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NONPARAMETRIC BAYESIAN MULTIPLE TESTING FOR
LONGITUDINAL PERFORMANCE STRATIFICATION1

BY JAMES G. SCOTT

University of Texas at Austin

This paper describes a framework for flexible multiple hypothesis testing
of autoregressive time series. The modeling approach is Bayesian, though a
blend of frequentist and Bayesian reasoning is used to evaluate procedures.
Nonparametric characterizations of both the null and alternative hypotheses
will be shown to be the key robustification step necessary to ensure reasonable
Type-I error performance. The methodology is applied to part of a large data-
base containing up to 50 years of corporate performance statistics on 24,157
publicly traded American companies, where the primary goal of the analysis
is to flag companies whose historical performance is significantly different
from that expected due to chance.

1. Introduction.

1.1. Multiple testing of time series. Suppose a single time series of length T

is observed for each of N different units. Two possible models for each time series
are entertained: a simple autoregressive null model M0 and a more complex alter-
native model MA. The goal is to determine which units come from the alternative
model.

This is a common problem in the analysis of multiple time series, and although
many details will be context-dependent, certain common themes emerge. Of key
interest is how, in repeatedly applying a procedure used for testing a single time
series, the rate of Type-I errors can be controlled. Model-based approaches are
an attractive option, but model errors can become overwhelming in the face of
massive multiplicity. One of this paper’s main results is that great care must be
taken in characterizing M0 and MA in order to keep false positives at bay, with
the suggested robustification step involving the use of nonparametric Bayesian
methods.

In typical hypothesis-testing scenarios involving standard parametric models
M0 and MA, the Bayes factor BF(MA :M0) contains an “Ockham’s razor” term
[Jefferys and Berger (1992)] that penalizes the more complex model. In most cases
this is the result of needing to integrate the likelihood across a higher-dimensional
prior under the more complex model, which will therefore have a more diffuse
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predictive distribution. This penalty for model complexity is quite different from
any sort of penalty term imposed for conducting multiple hypothesis tests [Scott
and Berger (2008)].

But the multiple-testing framework employed here uses Dirichlet-process mix-
tures to represent the unknown null and alternative models, which are properly
thought of as being infinite-dimensional. Another of this paper’s main objectives
is to clarify the nature and operating characteristics of this penalty for model com-
plexity in nonparametric settings—specifically, how it interfaces with the recom-
mended multiple-testing methodology.

1.2. Motivating example. A running example from management theory will
be used to motivate and study the proposed Bayesian model. The results and dis-
cussion are problem-specific, but areas in which the methodology and lessons can
be generalized will be pointed out.

Our data set covers up to 50 years of annual performance (operationalized by a
common accounting measure) for over 24,000 publicly traded American compa-
nies. The goal of the analysis is to flag firms whose performance is highly unlikely
to have occurred by random chance, since these firms may have good (or bad)
management practices that are discernible through follow-up case studies.

Longitudinal performance stratification is a classic topic in management theory.
Indeed, one of the primary aims of strategic-management research, and the conceit
of many best-selling books, is to explain why some firms fail and others succeed.

Much academic work in this direction focuses on decomposing observed vari-
ation into market-level, industry-level and firm-level components [Bowman and
Helfat (2001), Hawawini, Subramanian and Verdin (2003)]. Of the work that at-
tempts to identify specific nonrandom performers, much of it relies upon model-
free clustering algorithms [e.g., Harrigan (1985)], which contain no guarantee
that the clusters found will be significantly different from one another. Other ap-
proaches employ simple classical tests [Ruefli and Wiggins (2000)], often based
upon ordinal time series. These have the advantage of being model-free, but are
typically not based upon sufficient statistics, and suffer from the fact that avail-
able multiplicity-correction approaches (e.g., Bonferroni correction) tend toward
the overly aggressive.

Due to the number of firms for which public financial data is available, this prob-
lem makes an excellent testbed for the study of general-purpose multiple-testing
methodology in time-series analysis. There is, however, no theoretical ideal of
what an “average-performing” company should look like, beyond the notion that
it should revert to the population-level mean even if it has some randomly good
or bad years. The Bayesian approach requires that suitable notions of randomness
and nonrandomness be embodied in a statistical model. This model must confront
an obvious multiplicity problem: many thousands of companies will be tested,
and false positives will make expensive wild-goose chases out of any follow-up
studies seeking to explain possible sources of competitive advantage. Robustness



NONPARAMETRIC MULTIPLE TESTING 1657

and trustworthy Type-I error characteristics are therefore crucial practical consid-
erations, and so even though this paper’s modeling approach is Bayesian, it also
contains much frequentist reasoning regarding Type-I error rates.

2. Testing a zero-mean AR(1) model.

2.1. The model. This section outlines a basic framework for multiple testing
that, for the sake of illustration, will be purposely simplistic. Nonetheless, it will
provide a useful jumping-off point for the methodological developments of sub-
sequent sections, and will show why more flexible models are typically needed in
order to achieve reasonable Type-I error performance.

