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We introduce a new method to price American-style options on underly-
ing investments governed by stochastic volatility (SV) models. The method
does not require the volatility process to be observed. Instead, it exploits the
fact that the optimal decision functions in the corresponding dynamic pro-
gramming problem can be expressed as functions of conditional distributions
of volatility, given observed data. By constructing statistics summarizing in-
formation about these conditional distributions, one can obtain high quality
approximate solutions. Although the required conditional distributions are in
general intractable, they can be arbitrarily precisely approximated using se-
quential Monte Carlo schemes. The drawback, as with many Monte Carlo
schemes, is potentially heavy computational demand. We present two vari-
ants of the algorithm, one closely related to the well-known least-squares
Monte Carlo algorithm of Longstaff and Schwartz [The Review of Financial
Studies 14 (2001) 113–147], and the other solving the same problem using
a “brute force” gridding approach. We estimate an illustrative SV model us-
ing Markov chain Monte Carlo (MCMC) methods for three equities. We also
demonstrate the use of our algorithm by estimating the posterior distribution
of the market price of volatility risk for each of the three equities.

1. Introduction. American-style option contracts are traded extensively over
several exchanges. These early-exercise financial derivatives are typically written
on equity stocks, foreign currency and some indices, and include, among other ex-
amples, options on individual equities traded on The American Stock Exchange
(AMEX), options on currency traded on the Philadelphia Stock Exchange (PHLX)
and the OEX index options on the S&P 100 Index traded on the Chicago Board Op-
tions Exchange (CBOE). As with any other kind of option, methods for pricing are
based on assumptions about the probabilistic model governing the evolution of the
underlying asset. Arguably, stochastic volatility models are the most realistic mod-
els to date for underlying equities, but existing methods for pricing American-style
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options have mostly been developed using less realistic models, or else assuming
that volatility is observable. In this paper we develop a new method for pricing
American-style options when the underlying process is governed by a stochastic
volatility model, and the volatility is not directly observable. The method yields
near-optimal solutions under the model assumptions, and can also formally take
into account the market price of volatility risk (or volatility risk premium).

It follows from the fundamental theorem of arbitrage that an option price can
be determined by computing the discounted expectation of the payoff of the op-
tion under a risk-neutral measure, assuming that the exercise decision is made so
as to maximize the payoff. While this is simple to compute for European-style
options, as illustrated in the celebrated papers of Black and Scholes (1973) and
Merton (1973), the pricing problem is enormously more difficult for American-
style options, due to the possibility of early exercise. For American-style options,
the price is in fact the supremum over a large range of possible stopping times of
the discounted expected payoff under a risk-neutral measure. A range of methods
has been developed to find this price, or equivalently, to solve a corresponding sto-
chastic dynamic programming problem. Glasserman (2004) provides a thorough
review of American-style option pricing with a strong emphasis on Monte Carlo
simulation-based procedures. Due to the difficulty of the problem, certain assump-
tions are usually made. For instance, a number of effective algorithms [includ-
ing those developed in Brennan and Schwartz (1977), Broadie and Glasserman
(1997), Carr, Jarrow, and Myneni (1992), Geske and Johnson (1984), Longstaff
and Schwartz (2001), Rogers (2002), and Sullivan (2000)] are based on the as-
sumption that the underlying asset price is governed by a univariate diffusion
process with a constant and/or directly observable volatility process.

As recognized by Black and Scholes (1973) and others, the assumption of con-
stant volatility is typically inconsistent with observed data. The volatility “smile”
(or “smirk”) is one example where empirical data show evidence against constant
volatility models. The smile (smirk) effect arises when option contracts with dif-
ferent strike prices, all other contract features being equivalent, result in different
implied volatilities (i.e., the volatility required to calibrate to market observed op-
tion prices). A variety of more realistic models has subsequently been developed
for asset prices, with stochastic volatility models arguably representing the best
models to date. This has led researchers to develop pricing methods for European-
style options when the underlying asset price is governed by stochastic volatility
models [e.g., Fouque, Papanicolaou, and Sircar (2000), Heston (1993), Hull and
White (1987) and Stein and Stein (1991)]. However, work on pricing of American-
style options under stochastic volatility models is far less developed. A number of
authors [including Clarke and Parrott (1999), Finucane and Tomas (1997), Fouque,
Papanicolaou, and Sircar (2000), Guan and Guo (2000), Tzavalis and Wang (2003)
and Zhang and Lim (2006)] have made valuable inroads in addressing this prob-
lem, but most assume that volatility is observable. Fouque, Papanicolaou, and
Sircar (2000) provide an approximation scheme based on the assumption of fast
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mean-reversion in the volatility process, and they use a clever asymptotic expan-
sion method to correct the constant volatility option price to account for stochastic
volatility. The correction involves parameters estimated from the implied volatil-
ity surface and they derive a pricing equation that does not depend directly on
the volatility process. Tzavalis and Wang (2003) use an analytic-based approach
whereby they compute the optimal stopping boundary using Chebyshev polyno-
mials to value American-style options in a stochastic volatility framework. They
derive an integral representation of the option price that depends on both the share
price and level of volatility.

Additionally, the approach in Clarke and Parrott (1999) uses a multi-grid tech-
nique where both the asset price and volatility are state variables in a two-
dimensional parabolic partial differential equation (PDE). Pricing options in a sto-
chastic volatility framework using PDE methods are feasible once we assume that
volatility itself is an observed state variable. Typically, there is a grid in one dimen-
sion for the share price and another dimension for the volatility. The final option
price is a function of both the share price and volatility. Guan and Guo (2000) de-
rive a lattice-based solution to pricing American options with stochastic volatility.
Following the work in Finucane and Tomas (1997), they construct a lattice that
depends directly on the asset price and volatility and they illustrate an empirical
study where they back out the parameters from the stochastic volatility model us-
ing data on American-style S&P 500 futures options. The valuation algorithm that
they develop, however, involves an explicit dependence on both the share price and
volatility state variables. Additionally, Zhang and Lim (2006) propose a valuation
approach that is based on a decomposition of American option prices, however,
volatility is a variable in the pricing result.

The approach we develop, in contrast with the aforementioned methods, com-
bines the optimal decision-making problem with the volatility estimation problem.
We assume that the asset price follows a stochastic volatility model, that obser-
vations are made at discrete points in time t = 0,1,2, . . . , and that exercise deci-
sions are made immediately after each observation. It could be argued that volatil-
ity should be considered observable since one could simply compute “Black and
Scholes type” implied volatilities from observed option prices. However, implied
volatilities are based on the assumption of a simple geometric Brownian motion
model (or some other simplified diffusion process) and, thus, their use would de-
feat the purpose of developing pricing methods with more realistic models. The im-
plied volatility calculation is not as straightforward in a stochastic volatility (multi-
variate) modeling framework. Renault and Touzi (1996) approximate a Black and
Scholes type implied volatility quantity in a Hull and White (1987) setting. The
analysis in Renault and Touzi (1996) computes filtered volatilities using an itera-
tive approach and illustrates applications to hedging problems. On the other hand,
we aim to compute the posterior distribution of volatility conditional on observed
data. Our pricing scheme is based on two key observations. First, we use a se-
quential Monte Carlo (also referred to as “particle filtering”) scheme to perform
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inference on the unobserved volatility process at any given point in time. Second,
conditional distributions of the unobserved volatility at a given point in time, given
current and past observations of the price process, which are necessary for finding
an exact solution to the dynamic programming problem, can be well approximated
by a summary vector or by a low-dimensional parametric family of distributions.

Inference on the latent volatility process for the purpose of option pricing is
an application of the more general methodology that addresses partially observed
time series models in a dynamic programming/optimal control setting [see, e.g.,
Bertsekas (2005, 2007) and the references therein]. Among earlier work, Sorenson
and Stubberud (1968) provide a method based on Edgeworth expansions to esti-
mate the posterior density of the latent process in a nonlinear, non-Gaussian state-
space modeling framework. Our objective in this paper is to illustrate an algorithm
that allows an agent (a holder of an American option) to optimally decide the exer-
cise time assuming that both the share price and volatility are stochastic variables.
In our partially observed setting, only the share price is observable; volatility is a
latent process. The main challenge for the case of American-style options is de-
termining the continuation value so that an optimal exercise/hold decision can be
made at each time point.

Several researchers have applied Monte Carlo methods to solve the American
option pricing problem. Most notable among these include Longstaff and Schwartz
(2001), Tsitsiklis and Van Roy (2001), Broadie and Glasserman (1997) and
Carrière (1996). An excellent summary of the work done on Monte Carlo meth-
ods and American option pricing is presented in Chapter 8 of Glasserman (2004).
The least-squares Monte Carlo (LSM) algorithm of Longstaff and Schwartz (2001)
has achieved much popularity because of its intuitive regression-based approach to
American option pricing. The LSM algorithm is very efficient to price American-
style options since as long as one could simulate observations from the pricing
model, then a regression-based procedure could be employed along with the dy-
namic programming algorithm to price the options. Pricing American-style options
in a stochastic volatility framework is straightforward using the methodology of
Longstaff and Schwartz (2001) as long as draws from the share price and volatility
processes can be obtained. That is, at each time point, n, the decision of whether
or not to exercise an American option will be a function of the time n share price,
Sn (and possibly some part of its recent history Sn−1, Sn−2, . . .), and the time n

volatility, σn. Our pricing framework, however, needs to accommodate a latent
volatility process.

We propose to combine the Longstaff and Schwartz (2001) idea with a sequen-
tial Monte Carlo step whereby at each time point n, we estimate the conditional
(posterior) distribution of the latent volatility given the observed share price data
up to that time. We propose a Monte Carlo based approach that uses a summary
vector to capture the key features of this conditional distribution. As an alternative,
we also explore a grid-based approach, studied in Rambharat (2005), whereby we
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propose a parametric approximation to the conditional distribution that is charac-
terized by the summary vector. Therefore, our exercise decision at a given time
point is based on the observed share price and the computed summary vector com-
ponents at that time. Although our pricing approach is computationally intensive,
as it combines nonlinear filtering with the early-exercise feature of American-style
option valuation, it provides a way to solve the associated optimal stopping prob-
lem in the presence of a latent stochastic process. We compare our approach to a
basic LSM method whereby at a given time point, we use a few past observations to
make the exercise decision in order to price American-style options in a stochastic
volatility framework. We also compare our method to the LSM approach using the
current share price and an estimate of the current realized volatility as a proxy for
the true volatility. In order to assess precision, we compare LSM with past share
prices, LSM with realized volatility, and our proposed valuation technique to the
LSM-based American option price assuming that share price and volatility can be
observed (the full information state). The method closest to the full information
state benchmark would be deemed the most accurate.

