , as n → ∞, we have

1

n(t − s)

�nt�∑
i=�ns�+1

vi → c.

Finally, we provide a result related to Lemma A.3 for the Lindeberg condi-
tion which will be used below to apply the Lindeberg–Feller CLT for triangular
schemes.

LEMMA A.5. Let {ξi}i≥1 be a sequence of independent, square-integrable
random variables satisfying conditions (2), (3) and (4). Then, for all 0 ≤ s < t

and all ε > 0 we have, as n → ∞,

1

s2
n(s, t)

�nt�∑
i=�ns�+1

E
[
(ξi − μ)21{(ξi−μ)2>ε2s2

n(s,t)}
] −→ 0,

where s2
n(s, t) := ∑�nt�

i=�ns�+1 Var(ξi).
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PROOF. Let 0 ≤ s < t . Condition (3) and Corollary A.4 imply, as n → ∞,

s2
n(s, t) ∼ (t − s)σ 2n ∼ t − s

t

�nt�∑
i=1

Var(ξi).

For ε > 0 set η := ε
√

(t − s)/(2t). It follows the existence of an element n0 =
n0(s, t) ∈ N so that for all n > n0 and an appropriate null sequence o(1) we have

ε2s2
n(s, t) = (

1 + o(1)
)
ε2 t − s

t

�nt�∑
i=1

Var(ξi) > η2
�nt�∑
i=1

Var(ξi).

Thus, for n > n0 we obtain

1

s2
n(s, t)

�nt�∑
i=�ns�+1

E
[
(ξi − μ)21{(ξi−μ)2>ε2s2

n(s,t)}
]

≤ (
1 + o(1)

) t

t − s

1∑�nt�
i=1 Var(ξi)

�nt�∑
i=1

E
[
(ξi − μ)21{(ξi−μ)2>ε2s2

n(s,t)}
]

≤ (
1 + o(1)

) t

t − s

1∑�nt�
i=1 Var(ξi)

�nt�∑
i=1

E
[
(ξi − μ)21{(ξi−μ)2>η2 ∑�nt�

i=1 Var(ξi )}
]
,

and the last expression tends to zero due to condition (4). �

A.2. Convergence of the rescaled counting process. In this subsection we
show that the counting process (Nt)t≥0 as in (1) properly normalized converges
weakly to a standard Brownian motion.

For an RPVV � with parameters μ and σ 2, the rescaled version of the corre-
sponding counting process (Nt )t≥0 is given by

Z
(n)
t := Nnt − nt/μ

√
n

√
σ 2/μ3

, t ≥ 0.(29)

The present subsection is devoted to the proof of this proposition:

PROPOSITION A.6. Let � be an RPVV with associated parameters μ and σ 2.
Further, let (Wt)t≥0 be a standard Brownian motion. Then, in (D[0,∞), dSK) we
have the convergence, as n → ∞, in distribution(

Z
(n)
t

)
t≥0

d−→ (Wt)t≥0.

For the proof of Proposition A.6 note that we have the following result from
Billingsley (1999), Theorem 14.6:



2056 M. MESSER ET AL.

PROPOSITION A.7. Let {ξi}i≥1 be a sequence of positive random variables
and (Wt)t≥0 be a standard Brownian motion. Assume the existence of positive
constants μ and σ , so that the rescaled process (X

(n)
t )t≥0 defined via

X
(n)
t := 1

σ
√

n

[nt]∑
i=1

(ξi − μ), t ≥ 0,(30)

converges weakly to (Wt)t≥0 in (D[0,∞), dSK). Then, the rescaled count-
ing process Z(n) := (Z

(n)
t )t≥0 defined in (29) converges weakly to (Wt)t≥0 in

(D[0,∞), dSK).

Since convergence in (D[0,∞), d‖·‖) implies convergence in (D[0,∞), dSK),
Proposition A.6 is proved if the conditions in Proposition A.7 are satisfied. Thus,
it remains to show the following proposition:

PROPOSITION A.8. Let � be an RPVV with associated parameters μ and σ 2

and corresponding life times {ξi}i≥1. For n = 1,2, . . . let the processes X(n) be
defined as in (30). Then it holds in (D[0,∞), d‖·‖) as n → ∞ that(

X
(n)
t

)
t≥0

d−→ (Wt)t≥0.

