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MATCHING MARKERS AND UNLABELED CONFIGURATIONS
IN PROTEIN GELS

BY KANTI V. MARDIA, EMMA M. PETTY1 AND CHARLES C. TAYLOR

University of Leeds

Unlabeled shape analysis is a rapidly emerging and challenging area of
statistics. This has been driven by various novel applications in bioinformat-
ics. We consider here the situation where two configurations are matched un-
der various constraints, namely, the configurations have a subset of manually
located “markers” with high probability of matching each other while a larger
subset consists of unlabeled points. We consider a plausible model and give
an implementation using the EM algorithm. The work is motivated by a real
experiment of gels for renal cancer and our approach allows for the possibility
of missing and misallocated markers. The methodology is successfully used
to automatically locate and remove a grossly misallocated marker within the
given data set.

1. Introduction.

1.1. Western Blots. Our motivating application concerns gel techniques used
to identify proteins present in human tissue. First, two-dimensional electrophore-
sis (2-DE) is used to separate all the proteins extracted from a cell. The 2-DE gel
is then probed with serum which contains antibodies that will bind to specific pro-
teins. The image of a Western Blot will contain only the location (and intensity) of
proteins that have a bound antibody. We can think of Western Blots as containing
only a subset of the proteins that are displayed on 2-DE images. The extra step
necessary to create a Western Blot allows a further level of variability within the
final image. The reproducibility of Western Blots is therefore even more challeng-
ing than that of 2-DE images. To help align Western Blots, suitable marker proteins
are experimentally determined and are generally expected to be present in all blots
under investigation. A stain is applied to each blot which will highlight all proteins
present, therefore enabling an expert to manually locate the suitable markers. Fig-
ure 1 shows an annotated Western Blot image which shows the markers (with the
acidity and mass measurements associated with these points) and further points
detected by an image analyzer. The markers are used to align the blots by min-
imizing a sum of squared euclidean distances (usually not the acidity and mass
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FIG. 1. Western Blot image with red crosses depicting the subject-treatment specific nonmarkers.
The larger black crosses indicate the labeled markers, with their acidity and mass measurements (not
spatial coordinates) highlighted beneath.

measurements). In some cases, fine adjustments to alignments are made using var-
ious heuristic techniques. See, for example, Forgber et al. (2009) and Zvelebil and
Baum [(2007), pages 613–620] for more details.

Considering the large scope for variation between images and the often vast
number of proteins located in a comparatively small area, visual examination to
analyze or compare images, although often informative, can be extremely difficult
and conclusions unreliable. Visual comparison can also be extremely repetitive
and laborious for the expert making the comparisons. Statistical and computa-
tional analysis is essential to the result accuracy and reduction of expert manual
labor. The main aim is to locate a biomarker whose mere presence can be used to
measure the progress of disease or treatment effects. In the case of the gel data,
a point becomes a biomarker if it is found to have this property. The intensity of
a biomarker, indicated by the intensity of the mark on the image, can also provide
information about the disease progression or treatment effect, but this is beyond
the scope of this paper.

1.2. Unlabeled configuration matching. In the more general setting, the prob-
lem is to match two sets—usually of unequal size—of points, in which the cor-
respondence (matching) of the points is unknown. The solution will include the
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transformation required to align the sets, a list of correspondences which map
(some of) the points, and will penalize solutions with many unmatched points,
allowing for a trade-off in the goodness of fit in the aligned points.

Approaches to closely related problems include the RANSAC algorithm [Fis-
chler and Bolles (1981)], nonrigid point matching using thin-plate splines [Chui
and Rangarajan (2003)], a correlation-based approach using kernels [Tsin and
Kanade (2004), Chen (2011)], nonaffine matching of distributions [Glaunes,
Trouvé and Younes (2004)] and the Iterative Closest Point Algorithm [Besl and
McKay (1992)] for the registration of various representations of shapes. All of
these methods avoid making distributional assumptions, with a consequence that
probabilistic statements are then difficult to make. By contrast, Czogiel, Dryden
and Brignell (2011), Dryden, Hirst and Melville (2007), Kent, Mardia and Taylor
(2010a), Taylor, Mardia and Kent (2003) and Green and Mardia (2006) use statis-
tical models to obtain solutions. These latter papers all use examples drawn from
protein bioinformatics; a review is given by Green et al. (2010).