The present analysis addresses the problem of pricing an American-style op-
tion, once a good model has already been found. It is worth noting, however, that
since neither the sequential Monte Carlo scheme nor the gridding approach used
in our pricing technique are tied to a particular model, the method is generalizable
in a straightforward manner to handle a fairly wide range of stochastic volatility
models. Thus, it could be used to perform option pricing under a range of variants
of stochastic volatility models, such as those discussed in Chernov et al. (2003).
Although the focus of our paper is not model estimation/selection methodology,
we do implement a thorough statistical exercise using share price history to esti-
mate model parameters from a stochastic volatility model. [See Chernov and Ghy-
sels (2000), Eraker (2004), Gallant, Hsieh, and Tauchen (1997), Ghysels, Harvey,
and Renault (1996), Jacquier, Polson, and Rossi (1994), Kim, Shephard, and Chib
(1998) and Pan (2002) for examples of work that mainly address model estima-
tion/selection issues]. Our approach will be to employ a sequential Monte Carlo
based procedure to estimate the log-likelihood of our model [see, e.g., Kitagawa
and Sato (2001) and the references therein] and then use a Markov chain Monte
Carlo (MCMC) sampler to obtain posterior distributions of all model parameters.
Conditional on a posterior summary measure of the model parameters (such as the
mean or median), we then estimate the (approximate) posterior distribution of the
market price of volatility risk. Our analysis is illustrated in the context of three
equities (Dell Inc., The Walt Disney Company and Xerox Corporation).

The paper is organized as follows. In Section 2 we formally state the class of
stochastic volatility models with which we work. In Section 3 we review the dy-
namic programming approach for pricing American-style options and demonstrate
how it can be transformed into an equivalent form, and introduce (i) a sequential
Monte Carlo scheme that yields certain conditional distributions, and (ii) a grid-
ding algorithm that makes use of the sequential Monte Carlo scheme to compute
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option prices. Section 4 describes the pricing algorithms and presents some illus-
trative numerical experiments. In Section 5 we describe (i) the MCMC estimation
procedure for the stochastic volatility model parameters, and (ii) the inferential
analysis of the market price of volatility risk. Section 6 contains posterior results
of our empirical analysis with observed market data. Section 7 provides conclud-
ing remarks. Finally, we present additional technical details in the Appendix. We
also state references to our computing code and data sets in supplementary.

2. The stochastic volatility model. Let (�, F ,P ) be a probability space, and
let {S(t), t ≥ 0} be a stochastic process defined on (�, F ,P ), describing the evo-
lution of our asset price over time. Time t = 0 will be referred to as the “current”
time, and we will be interested in an option with expiry time (T �) > 0, with T be-
ing some positive integer, and � some positive real-valued constant. Assume that
we observe the process only at the discrete time points t = 0,�,2�, . . . , T �, and
that exercise decisions are made immediately after each observation. (We would
typically take the time unit here to be one year, and � to be 1/252, representing
one trading day. However, both � and the time units can be chosen arbitrarily
subject to the constraints mentioned above.)

Assume that, under a risk-neutral measure, the asset price S(t) evolves accord-
ing to the Itô stochastic differential equations (SDEs)3

dS(t) = rS(t) dt + σ(Y (t))S(t)
[√

1 − ρ2 dW1(t) + ρ dW2(t)
]
,(1)

σ(Y (t)) = exp(Y (t)),(2)

dY (t) =
[
α

(
β − λγ

α
− Y(t)

)]
dt + γ dW2(t),(3)

where r represents the risk-free interest rate (measured in appropriate time units),
σ(Y (t)) is referred to as the “volatility,” ρ measures the co-dependence between
the share price and volatility processes, α (volatility mean reversion rate), β

(volatility mean reversion level), and γ (volatility of volatility) are constants with
α > 0, γ > 0, {W1(t)} and {W2(t)} are assumed to be two independent standard
Brownian motions, and λ is a constant referred to as the “market price of volatility
risk” or “volatility risk premium” [Bakshi and Kapadia (2003a), Melenberg and
Werker (2001) and Musiela and Rutkowski (1998)]. If we set

dW ∗
1 (t) = [√

1 − ρ2 dW1(t) + ρ dW2(t)
]
,

we can more clearly see that ρ is the correlation between the Brownian motions
dW ∗

1 (t) and dW2(t). The parameter ρ quantifies the so-called “leverage effect”
between share prices and their volatility.

3Under the statistical (or real-world) measure, the asset price evolves on another probability space.
Under the real-world measure, the drift term r in equation (1) is replaced by the physical drift and
the term λγ

α does not appear in the drift of equation (3). The change of measure between real-world
and risk-neutral is formalized through a Radon–Nikodym derivative.
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Observe that λ is not uniquely determined in the above system of SDEs. Since
we are working in a stochastic volatility modeling framework, markets are said
to be “incomplete” because volatility is not a traded asset and cannot be perfectly
hedged. This is to be contrasted with the constant volatility Black and Scholes
(1973) framework where a unique pricing measure exists and all risks can be per-
fectly hedged away. There is a range of possible risk-neutral measures when pric-
ing under stochastic volatility models, each one having a different value of λ. In
fact, there are also risk-neutral measures under which λ varies over time. However,
for the sake of simplicity, we will assume that λ is a constant. Later in this paper,
we illustrate how to estimate λ.

Equations (1)–(3) represent a stochastic volatility model that accommodates
mean-reversion in volatility and we will use it to illustrate our American option
valuation methodology. It is an example of a nonlinear, non-Gaussian state-space
model. Scott (1987) represents one of the earlier analyses of this stochastic volatil-
ity model. This same type of model has also been studied in a Bayesian context
by Jacquier, Polson, and Rossi (1994) and, more recently, in Jacquier, Polson, and
Rossi (2004) and Yu (2005). It should be noted that our methodology is not con-
strained to a specific stochastic volatility model. The core elements of our approach
would apply over a broad spectrum of stochastic volatility models such as, for in-
stance, the Hull and White (1987) and Heston (1993) stochastic volatility models.

Since our observations occur at discrete time-points 0,�,2�, . . . , we will
make extensive use of the discrete-time approximation to the solution of the risk-
neutral stochastic differential equations (1)–(3) given by

St+1 = St · exp
{(

r − σ 2
t+1

2

)
� + σt+1

√
�

[√
1 − ρ2Z1,t+1 + ρZ2,t+1

]}
,(4)

σt+1 = exp(Yt+1),(5)

Yt+1 = β∗ + e−α�(Yt − β∗) + γ

√(
1 − e−2α�

2α

)
Z2,t+1,(6)

where {Zi,t }, i = 1,2, is an independent and identically distributed (i.i.d.) sequence
of random variables with standard normal [N(0,1)] distributions,

β∗ = β − λγ

α
,

and all other parameters are as previously defined. Thus, St and Yt represent ap-
proximations, respectively, to S(t�) and Y(t�). [The expression for Yt is obtained
directly from the exact solution to (3), while the expression for St is the solution
to (1) that one would obtain by regarding σt to be constant on successive inter-
vals of length �. The approximation for St becomes more accurate as � becomes
smaller.]
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It will sometimes be convenient to express (4) in terms of the log-returns Rt+1 =
log(St+1/St ), as

Rt+1 =
(
r − σ 2

t+1

2

)
� + σt+1

√
�

(√
1 − ρ2Z1,t+1 + ρZ2,t+1

)
.(7)

To complete the specification of the model, we can assign Y0 a normal distribution,

Y0 ∼ N

(
β∗, γ 2

2α

)
.(8)

This is simply the stationary (limiting) distribution of the first-order autoregressive
process {Yt }. However, for practical purposes, it will usually be preferable to re-
place this distribution by the conditional distribution of Y0, given some historical
observed price data S−1, S−2, . . . . Another reasonable starting value for Y0 is a
historical volatility based measure (i.e., the log of the standard deviation of a few
past observations). Additionally, there are examples of stochastic volatility models
where exact simulation is not feasible. In such cases, we must resort to numerical
approximation schemes such as the Euler–Maruyama method (or any other related
approach). Kloeden and Platen (2000) illustrate several numerical approximation
schemes that could be applied to simulate from a stochastic volatility model where
no exact simulation methodology exists.

3. Dynamic programming and option pricing. The arbitrage-free price of
an American-style option is

sup
τ∈T

ERN[exp(−rτ )g(Sτ )],(9)

where τ is a random stopping time at which an exercise decision is made, T is the
set of all possible stopping times with respect to the filtration {Ft , t = 0,1, . . .}
defined by

Ft = σ(S0, . . . , St ),

ERN(·) represents the expectation, under a risk-neutral probability measure, of its
argument, and g(s) denotes the payoff from exercise of the option when the un-
derlying asset price is equal to s. For example, a call option with strike price K

has payoff function g(s) = max(s − K,0), and a put option with strike price K

has payoff function g(s) = max(K − s,0). [The analysis in this paper is in the
context of American put options since these options typically serve as canonical
examples of early-exercise derivatives; see Karatzas and Shreve (1991, 1998) and
Myneni (1992) for key mathematical results concerning American put options.]
Since τ is a stopping time, the event {τ ≤ t} must be Ft -measurable, or equiva-
lently, the decision to exercise or hold at a given time must be made only based
on observations of the previous and current values of the underlying price process.
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To allow for the possibility that the option is never exercised, we adopt the con-
vention that τ = ∞ if the option is not exercised at or before expiry, along with
the convention that exp(−r∞)g(S∞) = 0. In order to price the American option,
we need to find the stopping time τ at which the supremum in (9) is achieved.
While it is not immediately obvious how one might search through the space of
all possible stopping times, this problem is equivalent to a stochastic control prob-
lem, which can be solved (in theory) using the dynamic programming algorithm,
which was originally developed by Bellman (1953). Ross (1983) also describes
some key principles of stochastic dynamic programming and a thorough treatment
is presented, in the context of financial analysis, by Glasserman (2004).

Our objective is to find the optimal stopping rule (equivalently, the optimal ex-
ercise time) while taking into account the latent stochastic volatility process. The
key difficulty arises because the price itself is not Markovian. We would like to get
around this by using the fact that the bivariate process, composed of both price and
volatility, is Markovian, but unfortunately we can only observe one component of
that process. It is known that one can still find the optimal stopping rule if one can
determine (exactly) the conditional distribution of the unobservable component
of the Markov process, given current and past observable components [see, e.g.,
DeGroot (1970) and Ross (1983)]. In such a case, we can use algorithms like the
ones described in Brockwell and Kadane (2003) to find the optimal decision rules.
These algorithms effectively integrate the utility function at each point in time over
the distribution of unknown quantities given observed quantities. Unfortunately, in
the context of this paper, we cannot obtain the required conditional distributions
exactly, but we can find close approximations to them. We will therefore approach
our pricing problem by using numerical algorithms in the style of Brockwell and
Kadane (2003), in conjunction with close approximations to the required distrib-
utions. In doing so, we make the assumption (stated later in this paper) that our
distributional approximations are close to the required conditional distributions.

3.1. General method. The dynamic programming algorithm constructs the ex-
act optimal decision functions recursively, working its way from the terminal de-
cision point (at time T �) back to the first possible decision point (at time 0). In
addition, the procedure yields the expectation in the expression (9), which is our
desired option price. The algorithm works as follows.

Let dt ∈ {E,H } denote the decision made immediately after observation of St ,
either to exercise (E) or hold (H ) the option. While either decision could be made,
only one is optimal, given available information up to time t . (In the event that both
are optimal, we will assume that the agent will exercise the option.) We denote the
optimal decision, as a function of the available observations, by

d∗
t (s0, . . . , st ) ∈ {E,H }.