Let yit be the observation for unit i at time t , and let yi be the vector of obser-
vations for unit i. In the management-theory example, y is a standardized perfor-
mance metric called Return on Assets (ROA), which measures how efficiently a
company’s assets generate earnings. Each company’s ROA values were regressed
upon a set of covariates judged to be relevant by three experts in management the-
ory collaborating on the project. These include the company’s size, debt-to-equity
ratio and market share, along with categorical variables for year and for industry
membership. [See Ruefli and Wiggins (2002), for a summary of the literature re-
garding covariate effects on observed firm performance.] The actual values used
in the following analyses were the residuals from this regression. Also, since the
question at issue is one of relative performance, not absolute performance, these
residuals were standardized by CDF transform to follow a N(0,1) distribution.

Since we do not expect random gains or losses in one year to be completely
erased by the following year, a model accounting for serial autocorrelation seems
mandatory. Management-theoretic support for this assumption in the present con-
text can be found in Denrell (2003) and Denrell (2005); analogous situations in
engineering, finance and biology are very common.

The null hypothesis is then a stationary AR(1) model depending upon parameter
θ = (φ, v):

yit = φyi,(t−1) + νit ,

νit
i.i.d.∼ N(0, v).

This assumption allows for long runs of good or bad performance due simply to
chance: a large shock (νt ) may take quite awhile to decay depending upon the
value of φ, which is assumed to lie on (−1,1).

Nonnull companies can then be modeled as AR(1) processes that revert to a
nonzero mean. Placing a mixture prior on this unknown mean will then encode the
relevant hypothesis test:

yi ∼ N(yi | mi1,�θ),(1)

θ ∼ N(φ | d,D) × IG(v | a, b),(2)

mi ∼ p · N(0, σ 2) + (1 − p)δ0,(3)
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with 1 is the vector of all ones, �θ is the familiar AR(1) variance matrix, δ0 is a
point mass at 0, and p ∈ [0,1] is the prior probability of arising from the alternative
hypothesis. The exchangeable normal prior on the nonzero means mi reflects the
prior belief that, among firms that systematically deviate from zero, most of the
deviations will be relatively small.

The posterior probabilities pi = P(mi �= 0 | Y) then can be used to flag non-
null units. In some contexts, these are called the posterior inclusion probabilities,
reflecting inclusion in the “nonnull” set.

The model must be completed by specifying priors for φ, v and σ 2. In the ex-
ample at hand, the data have been standardized to a N(0,1) scale, so it makes sense
to choose σ 2 = 1. In more general settings, the prior for σ 2 must be appropriately
scaled by φ and v in the absence of strong prior information, since the marginal
variance of the residual autoregressive process is the only quantity that provides a
default scale for the problem.

The conditional likelihoods of each data vector under the two hypotheses
(mi �= 0 versus mi = 0) are available in closed form:

P(yi | mi = 0, θ) = N(yi | 0,�θ),(4)

P(yi | mi �= 0, θ, σ 2) = N
(
yi | 0,�θ + σ 2(11t )

)
,(5)

where (11t ) is the matrix of all ones.
The ratio of (5) to (4) gives the Bayes factor, conditional upon φ, v and σ 2, for

testing an individual time series against the null model.

2.2. Bayesian adjustment for multiplicity. Multiplicity, from a Bayesian per-
spective, is handled through careful treatment of the prior probability p.

One possibility is to choose a small value of p, with the expectation that a prior
bias in favor of the null will solve the problem. But the key intuition in using
this model for multiple testing is to treat p as just another model parameter to
be estimated from the data, giving it a uniform prior. This induces an effect that
is often referred to as an automatic multiple-testing penalty, with the effect being
“automatic” in the sense that no arbitrary penalty terms must be specified.

This effect can most easily be seen if one imagines repeatedly testing a fixed
number of signals in the presence of an increasing number of null units. Asymp-
totically, the posterior mass of p will concentrate near 0, making it increasingly
difficult for all units (even the signals) to overcome the prior belief in their irrel-
evance. This yields much the same effect as choosing a small value for p after
the fact, but Bayesian learning about p negates the need to make such an arbitrary
choice.

Two caveats are in order. First, this should not be misinterpreted as saying that
Bayesians need never worry about multiplicities. Automatic adjustment depends
upon allowing the data itself to choose p, and more generally, upon careful treat-
ment of prior model probabilities. The adjustment itself can be seen primarily in
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the inclusion probabilities, and will not necessarily be incorporated into other pos-
terior quantities of interest. In particular, the joint distribution of effect sizes, con-
ditional on their being nonzero, will fail to adjust for multiplicity.

