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This paper gives a method for computing distributions associated with
patterns in the state sequence of a hidden Markov model, conditional on ob-
serving all or part of the observation sequence. Probabilities are computed for
very general classes of patterns (competing patterns and generalized later pat-
terns), and thus, the theory includes as special cases results for a large class
of problems that have wide application. The unobserved state sequence is
assumed to be Markovian with a general order of dependence. An auxiliary
Markov chain is associated with the state sequence and is used to simplify
the computations. Two examples are given to illustrate the use of the method-
ology. Whereas the first application is more to illustrate the basic steps in
applying the theory, the second is a more detailed application to DNA se-
quences, and shows that the methods can be adapted to include restrictions
related to biological knowledge.

1. Introduction. Hidden Markov models (HMMs) provide a rich structure for
use in a wide range of statistical applications. As examples, they serve as models in
speech recognition [Rabiner (1989)], image processing [Li and Gray (2000)], DNA
sequence analysis [Durbin, Eddy, Krogh and Mitchison (1998) and Koski (2001)],
DNA microarray time course analysis [Yuan and Kendziorski (2006)] and econo-
metrics [Hamilton (1989) and Sims and Zha (2006)], to name just a few. HMMs
essentially specify two structures, an underlying model for the unobserved state
of the system, and one for the observations, conditional on the unobserved states.
Thus, HMMs are a sub-class of state space models [Harvey (1989)], but have the
restriction that the models for the hidden states are defined on finite dimensional
spaces.

HMMs have been studied extensively, especially for the case where the hid-
den sequence is first-order Markovian (a Markov chain); see, for example, Rabiner
(1989). Higher-order HMMs are less frequently used, but are gaining in popularity,
especially in areas such as bioinformatics [Krogh (1997) and Ching, Ng and Fung
(2003)]. For practical purposes, three fundamental problems associated with first-
order HMMs have been examined thoroughly and solved [Rabiner (1989)]: (1) the
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efficient computation of the likelihood of the sequence of observations given the
HMM [Baum and Eagon (1967)]; (2) the determination of a best sequence of un-
derlying states to maximize the likelihood of the observation sequence [Viterbi
(1967)]; and (3) the adjustment of model parameters to maximize the likelihood of
the observations [the Baum–Welch algorithm; see Baum and Eagon (1967)].

However, little is known about probabilities for patterns or collections of pat-
terns (also known as words or motifs, resp.) in heterogeneous sequences such as
those of HMMs [Reinert, Schbath and Waterman (2005)]. In this paper a fourth
problem that is becoming increasingly more important for applications such as
bioinformatics and data mining is considered: the probability that a pattern has
occurred or will occur in the hidden state sequence of an HMM.

Currently, inference on patterns in the hidden state sequence of an HMM usu-
ally proceeds as follows. The HMM is determined and the Viterbi algorithm is
used to find the most probable state sequence among all possible ones, conditional
on the observations. This state sequence is then treated as if it is “deterministically
correct” and patterns are found by examining it. However, the conditional distrib-
ution (given the observations) of patterns over all state sequences is more relevant.
If, for example, the number of genes present in a DNA sequence is of interest and
the Viterbi sequence of an HMM is used [as in methods based on Krogh, Mian
and Haussler (1994)], then counting genes from the Viterbi sequence cannot be
guaranteed to even give a good estimate of the number of genes. This is because
there could be gene counts that correspond to many state sequences, and when ac-
cumulating probabilities over those sequences, one could find that those counts are
much more likely than the count corresponding to the Viterbi sequence. This could
especially be true if there are many different sequences all with likelihood close to
that of the Viterbi sequence. If a single choice of gene count is needed, then the
mean of the conditional distribution over state sequences, given the observations,
would seem to be a more reasonable choice. Thus, a method to compute pattern
distributions in state sequences modeled as HMMs would be helpful.