Here and in the remainder of the paper, we adopt the usual convention of using
Sj (upper case) to denote the random variable representing the equity price at
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time j , and sj (lower case) to denote a particular possible realization of the random
variable. Next, let

uT (s0, . . . , sT , dT ) =
{

g(sT ), dT = E,
0, dT = H ,

(10)

and for t = 0,1, . . . , T − 1, let ut (s0, . . . , st , dt ) denote the discounted expected
payoff of the option at time (t�), assuming that decision dt is made, and also
assuming that optimal decisions are made at times (t + 1)�, (t + 2)�, . . . , T �. It
is obvious that, at the expiration time,

d∗
T (s0, . . . , sT ) = arg max

dT ∈{E,H }
uT (s0, . . . , sT , dT ).

The optimal decision functions d∗
T −1, . . . , d

∗
0 can then be obtained by defining

u∗
t (s0, . . . , st ) = ut(s0, . . . , st , d

∗
t (s0, . . . , st )), t = 0, . . . , T ,(11)

and using the recursions

ut (s0, . . . , st , dt )
(12)

=
{

g(st ), dt = E,
ERN

(
u∗

t+1(S0, . . . , St+1)|S0 = s0, . . . , St = st
)
, dt = H ,

d∗
t (s0, . . . , st ) = arg max

dt∈{E,H }
ut (s0, . . . , st , dt ).(13)

These recursions are used sequentially, for t = T − 1, T − 2, . . . ,0, and yield the
(exact) optimal decision functions d∗

t , t = 0, . . . , T . (Each dt is optimal in the
space of all possible functions of historical data s0, . . . , st .) The corresponding
stopping time τ is simply

τ = min
({

t ∈ {0, . . . , T }|dt = E
} ∪ {∞}).

Furthermore, the procedure also gives the risk-neutral option price, since

u∗
0(s0) = sup

τ∈T
ERN[exp(−rτ )g(Sτ )].

In practice, it is generally not possible to compute the optimal decision functions,
since each d∗

t needs to be computed and stored for all (infinitely many) possible
combinations of values of its arguments s0, . . . , st . However, in what follows we
will develop an approach which gives high-quality approximations to the exact
solution. The approach relies on exploiting some key features of the American-
style option pricing problem.
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3.2. Equivalent formulation of the dynamic programming problem. First, it
follows from the Markov property of the bivariate process {(St , Yt )} that we can
transform the arguments of the decision functions so that they do not increase in
number as t increases. Let us define

πt(yt ) dt = P(Yt ∈ dyt |S0 = s0, . . . , St = st ), t = 0, . . . , T ,(14)

where sj denotes the observed value of Sj , so that πt(·) denotes the conditional
density of the distribution of Yt (with respect to the Lebesgue measure), given
historical information S0 = s0, . . . , St = st . Then we have the following result.

LEMMA 3.1. For each t = 0, . . . , T , ut(s0, . . . , st , dt ) can be expressed as a
functional of only st , πt and dt , that is,

ut(s0, . . . , st , dt ) = ũt (st , πt , dt ).

Consequently, for each t = 0, . . . , T , d∗
t (s0, . . . , st ) and u∗

t (s0, . . . , st ) can also be
expressed, respectively, as functionals

d∗
t (s0, . . . , st ) = d̃∗

t (st , πt ),

u∗
t (s0, . . . , st ) = ũ∗

t (st , πt ).

This is a special case of the well-known result [see, e.g., Bertsekas (2005, 2007)]
on the sufficiency of filtering distributions in optimal control problems. A proof is
given in the Appendix. It is important to note here that the argument πt to the
functions ũt , d̃∗

t and ũ∗
t is a function itself.

Lemma 3.1 states that each optimal decision function can be expressed as a
functional depending only on the current price st and the conditional distribu-
tion of Yt (the latent process that drives volatility) given observations of prices
s0, . . . , st . In other words, we can write the exact equivalent form of the dynamic
programming recursions,

ũT (sT ,πT , dT ) =
{

g(sT ), dT = E,
0, dT = H ,

(15)

ũt (st , πt , dt ) =
{

g(st ), dt = E,
ERN[ũ∗

t+1(St+1, πt+1)|St = st , πt ], dt = H ,(16)

where d̃∗
t (st , πt ) = arg maxdt∈{E,H } ũt (st , πt , dt ), and ũ∗

t (st , πt ) = ũt (st , πt , d̃
∗
t (st ,

πt )).

3.3. Summary vectors and sequential Monte Carlo. In order to implement
the ideal dynamic programming algorithm as laid out in Section 3.2, we would
need (among other things) to be able to determine the filtering distributions
πt(·), t = 0,1, . . . , T . Unfortunately, since these distributions are themselves
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infinite-dimensional quantities in our modeling framework, we cannot work di-
rectly with them. We can, however, recast the dynamic programming problem in
terms of l-dimensional summary vectors

Qt =
⎡
⎢⎣

f1(πt )
...

fl(πt )

⎤
⎥⎦ ,(17)

where f1(·), . . . , fl(·) are some functionals. The algorithms we introduce can be
used with any choice of these functionals, but it is important that they capture
key features of the distribution. As typical choices, one can use the moments of
the distribution. In the examples in this paper, we take l = 2, f1(πt ) = E[πt ] =∫

xπt (x) dx and f2(πt ) = std.dev.(πt ). Adding components to this vector typi-
cally provides more comprehensive summaries of the required distributions, but
incurs a computational cost in the algorithms.

Ultimately, we need to be able to compute πt(·) and thus Qt . One way to do
this is with the use of sequential Monte Carlo simulation [also known as “particle
filtering,” see, e.g., Doucet, de Freitas, and Gordon (2001), for discussion, analysis
and examples of these algorithms]. The approach yields samples from (arbitrarily
close approximations to) the distributions πt , and thus allows us to evaluate com-
ponents of Qt . A full treatment of sequential Monte Carlo methods is beyond the
scope of this paper, but the most basic form of the method, in this context, appears
in Algorithm 1.

Algorithm 1 Sequential Monte Carlo estimation of π0, . . . , πT

Initialization (t = 0). Choose a number of “particles” m > 0. Draw a sample
{ỹ(1)

0 , . . . , ỹ
(m)
0 } from the distribution of Y0 [see equation (8)].

for t = 1, . . . , T do

• Step 1: Forward simulation. For i = 1,2, . . . ,m, draw ỹ
(i)
t from the distribu-

tion p(yt |Yt−1 = y
(i)
t−1). [This distribution is Gaussian in our example, speci-

fied by (6).]
• Step 2: Weighting. Compute the weights

w
(i)
t = p

(
rt |Yt = ỹ

(i)
t

)
,(18)

where the term on the right denotes the conditional density of the log-return
Rt , given Yt = ỹ

(i)
t , evaluated at the observed value rt . [These weights are

readily obtained from (7).]
• Step 3: Resampling. Draw a new sample {y(1)

t , . . . , y
(m)
t } by sampling

with replacement from {ỹ(1)
t , . . . , ỹ

(m)
t }, with probabilities proportional to

w
(1)
t , . . . ,w

(m)
t .

end for
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This algorithm yields T + 1 collections of particles, {y(1)
t , . . . , y

(m)
t }, t =

0,1, . . . , T , with the property that for each t , {y(1)
t , . . . , y

(m)
t } can be regarded as

an approximate sample of size m from the distribution πt . The algorithm has the
convenient property that as m increases, the empirical distributions of the particle
collections converge to the desired distributions πt . Typically m is chosen to be
as large as possible subject to computational constraints; for the algorithms in this
paper, we choose m to be around 500. There are several ways to improve the sam-
pling efficiency of Algorithm 1, namely, ensuring that the weights in equation (18)
do not lead to degeneration of the particles. [For more details and various refine-
ments of this algorithm, refer to, among others, Kitagawa and Sato (2001), Liu and
West (2001) and Pitt and Shephard (1999).]

3.4. Approximate dynamic programming solution. In order to motivate our
proposed American option pricing methodology, we state an assumption that de-
scribes how Qt relates to past price history captured in πt .

ASSUMPTION 3.2. The summary vector Qt is “close to sufficient,” that is, it
captures enough information from the past share price history (St , St−1, . . .), so
that p(St+1|Qt) is close to p(St+1|St , St−1, St−2, . . .).

(If the summary vector was sufficient, then the dynamic programming algorithm
would yield exact optimal decision rules. Of course, even in this ideal case, the
numerical implementation of a dynamic programming algorithm introduces some
small errors.)

It is beyond the scope of this paper to quantify the “closeness” between
p(St+1|Qt) and p(St+1|St , St−1, St−2, . . .). One could, however, theoretically do
so using standard distribution distance measures and perform an analysis of the
propagation of the error through the algorithms discussed in this paper.

Combining the equivalent form of the dynamic programming recursions (15),
(16) along with Assumption 3.2, we can approximate the dynamic programming
recursions by

ûT (sT ,QT , dT ) =
{

g(sT ), dT = E,
0, dT = H ,

(19)

ût (st ,Qt , dt )
(20)

=
{

g(st ), dt = E,
ERN[û∗

t+1(St+1,Qt+1)|St = st ,Qt = qt ], dt = H ,

with

d̂∗
t (st ,Qt) = arg max

dt∈{E,H }
ût (st ,Qt , dt )(21)
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and

û∗
t (st ,Qt) = ût (st ,Qt , d̂

∗
t (st ,Qt)),(22)

where Qt is the vector summarizing πt(·) [cf. equation (17)]. The recursion (20)
is convenient because the required expectation can be approximated using the core
of the sequential Monte Carlo update algorithm.

Assumption 3.2 motivates a practical, approximate solution to the ideal formula-
tion of the dynamic programming problem described in Section 3.2. In the special
case of linear Gaussian state-space models, the vector Qt would form a sufficient
statistic since πt would be Gaussian, and our approach would reduce to the stan-
dard Kalman filtering procedure [see Chapter 12 of Brockwell and Davis (1991)
for details]. For the case of nonlinear, non-Gaussian state-space models, such as
the illustrative one in this paper, πt is not summarized by a finite-dimensional suf-
ficient statistic. Assumption 3.2 permits an approximate solution to our American
option pricing problem and, in particular, motivates the conditional expectation in
equation (20) by using Qt to summarize information about the latent volatility us-
ing the past price history. We next introduce two algorithms for pricing American-
style options, making use of the summary vectors Qt described in Section 3.3,
and we illustrate how our algorithms perform through a series of numerical exper-
iments.

4. Pricing algorithms.

4.1. A least-squares Monte Carlo based approach. The popular least-squares
Monte Carlo (LSM) algorithm of Longstaff and Schwartz (2001) relies essentially
on approximating the conditional expectation in (12) by a regression function, in
which one or several recent values St , St−1, . . . are used as explanatory variables.
Since the conditional expectation is in fact (exactly) a functional of the filtering
distribution πt , we might expect to obtain some improvement by performing the
regression using summary features of πt as covariates instead. This variant of the
LSM algorithm, describing the simulation component of our pricing methodology,
is stated in Algorithm 2.

REMARK. For the stochastic volatility model used in this analysis, measures
of center and spread will suffice to capture the key features of the distribution.
Therefore, our summary vector Qt = (μt , ζt ) in Algorithm 2 describes the mean
and standard deviation of the filtering distribution.

