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AGE- AND TIME-VARYING PROPORTIONAL HAZARDS MODELS
FOR EMPLOYMENT DISCRIMINATION

BY GEORGE WOODWORTH AND JOSEPH KADANE

University of Iowa and Carnegie Mellon University

We use a discrete-time proportional hazards model of time to involuntary
employment termination. This model enables us to examine both the contin-
uous effect of the age of an employee and whether that effect has varied over
time, generalizing earlier work [Kadane and Woodworth J. Bus. Econom. Sta-
tist. 22 (2004) 182–193]. We model the log hazard surface (over age and
time) as a thin-plate spline, a Bayesian smoothness-prior implementation of
penalized likelihood methods of surface-fitting [Wahba (1990) Spline Models
for Observational Data. SIAM]. The nonlinear component of the surface has
only two parameters, smoothness and anisotropy. The first, a scale parameter,
governs the overall smoothness of the surface, and the second, anisotropy,
controls the relative smoothness over time and over age. For any fixed value
of the anisotropy parameter, the prior is equivalent to a Gaussian process
with linear drift over the time–age plane with easily computed eigenvectors
and eigenvalues that depend only on the configuration of data in the time–age
plane and the anisotropy parameter. This model has application to legal cases
in which a company is charged with disproportionately disadvantaging older
workers when deciding whom to terminate. We illustrate the application of
the modeling approach using data from an actual discrimination case.

1. Introduction. Federal law prohibits discrimination in employment deci-
sions on the basis of age. There are two different bases on which a case may be
brought alleging age discrimination. First, in a disparate impact case, the intent
of the defendant is not at issue, but only the effect of the defendant’s actions on
the protected class, namely, those forty or older. For example, a rule requiring
new hires to have attained bachelor’s degrees after 1995 would be facially neutral,
but would have the effect of preventing the hiring of older applicants. For such
a case, data analysis is essential to see whether the data support disproportionate
disadvantage to persons over 40 years of age with respect to whatever employ-
ment practices might be in question. Those practices might include hiring, salary,
promotion and/or involuntary termination. A disparate treatment case, by contrast,
claims intentional discrimination on the basis of age. Malevolent action, as well as
intention, must be shown in a disparate treatment case. While statistics can address
the defendant’s actions in a disparate treatment case, usually intent is beyond what
data alone can address.
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This paper uses a proportional hazards model as the likelihood [Cox (1972)].
Finkelstein and Levin (1994) used such a model using as dependent variable the
positive part of (age − 40) as an explanatory variable. Kadane and Woodworth
(2004) treat age as a continuous variable, but do not model the response as a func-
tion of calender time. This paper models both age and time continuously. This
choice enables us to examine both the effect of age of an employee on employment
decisions (our example uses involuntary terminations) and whether that effect has
varied over time. Hence, there are two continuous variables, time and the age of
the employee. In this way, the work here generalizes our earlier work [Kadane and
Woodworth (2004)] that allowed continuous time, but reduced age to a binary vari-
able (over 40/under 40). The analysis presented here allows us to address the extent
to which a pattern or practice of age-based discrimination extends over a period of
time. Proportional hazards regression is particularly suited to a pattern or practice
case because it concerns the probability or odds of a person of a given age being
involuntarily terminated relative to that of a person of another age (or range of
ages), and hence directly addresses whether an older person is disproportionately
disadvantaged.

We choose to use Bayesian inference because we find that it directly gives the
probability that a person of a given age at a particular time is more likely to be
fired than another person of a given other age at the same time. This contrasts with
sampling-theory methods that give probabilities in the sample space, even after
the sample is observed [Kadane (1990a)]. When combined with sensitivity analy-
sis, Bayesian analysis permits us to assess the relative influence of the data and
the model. We undertook the line of research in Kadane and Woodworth (2004)
and in this paper to deal with temporally-sparse employment actions taken over a
long time period. We particularly wanted to avoid the need to aggregate data into
arbitrary time periods—months, quarters, years, etc.—in order to apply Cochran–
Armitage type tests and the like.

2. Proportional hazards regression. The data required to analyze age dis-
crimination in involuntary terminations comprise the beginning and ending dates
of each employee’s period(s) of employment, that employee’s birth date, and the
reason advanced by the employer for separation from employment (if it occurred).
Table 1 is a fragment of the data analyzed in Section 3 below. Data were ob-
tained for all persons employed by a firm at any time between 06/07/1989 and
11/21/1993. The tenure of the last employee shown is right censored; that is, that
employee was still in the work force as of 12/31/1993, and we are consequently
unable to determine the time or cause of his or her eventual separation from the
firm (involuntary termination, death, retirement, etc.).