In this paper we address a more specific problem in which each configura-
tion contains a subset of points (“markers”) whose labels correspond with high
probability, with the remaining points having arbitrary labels (nonmarkers) as be-
fore. Suppose we have two configurations of observed landmarks in d dimensions:
markers given by xj , j = 1, . . . ,K and μi , i = 1, . . . ,K , and nonmarkers μi ,
i = K + 1, . . . ,K + m and xj , j = K + 1, . . . ,K + n. These are represented as
matrices x((K +n)×d) and μ((K +m)×d) in which K is usually smaller than m

and n. In our model, the markers (the spatial coordinates of the large black crosses
in Figure 1) μi and xi for i = 1, . . . ,K have been identified by an expert to corre-
spond to the same proteins (referred to as a “points” hereafter). However, these are
labeled with some uncertainty, so true correspondence is likely but not guaranteed.
So it is possible, for example, that markers in μ could correspond to nonmarkers
in x, or have no correspondence at all. For μi and xj with i, j > K , (the spatial
coordinates of the red crosses in Figure 1) we have no prior information about
correspondence probabilities.

1.3. Statistical model. A statistical model in the general setting involves three
main components (see Figure 2):

(a) A group G , say, on R
d representing the permitted transformations (g) on

(a subset of the landmarks of) μ to bring it close to (a subset of the landmarks of)
x,g ∈ G .

(b) A matching matrix M , say, identifies which elements of x correspond to
which elements of μ for the markers as well as unlabeled points.

(c) An error model indicating how close the elements of x and μ will be, after
the correct transformation and labeling are used.

In Section 2 we introduce our statistical model and emphasize the group of
affine transformations belonging to G which is relevant to our example. The ap-
propriate matching matrix M is estimated under various scenarios, including the
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FIG. 2. Illustration of the main ingredients of a statistical model. The labels of the two configura-
tions of points (x and μ) can be considered as arbitrary. Some of the x points are aligned to some of
the μ points by a transformation (e.g., translation, rotation) which belongs to a specified group. An
0/1 matrix M indicates which points match, with unmatched points in x (point 2 in the illustration)
assigned to label “0,” and a specific error model assumed for the magnitude of the residual after
alignment.

use of a matrix Q of prior probabilities, which is introduced to reflect the existence
of the markers (labeled points)—an integral part of the specific problem. In Sec-
tion 3 we outline likelihood based inference for M , and describe an EM algorithm.
In Section 4 we adapt the prior matrix Q when either a marker is missing or a
marker is wrongly identified. Two real examples are studied in Section 5 related
to renal cancer. In the first example, one marker is grossly misallocated and in the
second example, some markers are missing. This procedure has great potential to
automate preprocessing of the gels. We conclude with a discussion.

2. Statistical models.

2.1. Transformations. Although the statistical model we later introduce can
apply to various types of transformations, we focus on an affine transformation of
the form g(μ) = μA′ + B ′, where A is a nonsingular d × d matrix and the d × 1
vector, b, is present in every column of the d × (K + m) matrix B .

2.2. Matching matrix. To estimate the parameters of an appropriate trans-
formation of μ, we can introduce a correspondence system that will indicate
whether a point in μ is associated with a point in x, that is, whether two points
match across configurations. We can record the correspondence information in a
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(K + m + 1) × (K + n) matching matrix, M , where

Mij =
⎧⎨
⎩

1, for i = 0 if xj does not have a matching point in μ,

1, for i = 1, . . . ,K + m if xj matches μi,

0, otherwise

for j = 1, . . . ,K + n. Note that, for simplicity of notation, we use M0j ≡
MK+m+1,j , and similarly for other matrices. If M0j = 1, then xj does not have
a matching point in μ and we say that xj is unmatched.