REMARK. The summary vector in Algorithm 2 can include as many key mea-
sures of the filtering distribution πt(yt ) as needed to accurately describe it. Other
types of stochastic volatility models may require additional measures that cap-
ture potential skewness, kurtosis or modalities in the filtering distribution. One can
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Algorithm 2 Preliminary simulation of trajectories
for n = 1, . . . ,N do

Step 1. Simulate a share price path {S(n)
0 , . . . , S

(n)
T } with S

(n)
0 = s0 from the

risk-neutral stochastic volatility model [equations (4)–(6)].
Step 2. Apply Algorithm 1 (sequential Monte Carlo algorithm) replacing

{S0, . . . , ST } by the simulated path {S(n)
0 , . . . , S

(n)
T } to obtain approximations to

the filtering distributions {πt , t = 0, . . . , T } for the simulated path.
Step 3. Use the estimate of the filtering distribution computed above in Step 2

to construct a summary vector, Qn, of πn(yn) that stores key measures of the
filtering distribution such as the mean, standard deviation, skew, etc.

Step 4. Store the vector (Sn,Qn).
end for
Repetition. Repeat above steps to create M independent paths that contain in-
formation on the simulated share prices St and the summary vector Qt for all
time points t = 0,1,2, . . . ,N .

learn of the need for such measures by doing an empirical analysis on historical
data using Algorithm 1 to gain insights into the behavior of the filtering distribution
πt(yt ).

Next, we illustrate in Algorithm 3 the implementation of the LSM regression
step using our summary vector Qt of πt .

REMARK. The regression in Step 3 of Algorithm 3 uses basis functions of the
share price St and the summary vector Qt to form the explanatory variables. We
choose Laguerre functions as basis functions. Our summary vector Qt = (μt , ζt )

consists of the mean and standard deviation of the filtering distribution πt(yt ).
The design matrix used in the regression at time point k consists of the first two
Laguerre functions in Sk , μk and ζk , and a few cross-terms of these covariates.
Specifically, our covariates used in the regression at time k (in addition to the
intercept term) are

L0(Sk), L1(Sk), L0(μk), L1(μk), L0(ζk), L1(ζk),

L0(Sk) ∗ L0(μk), L0(Sk) ∗ L0(ζk), L1(Sk) ∗ L1(μk),

L1(Sk) ∗ L1(ζk), L0(μk) ∗ L0(ζk), L1(μk) ∗ L1(ζk),

where L0(x) = e−x/2 and L1(x) = e−x/2(1 − x) and, in general, Ln(x) =
e−x/2 ex

n!
dn

dxn (xne−x). Other choices of basis functions, such as Hermite polynomi-
als or Chebyshev polynomials, are also reasonable alternatives that could be used
to implement the least-squares Monte Carlo algorithm of Longstaff and Schwartz
(2001).
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Algorithm 3 The least-squares Monte Carlo algorithm of Longstaff and Schwartz
(2001) and the dynamic programming step

Initialization
Sub-step A. Run Algorithm 2 to obtain M independent paths, where each

path simulates realizations of the share price St and the summary vector Qt for
time points t = 1,2, . . . ,N .

Sub-step B. Compute the option price at t = N along each of the M

paths by evaluating the payoff function g(ST ), resulting in M option values
{û∗

T ,1, . . . , û
∗
T ,M}.

for t = N − 1,N − 2, . . . ,1 do
Step 1. Evaluate the exercise value g(S

(i)
t ) for i = 1, . . . ,M .

Step 2. Compute basis functions of S
(i)
t and Q

(i)
t for i = 1, . . . ,M .

Step 3. Approximate the hold value of the option at time t by

ERN[û∗
t+1(St+1,Qt+1)|St = st ,Qt = qt ] ≈

p∑
k=1

βtkφk(St ,Qt),

where the βtk are the coefficients of a regression (with p explanatory variables)
of the discounted time t + 1 American option prices, û∗

t+1, on basis functions
φk of St and Qt .
Step 4. For i = 1, . . . ,M , compute the exercise/hold decision according to,

ût

(
S

(i)
t ,Q

(i)
t , dt

)
=

{
g
(
S

(i)
t

)
, dt = E,

ERN
[
û∗

t+1(St+1,Qt+1)|S(i)
t = s

(i)
t ,Q

(i)
t = q

(i)
t

]
, dt = H ,

end for
Average the option values over all M paths to compute a Monte Carlo estimate
and standard error of the American option price.

REMARK. Longstaff and Schwartz (2001) actually adjust Step 4 of Algo-
rithm 3 as follows:

ût

(
S

(i)
t ,Q

(i)
t , dt

) =
{

g(st ), dt = E,
û∗

t+1(St+1,Qt+1), dt = H ,

in order to avoid computing American option prices with a slight upward bias due
to Jensen’s inequality; we follow their recommendation and use this adjustment.
They also suggest using only paths where g(S

(i)
t ) > 0 (i.e., the “in-the-money”

paths) as a numerical improvement. However, we could use all paths since the
convergence of the algorithm also holds in this case [see Clement, Lamberton, and
Protter (2002)]. Therefore, we use all paths in our implementation of Algorithm 3,
as this produces similar results.
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4.2. A grid-based approach. We now present a grid-based algorithm for de-
termining approximate solutions to the dynamic programming problem. This
algorithm is based on a portion of the research work in Rambharat (2005). The
approach uses the vectors Qt summarizing the filtering distributions πt(·) as ar-
guments to the decision and value functions. In contrast to the Monte Carlo based
approach of Section 4.1 where we directly use a summary vector Qt in the LSM
method, the grid-based technique requires a distribution to approximate πt . This
distribution will typically be parameterized by the summary vector when used
to execute the grid-based algorithm. In our illustrative pricing model, we use a
Gaussian distribution to approximate the filtering distribution, πt , at each time
point t . Kotecha and Djuric (2003) provide some motivation for using Gaussian
particle filters, namely, Gaussian approximations to the filtering distributions in
nonlinear, non-Gaussian state-space models. However, any distribution that ap-
proximates πt reasonably well could be used for our purposes. Such a choice will
depend on the model and an empirical assessment of πt .

Since the steps of the sequential Monte Carlo algorithm are designed to make
the transition from a specified πt to the corresponding distribution πt+1, we can
combine a standard Monte Carlo simulation approach with the use of Steps 1, 2
and 3 of Algorithm 1 to compute the expectation. To be more specific, the next
algorithm computes the expectation on the right-hand side of equation (20).

Algorithm 4 works by drawing pairs (s
(i)
t+1, q

(i)
t+1) from the conditional distribu-

tion of (St+1,Qt+1), given St = st ,Qt = qt , and using these to compute a Monte
Carlo estimator of the required conditional expectation. Hence, we are able to
evaluate ût at various points, given knowledge of û∗

t+1, and will thus form a key
component of the backward induction step. Note that this algorithm also relies on
Assumption 3.2 in its use of the summary vector Qt .

Since we will be interested in storing the functions û∗
t (·, ·) and d̂∗

t (·, ·), we next
introduce some additional notation. Let

G = {gi ∈ R
dq+1, i = 1,2, . . . ,G}(24)

denote a collection of grid points in R
dq+1, where dq denotes the dimensionality

of Qt. These are points at which we will evaluate and store the functions û∗
t and

d̂∗
t . We will typically take

G = G1 × G2 × · · · × Gdq+1,(25)

where G1 is a grid of possible values for the share price, and Gj , j > 1, is a grid of
possible values for the (j − 1)st component of Qt .

We state our grid-based pricing routine in Algorithm 5. [This is a standard grid-
ding approach to solving the dynamic programming equations, as described, e.g.,
in Brockwell and Kadane (2003).]

REMARK. As is the case for the Monte Carlo based approach that we describe
in this paper, the grid-based scheme stated in Algorithm 5 also gives an option
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Algorithm 4 Estimation of conditional expectations in equation (20)

Draw values {y(i)
t , i = 1, . . . ,m} independently from a distribution chosen to be

consistent with a parameterization of the summary vector Qt = qt .

for j = 1, . . . , n do

• Draw U ∼ Unif(1, . . . ,m). Then draw s
(j)
t+1 from the conditional distribution

of St+1, given St = st and Yt = y
(U)
t .

• Go through Steps 1 and 2 of Algorithm 1, but in computing weights
{w(i)

t+1, i = 1, . . . ,m}, replace the actual log-return rt+1 by (the simulated

log-return) r
(i)
t+1 = log(s

(j)
t+1/st ).

• Go through Step 3 of Algorithm 1, to obtain {y(1)
t+1, . . . , y

(m)
t+1}.

• Compute q
(j)
t+1 as the appropriate summary vector.

end for

Compute the approximation

ERN[û∗
t+1(St+1,Qt+1)|St = st ,Qt = qt ] � 1

n

n∑
j=1

û∗
t+1

(
s
(j)
t+1, q

(j)
t+1

)
.(23)

Algorithm 5 Grid-based summary vector American option pricing algorithm
Initialization. For each g ∈ G , evaluate

ûT (g, dT ), d̂∗
T (g), and û∗

T (g),

using equations (19), (21), and (22). Store the results.

for t = T − 1, T − 2, . . . ,0 do
for each g ∈ G do

Evaluate

ût (g, dt ), d̂∗
t (g), and û∗

t (g),

using equations (20), (21), and (22). To evaluate the expectations in equa-
tion (20), use Algorithm 4. Store the results.

end for
end for

Evaluate the option price

price = û∗
0(s0, q0),(26)

where s0 is an observed initial price and q0 is an initial (summary) measure of
the volatility process.
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price which assumes that no information about volatility is available at time t = 0.
In the absence of such information, we just assume that the initial log-volatility
Y0 can be modeled as coming from the limiting distribution of the autoregres-
sive process {Yt } and take q0 as the summary measure of this distribution (e.g.,
its mean and variance if the limiting distribution is Gaussian). However, in most
cases, it is possible to estimate log-volatility at time t = 0 using previous obser-
vations of the price process {St }. In such cases, q0 would represent the mean and
conditional variance of Y0, given “previous” observations S−1, S−2, . . . , S−h for
some h > 0. These could be obtained in a straightforward manner by making use
of the sequential Monte Carlo estimation procedure described in Algorithm 1 (ap-
propriately modified so that time −h becomes time 0). We could also base q0 on
a historical volatility measure (i.e., the standard deviation of a few past observa-
tions).

REMARK. As with any quadrature-type approach, grid ranges must be chosen
with some care. In order to preserve quality of approximations to the required
expectations in Algorithm 5, it is necessary for the ranges of the marginal grids
Gj to contain observed values of the respective quantities with probability close to
one. Once the stochastic volatility model has been fit, it is typically relatively easy
to determine such ranges.

REMARK. The evaluation of ût (g, dt ) in the previous algorithm is performed
making use of the Monte Carlo approximation given by (23). Obviously the ex-
pression relies on knowledge of û∗

t+1(·, ·), but since we have only evaluated û∗
t+1

at grid points g ∈ G , it is necessary to interpolate in some manner. Strictly speak-
ing, one could simply choose the nearest grid point, and rely on sufficient grid
density to control error. However, inspection of the surface suggests that local lin-
ear approximations are more appropriate. Therefore, in our implementations, we
use linear interpolation between grid points.

