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VARIABLE SELECTION AND UPDATING IN MODEL-BASED
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Food authenticity studies are concerned with determining if food sam-
ples have been correctly labeled or not. Discriminant analysis methods are
an integral part of the methodology for food authentication. Motivated by
food authenticity applications, a model-based discriminant analysis method
that includes variable selection is presented. The discriminant analysis model
is fitted in a semi-supervised manner using both labeled and unlabeled data.
The method is shown to give excellent classification performance on several
high-dimensional multiclass food authenticity data sets with more variables
than observations. The variables selected by the proposed method provide in-
formation about which variables are meaningful for classification purposes.
A headlong search strategy for variable selection is shown to be efficient in
terms of computation and achieves excellent classification performance. In
applications to several food authenticity data sets, our proposed method out-
performed default implementations of Random Forests, AdaBoost, transduc-
tive SVMs and Bayesian Multinomial Regression by substantial margins.

1. Introduction. Foods that are expensive are subject to potential fraud where
rogue suppliers may attempt to provide a cheaper inauthentic alternative in place
of the more expensive authentic food. Food authenticity studies are concerned with
assessing the veracity of the labeling of food samples. Discriminant analysis meth-
ods are of prime importance in food authenticity studies where samples whose au-
thenticity is being assessed are classified using a discriminant analysis method and
the labeling and classification are compared. Samples determined to have poten-
tially inaccurate labeling can be sent for further testing to determine if fraudulent
labeling has been used.
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Model-based discriminant analysis [Bensmail and Celeux (1996), Fraley and
Raftery (2002)] provides a framework for discriminant analysis based on parsi-
monious normal mixture models. This approach to discriminant analysis has been
shown to be effective in practice and, being based on a statistical model, it allows
for uncertainty to be treated appropriately.

In many applications, only a subset of the variables in a discriminant analysis
contain any group membership information and including variables which have no
group information increases the complexity of the analysis, potentially degrading
the classification performance. Therefore, there is a need for including variable
selection as part of any discriminant analysis procedure. Additionally, if a subset
of variables is found to be important for classification purposes, then it suggests
the potential for collecting a smaller subset of variables using inexpensive methods
rather than the full high dimensional data.

Variable selection can be completed as a preprocessing step prior to discrimi-
nant analysis (a filtering approach) or as part of the analysis procedure (a wrapper
approach). Completing variable selection prior to the discriminant analysis can
lead to variables that have weak individual classification performance being omit-
ted from the subsequent analysis. However, such variables could be important for
classification purposes when jointly considered with others. Hence, performing
variable selection as part of the discriminant analysis procedure is preferred.

Combining variable selection and linear or quadratic discriminant analysis has
been considered previously in the literature; see McLachlan [(1992), Chapter 12]
for a review. Many of these methods are based on measuring the Mahalanobis
distance between groups before and after the inclusion of a variable into the dis-
criminant analysis model. In the machine learning literature, Kohavi and John
(1997) developed a wrapper approach for combining variable selection in super-
vised learning, of which discriminant analysis is a special case.

Variable selection is of particular importance in situations where there are more
variables than observations available, that is, large p, small n (n � p) problems
[West (2003)]. These situations arise with increasing frequency in statistical appli-
cations, including genetics, proteomics, image processing and food science. The
two food science applications considered in Section 2 involve data sets with many
more variables than observations.

In this paper a version of model-based discriminant analysis is developed by
adapting the model-based clustering with variable selection method of Raftery and
Dean (2006). This method of discriminant analysis builds a discriminant rule in
a stepwise manner by considering the inclusion of extra variables into the model
and also considering removing existing variables from the model based on their
importance. The stepwise selection procedure is iterated until convergence.

A brief review of model-based clustering and discriminant analysis is given in
Section 3. The underlying model for model-based clustering with variable selec-
tion is reviewed in Section 3.1 and this model is extended to model-based discrim-
inant analysis with variable selection in Section 3.2. In Section 3.3 the fitting of the
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discriminant analysis model is extended to incorporate semi-supervised updating
using both the labeled and unlabeled observations [Dean, Murphy and Downey
(2006)] in order to improve the classification performance.

Search strategies for selecting the variables for inclusion and exclusion are dis-
cussed in Section 3.4. A headlong search strategy is proposed that combines good
classification performance and computational efficiency. The proposed methodol-
ogy is applied to the high dimensional data sets in Section 4 and the methodology
and results are discussed in Section 5.

2. Data.

2.1. Food authenticity and near infrared spectroscopy. An authentic food is
one that is what it claims to be. Important aspects of food description include
its process history, geographic origin, species/variety and purity. Food producers,
regulators, retailers and consumers need to be assured of the authenticity of food
products.

Food authenticity studies are concerned with establishing whether foods are au-
thentic or not. Many analytical chemistry techniques are used in food authenticity
studies, including gas chromatography, mass spectroscopy and vibrational spec-
troscopic techniques (Raman, ultraviolet, mid-infrared, near-infrared and visible).
All of these techniques have been shown to be capable of discriminating between
certain sets of similar biological materials. Downey (1996) and Reid, O’Donnell
and Downey (2006) provide reviews of food authenticity studies with an emphasis
on spectroscopic methods. Near infrared (NIR) spectroscopy provides a quick and
efficient method of collecting data for use in food authenticity studies [Downey
(1996)]. It is particularly useful because it requires very little sample preparation
and is nondestructive to the samples being tested.

We consider two food authenticity data sets which consist of combined visi-
ble and near-infrared spectroscopic measurements from food samples of different
types. The aim of the food authenticity study is to classify the food samples into
known groups. The two studies are outlined in detail in Sections 2.2 and 2.3:

• Classifying meats into species (Beef, Chicken, Lamb, Pork, Turkey).
• Classifying olive oils into geographic origin (Crete, Peloponese, other).