We consider one-to-one or many-to-one matches between points in x and points
in μ. We refer to these as hard and soft matches, respectively. Soft matching can
be useful in our application since a single protein can produce multiple spots on
an image [Banks et al. (2000)].

Hard matches: The matching matrix, M , has the following constraints for the
hard model:

K+m∑
i=0

Mij = 1 for j = 1, . . . ,K + n(1)

and
K+n∑
j=1

Mij ≤ 1 for i = 1, . . . ,K + m.(2)

So for i1 �= 0, if Mi1j1 = 1, then Mi1j2 = Mi2j1 = 0 for all i1 �= i2 and j1 �= j2. Note
that there are no constraints on row K +m+1 in M since each of the K +n points
in x is free to remain unmatched. Figure 2 illustrates the case of hard matches in
which the point x2 is unmatched, so M02 = 1.

Soft matches: For the soft model, the only constraint is stated in (1). That is,
if Mi1j1 = 1, then Mi2j1 = 0 for all i1 �= i2, but Mi1j2 ∈ {0,1} for j1 �= j2. When
assigning either hard or soft matches, (1) constrains a point in x to be matched to
a single point in μ or, alternatively, to remain unmatched.

2.3. Error distribution. Assuming the transformation parameters, A and b, are
known, we can apply a distribution to xj given the match Mij = 1. Given the
transformation, we treat the elements of x as conditionally independent with the
following densities for j = 1, . . . ,K + n:

p(xj |Mij = 1) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

(2πσ 2)d/2 exp
{
−‖xj − Aμi − b‖2

2σ 2

}
,

for i = 1, . . . ,K + m,
1

|�| , for i = 0,

(3)

where � is some region in R
d containing all points in x.
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To allow for the possibility of soft matching, we consider points in x to be
independent. As we have K markers in each image, we have prior information
about the matching across images. Next we introduce notation to deal with prior
matching probabilities.

2.4. Prior matching matrix probabilities. Let Q be a (K + m + 1) × (K +
n) matrix with elements qij = p(Mij = 1). That is, for j = 1, . . . ,K + n, qij is
the prior probability that μi is matched to xj for i = 1, . . . ,K + m and the prior
probability that xj is unmatched for i = 0. Again, for simplicity of notation, we
use q0j in place of qK+m+1,j . Note that

∑K+m
i=0 qij = 1 for j = 1, . . . ,K + n. We

have prior knowledge that corresponding markers, μj and xj for j = 1, . . . ,K ,
should match. We propose a structure to determine the qij , which accounts for the
possibility of error when allocating markers within a warped image and does not
force corresponding markers to match. In what follows, it will be helpful to note
that the matrix Q can be partitioned into submatrices of size (rows × columns) as
follows:

Q
(
(1 + K + m) × (K + n)

)

=

⎛
⎜⎜⎜⎜⎜⎝

Q(0)(1 × K) |
− − − − − − − − − |

| Q(2)
(
(1 + K + m) × n

)
Q(1)

(
(K + m) × K

) |
|

⎞
⎟⎟⎟⎟⎟⎠ .

Markers in x: We know that μj are the coordinates for marker j in μ, j =
1, . . . ,K . Let γj be the index of the true marker j in μ. If γj = j , then the marker
j has been correctly identified. We set the prior probability of a point μi being the
true marker j , qij , to be a function of the distance between μi and μj so that Q(1)

has elements

qij = p(γj = i) = f (dij ) for i = 1, . . . ,K + m,j = 1, . . . ,K,(4)

where dij is the Euclidean distance between μi and μj and choices for f are
discussed later.