4.3. Numerical experiments. The pricing algorithms outlined in Sections 4.1
and 4.2 demonstrate how to price American-style options in a latent stochas-
tic volatility framework. These pricing algorithms are computationally intensive,
however, their value will depend on how accurately they price American options
in this partial observation setting. We next illustrate the applicability of our pricing
algorithms through a series of numerical experiments. We assess the accuracy of
our valuation procedure by pricing American-style put options using the follow-
ing methods. (All methods use the current share price St in the LSM regression,
however, the difference in each method is how volatility is measured.)

• Method A (basic LSM). This method simulates asset prices St according to the
model (4)–(6), however, the regression step in the LSM algorithm uses a few
past observations (St−1, St−2, . . .) as a measure of volatility in lieu of the sum-
mary vector Qt . This procedure is most similar to the traditional LSM approach
of Longstaff and Schwartz (2001).
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• Method B (realized volatility). This procedure simulates asset prices St accord-
ing to the model (4)–(6), however, for each time point k (k = 1, . . . ,N ) and for
each path l (l = 1, . . . ,M), we compute a measure of realized volatility

RVk,l = 1

k

k∑
j=1

R2
j,l,(27)

where Rj,l is the return at time j along path l. The LSM regression step then
proceeds to use the realized volatility measure RVk,· at each time point k as a
measure of volatility.

• Method C (MC/Grid). This method uses the algorithms described in Sections 4.1
and 4.2 to price American-style options in a latent stochastic volatility frame-
work either using (i) a pure simulation-based Monte Carlo (MC) approach or
(ii) a Grid-based approach. Along with the simulated share prices St , this ap-
proach makes extensive use of the summary vectors Qt that capture key features
of the volatility filtering distribution πt .

• Method D (observable volatility). This approach simulates the asset prices St

and the volatility σt , however, it assumes that both asset price and volatility are
observable. This is the full observation case that we will use as a benchmark.
Whichever of methods A, B or C is closest to method D will be deemed the most
accurate.

Figure 1 presents an illustrative example of the difference in American put op-
tion prices between method A and method D for several types of option contracts.
One could think of this illustration as reporting the difference in pricing results for
two extremes: the minimum observation case (method A or basic LSM) and the full
observation case (method D or observable volatility). This figure uses parameter
settings where stochastic volatility is prevalent. The differences in option prices
indeed show that stochastic volatility matters when computing American option
prices, especially when volatility of volatility is high [i.e., when γ in equation (3)
is large].

In order to demonstrate the value of our proposed approach, method C
(MC/Grid), we must illustrate that it produces more accurate American option
pricing results than either of the simpler (and faster) methods (A and B). We ex-
perimented with various model and option parameter settings and found situations
where simpler methods work just as well as our approach. However, we also found
model/option parameter settings where our approach outperforms the other pricing
methods. Table 1 describes the settings of our numerical experiments. This table
outlines selected values of the model parameters and the American option pricing
inputs for use in the pricing algorithms (K is the strike price, T is the expiration
in days, r is the interest rate, S0 is the initial share price, and σ0 is a fixed initial
volatility).

Table 2 reports the American option pricing results (and standard errors) for
methods A (basic LSM) and B (realized volatility) and Table 3 reports the pricing
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FIG. 1. A comparison of American put option pricing results between methods A (minimum ob-
servation case, dashed line) to method D (full observation case, solid line) for various parameter
settings.
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TABLE 1
Description of the stochastic volatility and American option pricing inputs to the numerical
experiments comparing methods A, B, C and D. We set the number of particles m = 1000

for method C and report Macintosh OS X (V. 10.4.11) compute times for all cases

Experiment no. Parameters (ρ,α,β,γ,λ) Option inputs (K,T, r,S0,σ0)

1 (−0.055, 3.30, log(0.55), 0.50, −0.10) (23, 10, 0.055, 20, 0.50)
2 (−0.035, 0.25, log(0.20), 2.10, −1.0) (17, 20, 0.0255, 15, 0.35)
3 (−0.09, 0.95, log(0.25), 3.95, −0.025) (16, 14, 0.0325, 15, 0.30)
4 (−0.01, 0.020, log(0.25), 2.95, −0.0215) (27, 50, 0.03, 25, 0.50)
5 (−0.03, 0.015, log(0.35), 3.00, −0.02) (100, 50, 0.0225, 90, 0.35)
6 (−0.017, 0.0195, log(0.70), 2.50, −0.0155) (95, 55, 0.0325, 85, 0.75)
7 (−0.075, 0.015, log(0.75), 6.25, 0.0) (16, 17, 0.0325, 15, 0.35)
8 (−0.025, 0.035, log(0.15), 5.075, −0.015) (18, 15, 0.055, 20, 0.20)
9 (−0.05, 0.025, log(0.25), 4.50, −0.015) (19, 25, 0.025, 17, 0.35)

results (and standard errors) for methods C (MC/Grid) and D (observable volatil-
ity). The computation times for all methods are also reported. For methods A, B
and D, we used M = 15,000 LSM paths in the pricing exercise. When running
method C, we observed negligible differences between the MC-based and grid-

TABLE 2
American put option pricing results (and compute times) using methods A (basic
LSM with past share prices) and B (realized volatility as an estimate for volatility)

Experiment no. A (basic LSM) B (realized volatility)

1 3.044 (0.00985) 3.038 (0.00999)
Time (sec) 18 12
2 2.147 (0.00947) 2.154 (0.00975)
Time (sec) 15 16
3 1.212 (0.00759) 1.231 (0.00842)
Time (sec) 16 14
4 3.569 (0.0242) 4.153 (0.0358)
Time (sec) 37 39
5 12.994 (0.0743) 15.067 (0.120)
Time (sec) 48 39
6 18.623 (0.121) 21.476 (0.168)
Time (sec) 57 41
7 1.588 (0.0120) 1.843 (0.0186)
Time (sec) 18 14
8 0.0945 (0.00367) 0.145 (0.00553)
Time (sec) 11 15
9 2.437 (0.0132) 2.667 (0.0197)
Time (sec) 21 21
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TABLE 3
American put option pricing results (and compute times) using

methods C (MC/Grid) and D (observable volatility)

Experiment no. C (MC/Grid) D (observable volatility)

1 3.051 (0.0108) 3.046 (0.00981)
Time (sec) 162 15
2 2.160 (0.00961) 2.173 (0.00990)
Time (sec) 310 15
3 1.257 (0.00901) 1.260 (0.00901)
Time (sec) 218 12
4 4.688 (0.0439) 4.734 (0.0441)
Time (sec) 760 37
5 16.208 (0.138) 16.331 (0.138)
Time (sec) 815 39
6 22.758 (0.184) 22.996 (0.185)
Time (sec) 900 46
7 1.994 (0.0216) 2.045 (0.0225)
Time (sec) 266 17
8 0.168 (0.00691) 0.172 (0.00704)
Time (sec) 232 15
9 2.850 (0.0233) 2.861 (0.0235)
Time (sec) 416 20

based approaches. Hence, we report the pricing results (and standard errors) for
method C using Algorithms 2 and 3 with M = 15,000 LSM paths. (The MC-based
approach also permits comparisons to the other approaches in terms of standard
errors.)

There are some notable observations to be made from the results of the nu-
merical experiments in Tables 2 and 3. First, when the effect of volatility is
weak/moderate and the effect of mean reversion is moderate/strong (experiments
1 and 2), all methods result in similar American option pricing results. There are
cases in the literature that discuss fast mean reversion [see, e.g., Fouque, Papan-
icolaou, and Sircar (2000)], and in these cases it would certainly make sense to
use a faster pricing method. However, in the situations where we experiment with
dominant volatility effects (experiments 3 through 9), although not often encoun-
tered in the empirical stochastic volatility literature, but pertinent to volatile market
scenarios, method C comes closest to method D. One should note that in cases of
dominant volatility method B does better than method A, as it uses a more accu-
rate measure of volatility. Method C, however, which actually makes use of the
filtering distributions πt , comes within standard error of method D (observable
volatility case). Additionally, we observed when stochastic volatility is dominant
and the American option has a long maturity and is at/in-the-money, the difference
in pricing results is more pronounced.
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Method C (MC/Grid) is a computationally intensive approach, although this
feature is shared by many Monte Carlo and grid-based techniques. Clearly, the
proposed pricing algorithm using method C is not competitive in terms of com-
putation time. The simpler methods (A and B) are much faster and also accurate
under strong mean reversion and weak stochastic volatility. It should be observed,
however, that the pricing accuracy is much higher using method C, as it is al-
ways within standard error of method D (observable volatility). The accuracy of
method C holds in all model/option parameter settings. One does not require spe-
cial cases (high mean reversion, low volatility) or special option contract features
(long/short maturity, in/at/out-of-the money) for our approach to be competitive in
terms of accuracy. We also ascertain the robustness of our approach by computing
(and storing) the exercise rule from each of the four methods (A through D). We
use the rule to revalue the American put options on an independent, common set
of paths. The results are described in Tables 4 and 5; note that the respective pric-
ing results are similar to those stated in Tables 2 and 3, hence leading to similar
conclusions.

The differences in pricing results, as noted in Tables 2 and 3 (or Tables 4 and 5),
are relevant when thinking about how some option transactions take place in prac-
tice. For example, on the American Stock Exchange (AMEX), American-style op-

TABLE 4
American put option pricing results (and compute times) using the
exercise rule from methods A and B on an independent, common
set of paths. The results are comparable to those given in Table 2

Experiment no. A (basic LSM) B (realized volatility)

1 3.045 (0.00993) 3.050 (0.0101)
Time (sec) 31 16
2 2.128 (0.00943) 2.141 (0.00991)
Time (sec) 23 17
3 1.213 (0.00753) 1.239 (0.00856)
Time (sec) 21 20
4 3.540 (0.0242) 4.162 (0.0365)
Time (sec) 59 57
5 13.043 (0.0736) 15.035 (0.120)
Time (sec) 72 58
6 18.225 (0.122) 20.934 (0.168)
Time (sec) 65 70
7 1.568 (0.0115) 1.809 (0.0180)
Time (sec) 25 23
8 0.106 (0.00428) 0.156 (0.00590)
Time (sec) 17 20
9 2.434 (0.0131) 2.669 (0.0198)
Time (sec) 30 32
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TABLE 5
American put option pricing results (and compute times) using the
exercise rule from methods C and D on an independent, common
set of paths. The results are comparable to those given in Table 3

Experiment no. C (MC/Grid) D (observable volatility)

1 3.050 (0.0107) 3.050 (0.00977)
Time (sec) 193 20
2 2.145 (0.00966) 2.151 (0.00990)
Time (sec) 302 23
3 1.271 (0.00913) 1.276 (0.00916)
Time (sec) 253 16
4 4.735 (0.0441) 4.813 (0.0448)
Time (sec) 747 62
5 16.092 (0.137) 16.185 (0.139)
Time (sec) 740 63
6 22.380 (0.184) 22.646 (0.186)
Time (sec) 885 80
7 1.965 (0.0213) 2.003 (0.0220)
Time (sec) 274 21
8 0.186 (0.00747) 0.196 (0.00785)
Time (sec) 228 18
9 2.868 (0.0236) 2.894 (0.0238)
Time (sec) 378 30

tions have a minimum trade size of one contract, with each contract representing
100 shares of an underlying equity.4 Hence, the discrepancies between methods
A and B and our proposed method C could be magnified under such trading sce-
narios. Our proposed approach would be especially useful when constructing risk
management strategies during volatile periods in the market.