In both studies, combined visible and near infrared spectra were collected in re-
flectance mode using an NIRSystems 6500 instrument over the wavelength range
400–2498 nm at 2 nm intervals. The visible portion of the spectrum is the range
400–800 nm and the near-infrared region is the range 800–2498 nm. Hence, the
values collected for each food sample consist of 1050 reflectance values taken at
2 nm intervals (see, for example, Figure 1). For the meat samples, twenty five sep-
arate scans were collected during a single passage of the spectrophotometer and
averaged, after which the mean spectrum of a reference ceramic tile (16 scans) was
recorded and subtracted from the mean spectrum. A similar process was used for
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FIG. 1. The near-infrared spectra recorded for three examples of each meat species in the study.
The discontinuity at 1100 nm is due to a sensor change at that value. The samples are colored as
Beef = red, Lamb = green, Pork = blue, Turkey = orange, Chicken = yellow.

the olive oil data, but fewer scans were used. Full details of the spectral data col-
lection process are given in McElhinney, Downey and Fearn (1999) and Downey,
McIntyre and Davies (2003).

The reflectance values in the visible and near-infrared region are produced by
vibrations in the chemical bonds in the substance being analyzed. The data are
highly correlated due to the presence of a large number of overlapping broad peaks
in this region of the electromagnetic spectrum and the presence of combinations
and overtones. As a result, even though the data are very highly correlated, the re-
flectance values at adjacent wavelengths can have different sources and reflectance
values at very different wavelengths can have the same source. So, the informa-
tion encoded in each spectrum is recorded in a complex manner and spread over a
range of locations. Osborne, Fearn and Hindle (1993) provide an extensive review
of the chemical and technological aspects of near-infrared spectroscopy and its ap-
plication. Further information on the combined spectra and their structure is given
in Section 4 where the results of the analysis of the data are given.

Because of the complex nature of the combined spectroscopic data, there is
interest in determining if a small subset of reflectance values contain as much in-
formation for authentication purposes as the whole spectrum does. If a small num-
ber of variables contain sufficient information for authentication purposes, then
this indicates the possibility of developing portable sensors for food authenticity
studies that are more rapid and have a lower cost than recording the combined vis-
ible and near-infrared spectrum. In fact, portable sensors have been developed on
a commercial basis for the authentication of Scottish whiskys [Connolly (2006)]
using ultraviolet spectroscopic technology. Hence, there are motivations for incor-
porating feature selection in the classification methods used on these data from the
application and the modeling viewpoints.
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The problem of feature selection is especially difficult because the number of
possible subsets of wavelengths that could be selected in this problem is 21050.
So, efficient search strategies need to be used so that a good set of features can be
selected without searching over all possible subsets.

2.2. Homogenized meat data. McElhinney, Downey and Fearn (1999) con-
structed a collection of combined visible and near-infrared spectra from 231 ho-
mogenized meat samples in order to assess the effectiveness of visible and near-
infrared spectroscopy as a tool for determining the correct species of the samples.
The samples collected for this study consist of 55 Chicken, 55 Turkey, 55 Pork,
32 Beef and 34 Lamb samples. The samples were collected over an extended pe-
riod of time and from a number of sources in order to ensure a representative
sample of meats.

For each sample, a spectrum consisting of 1050 reflectance measurements was
recorded (as outlined in Section 2.1). A plot of all of the spectra is shown in Fig-
ure 1. We can see that there is a discrimination between the red meats (beef and
lamb) and the white meats (chicken, turkey and pork) over some of the visible
region (400–800 nm), but discrimination within meat colors is less clear.

2.3. Greek olive oils data. Downey, McIntyre and Davies (2003) recorded
near-infrared spectra from a total of 65 extra virgin olive oil samples that were col-
lected from three different regions in Greece (18 Crete, 28 Peloponese, 19 other).
Each data value consists of 1050 reflectance values over the visible and near-
infrared range. The aim of their study was to assess the effectiveness of near-
infrared spectroscopy in determining the geographical origin (see Figure 2) of the
oils.

FIG. 2. Regions of Greece where the olive oil samples were collected.
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3. Model-based clustering and discriminant analysis. Model-based clus-
tering [Banfield and Raftery (1993), Fraley and Raftery (1998, 2002), McLachlan
and Peel (2000)] uses mixture models as a framework for cluster analysis. The
underlying model in model-based clustering is a normal mixture model with G

components, that is,

f (x) =
G∑

g=1

τgf (x|μg,�g),

where f (·|μg,�g) is a multivariate normal density with mean μg and covari-
ance �g .

A central idea in model-based clustering is the use of constraints on the group
covariance matrices �g ; these constraints use the eigenvalue decomposition of the
covariance matrices to impose shape restrictions on the groups. The decomposi-
tion is of the form �g = λgDgAgD

T
g , where λg is the largest eigenvalue, Dg is an

orthonormal matrix of eigenvectors, and Ag is a diagonal matrix of scaled eigen-
values. Interpretations for the parameters in the covariance decomposition are as
follows: λg = volume; Ag = shape; Dg = orientation. These parameters can be
constrained in various ways to be equal or variable across groups. Additionally,
the shape and orientation matrices can be set equal to the identity matrix.

Bensmail and Celeux (1996) developed model-based discriminant analysis
methods using the same covariance decomposition. An extension of model-based
discriminant analysis that allows for updating of the classification rule using the
unlabeled data was developed by Dean, Murphy and Downey (2006) and will be
described in more detail in Section 3.3. Model-based clustering and discriminant
analysis can be implemented in the statistics package R [R Development Core
Team (2007)] using the mclust package [Fraley and Raftery (1999, 2003, 2007)].