In this paper a computational method for finding such pattern distributions is
developed, and waiting time probabilities for patterns under the general framework
given in Aston and Martin (2005) are extended to the state sequence of HMMs.
The probabilities are computed under the paradigm that T observations of the
output sequence of the HMM have been realized, and the generation process is
either complete or set to continue. Waiting time probabilities are then computed for
patterns in the unobserved state sequence up to a time T ∗ ≥ T . Note that waiting
time probabilities for patterns in the observations of an HMM when no data has
yet been observed (i.e., T = 0), a case that relates directly to computations in the
standard case of Markovian sequences with no “hidden” states, was dealt with in
Cheung (2004).

The methodology of this paper will be applied to two examples, but one appli-
cation will be studied in detail, that of CpG Island analysis in DNA sequences.
A CpG island is a short segment of DNA in which the frequency of CG pairs is
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higher than in other regions. The “p” indicates that C and G are connected by a
phosphodiester bond. The C in a CG pair is often modified by methylation, and
if that happens, there is a relatively high chance that it will mutate to a T, and
thus, CG pairs are under-represented in DNA sequences. Upstream from a gene,
the methylation process is suppressed in a short region of length 100–5,000 nu-
cleotides, known as CpG islands [Bird (1987)]. The underlying nucleotide generat-
ing sequence can be modeled as two different systems, one for when the sequence
is in a CpG island, and one for when it is not.

As CpG islands can be especially useful for identifying genes in human DNA
[Takai and Jones (2002)], different methods have been developed for their detec-
tion. Two distinct methods for CpG island analysis are common. First, a windowed
segment of the DNA sequence is taken and the number of CG pairs within it is
counted. If the frequency of CG pairs is higher than some predetermined thresh-
old, then the segment is defined to be within a CpG island [Takai and Jones (2002)].
Popular software such as CpG Island Searcher [Takai and Jones (2003)] proceeds
along these lines. However, these types of methods have been criticized due to the
need for the predetermination of thresholds and the variability in the results that
arise depending on the choice [Durbin, Eddy, Krogh and Mitchison (1998) and
Saxonov, Berg and Brutlag (2006)].

A second method of determining islands, which overcomes the need for thresh-
olds, is to use HMMs for the analysis [Durbin, Eddy, Krogh and Mitchison (1998)].
Software is readily available to implement these HMM-based methods for CpG
island analysis, for example, Guéguen (2005). The Viterbi algorithm is used to
segment the sequence and analysis then proceeds as indicated above using the
“deterministic” Viterbi sequence. However, it will be shown that by computing
other distributions such as the distribution of the number of CpG islands and the
distribution of CpG island lengths, additional biologically useful information may
be obtained. Specific examples will also be given to illustrate that the number of
CpG islands found by the Viterbi algorithm does not necessarily represent the most
probable number in sets of human DNA data, and that the length of the islands
found by the Viterbi algorithm can be significantly longer than expected.

The paper is organized as follows. In the next section some background material
on hidden Markov models is given, including theorems establishing the forward
and backward algorithms in the general mth order case analogous to those when
m = 1. Also included in the section is information on the types of patterns that the
theory covers, the counting techniques that may be used, and the methodology that
is used to compute probabilities. In Section 3 the results of the paper are given,
namely, the lemmas and theorems required to calculate distributions associated
with patterns in the state sequence of an HMM. Section 4 contains two examples.
A simple application to geological data is used to demonstrate the ideas, and then
the analysis of the system just discussed, that of CpG islands in DNA sequences,
is undertaken. It will be shown that a variety of distributions of interest may be
calculated, including distributions under biological constraints such as minimum
island lengths and minimal separation between islands. Section 5 is a discussion.
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2. Notation and preliminaries.

2.1. Hidden Markov models. Let {Yt }Tt=1 be the observations of a higher-order
HMM, generated from an underlying unobserved state sequence {Xt }T ∗

t=−m+1 that
is assumed to be a Markovian sequence of a general order m. (Frequently se-
quences will be denoted using {·} notation without giving the specific index set,
e.g., {Yt } and {Xt } for the observation and state sequences above, not to be con-
fused with generic sequence values Yt and Xt .) While there are observations
Y1, . . . , YT to index T (that is usually referred to as “time” in this paper, but could
simply be the sequence index), it is assumed that the system is set to continue until
a time T ∗ ≥ T , allowing for the consideration of systems where only partial ob-
servation sequences have been realized. The states X−m+1, . . . ,X0 are defined to
allow the initialization of the system.