We also repeated the numerical experiments in Table 1 using a first-order Euler
discretization of the model as opposed to exact simulation. The Euler-based results
are reported in Tables 12 and 13 of Section A.4. Upon inspection, one observes that
the corresponding results for each of methods A through D are virtually identical.
Thus, if a model does not permit exact simulation, a numerical procedure such as
the first-order Euler scheme or any other scheme [see, e.g., Kloeden and Platen
(2000)] should suffice for the purposes of executing our pricing algorithm.

We now illustrate a statistical application of our proposed pricing methodology.
We first demonstrate how to estimate model parameters. Next, we make inference,
using observed American put option prices, on the market price of volatility risk.
Since method C outperforms either A or B in all model/option settings, we will
use it as our primary tool for statistical analysis.

4Source: http://www.amex.com.

http://www.amex.com
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5. Statistical estimation methodology.

5.1. Model parameter estimation. The stochastic volatility model, outlined in
equations (1), (2) and (3), has been analyzed extensively in previous work, namely,
Jacquier, Polson, and Rossi (1994, 2004) and Yu (2005). These authors analyze the
model under the statistical (or “real-world”) measure as described in a Section 2
footnote. Model estimation of share prices under the real-world measure would
only require data on price history. Estimation of model parameters in a risk neutral
setting, however, is a bit more involved as we need both share price data on the
equity as well as option data. Pan (2002) illustrates how to use both share and
option price data to jointly estimate parameters under the real-world measure and
risk-neutral measure. Eraker (2004) also implements joint estimation methodology
for share and option price data. However, both Pan (2002) and Eraker (2004) only
deal with the case of European-style options.

We propose a two-step procedure to estimate our illustrative stochastic volatility
model in an American-style derivative pricing framework. In the first step, we use
share price data to estimate the statistical model parameters. Define the parameter
vector5

θ = (ρ,α,β, γ ).

Conditional on estimated model parameter values, we then estimate the market
price of volatility risk parameter λ. Estimation of λ requires data on both share
and American option prices. Although it would be comprehensive to do a joint
statistical analysis of both share and option prices, this problem is quite formidable
in the American option valuation setting. (The full joint estimation problem is left
for future analysis.) We adopt a Bayesian approach to parameter estimation. The
first objective is to estimate the posterior distribution of θ ,

p(θ |r1, . . . , rn) = p(r1, . . . , rn|θ) · p(θ)∫
p(r1, . . . , rn|θ) · p(θ) dθ

.(28)

Since ρ ∈ [−1,1], α > 0, β ∈ R, and γ > 0, we reparameterize a sub-component
of the vector θ so that each component will have its domain in R. This reparame-
terization facilitates exploration of the parameter space. Let us define

ρ̃ = tan
(

ρπ

2

)
, α̃ = log(α), and γ̃ = log(γ ).

We assign independent standard normal priors to the components of the (repara-
meterized) vector

θ̃ = [ρ̃, α̃, β, γ̃ ].
5Strictly speaking, estimation using only share prices (i.e., under the physical measure) involves

the physical drift rate in the parameter vector. However, since we do not use the physical drift rate in
risk-neutral pricing, we do not present its estimation results.
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Algorithm 6 Kitagawa (1987) log-likelihood approximation
Initialization 1. Input a proposed value of the parameter vector θ for which the
log-likelihood value is required.

Initialization 2. Choose a number of “particles” m > 0. Draw a sample
{ỹ(1)

0 , . . . , ỹ
(m)
0 } from the distribution of Y0 [see equation (8)].

Step 1. Cycle through the (i) forward simulation, (ii) weighting, and (iii) resam-
pling steps of Algorithm 1 ensuring that the weights, w

(i)
t , i = 1, . . . ,m, from

equation (18) are stored for t = 1, . . . , T .

Step 2. Approximate the log-likelihood, l(θ), by

l(θ) ≈
T∑

t=1

1

m

m∑
i=1

log
(
w

(i)
t

)
(29)

The next step is the evaluation of the likelihood (or log-likelihood) for θ̃ , how-
ever, an analytical expression for the likelihood is not available in closed-form.
We employ Kitagawa’s algorithm [see, e.g., Kitagawa (1987, 1996) and Kitagawa
and Sato (2001) and the references therein] to estimate the log-likelihood of our
model for share prices under the real-world measure. Kitagawa’s algorithm, used
to compute the log-likelihood for nonlinear, non-Gaussian state-space models, em-
ploys the fundamental principles of particle-filtering. The essence of Kitagawa’s
approach uses the weights described in equation (18) of Algorithm 1 to provide
a Monte Carlo based approximation to the log-likelihood. The details of this log-
likelihood approximation are available in Kitagawa and Sato (2001). We provide
Kitagawa’s log-likelihood estimation approach for nonlinear, non-Gaussian state-
space models in Algorithm 6.

REMARK. The approximation to the log-likelihood value associated with a
particular parameter value in equation (29) of Algorithm 6 becomes more accurate
as the number of particles m gets large. (We used m = 500 in our estimation ex-
ercise.) When resampling using the weights in equation (18), we sometimes work
with the shifted log-weights as this leads to improved sampling efficiency.

Once we obtain an estimate of the log-likelihood for the model parameters, we
then combine it with the (log) priors and use a random-walk Metropolis algorithm
to estimate the (log) posterior distribution of θ̃ (or, equivalently, θ ). That is, we es-
timate the posterior distribution for θ̃ and then transform back to the original scale
to calculate the posterior distribution of θ as stated in equation (28). Our Markov
chain Monte Carlo (MCMC) algorithm utilizes a Gaussian proposal density in or-
der to facilitate the estimation of the posterior distribution in the θ̃ parameter space.
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The details of our MCMC sampler are described in Algorithm 7, which is found
in Section A.2.

Given the estimates of the model parameters under the real-world measure us-
ing the share prices, we now describe how to use both share and option price data
to estimate the market price of volatility risk. We work with a summary measure of
p(θ |r1, . . . , rn), namely, the posterior mean, although one could use another mea-
sure such as the posterior median. The estimation of the market price of volatility
risk will be computed conditional on this posterior summary measure. We imple-
ment this estimation exercise using the algorithms outlined in Section 4.

5.2. Volatility risk estimation. The estimation of the market price of volatil-
ity risk, λ, in equation (3) presents a computational challenge, particularly in the
American option valuation framework. We aim to use the algorithms described in
this paper to propose methodology that will facilitate statistical inference of λ in
the American option pricing setting. To the best of our knowledge, this is the first
analysis to compute and make posterior inference on the volatility risk premium for
American-style (early-exercise) options. In many applications of option-pricing in
a stochastic volatility framework, it is often the case that λ is set to a prespecified
value [see, e.g., Heston (1993), Hull and White (1987) and Pastorello, Renault, and
Touzi (2000)]. One convenient approach is to set λ = 0. This is known as the “min-
imal martingale measure” in some strands of the option-pricing literature [Musiela
and Rutkowski (1998)].

Both Pan (2002) and Eraker (2004) estimate stochastic volatility model parame-
ters, including the market price of volatility risk, for the case of European options.
However, the early-exercise feature of American-style options adds further com-
plexities to the estimation problem. One method to estimate the market price of
volatility risk for American-style options would be to set up the following nonlin-
ear regression model [similar in spirit to what Eraker (2004) does in his analysis
of European options]. Let

Ui = P i
θ∗(λ) + εi,(30)

where Ui (i = 1, . . . ,L) is the observed American option price, P i
θ∗(λ) is the

model predicted American option price conditional on the mean, θ∗, of the pos-
terior distribution in equation (28), and λ is the market price of volatility risk.6

P i
θ∗(λ) is computed using one of our proposed pricing algorithms in Section 4.

The error term, εi , is assumed to be an independent sequence of N(0, σ 2) random
variables.

6Although it is not explicitly stated in equation (30), both θ∗ and P i
θ∗(λ) depend on the share price

data St or, equivalently, the returns data Rt .
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The next step is to find the optimal value for λ which we will denote by λ∗. One
approach would be to minimize the sum-of-squared errors, S(λ), where

S(λ) =
L∑

i=1

(
Ui − P i

θ∗(λ)
)2 and(31)

λ∗ = arg max
λ

S(λ).(32)

As noted in Seber and Wild (2003), the minimum value of S(λ) corresponds to the
least-squares estimate of the nonlinear regression model in equation (30). One can
also show that the least-squares estimate is equivalent to the maximum likelihood
estimate (MLE). Optimizing S(λ), although computationally demanding, is fea-
sible. We again adopt a Bayesian approach, outlined more generally in Seber and
Wild (2003), to solve this optimization problem. First, we start with the (Gaussian)
likelihood for the model in equation (30) which is given by

p(u1, . . . , uL|λ,σ 2) = (2πσ 2)−L/2
L∑

i=1

exp
{
− 1

2σ 2

(
ui − P i

θ∗(λ)
)2

}
(33)

= (2πσ 2)−L/2 exp
{
− 1

2σ 2 S(λ)

}
,

where the second equality in the likelihood formulation follows from equa-
tion (31). As suggested in Seber and Wild (2003), if we use the following (im-
proper) prior distribution over (λ, σ 2),

p(λ,σ 2) ∝ 1

σ 2 ,(34)

it follows that the posterior distribution for (λ, σ 2) is, up to a constant of propor-
tionality,7

p(λ,σ 2|u1, . . . , uL) ∝ (σ 2)−(L/2+1) exp
{
−S(λ)

2σ 2

}
.(35)

Recognizing the kernel of the inverse gamma distribution for σ 2 in equation (35),
namely, IG(L

2 , S(λ)
2 ), we can integrate out σ 2 to conclude that

p(λ|u1, . . . , uL) ∝ �(L/2)

(S(λ)/2)L/2 ∝ (S(λ))−L/2.(36)

Therefore, we have shown in equation (36) that, with the choice of prior in equa-
tion (34), the posterior distribution of the market price of volatility risk λ is pro-
portional to S(λ)−L/2. If we maximize this posterior distribution, it is equivalent

7For simplicity, we will suppress dependence on Rt and θ∗ in the calculation for the posterior
distribution of λ.
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to minimizing S(λ), and hence, the result would be the same as the least-squares
estimate or the MLE.