Next we consider the possibility that a marker within x does not have a cor-
responding point in μ. Recall that xj are the coordinates for marker j in x,
j = 1, . . . ,K . To allow for the possibility that xj remains unmatched, we set the
prior probability of M0j = 1 to be uniform so that Q(0) has elements

q0j = p(γj = 0) = 1

|�| for j = 1, . . . ,K,(5)

where � is given as in (3).
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TABLE 1
Main ingredients of the statistical model used for matching of partially labeled configurations of

points. Section numbers [e.g., (3.1)] are used to sign-post further details or discussion

Component of model Variants Examples

Configurations x and μ Unlabeled (Section 1.2)
Partially labeled Markers (Section 1.1)

Transformation group Rigid-body (Section 2.1)
Affine (Section 3.1)

Nonlinear (Section 6)
Matching matrix, M Hard (Section 6) One-to-one

Soft Many-to-one (Section 6)
Many-to-many (Section 6)

Prior matrix, Q,
with Qij = P(Mij = 1)

which depends on
– markers (Section 4) Function of distance (Section 3.3.1)
– nonmarkers

Error distribution Isotropic (Section 2.3)
Nonlinear (Section 6)

Nonmarkers in x: To allow for matching of the nonmarker points, we can set
the elements of Q(2) as

qij = 1

K + m + 1
, i = 0, . . . ,K + m,j = K + 1, . . . ,K + n.(6)

So the prior matching probability of a nonmarker xj is uniform.
As an example, we suppose that in Figure 2 only point 1 has been identified as a

marker in both x and μ, then we might have q01 = 0.01 (= 1/|�|, say), q11 = 0.89,
q41 = 0.01, q51 = 0.09, q71 = 0.00 (based on the interpoint distances within μ) and
qij = 1/8 for the other points shown (taking m = 6 in this example).

For ease of reference, the ingredients of the statistical model, together with pos-
sible variations, are listed in Table 1.

3. EM algorithms and inference.

3.1. EM algorithm. We use an EM algorithm [McLachlan and Krishnan
(2008)] to estimate the transformation parameters, A and b, that will superim-
pose μ onto x. Throughout this section we assume that σ 2 has been assigned
(see Section 3.3.3). In the E-step we calculate the posterior probability that μi

matches xj , that is, the posterior probability that Mij = 1. In the M-step the poste-
rior probabilities are input into the expected likelihood of observing M , given the
data, x. This enables us to estimate the transformation parameters, A and b.
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E-step: We calculate the posterior probability of μi matching xj , given the data,
using Bayes’ theorem:

p(Mij = 1|xj ) = p(xj |Mij = 1)p(Mij = 1)

p(xj )
,(7)

where p(xj |Mij = 1) is calculated using (3), and qij = p(Mij = 1) is calcu-
lated using (4)–(6). The denominator of (7) is given by

∑K+m
i=0 p(xj |Mij = 1) ×

p(Mij = 1).
M-step: Starting from the multinomial form [McLachlan and Krishnan (2008),

page 15]

l(M|x) =
K+m∑
i=0

K+n∑
j=1

Mij logp(xj ),

we substitute pji for Mij and qijp(xj |Mij = 1) for p(xj )to obtain the expected
log-likelihood of the matching matrix, M , given the data, x:

E[l(M|x)] =
K+m∑
i=0

K+n∑
j=1

pji[logqij + logp(xj |Mij = 1)].(8)

Here, we suppress the dependence on the parameters A and b.
Both the prior probabilities stored in Q and the conditional distribution of xj

being unmatched are independent of A and b, so, using (8), we estimate the trans-
formation parameters that maximize

K+m∑
i=1

K+n∑
j=1

pji logp(xj |Mij = 1)

=
K+m∑
i=1

K+n∑
j=1

pji

[
−‖xj − Aμi − b‖2

2σ 2 − d

2
log(2πσ 2)

]
.

Note that the final term is a constant, given that σ is assumed known. Removing
further terms independent of A and b, we want to estimate the transformation
parameters that minimize

K+m∑
i=1

K+n∑
j=1

pji‖xj − Aμi − b‖2.

Ignoring the terms independent of b, and noting that ∂a′x/∂x = a and ∂x′x/∂x =
2x, the maximum likelihood estimates [Walker (2000)] are

b̂ =
∑K+m

i=1
∑K+n

j=1 pji(xj − Aμi)∑K+m
i=1

∑K+n
j=1 pji

(9)



MATCHING PARTIALLY LABELED CONFIGURATIONS 861

and

Â =
[

K+m∑
i=1

K+n∑
j=1

pji(xj − x̄)(μi − μ̄)′
]

(10)

×
[

K+m∑
i=1

K+n∑
j=1

pji(μi − μ̄)(μi − μ̄)′
]−1

.