2.1. Overview. The purpose of our statistical analysis is to determine how an
employee’s risk of termination depends on his or her age and how the risk for
employees of a given age changes with time. The idea is to estimate a surface such
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TABLE 1
Flow data for the period June 1, 1989 to December 31, 1993

Birth date Entry date Separation date Reason

...
...

...
...

3/1/1925 3/1/1961 6/1/1990 Vola

4/9/1938 4/8/1961 8/17/1992 Vol
10/17/1934 4/5/1962 6/3/1992 Invol
12/9/1939 4/7/1962 12/18/1991 Invol
11/29/1932 5/29/1962 8/26/1989 Invol

9/5/1928 10/27/1962 6/12/1991 Vol
5/31/1941 1/12/1963 n/a n/a

...
...

...
...

a“Voluntary” termination includes death and retirement.

as the one in Figure 1 in such a way that it balances a penalty for infidelity to the
data and for a penalty for a surface that is unrealistically “rough” [Gersch (1982)].
The result is a surface that is generally within the margins of sampling error but is
also smooth. Smoothness, generally speaking, amounts to not having areas of high
curvature (i.e., spikes, cliffs, buttes, sharp creases, etc.). The idea is to get a good
fit to the data without sacrificing smoothness.

The mesh surface in Figure 1 is derived from a thin-plate spline model of the
log odds (logit) of the probability of involuntary termination at a given time and
age. The vertical axis shows the posterior median log-odds ratio of termination
for employees of a given age on a given date relative to the weighted average rate
for employees aged 39 years or younger on the same date (the legally unprotected
class often used by statistical experts as a reference class for claims of disparate
impact1). The gray plane corresponds to odds ratios equal to 1.00, indicating no
age discrimination relative to the reference class; points above this plane exhibit
discrimination. Although the underlying thin plate spline is smooth, the log-odds
ratio surface is locally slightly rough because the observed numbers of employees
in each age bin at the time of each termination were used as weights in computing
the termination rate in the reference class.

The black ribbon in Figure 1 is the trajectory of the log-odds ratio over time for
employees aged 56–57, and the dashed ribbon is the log-odds ratio as a function of

1Note, however, that Mr. Justice Scalia’s majority opinion in O’Connor v. Consolidated Coin
Caterers Corp., 517 U.S. 308 (1996) states that “though the prohibition is limited to individuals
who are at least 40 years of age, §631(a). This language does not ban discrimination against employ-
ees because they are aged 40 or older; it bans discrimination against employees because of their age,
but limits the protected class to those who are 40 or older. The fact that one person in the protected
class has lost out to another person in the protected class is thus irrelevant, so long as he has lost out
because of his age.”
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FIG. 1. Smooth-model-derived log odds of termination relative to under-40 employees.

age on day 1121 (05/30/92), the date of the involuntary termination of 57-year old
plaintiff W1 in Case W described in Kadane and Woodworth (2004). The height
of the surface at their intersection (0.297) is the posterior median log odds on the
involuntary termination of 56–57 year-old employees relative to those under 40 on
that date.

Figure 2 shows the posterior probability of age discrimination relative to under-
40 employees as a function of age and date. Points above the gray plane represent
dates and ages at which there was at least 70% posterior probability of age discrim-
ination. By itself, this would be comparatively weak evidence; however, Kadane
(1990b), commenting on empirical research by Mosteller and Youtz (1990), sug-
gests that this level of probability could, in standard usage, be said to make it
“likely” that discrimination had occurred. The height of the surface at the intersec-
tion of the dashed and black ribbons (0.79) is the posterior probability that employ-
ees aged 56–57 were terminated at a higher rate compared to under-40 employees.

2.2. Proportional hazards models for time to event data. We are analyzing
a group of individuals at risk for a particular type of failure (involuntary termi-
nation) for all or part of an observation period. The j th person enters the risk
set at time hj (either his/her date of hire or the beginning of the observation pe-
riod) and leaves the risk set at time Tj either by failure (involuntary termination),
or for other reasons (death, voluntary resignation, reassignment, retirement), or
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FIG. 2. Probability of age discrimination relative to under-40 employees.

was still employed at the end of the observation period. The survival function
Sj (t) = P(Tj > t) is the probability that the j th employee is still employed at
time t .