For the proof of Proposition A.8 we first show that (X
(n)
t )t∈[0,τ ] converges

weakly to (Wt)t∈[0,τ ] in (D[0, τ ], d‖·‖) for τ > 0, which is the subject of the fol-
lowing Lemma A.9. Afterward, we present the proof of Proposition A.8, which
then merely consists of extending the result of Lemma A.9 from the interval [0, τ ]
to [0,∞).

LEMMA A.9. Let � be an RPVV with associated parameters μ and σ 2 and
corresponding life times {ξi}i≥1 and τ > 0. For n = 1,2, . . . let the processes
(X

(n)
t )t≥0 be defined as in (30). Then it holds in (D[0, τ ], d‖·‖) as n → ∞ that(

X
(n)
t

)
t∈[0,τ ]

d−→ (Wt)t∈[0,τ ].

For the proof of Lemma A.9 we use the following construction of processes
which connects (X

(n)
t )t≥0 and its restriction (X

(n)
t )t∈[0,τ ] to the setting of RPVVs.

CONSTRUCTION A.10. Let � be an RPVV with corresponding parameters μ

and σ 2 and life times {ξi}i≥1. Let (X
(n)
t )t≥0 be constructed from {ξi}i≥1 as in (30).

For n = 1,2, . . . and τ > 0 let the restriction of time to [0, τ ] be denoted by Y (n) :=
(X(n))t∈[0,τ ]. Further denote the restriction of the standard Brownian motion as
Y = (Wt)t∈[0,τ ].
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To prepare the proof of Lemma A.9 note that we have the following Theo-
rem A.11 from Pollard (1984), Section V, Theorem 19 (where we adjust the time
interval appropriately):

THEOREM A.11. Let τ > 0 and Y,Y (1), Y (2), . . . be random elements of
(D[0, τ ], d‖·‖), each with independent life times. Suppose Y has continuous sam-

ple paths. Then, as n → ∞, we have Y (n) d−→ Y in (D[0, τ ], d‖·‖) if and only if

1. Y
(n)
0

d−→ Y0.

2. For all s, t with 0 ≤ s < t ≤ τ we have Y
(n)
t − Y

(n)
s

d−→ Yt − Ys .
3. For all ε > 0 there exist α > 0, β > 0 and n0 ∈ N, such that P(|Y (n)

t −
Y

(n)
s | < ε) ≥ β for all t, s ∈ [0, τ ] with 0 ≤ t − s < α and all n ≥ n0.

PROOF OF LEMMA A.9. We apply Theorem A.11 to our setting of RPVVs:
the Y,Y (1), Y (2), . . . from Construction A.10 have independent increments and Y

has continuous sample paths. We now verify that Y,Y (1), Y (2), . . . from Construc-
tion A.10 fulfill conditions 1–3 of Theorem A.11: condition 1 is clear. For condi-
tion 2 note that for all n ≥ 1 and all 0 ≤ s < t ≤ τ the increment Y

(n)
t − Y

(n)
s is the

sum of elements of a triangular scheme. The nth row of this scheme is of the type
{(ξisn

− μ)/σ
√

n, (ξisn+1 − μ)/σ
√

n, . . . , (ξitn
− μ)/σ

√
n}, hence, it consists of

independent random variables. For the variance of the increments we have

Var
(
Y

(n)
t − Y (n)

s

) = 1

nσ 2

�nt�∑
i=�ns�+1

Var(ξi)

= (t − s)
1

σ 2

1

n(t − s)

�nt�∑
i=�ns�+1

Var(ξi) −→ t − s,

for n → ∞, where we use condition (3) and Corollary A.4.
Due to condition (4) and Lemma A.5, the Lindeberg condition is satisfied for

the corresponding triangle scheme, so that the Lindeberg–Feller CLT implies, as
n → ∞,

Y
(n)
t − Y (n)

s

d−→ N (0, t − s).