3.1. Model-based clustering with variable selection. We argue that variable
selection needs to be part of the discriminant analysis procedure, because com-
pleting variable selection prior to discriminant analysis may lose important group-
ing information. This argument is supported by the result of Chang (1983), who
showed that the principal components corresponding to the larger eigenvalues do
not necessarily contain information about group structure. This suggests that the
commonly used filter approach of selecting the first few principal components to
explain a minimum percentage of variation can be suboptimal. A similar argu-
ment can be made that selecting discriminating variables without reference to the
grouping variable may miss important variables. In addition, some variables may
contain strong group information when used in combination with other variables,
but not on their own. Another critique of completing a variable (or feature) selec-
tion step before supervised learning (filtering) is given by Kohavi and John (1997),
Section 2.4.
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Raftery and Dean (2006) developed a stepwise variable selection wrapper for
model-based clustering. With their method, variables are selected in a stepwise
manner. Their method involves the stages:

• A variable is proposed for addition to the set of selected clustering variables. The
Bayesian Information Criterion (BIC) is used to compare a model in which the
variable contains extra information about the clustering beyond the information
in the already selected variables versus a model where the variable doesn’t con-
tain additional information about the clustering beyond the information in the
already selected variables. The variable with the greatest positive BIC difference
is added to the model. If the proposed variable has a negative BIC difference,
then no variable is added.

• BIC is used to consider whether a variable should be removed from the model;
This step is the reverse of the variable addition step. If all of the selected vari-
ables contain clustering information, then none is removed from the set of se-
lected clustering variables.

This process is iterated until no further variables are added or removed. This ap-
proach, that combines variable selection and cluster analysis, avoids the problems
of completing variable selection independently of the clustering. While the step-
wise variable selection wrapper proposed in Raftery and Dean (2006) and other
wrapper approaches can give excellent clustering results, there is a considerable
computational burden with wrapper approaches when compared to filtering ap-
proaches; this is because the model needs to be fitted each time a variable is added
or removed from the set of selected clustering variables.

3.2. Model-based discriminant analysis with variable selection. We adapt the
ideas of Raftery and Dean (2006) to produce a discriminant analysis technique that
includes a stepwise variable selection wrapper. This discriminant analysis method
uses a stepwise variable selection procedure to find a subset of variables that gives
good classification results.

Each stage of the algorithm involves two steps:

• Determine if a variable (not already selected) would contribute to the discrimi-
nant analysis model. In order to do this, a model comparison using BIC is used
to compare a discriminant analysis model where the variable contains group
information beyond the information in the already selected variables versus a
model where the variable does not contain group information beyond the infor-
mation in the already selected variables. Variables where the BIC difference is
positive are candidates for addition to the set of selected variables; the procedure
for searching for variables to add to the model is given in Section 3.4.

• Determine if any selected variables should be removed from the discriminant
analysis model. This step is the reverse of the variable addition step. Variables
where the BIC model comparison suggests that the variable does not contain
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group information are candidates for removing from the set of selected vari-
ables; the procedure for searching for variables to remove from the model is
outlined in Section 3.4.

Let (x1,x2, . . . ,xn) be the observed data values and let (l1, l2, . . . , ln) be the
group indicator variables for these observations where lig = 1 if observation i be-
longs to group g and lig = 0 otherwise.

Suppose that the observation xi is partitioned into three parts: x(c)
i are the vari-

ables already chosen; x(p)
i is the variable being proposed; x(o)

i are the remaining
variables. The decision on whether to include or exclude a proposed variable is
based on the comparison of two models:

• Grouping: p(xi |li ) = p(x(c)
i ,x(p)

i ,x(o)
i |li ) = p(x(o)

i |x(p)
i ,x(c)

i )p(x(p)
i ,x(c)

i |li ).
• No Grouping: p(xi |li ) = p(x(c)

i ,x(p)
i ,x(o)

i |li ) = p(x(o)
i |x(p)

i ,x(c)
i )p(x(p)

i |x(c)
i ) ×

p(x(c)
i |li ).

Figure 3 shows the difference between the “Grouping” and “No Grouping”
models for xi . If the Grouping model holds, x(p)

i provides information about which

group the data value belongs to beyond that provided by x(c)
i , while if the No

Grouping model holds, x(p)
i provides no extra information.

The Grouping and No Grouping models are specified as follows:

• Grouping: We let p(x(p)
i ,x(c)

i |li ) be a normal density with parsimonious covari-
ance structure as described in Table 1. That is,(

x(p)
i ,x(c)

i

)|(lig = 1) ∼ N
(
μ(p,c)

g ,�(p,c)
g

)
,

li ∼ Multinomial(1, τ ),

FIG. 3. A graphical model representation of the Grouping and the No Grouping models.
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TABLE 1
Constrained covariance structures in model-based clustering as implemented

in the mclust package for R

Model ID Volume Shape Orientation Covariance (�g)

EII Equal Equal spherical NA λI

VII Variable Equal spherical NA λgI

EEI Equal Equal Axis aligned λA

VEI Variable Equal Axis aligned λgA

EVI Equal Variable Axis aligned λAg

VVI Variable Variable Axis aligned λgAg

EEE Equal Equal Equal λDADT

EEV Equal Equal Variable λDgADT
g

VEV Variable Equal Variable λgDgADT
g

VVV Variable Variable Variable λgDgAgDT
g

where τ = (τ1, τ2, . . . , τG).
• No Grouping: We let p(x(c)

i |li ) be a normal density with parsimonious covari-
ance structure. In addition, p(x(p)

i |x(c)
i ) is assumed to have a linear regression

model structure. That is,

x(c)
i |(lig = 1) ∼ N

(
μ(c)

g ,�(c)
g

)
,

li ∼ Multinomial(1, τ ),

x(p)
i |x(c)

i ∼ N
(
α + βT x(c)

i , σ 2)
,

where τ = (τ1, τ2, . . . , τG).