In practice, we rescale time and age to the unit interval [0,1] and, to make
computations tractable, discretize each to a finite grid; 0 = t0 < t1 < · · · < tp = 1,
0 = a0 < a1 < · · · < ar = 1. Let piw be the conditional probability that employee
(worker) w is terminated in the interval (ti−1, ti] given the parameters and given
that s(he) was in the workforce at time tj−1. The discretized data for this employee
are fiw, . . . , fpw; , riw, . . . , rpw, where riw = 1(0) if the employee was (not) in
the work force (risk set) at time ti−1, and fiw = 1(0) if the worker was (not) invol-
untarily terminated (fired) in that interval. The joint likelihood for all employees
is

∏W
w=1

∏p
i=1 p

fiw

iw (1 − piw)riw−fiw , where W is the total number of employees.
Letting aw(t) denote the age of employee w at time t , we use the natural parame-
trization logit(piw) = β(ti, aw(ti)), where β(t, a) is a smooth function of time and
age.

The aggregated data nij and xij are, respectively, the number of employees
with ages in the interval [aj−1, aj ) at time ti and the number of those who were
terminated in that interval. At this level of aggregation, the likelihood is

l(β) =
p∏

i=1

r∏
j=1

exp
(
βij xij − nij ln

(
1 + exp(βij )

))
,(2.1)
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where βij = β(ti, aj ). We assume that the grid is fine enough and the function
smooth enough that variation of β within a grid cell is negligible. Changing the
grid requires recomputing the cell counts, (nij , xij ) and basis vectors defined be-
low, which is fairly time consuming. We did a few runs with a grid roughly twice
as fine (which quadrupled the run time and storage requirements) without observ-
ing substantive changes in the results; however, we focused our sensitivity analysis
on varying the prior distribution of the smoothness parameter, which appeared to
have much greater impact on the results. We compute the log-odds ratio at time
ti for employees aged aj relative to unprotected employees (i.e., employees under
age 40) as

βij − logit
( ∑

ageu≤40

niupiu

/ ∑
ageu≤40

niu

)
,(2.2)

where ageu is age in years corresponding to scaled value au, and logit(pij ) = βij .

2.3. Thin-plate spline smoothness priors. Likelihood measures fidelity to data
(the larger the better); however, it does not incorporate our belief that the hazard
ratio varies comparatively smoothly with time and age; this is provided by a rough-
ness penalty (the smaller the better) that is subtracted from the log-likelihood

λ

2

∫∫ [(
∂2β(t, a)

∂2t

)2

+ 2
(

∂2β(t, a)

∂t ∂a

)2

+
(

∂2β(t, a)

∂2a

)2]
dt da.(2.3)

The smoothness parameter, λ, weights the importance of smoothness relative
to fidelity to noisy data (larger values of the smoothness parameter produces
smoother fitted surfaces). However, there is no reason to expect the log odds to
be isotropic—equally smooth in time and age—and for that reason we assume that

there is a rescaling T = t/

√
1 + ρ2, and A = ρa/

√
1 + ρ2, such that the function

b(T ,A) = β(T

√
1 + ρ2,A

√
1 + ρ2/ρ) is equally smooth (isotropic) in A and T .

That is, the roughness penalty is

λ

2

∫∫ [(
∂2b(T ,A)

∂2T

)2

+ 2
(

∂2b(T ,A)

∂T ∂A

)2

+
(

∂2b(T ,A)

∂2A

)2]
dT dA,(2.4)

which reduces to the anisotropic roughness penalty,

λ̃

2

∫∫ [(
ρ2

1 + ρ2

∂2β(t, a)

∂2t

)2

(2.5)

+ 2
(

ρ

1 + ρ2

∂2β(t, a)

∂t∂a

)2

+
(

1

1 + ρ2

∂2β(t, a)

∂2a

)2]
dt da,

where ρ is called the anisotropy parameter and λ̃ = λρ3/(1+ρ2). When ρ = 1 the
surface is isotropic, and as ρ → ∞ (or ρ → 0), there is relatively less constraint
on roughness in the age (or time) dimension.
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It is interesting to compare this model to the earlier one of Finkelstein and Levin
(1994), which is a special case of ours. In their case, our function β(·, ·) takes the
form

β(ti, aw(ti)) = (
aw(ti) − 40

)+
.

Since that function has zero second partial derivatives (except at 40, where they do
not exist), their function imposes smoothness in our sense. One could think of this
computationally as setting λ = 0.

Since the likelihood depends on the smooth function β(t, a) only through the
values βij , the roughness penalty is minimized for fixed βij when β(t, a) is the
interpolating thin-plate spline with values β(ti, aj ) = βij . We have from Wahba
[(1990), page 31, equation (2.4.9)] that there exist coefficients c such that the
isotropic thin plate spline b(T ,A) can be represented as

b(T ,A) = ∑
ij

cijH(T − Ti,A − Aj) + l(T ,A),(2.6)

where l(T ,A) is an arbitrary linear function, H(v) = |v|2 ln(|v|)/(8π), and the
coefficients cij satisfy the conditions

∑
ij cij = ∑

ij ticij = ∑
ij aj cij = 0. Then

the isotropic roughness penalty, equation (2.4), reduces to λc′Kρc, where c is the
vector of coefficients and Kρ is the pr × pr symmetric matrix with elements of

the form kij,uv = H(Ti − Tu,Aj − Av) = H( (ti−tu)√
1+ρ2

,
ρ(aj−av)√

1+ρ2
). To accommodate

the constraints on vector c, let P be the projection onto the linear space orthogonal
to the constraints so that c = Pc.