Now, for condition 3 let ε > 0. For all 0 ≤ s < t ≤ τ Chebyshev’s inequality
implies

P
(∣∣Y (n)

t − Y (n)
s

∣∣ < ε
) = 1 − P

(∣∣Y (n)
t − Y (n)

s

∣∣ ≥ ε
) ≥ 1 − 1

ε2 Var
(
Y

(n)
t − Y (n)

s

)
= 1 − 1

ε2

(
(t − s)

1

σ 2

1

n(t − s)

�nt�∑
i=�ns�+1

Var(ξi)

)

≥ 1 − cε(t − s) =: β,
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where we use condition (5), so that the constant cε does not depend on s, t and n.
Now choose α > 0 sufficiently small such that β > 0.

Hence, all conditions of Theorem A.11 are satisfied, thus, we obtain that the
processes Y (n) converge weakly to Y = (Wt)t∈[0,τ ] in (D[0, τ ], d‖·‖) for n → ∞.

�

Finally, we extend Lemma A.9 to the time interval [0,∞) and hence prove
Proposition A.8. We use the following theorem from Pollard (1984), Section V,
Theorem 23:

THEOREM A.12. Let X,X(1),X(2), . . . be random elements of D[0,∞), with
X ∈ C a.s., for some separable set C ⊂ (D[0,∞), d‖·‖). Then, with convergence
n → ∞, the following statements are equivalent:

X(n) d−→ X in
(
D[0,∞), d‖·‖

)
,(31) (

X
(n)
t

)
t∈[0,τ ]

d−→ (Xt)t∈[0,τ ] in
(
D[0, τ ], d‖·‖

)
for all τ > 0.(32)

PROOF OF PROPOSITION A.8. We apply Theorem A.12: let X,X(n), Y and
Y (n) be derived from Construction A.10. Note that C[0,∞) is a closed, separa-
ble subset of (D[0,∞), d‖·‖); see Pollard (1984), page 108. Condition (32) has
been shown in Lemma A.9. Hence, Theorem A.12 applies and we obtain Proposi-
tion A.8. �

A.3. Constistency of the estimators. Here we show the almost sure uniform
convergence of our estimator (ŝ)t∈τh

defined in equation (20). This will be needed

for the proof of Theorem 3.1 to exchange the denominator of G
(n)
h,t with an empiri-

cal normalization by application of Slutsky’s theorem. Note that for an a.s. constant
stochastic process in D[h,T − h], say, with constant c, we write (c)t∈τh

.
We have the following consistency result for our estimator (ŝ)t∈τh

:

PROPOSITION A.13. Let � be an RPVV with corresponding parameters μ

and σ 2. Let T > 0, h ∈ (0, T /2] and ŝ2(t, h) be as defined in equation (20). Then
we have in (D[h,T − h], d‖·‖), as n → ∞, almost surely(

ŝ2(nt, nh)

n

)
t∈τh

−→
(

2hσ 2

μ3

)
t∈τh

.

PROOF. We show the uniform a.s. convergence of (μ̂le)t∈τh
and (μ̂ri)t∈τh

to
the constant μ in Lemma A.15, and the uniform a.s. convergence of (σ̂ 2

le)t∈τh

and (σ̂ 2
ri)t∈τh

to the constant σ 2 in Lemma A.16. Uniform a.s. convergence inter-
changes with sums in general and with products if the limits are constant. Hence,
Lemmas A.15 and A.16 and the form of the estimator ŝ2 in (20) imply the asser-
tion. �
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In the rest of the section we show the uniform a.s. convergence of the es-
timators (μ̂ri)t∈τh

and (σ̂ 2
ri)t∈τh

, respectively, (μ̂le)t∈τh
and (σ̂ 2

le)t∈τh
(see Lem-

mas A.15 and A.16), as needed in the latter proof. We start with a uniform a.s. re-
sult for the scaled counting process (Nt)t≥0.