The algorithm alternates between the E-step and the M-step. At each iteration,
the transformation parameters are updated in the M-step to A(r+1) = Â(r) and
b(r+1) = b̂(r), before substitution into the E-step for the next iteration.

We assign convergence to be when r is such that

1

(K + m + 1)(K + n)

K+m∑
i=0

K+n∑
j=1

[
p

(r+1)
j i − p

(r)
ji

]2 ≤ 10−l ,(11)

where l is chosen and the posterior probability of μi matching xj at the r th and

(r +1)st iteration is denoted by p
(r)
ji and p

(r+1)
j i , respectively, for i = 0, . . . ,K +m

and j = 1, . . . ,K + n.

3.2. Inference for M . Let P be the (K + n) × (K + m + 1) matrix containing
the final posterior matching probabilities. Let Â and b̂ be the final estimates of the
transformation parameters obtained from the EM algorithm.

An obvious route to estimate the matching matrix, M , is to use the posterior
matching probabilities, but this will not yield a one-to-one outcome. For one-to-
one matches we need to satisfy the constraints in (1) and (2). Given the transforma-
tion, the conditional log-likelihood of M is

∑K+m
i=0

∑K+n
j=1 Mij logPji . We find M

that maximizes this log-likelihood by mixed integer linear programming. In our
implementation we imputted the 2K + m + n constraints into lp_solve [Berkelaar
(2008)], which then yields the estimated one-to-one matching matrix, M̂ . We can
summarize the steps as follows.

COMPOSITE ALGORITHM.

(i) Assign qij using (4), (5) and (6) for i = 0, . . . ,K + m and j = 1, . . . ,K + n.
(ii) Find initial estimates of the transformation parameters, A(0) and b(0), and

assign the variance, σ 2. Possible choices are discussed in the following sub-
section.

(iii) Run the EM algorithm to get the updated estimates, p
(1)
j i , A(1) and b(1), us-

ing (7), (10) and (9), respectively.
(iv) Repeat step 3 to find the updated estimates, p

(r+1)
j i , A(r+1) and b(r+1), un-

til convergence [defined in (11)] is reached. Let the final posterior matching
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probabilities be stored in the (K + n) × (K + m + 1) matrix P and the final
estimated transformation parameters be denoted by Â and b̂.

(v) One-to-one matches are obtained using the hardening algorithm described
above.

(vi) Treating the matches within the inferred matching matrix, M̂ , as known,
we can update the transformation parameters using Procrustes methodology

[Dryden and Mardia (1998)] to calculate the final estimates, ˆ̂
A and ˆ̂

b.

3.3. Assigning the function and parameters within the EM algorithm. We
need to assign the function f stated in (4), as well as starting values for the trans-
formation parameters denoted by A(0) and b(0), and a variance σ 2. We look at each
assignment separately.

3.3.1. Distance function. As before, μj contains the allocated marker co-
ordinates for marker j in μ, j = 1, . . . ,K , and γj is the index of the true
marker j in μ. Let d̄ij denote the expected distance between a point μi and μj

for i = 1, . . . ,K + m. Due to the freedom for a gel to warp, in reality the distance
between μi and μj in an image is dij = d̄ij + ε, where ε denotes some error.

Our choice of the function, f , in (4), considers all points in μ as possible true
markers. We adopt a multivariate normal distribution for ε, which gives

qij = p(γj = i) ∝ exp
{
−‖μi − μj‖2

2σ 2∗

}
,(12)

for i = 1, . . . ,K +m, where σ 2∗ is the variance between two points in μ (assuming
independence across dimensions). So the probability that μi is the true marker j

will decrease the further it is from μj .

3.3.2. Starting values for transformation parameters. As we have prior
knowledge of allocated corresponding markers in both μ and x, it is sensible
that A(0) and b(0) are set as the transformation parameters necessary to best su-
perimpose corresponding markers. Dryden and Mardia (1998) show how these
parameters can be estimated from the matrix,

R = (μ′∗μ∗)−1μ′∗x(m),(13)

where μ∗ is the K × (d + 1) matrix μ∗ = (1K,μ(m)) and 1K is a vector of ones of
length K . The K ×d matrices, μ(m) and x(m), contain only the marker coordinates
for μ and x, respectively.