Finally, let PKρP = Uρ�ρU′
ρ be the spectral decomposition of PKρP and de-

fine the basis vectors Bρ as the nonzero columns of Uρ�1/2
ρ . It follows that the

model for the vector of logits is

β = Kρc + Lφ̃

= KρPc + Lφ̃(2.7)

= PKρPc + (I − P)KρPc + Lφ̃,

where β is the matrix with ij th row βij and the ij th row of matrix L is (1, ti, aj ).
But I − P is the projection onto the column space of L and, consequently, (I −
P)KρPc can be absorbed into the linear term. Therefore, the model reduces to

β = PKρPc + (I − P)KρPc + Lφ̃

= Uρ�1/2
ρ (�1/2

ρ Uρc) + Lφ(2.8)

= Bρδ + Lφ,

where δ = �1/2
ρ Uρc and Bρ = Uρ�1/2

ρ . Thus, for a given anisotropy, ρ, the
columns of Bρ are basis vectors for the nonlinear part of the logit vector β .
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The roughness penalty is λc′Kρc = λc′PKρPc = λc′Uρ�ρUc = λδ′δ. The stan-
dard Bayesian interpretation of penalized likelihood estimation is that the penalty
function is the log of the prior density of δ. Consequently, the components of that
vector are a-priori independent and identically distributed normal random variables
with precision λ. It follows that the prior conditional variance of β given λ, ρ and
φ is

Var(Bρδ) = λ−1BρB′
ρ

= λ−1PKρP

and, consequently, if d is a vector such that d′L = 0, then

Var(d ′β) = λ−1d′Kρd.(2.9)

The posterior distributions of λ and ρ are not well identified by the data and
it is necessary to be somewhat careful about specifying their priors. However, the
regression coefficients, φ, of the linear component do not influence smoothness,
are well identified by the data, and can be given diffuse, normal prior distributions.

Viewing both time and age as continuous variables allows a more precise and
general view of a firm’s policy. However, due to the comparative sparseness of the
data, some constraint on or penalty for roughness is needed to avoid an unrealis-
tically rough model, unlike that depicted in Figure 1. It is, of course, possible to
introduce discrete discontinuities into an otherwise smooth model at time points
where there is other evidence of a shift in employment practices [see, e.g., Figure 6
in Kadane and Woodworth (2004)]. However, we do not think that it is appropri-
ate to “mine” for unknown numbers of discontinuities at unknown time points
in the sparse data common in age-discrimination cases. Hence, it is necessary to
smooth the data. The key parameters in doing so are smoothness and anisotropy.
The smoothness parameter controls the average smoothness of the surface and the
anisotropy parameter controls the relative degree of smoothing in the age and time
coordinates.

3. Case W revisited. Over an observation period of about 1600 days the
workforce at a firm was reduced by about two thirds; 103 employees were invol-
untarily terminated in the process. A new CEO took control at day 862, near the
middle of the observation period. The plaintiff asserted that employees aged 50 and
above were targeted for termination under the influence of the new CEO. Here we
present a fully Bayesian analysis with smoothly time- and age-varying odds ratio.
The personnel data were aggregated by status (involuntarily terminated, other) into
one-week time intervals and two-year age intervals (20–21, 22–23, . . . ,64–65).
Figures 1 and 2 show posterior medians and posterior probabilities of age-related
discrimination (i.e., of increased odds of termination relative to unprotected em-
ployees).
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FIG. 3. Effect of anisotropy on the 7th basis function.

3.1. Forming an opinion about smoothness and anisotropy. The anisotropy
parameter ρ governs the relative smoothness in time relative to age. This is clearly
illustrated in Figure 3, which shows the seventh eigensurface (basis function) for
(a) the isotropic case where there is about one cycle in either direction in contrast
to (b) the anisotropic case ρ = 4 in which the surface is four times rougher in the
age dimension (there are about 3 half cycles in the age dimension to about 3/4 of
a half cycle in the time dimension).