LEMMA A.14. Let � be an RPVV with associated mean μ. Let T > 0, h ∈
(0, T /2]. Then we have in (D[h,T − h], d‖·‖) a.s. as n → ∞ that(

Nn(t+h) − Nnt

nh/μ

)
t∈τh

−→ (1)t∈τh
,(33)

(
Nnt − Nn(t−h)

nh/μ

)
t∈τh

−→ (1)t∈τh
.(34)

PROOF. We show the first statement (33). The second one (34) follows analo-
gously.

We even prove that in (D[0, T − h], d‖·‖) it holds a.s. as n → ∞ that(
Nn(t+h) − Nnt

nh/μ

)
t∈[0,T −h]

−→ (1)t∈[0,T −h].(35)

It is sufficient to show that almost surely

lim
n→∞ sup

t∈[0,T −h]
Nn(t+h) − Nnt

nh/μ
≤ 1 and

(36)

lim
n→∞ inf

t∈[0,T −h]
Nn(t+h) − Nnt

nh/μ
≥ 1.

In order to see the left inequality, we decompose the interval (0, nT ] into
equidistant sections of length nε. We use the notation∣∣�x�∣∣ := �x� + 1,

∣∣�x�∣∣ := �x� − 1, x > 0.(37)

Then each window (nt, n(t + h)] for t ∈ (h, T − h] is overlapped by one of the
finitely many windows (knε, knε +n|�h/ε�|ε] for k = 0,1, . . . , �T/ε�. Therefore,
we find for all ε > 0

sup
t∈[0,T −h]

Nn(t+h) − Nnt ≤ max
k=0,1,...,�T/ε�Nknε+n|�h/ε�|ε − Nknε.

Thus,

sup
t∈[0,T −h]

Nn(t+h) − Nnt

nh/μ

≤ max
k=0,1,...,�T/ε�

Nknε+n|�h/ε�|ε − Nknε+nh

nh/μ
+ max

k=0,1,...,�T/ε�
Nknε+nh − Nknε

nh/μ
.
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The first summand in the latter display becomes small, since n|�h/ε�|ε → nh for
ε ↓ 0. More precisely, for every δ > 0, we can appropriately choose ε > 0, so that

max
k=0,1,...,�T/ε�

Nknε+n|�h/ε�|ε − Nknε+nh

nh/μ
→ δ

h

a.s. as n → ∞. The second summand in the latter display converges to 1 a.s. for
n → ∞. This is because, due to Lemma A.2, the convergence in Lemma A.14 is
already known to hold a.s. for finitely many t ∈ [0, T − h]. Thus, we find a.s. that

lim
n→∞ sup

t∈[0,T −h]
Nn(t+h) − Nnt

nh/μ
≤ δ

h
+ 1.

Since δ > 0 is arbitrary, for small ε ↓ 0 we obtain a.s. that

lim
n→∞ sup

t∈[0,T −h]
Nn(t+h) − Nnt

nh/μ
≤ 1.

For the right inequality of (36), we use the same decomposition of the interval
(0, nT ] into equidistant sections of length nε. Then each window (nt, n(t +h)] for
t ∈ (h, T − h] overlaps one of the finitely many windows (knε, knε + n|�h/ε�|ε]
for k = 0,1, . . . , �(T −h)/ε�. One can apply arguments as for the proof of the left
inequality of (36) to find that a.s. for n → ∞

lim
n→∞ inf

t∈[0,T −h](Nn(t+h) − Nnt )/(nh/μ) ≥ 1.

The assertion follows. �

Next we show the uniform a.s. convergence of the estimators (μ̂ri)t∈τh
,

(μ̂le)t∈τh
, (σ̂ 2

ri)t∈τh
and (σ̂ 2

le)t∈τh
. We use that uniform a.s. convergence inter-

changes with sums in general and with products if the limits are constant. Recall
the notation

γ = γri(nt, nh) = {
ξi :Si, Si+1 ∈ (

nt, n(t + h)
]
, i = 1,2, . . .

}
= {ξi : i = Nnt + 2, . . . ,Nn(t+h)}.