The first column in R′ contains b(0) and the second two columns in R′ contain
the d × d matrix A(0).
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3.3.3. Starting values for the variance between images. We can estimate the
variance σ 2 by considering the mean squared distance between corresponding
markers in μ and x after an affine transformation has been applied to superim-
pose them. That is, set

σ̂ 2 = 1

ν

K∑
j=1

∥∥xj − A(0)μj − b(0)
∥∥2

,(14)

where ν = dK − d2 − d and denotes the degrees of freedom. Here dK is the
number of error terms in the d components of the K markers. This number is
reduced in ν to accommodate the estimates of A(0) and b(0).

4. Grossly misallocated or missing markers. This section describes further
refinements to the above Composite Algorithm, which is highly dependent on the
transformation parameters input as starting values, A(0) and b(0). We have previ-
ously stated that the affine transformation necessary to superimpose corresponding
markers in μ and x will provide sensible starting values for the transformation pa-
rameters within the EM algorithm. However, this would not be the case if gross
misallocations occur. The number of missing or grossly misidentified markers are
dependent on the quality of the equipment and the expert that creates the images.

First, we provide a method that will highlight grossly misallocated markers
across images. Highlighted markers can then be automatically removed or cor-
rected before they are used within the EM algorithm to estimate transformation
starting values. Then, in Section 4.2 we deal with the case where some markers
are missing from one of the images.

4.1. Grossly misallocated markers. Gross misallocations of a marker may oc-
cur through human error when inputting marker labels into data spreadsheets. Dry-
den and Walker (1999) consider procedures based on S estimators, least median of
squares and least quartile difference estimators that are highly resistant to outlier
points. The RANSAC algorithm [Fischler and Bolles (1981)] uses a similar robust
strategy. Here we describe how we can use the EM algorithm previously described.

Here we provide a method that will highlight grossly misallocated markers
across images. Highlighted markers can then be automatically removed or cor-
rected before they are used within the EM algorithm to estimate transformation
starting values.

Let μ(m) and x(m) be K × d coordinate matrices where μj and xj contain the
coordinates of marker j in μ and x, respectively, for j = 1, . . . ,K . Here we con-
sider the prior matching probabilities to be independent of the distance between a
possible marker and the allocated marker so that

qij =
⎧⎨
⎩

pM, for i = j,

1 − pM

K
, for i �= j,

(15)
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where pM denotes the probability that the allocated marker μj truly corresponds
to the allocated marker xj .

We input μ(m) and x(m) into steps (i)–(v) of the composite algorithm to estimate
the one-to-one matching matrix M̂ , replacing (4) and (5) with (15) in stage (i). We
use (13) to estimate the starting transformation values, A(0) and b(0). Note that the
starting transformation will be distorted by the presence of grossly misallocated
markers. There are four possible outcomes for k = 1, . . . ,K :

• The allocated corresponding markers μk and xk are matched if M̂kk = 1. We
include both μk and xk in further analyses.

• The marker xk remains unmatched if M̂0k = 1. We exclude both μk and xk from
further analyses.

• No point in x(m) is matched to the marker μk if M̂kj = 0, for all j = 1, . . . ,K .
We exclude both μk and xk from further analyses.

• The marker μk1 is matched to an allocated noncorresponding marker xk2 if
M̂k1k2 = 1, for k1 �= k2. We exclude μk1 , μk2 , xk1 and xk2 from further analy-
ses.

See Section 5.1 for an illustration.

4.2. Missing markers. It is possible that all K markers are not successfully
located in both μ and x. For example, only 10 out of the possible K = 12 markers
were located in the image displayed in Figure 1.

There are four possible cases we must consider for Marker k = 1, . . . ,K : (a) lo-
cated in both μ and x; (b) located in μ alone; (c) located in x alone; and (d) not
located in either μ or x. We first introduce notation to allow for the possibility of
missing markers.