In the context of employment discrimination, we think that, in terms of rough-
ness of the logit, a 3-year age difference is about equivalent to a business quar-
ter. Recalling that we have rescaled 1600 calendar days and a 45-year age span
into unit intervals, a quarter is 0.056 and a three-year age interval is 0.067 of the
unit interval, corresponding to anisotropy ρ = 1.2. We have found empirically that
doubling or halving anisotropy has a fairly modest effect on surface shape; conse-
quently, we used the prior distribution shown in Table 2, which has prior geometric
mean 1.4.

As in our earlier analysis of this case [Kadane and Woodworth (2004)], we now
derive a prior distribution for the smoothness parameter from our belief that the
odds ratio on termination for a 10-year age difference are unlikely to change more
than 15% over a business quarter. This implies that a particular mixed difference is

TABLE 2
Prior distribution of the anisotropy parameter

ρ 8 4 2 1 0.5 0.25

Prior 0.08 0.16 0.26 0.26 0.16 0.08

Larger ρ-values favor smoothness in time.
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TABLE 3
Prior variance ×λ of 	2

t 	aβ(t0, a0) and prior scale parameter of λ

Anisotropy ρ Vρ scρ for shρ = 0.5 and α = 0.05

8 0.000383 5.04
4 0.000453 4.26
2 0.000492 3.93
1 0.000449 4.30
0.5 0.000332 5.81
0.25 0.000195 9.90

unlikely to exceed 0.15 in absolute value; that is, Prior(l|	2
t 	aβ(t0, a0)| ≤ 0.15)

is large, where

	2
t 	aβ(t0, a0)

= β(t0 + 2dt , a0 + da) − 2β(t0 + dt , a0 + da) + β(t0, a0 + da)

− β(t0 + 2dt , a0) + 2β(t0 + dt , a0) − β(t0, a0),

where dt is a rescaled half-quarter and da is a rescaled decade. We have from
equation (2.9) that the prior distribution of 	2

t 	aβ(t0, a0) is normal with mean
zero and conditional variance, d′Hd/λ = Vρ/λ, where H is the matrix with en-
tries H(Ti − Ti′,Aj − Aj ′), d is the vector (1,−2,1,−1,2,−1), Ti = (t0 +
tdt )/

√
1 + ρ2, i = 0,1,2, and Aj = ρ(a0 + jda)/

√
1 + ρ2, j = 0,1. Values of Vρ

are listed in Table 3.
The conditional prior distribution of the smoothness parameter given the

anisotropy parameter is gamma with shape parameter and scale parameter selected
so that Prior(|	2

t 	aβ(t0, a0)| ≤ 0.15) = 1−α is large. To complete the derivation,
we have, conditional on ρ, that

[	2
t 	aβ(t0, a0)]2 � Vρ · scρ�(0.05)

�(shρ)
∼ Vρ · scρ

1 − β(shρ,0.05)

β(shρ,0.05)
,

where, abusing the notation somewhat, we let �(sh) denote an independent
gamma-distributed random variable with shape parameter sh, and let β(sh,0.5)

denote a beta-distributed random variable. Consequently, if

Prior
([	2

t 	aβ(t0, a0)]2 ≤ 0.152) = 1 − α,

then

scρ = 0.152βα(shρ,0.5)

Vρ(1 − βα(shρ,0.5))
,

where βα(shρ,0.5) is the αth quantile of the β(shρ,0.5) distribution. The third
column of Table 3 shows the values of the scale parameter, scρ that we used to
compute the surface in Figures 1 and 2.
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3.2. Computing the posterior distribution. To estimate this model, we in-
cluded enough basis vectors in the last row of equation (2.8) to account for at
least 95% of the total roughness variance a priori (i.e., we included basis vectors
accounting for 95% of the sum of the eigenvalues of Kρ ). We computed the pos-
terior distribution of the probabilities of involuntary termination, and of the odds
ratios relative to under-40 employees in each time–age bin using a program written
in SAS IML language. For a given anisotropy value, ρ, we used the Metropolis–
Hastings within the iteratively reweighted least squares algorithm proposed by
Gamerman (1997) to separately update the logistic regression coefficient vectors φ

and δ, and a Gibbs step to update the smoothness parameter, λ. Anisotropy values
were chosen from the six shown in Table 2, where, beginning with an arbitrary
initial value, we attempted a jump from the current anisotropy value to an adjacent
value with transition probabilities from the 6 × 6 doubly stochastic matrix shown
in Table 4. Letting current parameter values be δ, φ, λ, and ρ, we attempt a re-
versible jump, ρ → ρ̃. We then propose values φ̃ = φ, and λ̃ = ρ · sc/s̃c, where sc

and s̃c are scale parameters from Table 3 corresponding to ρ and ρ̃, respectively.
Finally, we generate a proposal for δ̃ as follows. Let β = Bρδ +L ·φ be the current
logit vector and let p be the current vector of termination probabilities in time–age
bins [i.e., logit(p) = β] and let q = 1−p. Let vectors n and y be the numbers at risk
and terminated in the time–age bins. Then, δ̃ is proposed from the multivariate nor-
mal distribution with precision �̃ = [λ̃+B′