Second, it is still necessary to choose a threshold on posterior probabilities in
order to get a decision rule about “signal” versus “noise.” An obvious threshold is
50%, but ideally this threshold should be chosen to minimize Bayesian expected
loss under properly specified loss functions. Perhaps, for example, the loss in-
curred by a false positive is constant while the loss incurred by a false negative
scales according to some function of the underlying difference from 0. Introduc-
ing such loss functions will complicate the analysis only slightly, without changing
the fundamental need to account for multiplicity.

It is important to distinguish this fully Bayesian model from the empirical-
Bayes approach to multiplicity correction, whereby p is estimated by maximum
likelihood [see, e.g., Johnstone and Silverman (2004)]. These two approaches are
intuitively similar, since the prior inclusion probability is estimated by the data in
order to yield an automatic multiple-testing penalty. Yet the approaches have quite
different operational and theoretical properties [Scott and Berger (2008)], with the
focus here being on the fully Bayesian approach.

Similar multiple-testing procedures have been extensively studied in many dif-
ferent contexts. See Scott and Berger (2006) for theoretical development; Do,
Muller and Tang (2005) for genomics; Scott and Carvalho (2008) and Carvalho
and Scott (2009) for portfolio selection; and George and Foster (2000) and Cui
and George (2008) for examples in regression.

The posterior inclusion probabilities {pi} can be computed straightforwardly
using importance sampling to account for posterior uncertainty about φ, v and p,
which will be stable as long as p is not too close to 0 or 1. The advantage of im-
portance sampling here is that a common importance function may be used for all
marginal inclusion probabilities, greatly simplifying the required calculations. Af-
ter transforming all variables to have unrestricted domains, importance sampling
was used to compute the results presented in this section, with repetition and plots
of the importance weights used to confirm stability.

2.3. Results on ROA data. Historical ROA time series for 3459 publicly traded
American companies between 1965 and 2004 were used to fit the above model.
This encompasses almost every public company over that period for which at least
20 years of data were available. Standard independent conjugate priors for φ and
v were used:

φ ∼ NU(0.5,0.252),(6)

v ∼ IG(2,1),(7)

where NU indicates that the normal prior for φ is truncated to lie on (−1,1). These
priors were chosen to reflect the expectations of the collaborating management
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FIG. 1. Four example companies.

theorists regarding the persistence and scale of random ROA fluctuations from year
to year. Because these parameters appear in both the null and alternative models,
integrals over these priors appear in both the numerator and denominator of the
Bayes factor comparing mi �= 0 versus mi = 0, making them not overly influential
in the analysis; see Berger, Pericchi and Varshavsky (1998) for general guidelines
on choosing common hyperparameters in model-selection problems.

In many cases the results of the fit seemed reasonable. Most firms were assigned
to M0 with high probability, while companies with obvious patterns of sustained
excellence or inferiority were flagged as being from MA with very high probabil-
ity. Figure 1 contains instructive examples: two excellent companies (WD-40 and
Coca-Cola), along with one obviously poor company (Oglethorpe Power), were
assigned greater than 95% probability of being nonnull. A fourth example, Texas
Intruments, had several intermittent years of good performance but no pattern of
sustained excellence, and the model gave it greater than 90% probability of being
from the null model.

On the other hand, the model displayed two serious shortcomings:

• Many firms diverged in obvious ways (e.g., via the appearance of long-term
trends) from the expectations of a single AR(1) model. Two such examples are
in Figure 2. Discussion of this important issue is postponed until Section 4.

• More subtly, the model imposed a homogeneous error structure on data that
seemed rather heterogeneous. Some fairly basic exploratory data analysis indi-
cated that firms displayed differing degrees of “stickiness” in their trajectories.
This suggested that a single value of φ for the entire data set might be unsatis-
factory. Likewise, some firms appeared systematically more volatile than others,
making a single-variance model equally questionable.
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FIG. 2. Two examples that seem to display trends.

2.4. Robustness simulations. The possibility of model errors in (1)–(3) bring
the issue of robustness to the forefront. This section describes the results of a sim-
ulation study that shows just how poorly this model can perform when a particular
type of model error is encountered: deviation from the “single φ, single v” ap-
proach to describing the AR(1) residuals of all companies in the sample.

Several data sets displaying different levels of heterogeneity were simulated.
The homogeneous (i.e., single φ, single v) model was subsequently fit to each
simulated data set in order to assess the robustness of the procedure’s Type-I error
performance.

Each simulated data set had 3500 times series of length T = 40, with each time
series drawn from a mixture distribution of AR(1) models. These distributions
ranged from trivial one-component mixtures (for which the assumed model was
true) to complex nine-component mixtures (for which the assumed model was
quite a bad approximation). These conditions are summarized in Table 1. In the
four- and nine-component models, all components were equiprobable. Since all
simulated companies had mi = 0, ideally there should be no positive flags.