One approach to approximating the posterior distribution in equation (36) is to
use an MCMC based procedure. However, in the context of American option val-
uation, the early-exercise feature would present a major computational challenge
when evaluating S(λ). A more feasible approach is to use a result that concerns
the approximate normality of the posterior distribution close to the posterior mode
[see Chapter 2 of Seber and Wild (2003) for a discussion in the context of nonlin-
ear regression]. If we denote the posterior mode of equation (36) by λ∗, then under
suitable regularity conditions [see Chapter 7 of Schervish (1995)], the posterior
distribution of λ near λ∗ can be approximated as a normal distribution with mean
λ∗ and variance V ∗. In particular,

λ|u1, . . . , uL ∼ N(λ∗,V ∗),(37)

where

1

V ∗ = −d2 log(p(λ|u1, . . . , uL))

dλ2

∣∣∣∣
λ=λ∗

= −d2 log[(S(λ))−L/2]
dλ2

∣∣∣∣
λ=λ∗

.(38)

Algorithm 8 in Section A.3 of the Appendix illustrates how to estimate the para-
meters of the normal distribution in equation (37). We use a grid-search to find the
posterior mode, λ∗, and then we estimate the derivative expression in equation (38)
using numerical approximation techniques (namely, central differences) described
in, for instance, Wilmott, Howison, and Dewynne (1995). We next report the re-
sults of a data-analytic study of our American option valuation approach using the
aforementioned algorithms on three equities.

6. Empirical analysis. Our empirical analysis uses the algorithms outlined in
Section 4 together with historical share prices and American put option data. A ref-
erence to our computing code and data sets is given in Rambharat and Brockwell
(2009).

6.1. Data description. We obtain observed market data on equity prices as
well as American-style put options on these underlying equities. We gather share
price data on three equities: Dell Inc., The Walt Disney Company and Xerox Cor-
poration. The share price data are sourced from the Wharton Research Data Ser-
vices (WRDS).8 The share price data represent two periods: (i) a historical period
from Jan. 2nd, 2002 to Dec. 31st, 2003, and (ii) a valuation period from Jan. 2nd,
2004 to Jan. 30th, 2004 (the first 20 trading days of 2004). The historical share
price data will be used for model parameter estimation and the trading share price

8Access to the WRDS database was granted through Professor Duane Seppi and the Tepper School
of Business at Carnegie Mellon University.
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FIG. 2. A time series plot of the share prices of Dell, Disney and Xerox over the period Jan. 2nd,
2002 to Dec. 31st, 2003.

data will be used in the option valuation analysis. The option price data sets are
obtained for the period spanning the first 20 trading days of 2004. The data on
American put options are extracted from the website of the American Stock Ex-
change (AMEX). We also use the LIBOR rates from Jan. 2004 (1-month and 3-
month rates were around 0.011, and 6-month rates were around 0.012), obtained
from Bloomberg®, for the value of the risk-free rate r . A plot of the share prices
of the three equities over the historical period appears in Figure 2. Additionally,
Tables 6 and 7 summarize some features of the share and option price data; note
that most options are at-the-money and their maturities range from short to long.

Figure 3 depicts πt along with Gaussian approximations using the output of
Algorithm 1 for the three equities in our analysis. We choose two time points for
each equity for our graphical illustrations, however, it should be noted that results
are similar for other time points. We construct the summary vectors Qt based on
these distributions. The grid-based Algorithms 4 and 5 would, for instance, use a
Gaussian distribution to approximate these filtering distributions, as this appears to

TABLE 6
Description of the equity share prices: the share price range (in dollars)

and the share price mean (and standard deviation) for the historical
period Jan. 2nd, 2002 to Dec. 31st, 2003 (estimation period)

Equity Historical range Historical mean (sd)

Dell 22.33–36.98 28.95 (3.57)
Walt Disney 13.77–25.00 19.83 (2.87)
Xerox 4.30–13.80 9.18 (1.82)
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TABLE 7
Description of the American put options: the number of options in our data set (L), the maturity (in
days), the strike price (in dollars), the share price range, and the share price mean (and standard

deviation) for the Jan. 2004 valuation period

Equity L Maturity Strike Share price range Share price mean (sd)

Dell 120 15–98 32.50–37.50 33.44–35.97 34.89 (0.65)
Walt Disney 60 15–135 25.00 23.67–24.96 24.45 (0.40)
Xerox 60 15–135 14.00 13.39–15.15 13.99 (0.48)

provide an adequate fit. Note that for other choices of stochastic volatility models, a
different (possibly non-Gaussian) distribution may be suitable as an approximation
to the filtering distribution.

6.2. Posterior summaries. We report the posterior means and 95% credible
intervals for the parameter vector θ = (ρ,α,β, γ ) for each of the three equities in
Table 8. These are the results from execution of Algorithm 7. Inspection of α and
γ shows that the volatility process for all equities exhibit noticeable signs of mean
reversion and stochastic volatility, respectively. The results for β , the overall level
of the volatility process around which its mean reverts, are also reported. Observe,
as well, that the results for both Dell and Disney show strong signs of the leverage
effect between share prices and their volatility. This is evidenced by the negative
values for ρ and the fact that the 95% credible intervals do not span zero. On the
other hand, the results for Xerox are not as conclusive, as the 95% credible interval
for ρ spans zero.

Conditional on the posterior means reported in Table 8, we next estimate the
posterior distribution of the market price of volatility risk parameter, λ, for each
equity. This is facilitated by the implementation of Algorithm 8. Essentially, for
each equity, we find the posterior mode [i.e., the maximum value of the expression
in equation (36)] and then we implement the analysis described in Section 5.2. Our
results from the volatility risk estimation are reported in Table 9. We explain the
full details of the numerical computations in Section A.3.

Based on the posterior analysis of λ, all three equities show evidence of a neg-
ative value for this parameter. Observe that the (approximate) 95% credible inter-
vals are negative and do not span zero. This is consistent with results reported in
the literature on the market price of volatility risk [see e.g., Bakshi and Kapadia
(2003a, 2003b)]. In these studies, it is explained that the negative volatility risk
premium signals that investors are willing to pay a premium for “downside pro-
tection” (or adverse movements in share prices due to stochastic volatility). This
results because a negative value for λ implies a higher volatility mean reversion
level [see equation (3)] and, therefore, most likely a higher volatility and option
price. It is especially during these adverse movements (or volatile market activity)
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FIG. 3. Examples of the sequential Monte Carlo filtering distributions, πt , as defined in Section 3.2
for each of the three equities at a few selected dates in the estimation period 2002–2003. The solid
lines are kernel-smoothed sequential Monte Carlo estimates of πt and the dashed lines are the
Gaussian approximations.
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TABLE 8
Bayesian posterior means and 95% credible intervals (CI) for the parameters of the stochastic

volatility model in equations (1)–(3) by equity

Equity ρ α β γ

Dell −0.673 1.830 −1.087 1.081
95% CI (−0.767, −0.402) (0.267, 5.398) (−2.157, −0.316) (0.674, 1.695)
Disney −0.612 0.363 −1.379 0.686
95% CI (−0.761, −0.259) (0.0194, 1.805) (−2.970, −0.288) (0.426, 1.080)
Xerox 0.198 26.726 −0.812 3.494
95% CI (−0.0215, 0.419) (8.036, 54.328) (−1.030, −0.603) (2.119, 5.214)

that our pricing methodology for American-style options is most pertinent. Fur-
thermore, the magnitude of our results for the market price of volatility risk in
this small empirical analysis are in agreement with studies that analyze a larger
set of individual equities as well as index options [Bakshi and Kapadia (2003b)].
However, these earlier strands of empirical research do not analyze options with
early-exercise features.

Additionally, in Table 10, we report the sum-of-squared errors, S(λ), when λ

equals λ∗ and when λ = 0. Clearly, the model-predicted American option prices
better match market data for the optimized (nonzero) λ value. This casts some
evidence in favor of a nonzero volatility risk premium. It is also interesting to note
that the market price of volatility risk parameter λ does not appear to be the same
across all equities. Thus, if one had a portfolio of equities, it may be interesting to
understand the differences in their volatility risk premiums. One potential reason
for this difference across equities is that the market price of volatility risk may
be comprised of two components: (i) a market component, which we may expect
to be constant across equities, and (ii) an idiosyncratic component, which may
well be the fundamental source of the differences in the estimates of λ across
equities (Nikunj Kapadia, personal communication). Further analyses call for more
elaborate specifications of λ and additional study of its underlying components.
We could, for instance, model λ as a time-varying function or even a stochastic
process.

TABLE 9
Parameters of the normal approximation to the posterior distribution
of λ, the market price of volatility risk, as well 95% credible intervals

Equity λ∗ V ∗ 95% credible interval

Dell −6.350 0.00266 (−6.451,−6.249)

Disney −10.850 0.00750 (−11.020,−10.680)

Xerox −0.700 0.00815 (−0.877,−0.523)
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TABLE 10
Comparison of the model fit to American put option data using λ = λ∗

and λ = 0 in terms of the sum-of-squared errors, S(λ), between
model-predicted option prices and market observed option prices

Equity S(λ = λ∗) S(λ = 0)

Dell 0.1839 0.7580
Disney 0.3631 0.9620
Xerox 0.02016 0.02739

7. Discussion. We introduce an algorithm for pricing American-style op-
tions under stochastic volatility models, where volatility is assumed to be a la-
tent process. Our illustrative model takes into account the co-dependence between
share prices and their volatility as well as the market price of volatility risk. The
approach is based on (i) the empirical observation that the conditional filtering
distributions πt can be well approximated by summary vectors Qt or parametric
families of distributions that capture their key features, (ii) the use of a sequen-
tial Monte Carlo step to obtain and update the distributions πt , and (iii) a grid-
ding (quadrature) type approach and a Monte Carlo simulation-based adaptation to
solve the associated dynamic programming problem. Our methodology is not tied
to a specific stochastic volatility model or simulation procedure but could accom-
modate a wide range of stochastic volatility models and/or numerical simulation
methods.

We document, through numerical experiments, that our method uses features
of πt to better price American options more accurately than simpler methods. In
fact, our approach comes within standard error of the American option price when
volatility is assumed to be observed. One drawback with the methodology that we
introduce is its computational demand. Additionally, there are special situations
(high mean reversion and low volatility of volatility) where simpler methods may
suffice for pricing American-style options. However, our approach leads to a more
optimal exercise rule for all model/option parameter settings. Our approach can
also be practically implemented using sophisticated parallel computing resources.
The proposed valuation method for pricing American-style options is especially
useful for important financial decisions in a very volatile market period.

Using observed market data on share prices for three equities (Dell, Disney and
Xerox), we implement a Bayesian inferential procedure to estimate (i) share price
model parameters, and (ii) the market price of volatility risk (or the volatility risk
premium). Our results are consistent with findings in the literature, namely, lever-
age effects between share prices and their volatility and a negative volatility risk
premium. Leverage effects are significant for all equities with the exception of
Xerox. The volatility risk premium (measured by λ) is also significantly negative
since its credible interval does not span zero for any of the three equities. This ul-
timately implies that volatility risk is priced in the market and investors are willing
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to pay a premium for adverse movements in share prices due to volatility. Further-
more, we approximate the posterior distribution of λ near its optimal value with
a Gaussian distribution. Consequently, we are able to make statistical inference
about the volatility risk premium for early-exercise options.

A potential refinement of our estimation procedure would be to implement a
joint time series analysis of the share and option prices. This analysis can be facili-
tated by the algorithms in this paper, however, parallel computing power would be
of tremendous assistance in this regard. Additionally, jumps in the statistical mod-
els could also be incorporated and our approach could be used to make inference
on jump parameters and the jump risk premium. An additional line of future work
would be to use the inference made on the volatility risk premium of American-
style options to construct profitable trading/hedging strategies that are pertinent to
risk management settings.