We find our empirical quantities from equations (18) and (19) as

μ̂ri = μ̂ri(nt, nh) = 1

Nn(t+h) − Nnt − 1

Nn(t+h)∑
i=Nnt+2

ξi

(38)
if Nn(t+h) − Nnt > 1,

and μ̂ri = 0 otherwise, and

σ̂ 2
ri = σ̂ 2

ri(nt, nh) = 1

Nn(t+h) − Nnt − 2

Nn(t+h)∑
i=Nnt+2

(ξi − μ̂)2

(39)
if Nn(t+h) − Nnt > 2,

and σ̂ 2
ri = 0 otherwise.
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LEMMA A.15. Let � be an RPVV with associated mean μ. Let T > 0, h ∈
(0, T /2] and further μ̂le and μ̂ri be defined as in (18). Then it holds in (D[h,T −
h], d‖·‖) a.s. as n → ∞ that(

μ̂le(nt, nh)
)
t∈τh

−→ (μ)t∈τh
,

(
μ̂ri(nt, nh)

)
t∈τh

−→ (μ)t∈τh
.

PROOF. Conditions (2) and (5) imply Kolmogorov’s conditions (7)–(9)
with ξ2

i there replaced by ξi . Hence, we have the SLLN for {ξi}i≥1. Lem-
mas A.2 and A.3 imply the strong consistency for every fixed t , that is, almost
surely as n → ∞

μ̂ri(nt, nh) = 1

Nn(t+h) − Nnt − 1

Nn(t+h)∑
i=Nnt+2

ξi −→ μ.(40)

Applying Slutsky’s theorem with Lemma A.2, we obtain for every t a.s. as n → ∞
μ

nh

Nn(t+h)∑
i=Nnt+2

ξi −→ μ.(41)

In particular, the a.s. convergence holds for finitely many t simultaneously. In
order to show the uniform a.s. convergence of (μ̂ri(nt, nh)), we first show that in
(D[0, T − h], d‖·‖) it holds a.s. as n → ∞ that(

μ

nh

Nn(t+h)∑
i=Nnt+2

ξi

)
t∈[0,T −h]

−→ (μ)t∈[0,T −h].(42)

Note that as in the proof of Lemma A.14, for (42) it is sufficient to show that almost
surely

lim
n→∞ sup

t∈[0,T −h]
μ

nh

Nn(t+h)∑
i=Nnt+2

ξi ≤ μ and

(43)

lim
n→∞ inf

t∈[0,T −h]
μ

nh

Nn(t+h)∑
i=Nnt+2

ξi ≥ μ.

We use the same decomposition of the interval (0, nT ] into equidistant sections
of length nε as in the proof of Lemma A.14. In order to see the left inequality
of (43), let ε > 0. Since the life times are nonnegative, with the notation (37), we
can bound

sup
t∈[0,T −h]

μ

nh

Nn(t+h)∑
i=Nnt+2

ξi

≤ max
k=0,1,...,�T/ε�

μ

nh

Nknε+n|�h/ε�|ε∑
i=Nknε

ξi
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≤ max
k=0,1,...,�T/ε�

μ

nh

Nknε+n|�h/ε�|ε∑
i=Nknε+nh

ξi + max
k=0,1,...,�T/ε�

μ

nh

Nknε+nh∑
i=Nknε

ξi

≤ μ

h

(∣∣�h/ε�∣∣ε − h
) + max

k=0,1,...,�T/ε�
μ

nh

Nknε+nh∑
i=Nknε

ξi .

The first summand in the previous line is independent of n and tends to zero as
ε ↓ 0. Further, for every ε > 0, the second summand converges to μ a.s. as n → ∞,
according to equation (41). Therefore, the first inequality in (43) holds. The sec-
ond inequality in (43) can be shown similarly, hence, (42) holds. In particular, we
obtain the convergence in (D[h,T − h], d‖·‖).

By Slutsky’s theorem, (42) and Lemma A.14 yield in (D[h,T −h], d‖·‖) a.s. as
n → ∞ that (

1

Nn(t+h) − Nnt − 1

Nn(t+h)∑
i=Nnt+2

ξi

)
t∈τh

−→ (μ)t∈τh
,(44)

which is the uniform a.s. consistency of (μ̂ri)t∈τh
. In the same way we can conclude

the uniform a.s. consistency of (μ̂le)t∈τh
. �

Now we show the uniform a.s. convergence of variance estimators.