For the purposes of classification, thresholding is reported at the pi ≥ 0.5 and
the pi ≥ 0.9 levels, where pi is the posterior inclusion probability for company i.
The first (pi ≥ 0.5) threshold reflects a 0–1 loss function that symmetrically penal-
izes false positives and false negatives. The second threshold is arbitrary, but meant
to reflect a more conservative approach to identifying signals. A full decision-
theoretic analysis incorporating more realistic loss functions would yield a differ-
ent, data-adaptive threshold.

Table 1 supports two conclusions:

• The proposed model yields very strong control over false positives when its
assumptions are met: 3 false positives and 0 false positives in the two cases
investigated, out of 3500 units tested. This confirms that the theory outlined
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TABLE 1
Robustness of the multiple-testing procedure’s Type-I error performance to heterogeneity in the
autoregressive profiles of tested units. Here p̂ refers to the posterior mode of the mixing ratio p,

and the pi ’s are the posterior probabilities that each mi �= 0

Number of components: Model p̂ # pi ≥ 0.5 # pi ≥ 0.9

1: (φ, v) = (0.5,0.25) 0.01 3 0
1: (φ, v) = (0.9,0.5) 0.02 0 0
4: (φ, v) ∈ {0.5,0.7} × {0.25,0.5} 0.02 30 4
4: (φ, v) ∈ {0.4,0.6,0.8} × {0.05,0.25,0.5} 0.08 152 66
9: (φ, v) ∈ {0.2,0.95} × {0.05,0.5} 0.37 1045 560
9: (φ, v) ∈ {0.2,0.6,0.95} × {0.05,0.25,0.5} 0.29 797 493

in Scott and Berger (2006), which concerns the much simpler normal-means
testing problem, applies here as well.

• This excellent Type-I error profile is not at all robust to a violation of the au-
toregressive model’s assumptions. In the most extreme case, nearly a third of
units (1045 out of 3500) tested had inclusion probabilities pi ≥ 50%, when in
reality none were from the alternative model. In other less extreme cases, the
false positives still numbered in the hundreds, which is clearly unsatisfactory.

These results dramatically illustrate the effect of heterogeneity in the autore-
gressive profiles of each tested unit. If such heterogeneity exists but is ignored, the
Type-I error performance of the procedure may be severely compromised.

3. A nonparametric null model. In the previous section, a specific form of
model error—different groups of companies following different AR models—was
shown to be a source of overwhelming Type-I errors. Hence, a natural extension
is to consider a more complicated autoregressive model for the residuals that ac-
counts for the possibility of stratification.

The Dirichlet process [Ferguson (1973)] offers a straightforward nonparamet-
ric technique for accommodating uncertainty about this random distribution. Let
zi represent the response vector for unit i, for now ignoring any contribution due
to a nonzero mean. Recall that for parameter θ = (φ, v), �θ denotes the AR(1)
variance matrix. The DP mixture model can then be written as a hierarchical
model:

zi ∼ N(zi | 0,�θi
),(8)

θi ∼ G, G ∼ DP(α,G0),(9)

G0 = N(φ | d,D) × IG(v | a, b),(10)

where the hyperparameters (d,D) and (a, b) must be chosen to reflect the ex-
pected properties of the base measure G0 (which is a product of two independent
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distributions, a normal and an inverse-gamma), and where α controls the degree
of expected departure from the base measure.

Dirichlet-process priors for nonparametric Bayesian density estimation were
popularized by Ferguson (1973), Antoniak (1974), and Escobar and West (1995).
An example of their use in analyzing nonlinear autoregressive time series can be
found in Müller, West and MacEachern (1997).

Realizations of the Dirichlet process are almost surely discrete distributions,
and so we expect some of the θ i ’s to be the same across companies. This is the DP
framework’s primary strength here, since it will facilitate borrowing of information
across time series. Simply allowing each time series to have its own φ and own v

would make for a simpler model (albeit with more parameters), but the DP prior
reflects the subject-specific knowledge that significant clustering of autoregressive
parameters should be expected.

This will lead to behavior similar to that predicted by a finite mixture of
AR(1) models, such as the kind considered by Frühwirth-Schnatter and Kaufmann
(2008). The Dirichlet-process prior, however, avoids the complicated task of di-
rectly computing marginal likelihoods for mixture models of different sizes, and
so makes computation much simpler. Note that since the marginal distribution of
one draw from a Dirichlet-process mixture depends only on the base measure, the
DP acts like a mixture model that is predictively matched to a single observation.

It is important to consider, of course, how choices for α and G0 affect the im-
plied prior distributions both for the number of mixture components and for the
parameters associated with each component. The marginal prior for the parame-
ters of each mixture component is simply given by the base measure, while the
prior for α can be described in terms of n and k, the desired number of mixture
components, using results from Antoniak (1974).