ρ̃
npqBρ̃] and mean μ̃ = �̃

−1B′
ρ̃

npq · ŷ,

where Bρ is the matrix of basis vectors corresponding to anisotropy ρ, as defined
in the paragraph after equation (2.8), and ŷ = Bρδ + (y − p)/pq. The proposal is
accepted with probability

α = min
[
1,

p(ρ̃)p(λ̃|ρ̃)p(δ|λ̃)l(β̃)

p(ρ)p(λ|ρ)p(δ|λ)l(β)
· p(ρ̃ → ρ)q(δ|λ̃, δ̃, φ)

p(ρ → ρ̃)q(δ̃|λ, δ,φ)
· ∂λ̃

∂λ

]

= min
[
1,p(ρ̃)λ̃q̃/2 exp

(
−1

2
λ̃δ′δ̃

)
l(β̃)

× |�|0.5 exp
(
−1

2
(δ − μ′)�(δ − μ)′

)
/(

p(ρ)λq/2 exp
(
−1

2
λδ′δ

)
l(β)

× |�̃|0.5 exp
(

− 1

2
(̃δ − μ̃)′�̃(δ̃ − μ̃)′

))]
,

where l(β) is the likelihood function [equation (2.1)], q and q̃ are the ranks of Bρ

and Bρ̃ , and μ and � are the mean and precision of the reverse proposal [Green
(1995)].

3.3. Sensitivity analysis. It is a good statistical practice to investigate whether
and to what extent the results of an analysis are sensitive to the prior distribution.
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TABLE 4
Jump proposal probabilities for the anisotropy parameter

Anisotropy 8 4 2 1 0.5 0.25

8 0.9 0.1
4 0.1 0.8 0.1
2 0.1 0.8 0.1
1 0.1 0.8 0.1
0.5 0.1 0.8 0.1
0.25 0.1 0.9

That means in this case investigating the influence of the prior distribution of the
smoothness and anisotropy parameters. Figures 1 and 2 above are based on our
preferred prior distribution as specified in Tables 2 and 3. In Figure 3 we compare
Figure 1 (a) with an analysis (b) in which the scale parameters in Table 4 are
multiplied by 10, decreasing the roughness penalty by a factor of 10 and producing
a substantially rougher surface. Figure 5 shows the effect of this variation on the
probability of discrimination.

3.4. Identification of the anisotropy parameter. Table 5 shows the marginal
posterior distribution of the anisotropy parameter for the preferred prior distribu-
tion of the smoothness parameter (Table 3). The posterior probability P(ρ|Data) is
the observed rate of sampler visits to value ρ of the anisotropy parameter in 19,000
replications, the marginal likelihood is P(ρ|Data)/P (ρ) ∝ P(Data|ρ), and p0.025
and p0.975 are nominal Monte-Carlo error bounds computed on the assumption
that the observed rate has a binomial distribution.

FIG. 4. Effect of the smoothness prior on the log odds ratio.
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TABLE 5
Posterior distribution and marginal likelihood of the anisotropy parameter

Posteriora Marginal likelihood

ρ Prior P(ρ|Data) p0.025 p0.975 ∝ P(Data|ρ) p0.025 p0.975

8 0.08 0.122 0.12 0.13 1.53 1.47 1.61
4 0.16 0.231 0.22 0.24 1.44 1.40 1.50
2 0.26 0.286 0.28 0.30 1.10 1.07 1.14
1 0.26 0.217 0.21 0.23 0.83 0.81 0.87
0.5 0.16 0.101 0.10 0.11 0.63 0.61 0.67
0.25 0.08 0.043 0.04 0.05 0.54 0.50 0.59

ap0.025 and p0.975 are Monte-Carlo error bounds (see text).

It is clear from the marginal likelihood that the data carry information about
anisotropy and, in particular, that models with large values of ρ (i.e., which are
very rough in the time dimension) are disconfirmed by the data. However, high
levels of smoothness in the time dimension are not disconfirmed by data and ap-
parently must be discouraged by the prior. Because of this, we investigated the
effect of a prior that forces more smoothness in the time dimension.