LEMMA A.16. Let � be an RPVV with variance σ 2. Let T > 0, h ∈ (0, T /2]
and further σ̂ 2

le and σ̂ 2
ri be defined as in (19). Then in (D[h,T − h], d‖·‖) a.s. as

n → ∞ we have(
σ̂ 2

le(nt, nh)
)
t∈τh

−→ (
σ 2)

t∈τh
,

(
σ̂ 2

ri(nt, nh)
)
t∈τh

−→ (
σ 2)

t∈τh
.

PROOF. For Nn(t+h) − Nnt > 2 we decompose

σ̂ 2
ri(nt, nh) = 1

Nn(t+h) − Nnt − 2

Nn(t+h)∑
i=Nnt+2

(ξi − μ̂ri)
2

= 1

Nn(t+h) − Nnt − 2

Nn(t+h)∑
i=Nnt+2

ξ2
i

+
[
−2μ̂ri

(
1

Nn(t+h) − Nnt − 2

Nn(t+h)∑
i=Nnt+2

ξi

)
+ μ̂2

ri

]
.

The expression in the squared brackets as a process in t ∈ τh converges to
(−μ2)t∈τh

a.s. in (D[h,T − h], d‖·‖) due to the consistency of (μ̂ri)t∈τh
; see

Lemma A.15.
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It remains to show that in (D[h,T − h], d‖·‖) a.s. as n → ∞(
1

Nn(t+h) − Nnt − 2

Nn(t+h)∑
i=Nnt+2

ξ2
i

)
t∈τh

−→ (
σ 2 + μ2)

t∈τh
.(45)

We abbreviate σ 2
i := Var(ξi) and center (ξ∗

i )2 := ξ2
i − (σ 2

i + μ2), so that

1

Nn(t+h) − Nnt − 2

Nn(t+h)∑
i=Nnt+2

ξ2
i = 1

Nn(t+h) − Nnt − 2

Nn(t+h)∑
i=Nnt+2

(
ξ∗
i

)2

+
[(

1

Nn(t+h) − Nnt − 2

Nn(t+h)∑
i=Nnt+2

σ 2
i

)
+ μ2

]
.

For fixed t the term in the squared brackets converges to σ 2 + μ2 a.s., as
n → ∞, by condition (3) and Lemma A.3. Furthermore, condition (6) now writes
(1/n)

∑n
i=1(ξ

∗
i )2 → 0 almost surely. Hence, Lemma A.3 implies for fixed t

1

Nn(t+h) − Nnt − 2

Nn(t+h)∑
i=Nnt+2

(
ξ∗
i

)2 −→ 0 a.s.,(46)

as n → ∞.
Thus, for finitely many t we have the convergence in (45) a.s. toward σ 2 + μ2.

In order to obtain the convergence in (D[h,T − h], d‖·‖), we proceed as in the
proofs of Lemmas A.14 and A.15 and show a.s. as n → ∞ that(

μ

nh

Nn(t+h)∑
i=Nnt+2

ξ2
i

)
t∈τh

−→ σ 2 + μ2.(47)

We again prove this claim even for t ∈ [0, T −h]. Hence, it suffices to show a.s. that

lim
n→∞ sup

t∈[0,T −h]
μ

nh

Nn(t+h)∑
i=Nnt+2

ξ2
i ≤ σ 2 + μ2 and

(48)

lim
n→∞ inf

t∈[0,T −h]
μ

nh

Nn(t+h)∑
i=Nnt+2

ξ2
i ≥ σ 2 + μ2.