4. A nonparametric alternative model.

4.1. Trajectories as random functions. Section 2 considered a simple constant-
mean AR(1) model for nonnull units, and Section 3 modified the AR(1) assump-
tion to account for a richer autoregressive structure. This section now modifies
the constant-mean assumption to allow for time-varying nonzero trajectories upon
which the autoregressive residuals are superimposed. Most management teams,
after all, do not stay the same for 40 or 50 years, and we should not expect their
performance to stay the same, either.

Firm performance trajectories can be viewed as continuous random functions
that are observed at discrete (in this case, annual) intervals. This is essentially a
nonparametric version of a mixed-effects model for longitudinal data [Kleinman
and Ibrahim (1998)]. Recent examples of such models include Bigelow and Dun-
son (2005), Dunson and Herring (2006), and, in a spatial context, Gelfand, Kottas
and MacEachern (2005).
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Let fi = {yi(t), t ∈ R
+} be a continuous-time stochastic process for each ob-

served unit, and let ti denote the vector of times at which each unit was observed.
Then the model is

yi = fi (ti) + zi ,(11)

zi ∼ N(zi | 0,�θi
), θi ∼ G,(12)

fi ∼ p · F + (1 − p) · δF0,(13)

where G is the nonparametric residual model defined in Section 3, δF0 represents
a point mass at the zero function F0(t) = 0, and F is a random distribution over a
function space 	. As in Section 2, p is the unknown prior probability of coming
from the alternative model MA, represented in this case by the distribution F . It
is convenient to represent each hypothesis test using a model index parameter γi :
γi = 0 if fi = F0 (i.e., the null model M0 is true for unit i), and γi = 1 otherwise.

4.2. Choice of features for MA. The crucial consideration in using the above
model for hypothesis testing is that the space 	 from which each fi is drawn must
be restricted to a sufficiently small class of functions. This would be necessary
even if F were only being estimated, and not tested against a simpler model: if
	 is too broad, then the alternative model itself will not be likelihood-identified,
since any pattern of residuals could equally well be absorbed by the mean function.

But this guideline is even more important in model-selection problems; an over-
broad class of functions will mean that the random distribution F is vague, in the
sense that the predictive distribution of observables will be diffuse. It is widely
known that using vague priors for model selection can be produce very misleading
results, and will typically have the unintended consequence of sending the Bayes
factor in favor of the simpler model to infinity. This is often known as Bartlett’s
paradox in the simple context of testing normal means [Bartlett (1957)], but the
same principle applies here.

It may also be the case that elements of 	 depend upon some parameter η. Since
this parameter appears only in the alternative model, η needs a proper prior, or
else the marginal likelihoods will be defined only up to an arbitrary multiplicative
constant.

Similar challenges occur in all model-selection problems. General approaches
and guidelines for choosing priors on nonshared parameters can be found in Laud
and Ibrahim (1995), O’Hagan (1995), Berger and Pericchi (1996), and Berger,
Pericchi and Varshavsky (1998). But very few tools of analogous generality have
been developed for nonparametric problems, with most work concentrating on how
to compute Bayes factors for pre-specified models [Basu and Chib (2003)], or how
to test a parametric null against a nonparametric alternative of a suitably restricted
form [Berger and Guglielmi (2001)].

This leaves just two obvious criteria for choosing 	 and F in the face of weak
prior information:
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1. Elements of 	 should be smooth, that is, slowly varying on the unit-time scale
of the residual model. This will allow deconvolution of the mean process from
the residual, and reflects the prior belief that the mean function will describe
long-term departures from 0 in the face of short-term autoregressive jitters. (In-
deed, these departures are precisely what the methodology is meant to detect.)

2. F should be centered at the null model, and should concentrate most of its mass
on elements of 	 that predict y values on a scale similar to those predicted by
the null model. This will avoid Bartlett’s paradox, and generalizes the argument
made by Jeffreys (1961) in recommending an appropriately scaled Cauchy prior
for testing normal means.

These criteria allow much wiggle room, but at least provide a starting point.
Unfortunately there is no objective solution, in this or in any model-selection prob-
lem, though the closest thing to a default approach is to simply choose the marginal
variance of the alternative process to exactly match the marginal variance of the
null process. Best, of course, is to conduct a robustness study, where the features
of the nonparametric alternative not shared by the null are varied in order to assess
changes in the conclusions. This will usually be quite difficult in large multiple-
testing problems, since computations for just a single version of the alternative
model may be expensive.

The choice of α, the precision parameter for the residual Dirichlet-process prior,
is relatively free by comparison, since this parameter appears in both the null and
alternative models. Strictly speaking, in order to use a noninformative prior for α,
verification of the conditions in Berger, Pericchi and Varshavsky (1998) regarding
group invariance is necessary, which is difficult in this case. (The issue is that a pa-
rameter does not necessarily mean the same thing in both M0 and MA just because
it is assigned the same symbol in each.) In the absence of a formal justification
for using a noninformative prior, the conservative approach is to elicit priors for
α in terms of the expected number of AR(1) mixture components in each of M0
and MA. Often there will be extrinsic justification for choosing α to be the same
under both models.