Denote the state space of {Xt } as SX , and similarly, let SY be the state space of
the observation sequence. SY is assumed to be finite for simplicity, although this
assumption may be relaxed without causing much difficulty. The initial distribution
of the state sequence {Xt } is denoted by

π(X−m+1, . . . ,X0),(1)

and the time-homogeneous transition probabilities are denoted by

p(Xt |Xt−m, . . . ,Xt−1).(2)

An alternative setup is to place the initial distribution on X1, . . . ,Xm, which will
lead to analogous results if not identical ones.

Also denote the observation probabilities, conditioned on the state Xt , by
γt (Yt |Xt), t = 1, . . . , T . The assumption is made that, conditional on X−m+1, . . . ,

XT ∗ , the Yt ’s are independent, and that the conditional distribution of each Yt

given X−m+1, . . . ,XT ∗ depends only on Xt . These assumptions were taken as
fundamental to HMMs in MacDonald and Zucchini (1997) with T ∗ = T , that is,
the latter authors were only concerned with times up to time T and not T ∗. The
assumptions imply that the Yt ’s are independent given X−m+1, . . . ,XT as well.

In an HMM of order m, conditional probabilities for the hidden state Xt given
Xt−m, . . . , Xt−1 are independent of the more distant past. Usually the assumption
that m = 1 is made, however, in this paper, m may take on general positive integer
values. Rabiner (1989) considered HMMs as both a generator of the observations,
and as a model for how a given observation sequence Y (T ) was generated by an
appropriate HMM. It should be noted that taking either the MacDonald and Zuc-
chini (1997) or Rabiner (1989) viewpoints toward HMMs leads to computationally
identical answers.

The forward and backward algorithms [Baum and Eagon (1967)] are helpful
for computing probabilities associated with the HMM. These algorithms are well
known for the first-order HMM case; here versions are stated for general orders of
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dependence. While it is true that a higher-order HMM may be posed as a first-order
HMM, the forward and backward algorithms that follow can be more efficient if
the higher-order model is used. The proofs of these algorithms follow in a straight-
forward manner from the proofs of the original forward and backward algorithms
and are therefore omitted.

For notational purposes, let Y (j) ≡ Y1, . . . , Yj , j ≥ 1, X(l) ≡ X−m+1, . . . ,Xl ,
l ≥ (−m + 1) and X̃t ≡ (Xt−m+1, . . . ,Xt), t = 0,1, . . . , T ∗. Now define the “for-
ward” variables by α0(X̃0) ≡ π(X̃0), and

αt(X̃t ) ≡ P
(
Y (t), X̃t

)
, t = 1, . . . , T .(3)

THEOREM 2.1. For an mth order HMM, the forward variables may be com-
puted recursively, and the probability of the observation sequence Y (T ) may be
computed from them, using the following:

(i) Initialization:

α0(X̃0) = π(X̃0).(4)

(ii) Recursion: For t = 1, . . . , T ,

αt(X̃t ) = ∑
Xt−m

αt−1(X̃t−1)p(Xt |X̃t−1)γt (Yt |Xt).(5)

(iii) Termination:

P
(
Y (T )) = ∑

X̃T

αT (X̃T ).(6)

Also define the “backward” variables by βT (X̃T ) = 1 for all X̃T , and

βt (X̃t ) ≡ P(Yt+1, . . . , YT |X̃t ), 0 ≤ t ≤ T − 1.(7)

THEOREM 2.2. For an mth order HMM, the backward variables may be com-
puted recursively using the following:

(i) Initialization:

βT (X̃T ) = 1 for all X̃T .(8)

(ii) Recursion: For t = T − 1, T − 2, . . . ,1,0,

βt (X̃t ) = ∑
Xt+1

p(Xt+1|X̃t )γt+1(Yt+1|Xt+1)βt+1(X̃t+1).(9)
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2.2. Notation for patterns. A simple pattern �i refers to a specified sequence
of symbols of SX , where the symbols are allowed to be repeated. A compound
pattern � is the union of simple patterns, that is, � = ⋃η

i=1 �i , where the lengths
of the simple patterns, �i may vary, �a ∪ �b denotes the occurrence of pattern
�a or pattern �b, and the integer η ≥ 1.