The same model structure is assumed for p(x(o)
i |x(c)

i ,x(p)
i ) in the Grouping

model as in the No Grouping model. Therefore, this part of the model does not
influence the choice to include x(p)

i in the model or not.
The decision as to whether the Grouping or No Grouping model is appropriate

is made using the BIC approximation of the log Bayes factor. The logarithm of the
Bayes factor is

log(Bayes Factor) = log
p(xi |MG)

p(xi |MNG)
,(3.1)

where MG is the Grouping model, MNG is the No Grouping model and

p(xi |Mk) =
∫

p(xi |θk, Mk)p(θk|Mk) dθk

is the integrated likelihood of model Mk . We use the BIC approximation of the
integrated likelihood in the form

BIC = 2 × log maximized likelihood − d log(n),
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where d is the number of parameters in the model and n is the sample size
[Schwarz (1978)]. Following Raftery and Dean (2006), the log Bayes factor (3.1)
can be reduced to

log(Bayes Factor) = log
p(x(p)

i ,x(c)
i |MG)

p(x(p)
i |x(c)

i , MNG)p(x(c)
i |MNG)

(3.2)

≈ 1

2
[BIC(Grouping) − BIC(No Grouping)],

which only involves (x(c)
i ,x(p)

i ) and not x(o)
i . Variables with a positive difference in

BIC(Grouping)−BIC(No Grouping) are candidates for being added to the model.
At each variable addition stage, the BIC of the grouping model is calculated

using each of the ten covariance structures given in Table 1 and the model with the
highest BIC is selected for the Grouping model for model comparison purposes.

At each stage, we also check if an already chosen variable should be removed
from the model. This decision is made on the basis of the BIC difference in a simi-
lar way to previously. In this case, x(p)

i takes the role of the variable to be dropped,
x(c)
i takes the role of the remaining chosen variables and x(o)

i are the other variables.
The variables with a positive difference in BIC(Grouping) − BIC(No Grouping)

are candidates for removal from the model; in this case, the BIC for the no group-
ing models are computed for all covariance structures from Table 1 and the model
with the highest BIC is selected as the No Grouping model.

3.3. Discriminant analysis with updating. In standard discriminant analysis,
the unlabeled data are not used in the model fitting procedure. However, these
data contain information that is potentially important, especially when very few
labeled data values are available. We can model both the labeled and unlabeled
data as coming from the same model, but where the unlabeled data is missing the
labeling variable, this leads to a mixture model for the unlabeled data. Hence,
the unlabeled data can then be used to help fit a model to the data. This idea
has been investigated by many authors, including Ganesalingam and McLach-
lan (1978) and O’Neill (1978) and more recently by Dean, Murphy and Downey
(2006), Chapelle, Schölkopf and Zien (2006), Toher, Downey and Murphy (2007)
and Liang, Mukherjee and West (2007).

Let (x1, l1), (x2, l2), . . . , (xN, lN) be the labeled data and y1,y2, . . . ,yM be the
unlabeled data. We let z = (z1, z2, . . . , zM) be the unobserved (missing) labels for
the unlabeled data. In this framework, the Grouping and No Grouping models for
the observed data are of the form:

• Grouping: We let p(x(p)
i ,x(c)

i |li ) be a normal density with parsimonious covari-
ance structure as described in Table 1, namely,

(
x(p)
i ,x(c)

i

)|(lig = 1) ∼ N
(
μ(p,c)

g ,�(p,c)
g

)
,

li ∼ Multinomial(1, τ ).
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Also, p(y(p)
j ,y(c)

j ) is a mixture of normals with parsimonious covariance struc-
tures, namely,

(
y(p)
j ,y(c)

j

) ∼
G∑

g=1

τgN
(
μ(p,c)

g ,�(p,c)
g

)
.

• No Grouping: We let p(x(c)
i |li ) be a normal density with parsimonious covari-

ance structure, namely,

x(c)
i |(lig = 1) ∼ N

(
μ(c)

g ,�(c)
g

)
,

li ∼ Multinomial(1, τ ).

We also let p(y(c)
j ) be a mixture of normal densities with parsimonious covari-

ance structure, namely,

y(c)
j ∼

G∑
g=1

τgN
(
μ(c)

g ,�(c)
g

)
.

In addition, we assume a linear regression model for p(x(p)
i |x(c)

i ) and p(y(p)
j |

y(c)
j ), namely,

x(p)
i |x(c)

i ∼ N
(
α + βT x(c)

i , σ 2)
and

y(p)
j |y(c)

j ∼ N
(
α + βT y(c)

j , σ 2)
.

In both models, we assume an identical model structure for p(x(o)
i |x(c)

i ,x(p)
i )

and p(y(o)
j |y(c)

j ,y(p)
j ), and this doesn’t affect the choice to include a variable in the

model or not.
This model can be fitted using the EM algorithm [Dempster, Laird and Rubin

(1977)] by introducing the missing labels z into the model. The calculations in-
volved in fitting the model including the labeled and unlabeled data follow those
outlined in Dean, Murphy and Downey (2006). The maximum likelihood estimates
for the regression part of the model correspond to least squares estimates of the re-
gression parameters.