As in the previous proofs, for an ε > 0, we decompose the time interval [0, nT ]
into equidistant sections of length nε and, with notation (37), bound

sup
t∈[0,T −h]

μ

nh

Nn(t+h)∑
i=Nnt+2

ξ2
i

≤ max
k=0,1,...,�T/ε�

μ

nh

Nknε+n|�h/ε�|ε∑
i=Nknε

ξ2
i



2064 M. MESSER ET AL.

≤ max
k=0,1,...,�T/ε�

μ

nh

Nknε+n|�h/ε�|ε∑
i=Nknε+nh

ξ2
i + max

k=0,1,...,�T/ε�
μ

nh

Nknε+nh∑
i=Nknε

ξ2
i .

For δ := �h/ε�ε − h + ε we find a.s. for n → ∞,

max
k=0,1,...,�T/ε�(Nknε+n|�h/ε�|ε − Nknε+nh)/(δn/μ) → 1.

Then for n → ∞ the first summand in the latter display converges to (δ/h)(σ 2 +
μ2) a.s. and the second summand to σ 2 + μ2 a.s., since we have the convergence
(45) for finitely many t . Since δ can be chosen arbitrarily small, we find the first
inequality of (48). The second follows analogously, and the convergence in (47)
follows. There, we exchange the normalization according to Lemma A.14 and ob-
tain (45). Thus, the a.s. uniform consistency of the variance estimator (σ̂ 2

ri)t∈τh
is

proven. The uniform a.s. convergence of (σ̂ 2
le)t∈τh

is obtained analogously. �

A.4. Proof of Theorem 3.1. Finally, we put the pieces of the previous sub-
sections together to prove Theorem 3.1:

PROOF OF THEOREM 3.1. Let � be an RPVV with associated parameters
μ and σ 2 and conditions as is Theorem 3.1. The associated counting process is
denoted by (Nt)t≥0; cf. (1). Further, let T > 0 and h ∈ (0, T /2] denote a window
size.

From Proposition A.6 we have that the normalization of (Nt)t≥0 given by

Z
(n)
t = Nnt − nt/μ

√
n

√
σ 2/μ3

, t ≥ 0,

converges, as n → ∞ in distribution in (D[0,∞), dSK) to a standard Brownian
motion: (

Z
(n)
t

)
t≥0

d−→ (Wt)t≥0.(49)

Now, for technical reasons we define an auxiliary process, for t ≥ 0 and h ∈
(0, T /2], by

�
(n)
t,h := (Nn(t+h) − Nnt ) − (Nnt − Nn(t−h))√

2hnσ 2/μ3
.

In comparison with the G
(n)
t,h defined in (22), note that the �

(n)
t,h are normal-

ized deterministically with the order of the estimator ŝ used for normalization
in (22). Now, we apply the continuous mapping theorem as follows: the map
ϕ : (D[0,∞), dSK) → (D[h,T − h], dSK) defined by

f (t)
ϕ�−→ (f (t + h) − f (t)) − (f (t) − f (t − h))√

2h
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is continuous. With the process (Z(n))t≥0 defined in (29), we have ϕ((Z(n))t≥0) =
(�

(n)
h,t )t∈τh

. Furthermore, the process (Lh,t )t∈τh
defined in (23) is distributed

as ϕ((Wt)t≥0) with a standard Brownian motion (Wt)t≥0. Hence, the conver-
gence (49) and the continuous mapping theorem imply the weak convergence in
Skorokhod topology of (�

(n)
h,t )t∈τh

to (Lh,t )t∈τh
.

By Proposition A.13 we have in (D[h,T − h], d‖·‖) a.s. as n → ∞ that(
ŝ(nt, nh)2

n

)
t∈τh

−→
(

2hσ 2

μ3

)
t∈τh

.(50)

Since we have the relation

G
(n)
h,t =

√
2nhσ 2/μ3

ŝ(nt, nh)
�

(n)
h,t ,

we conclude by Slutsky’s theorem with (50) that in (D[h,T − h], dSK) it holds(
G

(n)
h,t

)
t∈τh

d−→ (Lh,t )t∈τh
.

This is the assertion. �
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SUPPLEMENTARY MATERIAL

Supplement to “A multiple filter test for the detection of rate changes in
renewal processes with varying variance” (DOI: 10.1214/14-AOAS782SUPP;
.r). We provide the R-Code for the multiple filter algorithm.
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