Let Kμ and Kx be the total number of markers located in μ and x, respectively.
As previously noted, let μ be the (K + m) × d coordinate matrix and x be the
(K + n) × d coordinate matrix.

If marker k is located in μ, then μk contains the coordinates of marker k in μ.
If marker k is not located in μ, then μk = ∅. Similarly, if marker k is located in x,
then xk contains the coordinates of marker k in x, for k = 1, . . . ,K . If marker k is
not located in x, then xk = ∅.

As previously stated, Q is the (K +m+1)×(K +n) matrix containing the prior
matching probabilities for points in x. We define Q by allowing for the possibility
that an allocated marker k is not the true marker k, for k = 1, . . . ,K .

Markers in x: corresponding to each of the above cases we have:

(a) If μj �= ∅ and xj �= ∅, we assign qij as previously stated in (4) and (5) for
i = 0, . . . ,K + m.

(b) If μj �= ∅ and xj = ∅, we treat μj as a nonmarker.
(c) If μj = ∅ and xj �= ∅, we treat xj as a nonmarker.
(d) If μj = ∅ and xj = ∅, we set qij = qjk = ∅ for all i and k.
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Nonmarkers in x: The prior matching probability of a nonmarker, xj , is again
set to be uniform over all matching possibilities so that, for i = 0, . . . ,K + m and
j = K + 1, . . . ,K + n,

qij = 1

Kμ + m + 1
.(16)

In case 3, when μj = ∅ and xj �= ∅ for j = 1, . . . ,K , we treat xj as a nonmarker
and use (16) to calculate qij for i = 0, . . . ,K + m.

Note that μ contains Kμ markers and m nonmarkers. There are only Kμ +m+1
matching possibilities for a point in x, thus producing the denominator in (16). See
Section 5.2 for an illustration.

5. Examples. Our full data set—see Supplementary Material [Mardia, Petty
and Taylor (2012)]—was collected to represent eight subjects, under two different
conditions, treated with two possible treatments.

A replicate image was also produced for each subject-treatment specific case.
A typical Western Blot is shown in Figure 1, which is approximately of size 280 ×
220. In this paper we illustrate the methods on two pairs of images: in the first
example, robustness to gross misidentification is explored, and the second example
deals with missing markers.

5.1. Grossly misallocated marker. Let μ and x represent the coordinate sets
on Western Blots of a renal cancer cell line cultured under either normoxic or
hypoxic conditions. The proteins are then extracted and probed with either patient
sera or control sera in a Western Blot to produce the images generated. All K = 12
markers were located in both images.

We input the corresponding markers for μ and x into steps (i)–(v) of the com-
posite algorithm (see Section 3.2) to estimate the one-to-one matching matrix, M̂ ,
found when superimposing μ(m) onto x(m). That is, we transform the appropri-
ate markers in μ onto the corresponding markers in x. Using only the markers,
we estimate the variance in (3) as σ̂ 2 = 4.52 and set the prior matching probabil-
ity in (15) as pM = 0.99. The starting values for the transformation parameters,
A(0) and b(0), are found using (13). We use the final posterior probabilities, P , to
estimate M . Marker 1 remains unmatched in both images.

Figure 3 shows the initial transformation of μ onto x before and after marker 1
is removed as a marker (though still displayed) in both images. In this example,
the RMSD between the 12 marker pairs before the removal is 19.44. The RMSD
between the remaining 11 marker pairs after the removal is 2.96.

Following these discoveries, we were told that marker 1 was incorrectly labeled
as spotID 136 when it should have been spotID 153, that is, the methodology was
able to highlight a misidentified marker.
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FIG. 3. Initial transformation, before (left) and after (right) marker 1 is removed as a marker from
both images.

5.2. Missing markers. In this example we display the matches made when
comparing two replicate specimens, representing a cell line cultured under either
normoxic conditions, with proteins extracted and probed with control sera. All 12
markers were located in μ. Markers 9 and 10 were missing in x, so these were
treated as nonmarkers in μ and we set K = 10.