The final estimates of the posterior probability of group memberships produced
by the EM algorithm are used to classify the unlabeled observations. Thus, each
observation j is classified into the group g that maximizes ẑjg over g, where

ẑjg = τ̂gp(y(c)
j |μ̂(c)

g , �̂
(c)
g )

∑G
g′=1 τ̂g′p(y(c)

j |μ̂(c)
g′ , �̂

(c)
g′ )

,

y(c)
j is the set of chosen variables, and {(τ̂g, μ̂

(c)
g , �̂

(c)
g ) :g = 1,2, . . . ,G} are the

maximum likelihood estimates for the unknown model parameters for this set of
chosen variables.
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FIG. 4. A plot of the BIC difference for each wavelength. The wavelength with the greatest BIC
difference is 626 nm.

3.3.1. Example. An illustrative example of the BIC calculations when the pro-
posed algorithm is applied to the meat spectroscopy data is shown in Figures 4–6;
half the data of each type were randomly selected as training data in this example.

The variable selection algorithm begins by selecting 626 nm as the wavelength
with the greatest difference between the Grouping and No Grouping models (Fig-
ure 4) and the E covariance structure was chosen. It is worth noting that wave-
lengths close to 626 nm still have strong evidence of grouping even though the
spectra are smoothly varying. This phenomenon is due to the fact that the spec-

FIG. 5. A plot of the BIC difference for each wavelength given that wavelength 626 nm is already
accepted. The wavelength with the greatest BIC difference is 814 nm. Note that wavelengths close to
626 nm still have positive BIC difference values.
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FIG. 6. A plot of the BIC difference for each wavelength given that the first two wavelengths chosen
(626 nm and 814 nm) are already accepted. The wavelength with the greatest BIC difference is
774 nm.

trum consists of a number of overlapping peaks and the reflectances at adjacent
locations can have different sources. As a result, extra grouping information can
be available at wavelengths that are very close.

Subsequently, the 814 nm wavelength is added to the model (Figure 5) and the
EEV covariance structure was chosen. At the third stage, the 774 nm wavelength is
selected (Figure 6) and the VEV covariance structure was chosen. The procedure
continues until thirteen wavelengths are selected (details of the iterations are given
in Table 2) and the VEV covariance structure is chosen at all subsequent stages.

Interestingly, many of the chosen wavelengths are in the visible range (400–
800 nm) of the spectrum, indicating that color is important when separating the
meat samples. The closest two wavelengths that were selected were 2310 nm and
2316 nm and a number of wavelengths that were selected are approximately 20 nm
apart. In summary, the selected wavelengths are spread out mainly in the visible
region, but some wavelengths were selected in the near-infrared region.

3.4. Headlong model search strategy. The variable selection algorithm dem-
onstrated in Section 3.3.1 is a greedy search strategy. At the variable addition
stages of the algorithm, the variable with the greatest BIC difference is added
and at variable removal stages, the variable with the greatest BIC difference is
removed. The process of finding the variable with the greatest BIC difference in-
volves calculating the BIC difference for all variables under consideration; for the
spectroscopic data there are typically just under 1050 variables under considera-
tion at the variable addition stages. Hence, this search strategy is computationally
demanding; this feature is shared by other wrapper variable selection methods too.

A less computationally expensive alternative is to use a headlong search strategy
[Badsberg (1992)]. The variable added or removed in the headlong search strat-
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TABLE 2
A full example of the variable selection procedure used to classify the meat samples into five types.

The updating procedure was used in this example

Iteration Proposal BIC diff. Decision Proposal BIC diff. Decision

1 Add 626 nm 425.4 Accepted
2 Add 814 nm 274.1 Accepted
3 Add 774 nm 427.4 Accepted Remove 774 nm −427.4 Rejected
4 Add 664 nm 142.6 Accepted Remove 626 nm −120.1 Rejected
5 Add 680 nm 220.1 Accepted Remove 774 nm −78.8 Rejected
6 Add 864 nm 165.2 Accepted Remove 774 nm −91.7 Rejected
7 Add 602 nm 118.9 Accepted Remove 774 nm −26.3 Rejected
8 Add 794 nm 118.3 Accepted Remove 774 nm −86.2 Rejected
9 Add 702 nm 178.6 Accepted Remove 774 nm −127.5 Rejected

10 Add 1996 nm 127.5 Accepted Remove 1996 nm −127.5 Rejected
11 Add 644 nm 76.6 Accepted Remove 644 nm −76.6 Rejected
12 Add 2316 nm 24.1 Accepted Remove 2316 nm −24.1 Rejected
13 Add 2310 nm 103.2 Accepted Remove 702 nm −26.1 Rejected
14 Add 1936 nm 10.8 Accepted Remove 702 nm 4.4 Accepted
15 Add 704 nm −3.7 Rejected Remove 1936 nm −41.3 Rejected

egy need not be the best in terms of having the greatest BIC difference; it merely
needs to be the first variable considered whose difference is greater than some pre-
specified value (here min.evidence). We found that min.evidence = 0 gave good re-
sults for the applications in this paper. The headlong strategy has close connections
to the “first-improvement” moves used in local search algorithms [e.g., Hoos and
Stützle (2005), Chapter 2.1]. This means that instead of adding the variable with
the greatest evidence for Grouping versus No Grouping, the first variable found
to have a certain amount of evidence for Grouping versus No Grouping would be
added. At the variable addition stages of the algorithm, the remaining variables
are examined in turn from an ordered list. The initial order of the list is based on
the variables’ original BIC differences at the univariate addition stage; this order-
ing was used in a similar context in Yeung, Bumgarner and Raftery (2005). We
experimented with the initial ordering and also tried using increasing wavelength
and decreasing wavelength. The classification performance was not sensitive to
the initial ordering, but the selected variables did depend on the ordering. In the
context of increasing and decreasing wavelength, there was a bias toward selecting
low and high wavelengths, respectively.