In Figure 6 we altered the prior distribution for the anisotropy parameter to favor
smoothness in the time dimension (Table 6). In this case the prior geometric mean
of the anisotropy parameter is about 4, meaning that we think that, in terms of
roughness of the log odds on termination, a decade of age is about equivalent to
a business quarter (see Section 3.1). Evidence of discrimination in the plaintiff’s
case (the intersection of the dashed and black ribbons) is slightly stronger for the
prior that forces more smoothness in the time dimension; P (OR > 1|Data) is

FIG. 5. Effect of the smoothness prior on the posterior probability of discrimination.
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FIG. 6. Effect of the anisotropy parameter on the posterior probability of discrimination.

about 0.79 for the preferred prior (a) and about 0.83 for the more time-smoothing
prior (b).

Although the analysis in panel (b) is more favorable to the plaintiff, we think it
would be less persuasive to the trier(s) of fact (judge or jury) since it does not seem
to distinguish between the periods before and after the arrival of the new CEO (day
862).

3.5. Previous analyses of case W. The plaintiff who was between 50 and 59
years of age was one of 12 employees involuntarily terminated on day 1092. He
brought an age discrimination suit against the employer under the theory that the
new CEO had a pattern of targeting employees aged 50 and above for termination.

In the original case, the plaintiff’s statistical expert tabulated involuntary ter-
mination rates for each calendar quarter and each age decade. He reported that,
“[Involuntary] separation rates for the [period beginning at day 481] averaged a
little above three percent of the workforce per quarter for ages 20 through 49, but
jumped to six and a half percent for ages 50 through 59. The 50–59 year age group
differed significantly from the 20–39 year age group (signed-rank test, p = 0.033,
one sided).” The plaintiff alleged and the defendant denied that the new CEO had
vowed to weed out older employees. The case was settled before trial.

TABLE 6
Alternate prior distribution of the anisotropy parameter

ρ 8 4 2 1 0.5 0.25

Prior 0.5 0.25 0.125 0.0625 0.03125 0.03125

Larger ρ-values favor smoothness in time.



AGE AND TIME 1153

FIG. 7. Smooth by piecewise constant proportional hazards model.

In a subsequent re-analysis [Kadane and Woodworth (2004)], we employed a
proportional hazards model with separate, smoothly time-varying log hazard ratios
for ages 40–49, and 50–64, with ages 20–39 as the reference category. Thus, the
log hazard ratio was smooth over time but piecewise constant over age; Figure 7
is reproduced with permission from that paper. Our preferred model, represented
by the solid curves, had prior mean smoothness 0.007. For this prior the posterior
probability of age-discrimination in the case of Plaintiff W1 was 0.842.

The model depicted in Figure 7 has two explanatory variables for age, an indi-
cator variable for age in the range 40–49 and an indicator variable for age 50 and
above (there are no employees 65 and over in the data set). The likelihood model
was proportional hazards regression with smoothly time-varying coefficients for
the two explanatory variables. Three analyses are shown here with different prior
means for the smoothness parameter, λ. The upper panel shows posterior means
of the proportional-hazards regression coefficients as functions of time and the
smoothness parameter. As suggested in the figure, the regression coefficients are
interpretable as instantaneous log-odds ratios with unprotected, under-40, employ-
ees as the reference category. The second panel presents posterior probabilities
that the two regression coefficients are positive; that is, that the termination rate
is higher for the protected subclasses compared to the unprotected class. For ex-
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ample, at the time of plaintiff W2’s termination, the posterior probability exceeds
80% that employees age 50 and above had a higher risk of termination than the
protected class.

A second plaintiff, W2 aged 60 terminated on day 733, also brought an age-
discrimination suit on the theory that employees aged 60 and above were dispro-
portionately targeted at the time of his termination. On that day three of eight em-
ployees (37.5%) aged 60 and up were terminated compared to 15 of 136 (11.0%)
employees terminated out of all other age groups (one-sided Fisher exact test
p = 0.0530). In our re-analysis the posterior probability of age discrimination
against employees aged 50–64 was about 50% but did not distinguish between
employees aged 50–59 and 60–64. Our second re-analysis reported in this paper
remedies that deficiency and gives a more detailed picture of the impact of age on
the risk of discrimination; in particular, for our preferred prior, the posterior prob-
ability of age discrimination against 60-year old employees on day 733 is about
65% but is only about 37% for 50-year old employees.