We input the images into steps (i)–(v) of the composite algorithm. The starting
values for the transformation parameters, A(0) and b(0), are found using (13). We
estimate the variance in (3), σ 2, using (14) with denominator ν. Finally, we set
σ̂ 2∗ = σ̂ 2 in (12). The estimated transformation parameters are

Â =
(

0.980 −0.047
0.002 1.006

)

and b̂ = (−1.72,10.78)′. We display the matches made in Figure 4 after the final
transformation of μ onto x.

6. Discussion. Many EM algorithms are known to converge only to a local
solution, and this will also apply to the methods considered here. However, the
availability of the markers which provide partial information will usually ensure
good starting values, so this will not be a problem in our application.

Note that it would be possible to adapt the model so that σ could be allowed to
vary according to the distance of the point to the edge of the image, which could
be used to deal with minor nonlinear deformations. More generally, it should also
be possible to adapt our methods to deal with more general transformations, for
example, using thin-plate splines [Chui and Rangarajan (2003)].

There are situations when clusters occur within a gel which makes it difficult
to correctly identify a marker within a cluster of points. We can allow for the
increased likelihood that a marker μj , j = 1, . . . ,K , is misallocated if it exists
within a cluster of other points, by using an adaptive choice of f in the prior (4):

qij = p(γj = i) ∝
⎧⎪⎨
⎪⎩

1

Cj

, if dij ≤ ε,

0, if dij > ε,
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FIG. 4. Final transformation of μ onto x and the matches made. Points in x (•), points in trans-
formed μ (+), markers in x (�) and markers in μ (
). The 107 matched points across images are
joined by a line.

where dij is the Euclidean distance and Cj is the number of points in μ that are
within a distance of ε from μj , that is,

Cj =
K+m∑
i=1

I [dij ≤ ε],

where I [dij ≤ ε] = 1 if dij ≤ ε, (0 otherwise) for i = 1, . . . ,K + m.
A further adaptation of the model, which could be useful in Western Blots,

would be to incorporate in the priors a measure associated with the grey-scale
intensity of the located points in the image [Rohr, Cathier and Wörz (2004)]. Ap-
proaches for this, as well as further models for the background noise, are consid-
ered in Petty (2009).

Our composite algorithm ensures one-to-one matches, but there are circum-
stances in which many-to-one or many-to-many matches can be considered. These
can be useful when comparing protein images since multiple forms of an individ-
ual protein can often be visualized [Banks et al. (2000)]. That is, a single protein
can produce multiple spots on an image.

It should be noted that our model is asymmetric in μ and x. This is not uncom-
mon; for example, the full Procrustes error is not symmetrical [see Dryden and
Mardia (1998)]. Also, the standard RMSD used by bioinformatricians is again not
a symmetrical measure. However, there are symmetrical unlabeled shape analyses;
see Green and Mardia (2006), for example. However, this method has not been de-
veloped for affine transformations and warping as required here. There is also a
nonprobabilistic method of Rangarajan, Chui and Bookstein (1997) for similarity
shape, but again the extension of the method to affine transformations and warping
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requires further work; see Kent, Mardia and Taylor (2010b) for a statistical frame-
work. For the data considered here, we have verified that reversing the role of μ

and x does not change the broad conclusions.
Finally, we note that the methods described in this paper could have applications

in other situations in which there are unlabeled points, some of which—possibly
with error—have been manually identified. Thus, the method could be used in the
preparation of ground truth for training an object recognition system or a pose
estimation system; for example, see the survey of Murphy-Chutorian and Trivedi
(2008).
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for providing us with gel data and general discussion concerning protein gels. We
would also like to thank David Hogg for useful references about further applica-
tions.

SUPPLEMENTARY MATERIAL

Western Blot data (DOI: 10.1214/12-AOAS544SUPP; .gz). The supplemen-
tary data contains a zipped file which includes information taken from 28 Western
Blots. This represents 8 subjects (four controls and four patients) treated with two
possible treatments. A replicate image is also obtained for each subject-treatment
combination, though some replicates are missing. Further details are included in
the associated README file.
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