Here is a summary of the algorithm:

1. Select the first variable that is added to be the one that has the most evidence
for Grouping versus No Grouping in terms of greatest BIC difference (the same
as the first step of the greedy search algorithm). Create a list of the remaining
variables in decreasing order of BIC differences.
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2. Select the second variable that is added to be the first variable in the list of
remaining variables with BIC difference for Grouping versus No Grouping,
including the first variable selected, greater than min.evidence. Any variable
checked and not used at this stage is placed at the end of the list of remaining
variables.

3. Select the next variable that is added to be the first variable in the list of remain-
ing variables with BIC difference for Grouping versus No Grouping, including
the previous variables selected, greater than min.evidence. If no variable has
BIC difference greater than min.evidence, then no variable is added at this stage.
Any variable checked and not used at this stage is placed, in turn, at the end of
the list of remaining variables.

4. Check in turn each variable currently selected (in reverse order of inclu-
sion) for evidence of No Grouping (versus Grouping), including the other se-
lected variables, and remove the first variable with BIC difference greater than
min.evidence. If no variable has BIC difference greater than min.evidence, then
no variable is removed at this stage. The removed variable is placed at the end
of the list of other remaining variables.

5. Iterate steps 3 and 4 until two consecutive steps have been rejected, then stop.

4. Results. The proposed methodology was applied to the two food authen-
ticity data sets outlined in Section 2.1. In each case, the data were split so that 50%
of the data were used as labeled data and 50% as unlabeled. The methodology
was applied to 50 random splits of labeled and unlabeled data and the mean and
standard deviation of the classification rate were computed.

The results were compared to previously reported performance results for these
data and several widely used alternative techniques: Random Forests [Breiman
(2001)], AdaBoost [Freund and Schapire (1997)], Bayesian Multinomial Regres-
sion [Madigan et al. (2005)], and Transductive Support Vector Machines [Vapnik
(1995), Joachims (1999), Collobert et al. (2006)].

We used the default settings in the R [R Development Core Team (2007)] im-
plementations of Random Forests (randomForest version 4.5-30) [Liaw and
Wiener (2002)] and AdaBoost (adabag version 1.1) [Cortés, Martínez and Ru-
bio (2007)]. The use of various parameter settings was explored, but the results
did not vary to a large extent with respect to the choice of parameter values. For
Bayesian Multinomial Regression we used cross validation to choose between the
choice of prior variance values {10p :p = −4,−3,−2,−1,0,1,2,3,4} as sug-
gested in Genkin, Lewis and Madigan (2005). For the Transductive SVM analysis
we used the UniverSVM software version 1.1 [Sinz and Roffilli (2007)] with a
linear kernel and parameters (c, s, z) = (100,−0.3,0.1); other parameter values
were considered, but the values reported yielded the best classifications.

4.1. Meats data. The results achieved on the homogenized meat data (Sec-
tion 2.2) are reported in Table 3. These results show that the variable selection and
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TABLE 3
Classification performance on the Meats data for the variable selection algorithm with updating

and for previous analyses of these data. Mean classification performance for the 50
random splits of the data are reported with standard deviations in parentheses

Method Misclassification rate

Variable selection and updating 6.1% (3.5)

Variable selection (greedy) and updating 5.1% (1.9)

Variable selection only 9.3% (3.6)

Dean, Murphy and Downey (2006) 5.6% (2.0)

McElhinney, Downey and Fearn (1999) 7.3%–13.9%
Transductive SVMs 42.6% (5.7)

Random Forests 20.1% (3.8)

AdaBoost.M1 20.3% (4.8)

Bayesian Multinomial Regression 34.2% (5.8)

updating method gives comparable or better performance than previous analyses
of these data; an improved classification rate has been achieved relative to those
achieved by McElhinney, Downey and Fearn (1999) who used factorial discrimi-
nant analysis (FDA), k-nearest neighbors (kNN), discriminant partial least squares
regression (PLS) and soft independent modeling of class analogy (SIMCA). Fur-
thermore, a comparable classification performance has been achieved relative to
Dean, Murphy and Downey (2006) who used model-based discriminant analysis
with updating on a reduced form of the data derived from wavelet thresholding.
The variable selection and updating procedure gave substantially better perfor-
mance than other competing methods for classification.

An examination of the misclassification table (Table 4) for the variable selec-
tion and updating method shows that many of the misclassifications were due to
the difficulty in separating the chicken and turkey groups. Interestingly, no mis-
classifications were made between the red and white meats.

TABLE 4
Average classification results for the different meat types for the variable selection

and updating classification method

Predicted

Truth Beef Lamb Pork Turkey Chicken

Beef 98.6 1.4 0.0 0.0 0.0
Lamb 1.4 98.6 0.0 0.0 0.0

Pork 0.0 0.0 99.2 0.5 0.3
Turkey 0.0 0.0 0.0 88.2 11.8
Chicken 0.0 0.0 0.0 11.1 88.9
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FIG. 7. Wavelengths chosen in the five meat classification problem for the variable selection and
updating method. The height of the bars shows how many times the wavelength was chosen in 50 ran-
dom splits of the data.