5. A model for the corporate-performance data.

5.1. Model details. As an example of how tests involving (11)–(13) can be
constructed, this section outlines a nonparametric model for a larger subset of the
corporate-performance data containing 5498 firms. This contains every publicly
traded American company between 1965 and 2005 for which at least 15 years of
history were available.

The class of Gaussian processes with some known covariance function is ide-
ally suited for modeling nonzero trajectories, since the covariance function can
be chosen to yield smooth functions with probability 1, and since the prior mar-
ginal variance of the process can be controlled exactly (so that Bartlett’s paradox
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may be easily avoided). Gaussian processes have the added advantage of analyti-
cal tractability, which is very important in hypothesis testing because of the need
to evaluate the marginal likelihood of the data under the alternative model. More
general classes of functions are certainly possible, though perhaps computationally
challenging in the face of massive multiplicity.

One additional feature to account for is clustering, since management theorists
are interested in identifying a small collection of archetypal trajectories that may
correspond to different sources of competitive advantage. Partitioning of firms into
shared trajectories is especially relevant for advocates of the so-called “resource-
based view” of the firm [Wernerfelt (1984)]. Additionally, clustering on treatment
effects is known to increase power in multiple-testing problems [Dahl and Newton
(2007)].

The approach considered here is similar to that introduced by Dunson and Her-
ring (2006). The distribution of nonzero random functions is modeled with a func-
tional Dirichlet process:

F ∼ FDP(ν,GP(Cκ )),(14)

Cκ (t1, t2) = κ1 · exp
(
−0.5 · |t1 − t2|

κ2

)2

.(15)

The functional Dirichlet process in (14) has precision parameter ν and is cen-
tered at a Gaussian process with covariance function Cκ . At time t , the value of
the function fi has a Dirichlet-process marginal distribution: fi(t) ∼ F(t), where
F(t) ∼ DP(ν,N(0, κ1)). In choosing the hyperparameter κ , close attention must
be paid to the marginal variance of the residual model, so that variance inflation in
(15) does not overwhelm the Bayes factor. For greater detail on Gaussian processes
for nonparametric function estimation, see Rasmussen and Williams (2006).

This model is significantly richer than the simplistic framework developed in
Section 2, but is similar in two crucial ways:

Centering at the null model, since the Gaussian process in (15) leads to E(fi |
γi = 1) = 0. As before, it is equally likely a priori that a firm’s trajectory will be
predominantly negative or predominantly positive.

Variance inflation under the alternative model is controlled through the choice of
a single hyperparameter, with κ1 in (15) playing the role of σ 2 in (3). Hence,
despite the complicated nonparametric wrapper, the Ockham’s-razor effect upon
the implied marginal likelihoods still happens in the familiar way.

The model also solves both of the major problems encountered in the ROA
data: time-varying nonzero trajectories, and clustering both of trajectories and of
company-specific parameters for the autoregressive residual.

An extensive prior-elicitation process was undertaken with three experts in man-
agement theory who had originally compiled the data. For the base measure of the
Dirichlet-process mixture of AR(1) covariance models, the same hyperparameters
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from the parametric model in (6) and (7) were used. Hence, the starting point for
this elicitation was κ1 ≈ 1.94, which is the prior marginal variance of the residual
AR process (assessed by simulation), and κ2 = 15 (on a 41-year time scale), which
reflected the experts’ judgments about the long-term effects of strategic choices
made by firms. The elicitees were repeatedly shown trajectories drawn from this
prior and other similar priors, and soon settled upon κ1 = 1.25 and κ2 = 13 as val-
ues that better reflected their expectations. Additionally, they chose α = 10/ logN ,
and ν = 15/ logN on the basis of how many clusters they expected.

For the actual data, a third trajectory model was also introduced: a DP mixture
of constant trajectories rather than of Gaussian-process trajectories. This entails
only a slight complication of the analysis, in that now (13) is a three-component
mixture rather than a two-component mixture. This is equivalent to including the
limiting-linear-model framework of Gramacy (2005)—whereby a flat trajectory is
given nonzero probability as an explicit limiting case of the Gaussian process—
inside the base measure of the functional Dirichlet process itself.

5.2. Results. The above model was implemented using the blocked Gibbs-
sampling algorithm of Ishwaran and James (2001) to draw from the nonparametric
distributions F and G. Convergence was assessed through multiple restarts from
different starting points, and was judged to be satisfactory. The software is avail-
able from the journal website in a supplementary file [Scott (2009)].

Overall, 981 of 5498 firms were flagged as being from the alternative model
with greater than 50% probability, representing an overall discovery rate of about
18%. Of these, only 196 firms were from the alternative model with greater than
90% probability.