APPENDIX

A.1. Proof of Lemma 3.1. We use an inductive argument. To begin with,
uT (s0, . . . , sT , dT ) is by its definition (10) obviously a function of sT and dT ,
and thus is trivially a functional of sT ,πT and dT , which we can denote by
ũT (sT ,πT , dT ).

Next, suppose that for some t , we can write ut+1(s0, . . . , st+1, dt+1) =
ũt+1(st+1, πt+1, dt+1). Then from (12),

ut (s0, . . . , st ,E) = g(st ),(39)

and

ut(s0, . . . , st ,H)

= ERN
(
u∗

t+1(s0, . . . , st , St+1)|S0 = s0, . . . , St = st
)

= ERN
(
ũ∗

t+1(St+1, πt+1)|S0 = s0, . . . , St = st
)

(40)

=
∫

ERN
(
ũ∗

t+1(St+1, πt+1)|S0 = s0, . . . , St = st , Yt = yt

)
πt(yt ) dt(41)

=
∫

ERN
(
ũ∗

t+1(St+1, πt+1)|St = st , Yt = yt

)
πt(yt ) dt.(42)

Equation (41) is obtained from (40) using a simple conditioning argument,
and (42) then follows since {(St , Yt ), t = 0,1, . . .} is a (bivariate) Markov process.
The expression in (39) is obviously a function of st , and since st and πt completely
determine the distribution of the arguments St+1 and πt+1 to the function ũ∗

t+1(·, ·)
in (42), it is also clear that the expression in (42) is a functional of st and πt . Thus,
ut (s0, . . . , st , dt ) is a functional of st , πt and dt , which we denote by ũt (st , πt , dt ).

Invoking this inductive step for t = T − 1, T − 2, . . . ,0 gives the first part of
the desired result. The second part of the result follows directly from the first part,
along with the definitions (11) and (13).
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Algorithm 7 Markov chain Monte Carlo (MCMC) posterior simulation
Initialization 1. Input the parameters of the prior and proposal distributions cor-
responding to the θ̃ parameterization.

Initialization 2. Set the starting value of θ̃ at the prior mean (or any other reason-
able value) and denote this by θ̃c to represent the current value. Use Algorithm 6
and the log-prior densities to compute a log-posterior value of θ̃c and denote this
by LPostc.

for i = 1, . . . ,B do

• Sampling. Draw the ith potential value of θ̃ using a multi-variate normal
proposal density and denote this by θ̃s .

• Posterior evaluation. Use Algorithm 6 along with the log-prior densities to
compute the ith log-posterior value of θ̃s and denote this by LPosts .

• MH-step A. Sample Ui ∼ Unif[0,1].
• MH-step B. If log(Ui) ≤ (LPosts − LPostc), update θ̃c = θ̃s and LPostc =

LPosts . Else do not update θ̃c and LPostc.

end for

Output. Perform the relevant inverse transformation of θ̃ in order to return the
posterior distribution of θ .

A.2. Estimation algorithms. The MCMC algorithm that we use to estimate
the posterior distribution p(θ |r1, . . . , rn) in equation (28) is described below in
Algorithm 7. We implement a random-walk Metropolis–Hastings (MH) algorithm
to arrive at our estimate of the posterior distribution of θ . Additionally, Algorithm 8
describes the procedure used to optimize the (approximate) posterior distribution
of the volatility risk premium p(λ|u1, . . . , uL) in equation (36).

REMARK. We implement in Algorithm 7 a stochastic search over the trans-
formed parameter space θ̃ as defined in Section 5.1. We use a multivariate Gaussian
proposal density with mean equal to the current point and a diagonal variance–
covariance (VCOV) matrix. The elements of the VCOV matrix that proposed val-
ues for ρ, α, β and γ are, respectively,

0.001, 0.005, 0.0025 and 0.001.

(We experimented with different parameterizations of the proposal density and did
not find appreciable differences in the results.)

REMARK. Regarding the statistical estimation of the model parameters via
MCMC, we initialize the physical drift rate using the average of the returns
data and we set the correlation parameter ρ = 0 for each case. We initial-
ize the parameters of the stochastic volatility process (α,β, γ ) as follows: Dell
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(8.20,−1.00,1.50), Disney (4.40,−1.20,1.10) and Xerox (17.0,−0.800,3.00).
These are approximate maximum likelihood estimates that are computed using
Cronos, an open source software written by Anthony Brockwell and available at
http://www.codeplex.com/cronos.

REMARK. We set B to 50,000 and take a burn-in period of 5000 in Algo-
rithm 7. Convergence is ascertained using trace plots of the posterior output.

REMARK. We use the Monte Carlo based approach described in Section 4 to
evaluate P i

θ∗(λj ), as we found this to be faster for the purposes of our empirical
analysis in Algorithm 8.

A.3. Calculation of posterior distribution of λ. We now outline some of the
calculations that are needed to compute the normal approximation [equation (37)]
to the posterior distribution of λ near the mode of its true posterior distribution
[equation (36)]. Recall that the mean of the normal approximation is the posterior
mode. The reciprocal of the variance term is

1

V ∗ = −d2 log(p(λ|u1, . . . , uL))

dλ2

∣∣∣∣
λ=λ∗

= −d2 log[(S(λ))−L/2]
dλ2

∣∣∣∣
λ=λ∗

.

Observe that

−d2 log[(S(λ))−L/2]
dλ2 = L

2

[
S′′(λ) · S(λ) − (S′(λ))2

(S(λ))2

]
.

We approximate the first and second derivative expressions S′(λ) and S′′(λ) as9

S′(λ) ≈ S(λ + �G) − S(λ − �G)

2�G

and

S′′(λ) ≈ S(λ + �G) − 2S(λ) + S(λ − �G)

�2
G

.

In order to evaluate the derivative expression at λ∗, we use the values in Table 11.
Once these computations are completed, the normal approximation to the posterior
distribution of λ is completely specified.

A.4. Numerical simulation results. Tables 12 and 13 provide the results of
the numerical experiments, described in Section 4.3, when using an Euler dis-
cretization from the stochastic volatility model in equations (1), (2) and (3). As

9Theoretically, the first derivative is equal to 0 at the optimized point [i.e., S′(λ∗) = 0]. The nu-
merical approximation of the first derivative using the expressions above comes within tolerance
of 0.

http://www.codeplex.com/cronos
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Algorithm 8 Posterior analysis of the market price of volatility risk
Initialization 1. Compute the posterior summary from the model estimation rou-
tine outlined in Algorithm 7. (This could be, for example, the posterior mean or
median of θ .) Denote the posterior summary measure by θ∗.

Initialization 2. Input the L American option contract features including ini-
tial share price and initial volatility based on, say, a 10-day historical volatility
measure.

Initialization 3. Input a grid of λ values that will be used to find the optimal value
for λ. (This can be roughly estimated via trial and error.) Denote the number of
grid points by G and the λ values by λ1, . . . , λG and the distance between each
grid point by �G.

for i = 1, . . . ,G do

• Option valuations. For j = 1, . . . ,L, compute and store the model-predicted
American option values, P

j
θ∗(λi) using the pricing algorithms (either Monte

Carlo or grid-based described in Section 4).
• Optimize SSE. Compute the value of the sum of squared errors S(λ) defined

in equation (31).

end for

Find optimal λ. Find the optimal λ value, λ∗, among the grid points (λ1, . . . , λG)

such that

λ∗ = arg max
λ

S(λ).

Posterior computation. Starting with the prior specification in equation (34),
S(λ)−L/2 is the posterior distribution of λ up to a constant of proportionality.
Calculate the approximate posterior distribution by using the Gaussian approx-
imation to the posterior distribution near the mode [i.e., near λ∗; see Seber and
Wild (2003) or Schervish (1995)].

Output. Return the approximate posterior distribution of λ from equation (37)
and summarize accordingly. (Derivative evaluations are evaluated numerically
using central difference methods.)

can be observed from the results in these tables, the option prices using the Euler
discretization are almost identical to those using the exact simulation for all meth-
ods described in Section 4.3. Hence, when working with models that may not per-
mit exact simulation, first and higher order discretization techniques also facilitate
option pricing methods such as the ones done in this analysis.
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TABLE 11
Values of S(λ) at different points. Recall the values for λ∗ are given in
Table 9. Additionally, the spacing between the λ-grid, �G, equals 0.05

Equity S(λ∗ − �G) S(λ∗) S(λ∗ + �G)

Dell 0.1847 0.1839 0.1860
Disney 0.3658 0.3631 0.3644
Xerox 0.02023 0.02016 0.02030
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on a portion of this research. Finally, we are very thankful for the patience and as-

TABLE 12
Euler discretization—American put option pricing results (and compute times) using methods A

(basic LSM with past share prices) and B (realized volatility as an estimate for volatility). Results
are very similar to those reported for the exact simulation in Table 2

Experiment no. A (basic LSM) B (realized volatility)

1 3.047 (0.0107) 3.040 (0.0103)
Time (sec) 8 8
2 2.147 (0.00946) 2.154 (0.00974)
Time (sec) 15 15
3 1.213 (0.00759) 1.230 (0.00841)
Time (sec) 13 11
4 3.569 (0.0242) 4.152 (0.0358)
Time (sec) 37 39
5 12.995 (0.0743) 15.066 (0.120)
Time (sec) 36 42
6 18.623 (0.121) 21.474 (0.168)
Time (sec) 44 44
7 1.588 (0.0120) 1.843 (0.0186)
Time (sec) 13 14
8 0.0945 (0.00367) 0.145 (0.00553)
Time (sec) 16 14
9 2.437 (0.0132) 2.668 (0.0197)
Time (sec) 20 21
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TABLE 13
Euler discretization—American put option pricing results (and compute times) using methods C
(MC/Grid) and D (observable volatility). Results are very similar to those reported for the exact

simulation in Table 3

Experiment no. C (MC/Grid) D (observable volatility)

1 3.052 (0.0109) 3.045 (0.00982)
Time (sec) 161 8
2 2.164 (0.00958) 2.173 (0.00986)
Time (sec) 321 15
3 1.257 (0.00900) 1.261 (0.00902)
Time (sec) 212 10
4 4.684 (0.0439) 4.734 (0.0441)
Time (sec) 761 37
5 16.270 (0.138) 16.330 (0.138)
Time (sec) 748 37
6 22.764 (0.183) 22.999 (0.185)
Time (sec) 831 47
7 1.998 (0.0217) 2.045 (0.0225)
Time (sec) 302 16
8 0.169 (0.00691) 0.172 (0.00704)
Time (sec) 236 15
9 2.851 (0.0233) 2.861 (0.0235)
Time (sec) 379 24

sistance of Pantelis Vlachos and the Remarks Computing Group in the Department
of Statistics at Carnegie Mellon University.

SUPPLEMENTARY MATERIAL

Code and data sets (DOI: 10.1214/09-AOAS286SUPP; .zip). Sequential
Monte Carlo pricing routines. The R code used in our analysis for pricing
American-style options in a latent stochastic volatility framework as well code
for optimizing all model parameters, including the market price of volatility risk,
are part of this supplement. American put option data sets. The data sets used in
our pricing/estimation analysis include historical share prices and American put
option prices for three equities: Dell, Disney and Xerox. The data files are in this
supplement.
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