The chosen wavelengths show us which parts of the spectrum are of importance
when classifying samples into different species. We recorded the chosen wave-
lengths for each of the 50 sets of results and these are shown in Figure 7. We
can see that a large proportion (51%) of the chosen wavelengths are in the visi-
ble region (400–800 nm), but some regions in the near-infrared spectrum are also
chosen. Liu and Chen [(2000), Table 1] assign many of the spectral features in the
visible part of the spectrum to different forms of myoglobin such as deoxymyo-
globin (430, 440, 445 nm), oxymyoglobin (545, 560, 575, 585 nm), metmyoglobin
(485, 495, 500, 505 nm) and sulfmyoglobin (635 nm). Sulfmyoglobin is a product
of the reaction of myoglobin with H2S generated by bacteria, and Arnalds et al.
(2004) found the region of the spectrum close to 635 nm to be important when
separating the red and white meat samples. The peak at 1100 nm is the wave-
length where the sensor changes in the near-infrared spectrometer and the peak at
1068 nm can be attributed to third overtones of C-H stretch mode and C-H com-
bination bonds from meat constituents other than oxymyoglobin [Liu, Chen and
Ozaki (2000)]. The near infrared region consisting of wavelengths near 1510 nm
has been attributed to protein, and a cluster of chosen wavelengths is close to this
region. In all cases, between 13 and 19 wavelengths were chosen for classification
purposes.

Following McElhinney, Downey and Fearn (1999) and Dean, Murphy and
Downey (2006), we combined the chicken and turkey groups into a poultry group
to determine how well we can classify the homogenized meat samples into four
types. The classification results are reported in Table 5 and the misclassifications
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TABLE 5
Classification performance on the Meats data for the variable selection algorithm with updating

and for previous analyses of these data after combining the chicken and turkey into
a poultry group. Mean classification performance for the 50 random splits

of the data are reported with standard deviations in parentheses

Method Misclassification rate

Variable selection and updating 0.8% (1.3)

Variable selection (greedy) and updating 0.7% (0.7)

Variable selection only 1.8% (3.2)

Dean, Murphy and Downey (2006) 1.0% (0.9)

McElhinney, Downey and Fearn (1999) 2.6%–4.3%
Transductive SVMs 20.9% (8.0)

Random Forests 10.5% (3.3)

AdaBoost.M1 14.7% (3.7)

Bayesian Multinomial Regression 17.2% (4.9)

from the variable selection method with updating are shown in Table 6. There is
a significant improvement in classification performance from all of the methods.
Again, the white and red meats are separated with zero error.

The wavelengths chosen for the four group classification problem (Figure 8) still
have a substantial proportion chosen from the visible part of the spectrum (52%).
In this application, between 13 and 21 wavelengths were chosen for classification
purposes. The VEV covariance structure was chosen in almost every run as the
final model for both the four and five group meat classification problems.

4.2. Greek olive oil data. The methods were applied to the Greek olive oil
data (Section 2.3), with 50% of the data being treated as training data and 50%
as test data. Fifty random splits of training and test data were used. The misclas-
sification rates achieved on these data are reported in Table 7. Variable selection

TABLE 6
Average classification results for the different meat types after combining

the chicken and turkey into a poultry group. The results shown
are for the variable selection and updating method

Predicted

Truth Beef Lamb Pork Poultry

Beef 98.2 1.8 0.0 0.0
Lamb 2.7 97.3 0.0 0.0

Pork 0.0 0.0 99.1 0.9
Poultry 0.0 0.0 0.0 100.0
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FIG. 8. Wavelengths chosen in the four meat classification problem for the variable selection and
updating method.

and updating provides one of the best classification rates for these data. Downey,
McIntyre and Davies (2003) did report a better misclassification rate (6.1%) using
factorial discriminant analysis (FDA), but the choice of a subset of wavelengths,
data preprocessing method and classification method (from partial least squares,
factorial discriminant analysis and k-nearest neighbors) was made with reference
to the test data classification performance. In contrast, our model selection was
done without any reference to the test data classification performance.

TABLE 7
Classification performance on the Olive Oil data for the variable selection algorithm with updating
and for previous analyses of these data. Mean classification performance for the 50 random splits
of the data are reported with standard deviations in parentheses. For the variable selection only

results, the maximum number of selected wavelengths was restricted to be six to avoid degeneracies

Method Misclassification rate

Variable selection and updating 6.9% (5.4)

Variable selection (greedy) and updating 16.6% (11.3)

Variable selection only 17.9% (10.9)

Dean, Murphy and Downey (2006) 11.9% (6.3)

Downey, McIntyre and Davies (2003) 6.1%–19.0%
Transductive SVMs 12.4% (7.5)

Random Forests 19.3% (6.5)

AdaBoost.M1 34.1% (9.3)

Bayesian Multinomial Regression 57.0% (1.2)
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TABLE 8
Average classification results for the olive oil groups. The

results shown are for the variable selection
and updating method

Predicted

Truth Crete Peleponese Other

Crete 90.0 8.7 1.3
Peleponese 1.0 92.9 6.1
Other 0.0 3.8 96.2

A cross tabulation of the classifications with the true origin of the olive oils
(Table 8) reveals the difficulty in classifying the oils.

In contrast to the meat classification problem, the chosen wavelengths for this
problem (Figure 9) are concentrated in the near-infrared region (800–2498 nm),
but some wavelengths in the visible region are also selected. The most commonly
chosen wavelength is 2080 nm, which has been attributed to an O-H stretching/O-
H bend combination [Osborne et al. (1984)]. Wavelengths near 2310, 2346 and
2386 nm are due to C-H stretching vibrations and other vibrational modes. In par-
ticular, wavelengths in the 2310 nm region have previously been assigned to fat
content. In all cases, between 6 and 29 wavelengths were selected, with a mean
of 15 wavelengths being chosen. The EEE covariance structure was chosen for
every final model for the olive oil classification problem.