Consider now a system �(1), . . . ,�(c) of c compound patterns, c ≥ 1, with cor-
responding numbers r1, . . . , rc, where rj denotes the required number of occur-
rences of compound pattern �(j). If the waiting time of interest is the time until
the first occurrence of one of the compound patterns its specified number of times,
�(1), . . . ,�(c) are called competing patterns [Aston and Martin (2005)]. If all of
the patterns must occur their specified number of times, the system is called gen-
eralized later patterns [Martin and Aston (2007)].

When c = 1, results for competing and generalized later patterns reduce to those
for compound patterns. On the other hand, if rj = 1 for all j and, in addition, each
of the competing or generalized later patterns consists of just one simple pattern,
then the respective waiting time distributions reduce to sooner and later waiting
time distributions as defined in the literature; for example, see Balakrishnan and
Koutras (2002).

A special simple pattern is a run of length k, where run is used in a loose sense
that includes consecutive occurrences of any pattern such as a single symbol or
alternating symbols, as in examples of Section 4, when the length distribution of
the longest run is considered. A run of length k will be denoted by �(k) and its
waiting time by W(�(k)), where the type of run will be understood by the context.

2.3. Methods of counting. Two distinct methods of counting patterns are pos-
sible, though much of the implementation will not change dramatically between
the two cases. The first method is that of nonoverlapping counting. With that
method, when a pattern occurs, the counting process re-starts from that point,
and any partially completed pattern cannot be finished. Nonoverlapping counting
can be system wide (SWNO), or it can be restricted to within compound patterns
(WPNO), where counting only starts over for simple patterns within the same com-
pound pattern as the one that has just occurred [Aston and Martin (2005)]. The sec-
ond counting method is that of overlapping counting, where partially completed
patterns may be finished at any time, regardless of whether another pattern has
been completed after the partially completed pattern starts but before it is com-
pleted.

To illustrate, let �(1) = �(5) = 11111 and �(2) = 1011 ∪ 00. For the realiza-
tion

(X1, . . . ,X15) = 011011111101100,(10)

using SWNO counting, there are two occurrences of 1011 and one of 00 (and
thus, three occurrences of �(2)), but no occurrences of �(1) are counted. Although
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there are six consecutive ones in the realization, only four of them occur after
the first completion of 1011 (which re-starts counting), and thus, 11111 is not
counted. With WPNO counting, in addition to the occurrences mentioned above,
�(1) is counted once, since now the first occurrence of 1011 doesn’t cause a re-
starting of counting for 11111, which is in a different compound pattern. Finally,
with overlapping counting, �(1) occurs twice (the two overlapping occurrences
of 11111), in addition to the three occurrences of �(2).

2.4. Method of computation. The use of an auxiliary Markov process to aid
with the computation of probabilities has been used for more than fifty years. As
an example, Cox (1955) used supplementary variables to obtain a Markov process
that simplified the computation of waiting time probabilities, and noted that the use
of supplementary variables in that manner was a well-known technique at the time.
In a recent paper concerning Markov Modulated Poisson Processes [Hwang, Choi
and Kim (2002)], waiting time distributions were computed in a similar manner.
Fu and Koutras (1994) used auxiliary Markov chains, and developed an elegant
framework [calling it Finite Markov Chain Imbedding (FMCI)] for handling dis-
tributions associated with runs and patterns in discrete time Markov processes.

In the FMCI method, a Markov chain {Zt } is developed such that there is a
one-to-one correspondence between classes of its states and those of {Xt }. The
Markov chain {Zt } facilitates the computation of waiting time distributions for
patterns, since an absorbing state for {Zt } can be defined to correspond to the
occurrence of the pattern of interest. The desired probability may then be computed
by determining the probability that {Zt } lies in the corresponding absorbing state,
which is computed using basic properties of Markov chains. Aston and Martin
(2005) and Martin and Aston (2007) used the FMCI approach to compute waiting
time distributions for competing and generalized later patterns, respectively, in
higher-order Markovian sequences, and that method is also used in this paper.