To assess robustness to the hyperparameter choices κ1 and κ2, which control the
marginal variance and temporal range of of the Gaussian process base measure in
(15), the results were recomputed for a coarse grid of 12 pairs of values spanning
0.75 ≤ κ1 ≤ 2.25 and 5 ≤ κ2 ≤ 20. This reflected the lower and upper ends of
what the collaborating management theorists considered reasonable on the basis
of observing draws from these priors.

As expected, larger values of κ1 tended to yield fewer nonnull classifications
(due to variance inflation in the marginal likelihoods), while larger values of κ2
tended to punish firms whose peaks and valleys in performance were short-lived
over the 41-year time horizon. Many firms that were borderline in the original
analysis (that is, having pi just barely larger than 50%) were reclassified as “noise”
for certain other values of κ . Yet a stable cohort of 246 firms were flagged as non-
null in all 12 analyses, suggesting a reasonable degree of robustness with respect
to hyperparameter choice.

The behavior of individual firms was then characterized by using the MCMC
history from the original analysis to get a maximum-likelihood estimate of the non-
parametric alternative model. The almost-sure discreteness of the Dirichlet process



1668 J. G. SCOTT

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Flat Trajectories

Year

R
O

A
 P

er
ce

nt
ile

1 1

2 2

3 3

4 4

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Rising Trajectories

Year

R
O

A
 P

er
ce

nt
ile

1

1

2

2

3

3

4

4

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Falling Trajectories

Year

R
O

A
 P

er
ce

nt
ile

5

5

6

6

7

7

8

8

9

9

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Bouncing Trajectories

Year

R
O

A
 P

er
ce

nt
ile

10
10

11 1112

12

13
13

FIG. 3. The 17 highest-weight trajectories in the MLE estimate of the alternative model, split into
four loose categories. The y-axis is given on the N(0,1) inverse-cdf scale to reflect the quantile of
each firm’s performance.

means that this estimate is a mixture of a small number of flat and Gaussian-
process trajectories. The 17 highest-weight trajectories in the MLE are in Figure 3;
they are split into four loose categories reflecting different archetypes of company
performance.

This allows an MLE clustering analysis: if F in (14) is frozen at the mixture
model in Figure 3 and the MCMC rerun, it is possible to flag companies that
come from specific clusters. (Strictly speaking, only the first 17 atoms in the stick-
breaking approximation of F were frozen; others atoms were still considered, but
they were allowed to vary.) Examples of the kinds of summaries available are in
Table 2 and Figure 4.

Some general features of the methodology are apparent from these results:

• There is substantial shrinkage of estimated mean trajectories back toward the
global average (i.e., the 50th percentile). This is itself a form of multiplicity
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TABLE 2
Posterior probabilities for six firms that were flagged as being from trajectory GP 8 with greater

than 50% probability in the MLE clustering analysis; see Figure 3 for labels

GV Company name Flat 1 Flat 2 GP 7 GP 8 Other Null

11535 Winn-Dixie Stores 4 1 10 78 5 2
4828 Delhaize America 7 2 11 75 4 1
6830 Lubrizol Corp 20 9 2 64 4 1
7139 Maytag Corp 25 2 8 57 2 6
4323 Emery Air Freight 5 2 29 57 4 3
7734 National Gas & Oil 18 13 11 53 3 2

GV refers to a unique corporate identifier.

correction, in that extreme outcomes are quite likely to be attributed to chance
even among those firms flagged as being from the alternative model.

• Often there is no dominant trajectory in the MLE cluster set that characterizes
a specific firm’s history. For the three firms in Figure 4, the probability is split
among two or even three trajectories.

• Model-averaged predictions of future performance are available with very little
extra work, since full MCMC histories of each firm’s trajectory and residual
model are available.

• The MLE clustering analysis can provide evidence for historical evolution
within specific firms, which is of great interest as the subject of follow-up case
studies. Maytag, for example, displays markedly different performance patterns
before and after 1987, which is reflected in its high probability of being from a
falling trajectory (GP 8).

It must be emphasized that any such clustering analysis is at best an approxi-
mation, aside from the fact that the models themselves are also approximations. It
relies, after all, upon a single point estimate of the trajectories composing the ran-
dom distribution F , and as such ignores uncertainty about the trajectories them-
selves. In the example at hand, several independent runs were conducted; each
yielded a different MLE cluster set, but the same broad patterns (e.g., something
like GP 8, something like Flat 3, and so on) emerged each time, suggesting at least
some degree of robustness of the qualitative conclusions.

Still, the most reliable quantities are the inclusion probabilities {pi} computed
from the full nonparametric analysis, which should form the basis of claims re-
garding which units are from the null and which are not.