FIG. 9. Wavelengths chosen in the olive oil classification problem using the variable selection and
updating method. The height of the bars shows how many times the wavelength was chosen in 50
random splits of the data.
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TABLE 9
The change in classification performance for the variable selection

and updating method as the number of adjacent
wavelengths being aggregated increases

Aggregation level Classification error

1 6.9%
2 9.7%
3 7.6%
5 7.9%

10 9.9%
15 8.5%
30 9.1%
50 13.2%
70 28.7%

4.3. Sensitivity to spectral resolution. In order to determine the sensitivity of
the selected wavelengths to the resolution of the spectrometer used in this study, we
investigated the effect of reducing the number of reflectance values by computing
the mean reflectance value over sets of adjacent wavelengths and using these as
inputs into the variable selection model. The results of this analysis are outlined
for the olive oil authentication problem, and similar results were found for the meat
species authenticity study.

We found that the classification error of the olive oil samples increases slightly
as soon as any adjacent wavelengths are aggregated (Table 9). However, once the
wavelengths are aggregated, the classification error remained steady for aggregat-
ing between 2 and 30 adjacent wavelengths. Thereafter, there was a serious deteri-
oration in the classification performance when more than 30 adjacent wavelengths
were aggregated. This suggests that a considerable amount of the group informa-
tion is maintained at even low resolutions, but that there is more information in the
raw data themselves.

The spectral regions selected when analyzing the data in aggregated form were
found to be stable. In both applications, the selected regions were very similar
for the aggregated data, but fewer variables tended to be selected because of the
aggregation process. Figure 10 shows the chosen wavelengths when the raw spec-
tra, two adjacent wavelengths and three adjacent wavelengths are aggregated and
then analyzed for the olive oil classification problem. This shows that the selection
procedure chooses very specific spectral regions on both the raw and aggregated
scale.

5. Discussion. The discriminant analysis method presented in this paper gave
much better results than those given by popular statistical and machine learn-
ing techniques such as Random Forests [Breiman (2001)], AdaBoost [Freund
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FIG. 10. The chosen wavelengths when the raw olive oil spectra are analyzed and when adjacent
wavelengths are aggregated.

and Schapire (1997)] and Bayesian Multinomial Regression [Genkin, Lewis and
Madigan (2005), Madigan et al. (2005)] and Transductive SVMs [Vapnik (1995),
Joachims (1999)] for the high-dimensional food authenticity data sets analysed
here. This improvement is further enhanced by the addition of the updating proce-
dure for including the unlabeled data in the estimation method. The results show
that the headlong search method for variable selection is an efficient method for
selecting wavelengths.

In addition to the improvement in classification results in the example data sets
given, the number of variables needed for classification was substantially reduced
from 1050 to less than thirty. The variable selection results in the food authenticity
application suggest the possibility of developing authenticity sensors that only use
reflectance values over a carefully selected subset of the near-infrared and visible
spectral range. The regions of the spectrum selected by the method can be inter-
preted in terms of the underlying chemical properties of the foods under analysis.

We have compared our method with four established leading classification
methods from statistics and machine learning for which standard software imple-
mentations are available. One of these, AdaBoost, was identified by Leo Breiman
as “the best off-the-shelf classifier in the world” [Hastie, Tibshirani and Friedman
(2001)]. It is possible that the large improvement in performance of our method
relative to the established methods we have compared it with is due to the fact
that our data have many variables of which only a very small proportion (1%–3%)
are useful. The variables that are not useful may introduce a great deal of noise
and degrade performance, and so other methods that do not reduce the number of
variables may suffer from this.

Although the methods were developed for the food authenticity application out-
lined herein, the method could be applied in contexts such as the analysis of gene
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expression data and document classification. The results of the variable selection
procedure could mean a substantial savings in terms of time for data collection and
space for future data storage.

A range of recent approaches to variable selection in a classification context in-
clude the DALASS approach of Trendafilov and Jolliffe (2007), variable selection
for kernel Fisher discriminant analysis [Louw and Steep (2006)] and the stepwise
stopping rule approach of Munita, Barroso and Oliveira (2006). A number of dif-
ferent search algorithms (proposed as alternatives to backward/forward/stepwise
search) wrapped around different discriminant functions are compared by Pacheco
et al. (2006), and genetic search algorithms wrapped around Fisher discriminant
analysis are considered by Chiang and Pell (2004). Another example of variable
selection methods in the context of classification using spectroscopic data is given
by Indahl and Naes (2004).

In terms of other approaches to variable selection, a good review of recent
work on the problem of variable or feature selection in classification was given by
Guyon and Elisseeff (2003) from a machine learning perspective. A good review
of methods involving Support Vector Machines (SVMs) (along with a proposed
criterion for exhaustive variable selection) is given by Mary-Huard, Robin and
Daudin (2007). An extension allowing variable selection for the multiclass prob-
lem using SVMs is given by Wang and Xiatong (2007). An alternative approach
for combining pairwise classifiers, based on Hastie and Tibshirani (1998), is given
by Szepannek and Weihs (2006). Greenshtein (2006) looks at theoretical aspects of
the n � p classification and variable selection problem in terms of empirical risk
minimization subject to l1 constraints. Finally, an alternative to single subset vari-
able selection through Bayesian Model Averaging [Madigan and Raftery (1994)]
is given by Dash and Cooper (2004).
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SUPPLEMENTARY MATERIAL

Supplement: Data (DOI: 10.1214/09-AOAS279SUPP; .zip). This zipfile [Mur-
phy, Dean and Raftery (2009)] contains the data sets used in this paper. The orig-
inal data source information and conditions for the use of the data are outlined in
this file.
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