3.6. Summary. Table 7 summarizes the results of the three analyses of case W
for each of the two plaintiffs. In the first, classical, analyses for Plaintiff W1, it
is assumed that each employee in the age groups 20–39 and 50–59 has the same
chance of being involuntarily terminated (i.e., fired) in each quarter-year after day
481. The test of significance calculates the probability of obtaining data as or more
extreme than that observed were it true that persons in these two age groups have

TABLE 7
Summary of three analyses of Case W

Plaintiff

Analysis Method
Figure of
merit

Treatment
of age

Age × time
interaction W1 W2

Original
expert’s
report

Frequentist p-value categorical:
40-up

none 0.033 0.053

Kadane and
Woodworth
(2004)

Bayesian probability of
disproportional
disadvantage

categorical:
40–49,
50–64

smooth 0.84 0.50

smooth/w
discontinuity
at day 862

0.88 0.49

This paper Bayesian probability of
disproportional
disadvantage

smooth smooth 0.65 0.37

Anonymous
referee of
this paper

Cox
regression

p-value,
OR, and
90% LCL

linear
above 40

none but
restricted
to day
1000 up

p: 0.041
OR: 2.04
LCL: 1.01

n/a
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the same chance of being fired in any given quarter. The classical analysis for plain-
tiff W2 is somewhat different, in that it focuses solely on what happened on the
day that W2 was fired. It conditions on both the age distribution of the workforce
at the time (eight of 144 employees 60 years old or older) and the number fired
(18) and computes the probability of three or more of the eight older employees
being fired, if employees were equally likely to be fired.

The second analysis is based on a model for the log odds of being fired that is
continuous in time but still assumes constancy in age categories. The analysis of
this paper relaxes this latter assumption, and allows smoothness in both age and
time. In both Bayesian analyses, the probability computed is that an employee of
a given age was more likely to be fired at a particular time than was an employee
in the unprotected 20–39 age group.

Although the classical analyses are computing probabilities in the sample space
while the Bayesian analyses are computing probabilities in the parameter space,
the stronger effect here appears to be that as the assumptions get less rigid, there
is less certainty that these plaintiffs’ cases were meritorious, as Table 7 shows. In
view of the tendency of Bayesian analyses to draw estimates toward each other,
this is perhaps not too surprising.

4. Discussion. In a nonhierarchical model, the effect of the prior can be iso-
lated by separately reporting the likelihood function and the prior distribution. In
particular, if the parameter space is divided into two disjoint subsets, the likelihood
ratio and the prior odds suffice. However, in a hierarchical model such as this one,
such a separation is not possible. For this reason, we have reported the results of
changing our prior directly, in Sections 3.3, 3.4 and 3.5.

We have presented a global analysis of involuntary terminations that incorpo-
rates all of the data but reflects fine-grained variations over time and age of em-
ployee. The results are somewhat sensitive to assumptions about prior distribution
of the smoothness parameter, although not enough to materially alter the strength
of evidence supporting the plaintiff’s discrimination claim in Case W. This analy-
sis, in our view, casts new light on the apparent patterns in coarser-grained descrip-
tive presentations that might be easier for nonspecialists to grasp.

Our intent is to develop a methodology that does not require complex assump-
tions about the relationship between time, age and risk of termination. Indeed, the
only structural assumption is smoothness and the only prior opinion required has to
do with the degree of smoothness. We have suggested how that prior opinion could
be elicited by considering how rapidly the risk of termination is likely to change
over a business quarter and over a decade of age. A referee described our analy-
sis as “staggeringly complex” and “shuddered to think what a judge or jury would
make of this approach.” All statistical analyses are “staggeringly complex” to most
laypersons. We think our responsibility as statisticians (and experts in court) is to
present our best analysis of the data, and to explain it as best as we can.
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A global analysis such as this one is more powerful and more appropriate than
analyzing subsets of the data, perhaps in the form of individual termination waves
or individual business quarters, and more appropriate than analyzing coarse aggre-
gations such as employees aged 40 and above compared to younger employees.
The fallacy of subdividing the data is that such analyses implicitly assume that
there is no continuity in the behavior of a firm and no difference in treatment of
employees of different ages within the same broad age category (40 and older).
We believe that the appropriate approach to possible inhomogeneities of the age
effect is to incorporate them in a global model—see, for example, our discussion of
Gastwirth’s (1992) analysis in Valentino v. United States Postal Service [Gastwirth
(1992), Kadane and Woodworth (2004)].

Finally, it has not escaped our notice that our analysis of Case W has made it
clear that only a subgroup of older employees, centered around the peak at day
1275 and age 54–55, has even moderately strong statistical evidence to support a
claim of age discrimination. We believe that this is precisely the information that
the court needs in order to determine how an award (if any) should be distributed
among members of a certified class.

SUPPLEMENTARY MATERIAL

Supplement A: Employment — Case W (DOI: 10.1214/10-AOAS330SUPPA;
.txt). Data from two cases described in the paper “Hierarchical models for employ-
ment decisions,” by Kadane and Woodworth. A constant number of days has been
subtracted from each date to preserve confidentiality.

Supplement B: Code for calculations (DOI: 10.1214/10-AOAS330SUPPB;
.zip).
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