6. Type-I error performance: a simulation study. This section recapitulates
the simulation study of Section 2.4 using the more complicated models. The goal
is to assess Type-I error performance by applying the methodology outlined here
to a simulated data set where the number of nonzero trajectories is known.
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FIG. 4. Maytag, Plenum Publishing and El Paso CGP: actual ROA histories along with trajec-
tory-membership probabilities from the MLE clustering analysis.
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The true residual model G was constructed using a single MCMC draw from
the stick-breaking representation of the nonparametric residual model for the
corporate-performance data. This corresponded roughly to a 21-component mix-
ture of AR(1) models (since 39 of the 60 atoms in the stick-breaking representation
of G had trivial weights), with many (φ, v) pairs that differed starkly in character.

To simulate the true mean trajectories, two independent sets of 5500 draws were
taken from the prior in (11)–(13). In the first simulated set of trajectories, the true
value of p was fixed at 1/5 in order to roughly approximate the fraction of discov-
eries on the ROA data. In the second set, p was fixed at 1/55, to reflect a much
sparser collection of signals. Upon sampling, these yielded 1126 and 98 nonzero
trajectories, respectively.

In both studies, each of these trajectories was convolved with a single indepen-
dent vector of autoregressive noise drawn from the true G—in other words, with
a highly complex pattern of residual variation of the type that was shown to flum-
mox the “single AR(1)” model of Section 2. For the sake of comparison, the same
set of 5500 noise vectors was used for each experiment.

The results of these simulations were very encouraging for the Type-I error
performance of the more complicated model. In the first simulated data set, 297
of the 1126 nonzero trajectories were flagged as nonnulls with greater than 50%
probability. Only 24 of the 4374 null companies were falsely flagged, and of these,
only 3 had larger than a 70% inclusion probability.

In the second simulated data set, of the 98 known nonzero trajectories, 24 had
posterior inclusion probabilities greater than 50%, and 6 had inclusion probabili-
ties greater than 90%. Of the 5402 null trajectories, only 2 had inclusion probabil-
ities greater than 50% (these two were only 63% and 67%).

If pi ≥ 0.5 is taken as the decision rule for a posteriori classification of a tra-
jectory as nonnull (which again reflects a symmetric 0–1 loss function), then the
realized false-discovery rates were only 7.7% on 26 discoveries in the sparser case,
and only 7.5% on 321 discoveries in the denser case. (The closeness of these two
realized false-discovery rates may simply be a coincidence of the particular values
of p chosen).

This suggests that a sizeable fraction of the 981 firms flagged as nonnull trajec-
tories in Section 5.2 represent nonaverage performers, and are not false positives.

7. Summary. This paper has described a framework for Bayesian multiple
hypothesis testing in time-series analysis. The proposed methodology requires
specifying only a few key hyperparameters for the nonparametric null and alterna-
tive models, and general guidelines for choosing these quantities have been given.
Importantly, no ad-hoc “correction factors” are necessary in order to introduce a
penalty for multiple testing. Rather, this penalty happens quite naturally by treat-
ing the prior inclusion probability p as an unknown quantity with a noninformative
prior.
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Naïve characterizations of the null hypothesis are shown to have poor error
performance, suggesting that the Bayesian procedure is highly sensitive to the ac-
curacy of the null model used to describe an “average” time series. Yet once a suf-
ficiently complex model for residual variation is specified, the procedure exhibits
very strong control over the number of false-positive declarations, even in the face
of firms with different autoregressive profiles. The difference between the results
in Section 2.4 and Section 6 highlights the effectiveness and practicality of using
nonparametric methods as a general error-robustification tactic in multiple-testing
problems.

Posterior inference for a specific time series can be summarized in at least
three ways: by quoting pi (the probability of that unit’s being from the alterna-
tive model), by performing an MLE clustering analysis as in Section 5.2, or by
plotting the posterior draws of the unit’s nonzero mean trajectory. Plots such as
Figure 4 can be quite useful for communicating inferences to nonexperts, as in the
management-theory example considered throughout.

The companies flagged as impressive performers, of course, can only be judged
so with respect to a particular notion of randomness: the DP mixture of autoregres-
sive models described in Section 3. Inference on the nonzero trajectories can still
reflect model misspecification, and cannot unambiguously identify companies that
have found a source of sustained competitive advantage. This Dirichlet-process
model, however, is a much more general statement of the null models postulated
by Denrell (2003) and Denrell (2005), suggesting that the procedure described here
can identify firms that, with high posterior probability, depart from randomness in
a specific way that may be interesting to researchers in strategic management.

SUPPLEMENTARY MATERIAL

Supplement: DPARtestingAoAS.zip (DOI: 10.1214/09-AOAS252SUPP;
.zip). The data on corporate performance described in this paper is freely avail-
able for those with access to Standard and Poor’s Compustat database. Annual
return on assets is computed as (net income)/(total assets), which are Compustat
codes NI and AT, respectively. ROA was further adjusted by regressing upon year,
GICS industry codes, debt-to-equity ratio and sales, all of which are also avail-
able on Compustat. A simulated data set and the software necessary to implement
these models are freely available in the supplemental file entitled “DPARtestin-
gAoAS.zip.”
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