As is the case when converting an mth order Markovian sequence into a first-
order one through the use of m-tuples, the m-tuple Xt−m+1, . . . ,Xt must be a part
of the state of Zt . To deal with competing and generalized later patterns in general,
information on the number of compound pattern occurrences to date and current
progress into the simple patterns of the system must also be part of the state of Zt ,
so that probabilities for Zt+1 may be determined based only on Zt , and not on
earlier time points.

Once the state space SZ of {Zt } is determined, entries of the associated tran-
sition probability matrix are determined by first noting the possible transitions
for {Xt } (and the implied transitions for {Zt }), and then assigning the appropriate
transition probabilities. The initial distribution associated with Z0 is determined
by mapping m-tuples (x−m+1, . . . , x0) into corresponding Z0 values, and then as-
signing the corresponding probabilities π(X−m+1, . . . ,X0). All other initial states
will have probability zero. The formation of the state space SZ and the determina-
tion of its transition probability matrix and initial distribution will be illustrated in
the examples.
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In the next section it is shown that the results of the latter two references may be
extended to derive distributions associated with patterns in the state sequence of
an HMM. The fundamental difference between distributional problems dealt with
in this paper and those for regular Markovian sequences is that in the present setup
the observed data up to time T must be accounted for, whereas regular Markovian
sequences are equivalent to the HMM case where no observed data is available
(T = 0).

3. Distributions associated with patterns in HMM states. In this section
results on distributions associated with pattern occurrences in the state sequence
of an HMM of a general order are presented.

To apply the methods described above to the underlying state sequence {Xt } of
an HMM, it is necessary to know the transition probabilities of {Xt } conditional on
the observed values Y (T ). These probabilities are given by the following lemma.
A theorem giving a formula for computing the waiting time probabilities then fol-
lows, along with results that may be obtained from that theorem.

LEMMA 3.1. For an mth order HMM, if 1 ≤ t ≤ T , then

P
(
Xt |X(t−1), Y (T )) = βt(X̃t )

βt−1(X̃t−1)
p(Xt |X̃t−1)γt (Yt |Xt).(11)

If T < t ≤ T ∗, then

P
(
Xt |X(t−1), Y (T )) = p(Xt |X̃t−1).(12)

The special case of (11) with m = 1 was given in Lindgren (1978), and the proof
follows in a similar manner and is therefore omitted.

THEOREM 3.2 (Waiting time distribution for patterns in HMMs). Consider
an mth order HMM with state sequence {Xt }T ∗

t=−m+1 and observation sequence

{Yt }Tt=1. If {Zt }T ∗
t=0 is a Markov chain such that, conditioned on Y (T ), the desired

pattern has occurred by time t if and only if Zt lies in a corresponding absorbing
state � ∈ SZ , then, conditional on Y (T ), the waiting time distributions for compet-
ing and generalized later patterns may be computed through {Zt } by the equation

P(Zt = �) = ψ0

(
t∏

j=1

Mj

)
U(�),(13)

where Mj is the transition probability matrix for transitions from Zj−1 and Zj ,
ψ0 is a row vector holding the initial distribution of Z0, and U(�) is a column
vector with a one in the location corresponding to absorbing state �, and zeros
elsewhere.
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PROOF. By assumption, the pattern of interest has occurred by time t if and
only if Zt = �. Equation (13) then follows using the well-known Chapman–
Kolmogorov equations. �

An equation similar to (13) is also used in the aforementioned research that
uses supplementary variables to calculate waiting time distributions. The entries
of the matrices Mt are based on transitions for the underlying state sequence {Xt }
conditioned on Y (T ), and thus are determined using Lemma 3.1.

The distribution of the length of the longest run of symbols may be computed
through waiting time probabilities. The relationship between the probability mass
function of R(t), the length of the longest run that has occurred by time t , and
waiting time probabilities for runs is given by

P
(
R(t) = k

) = P
(
R(t) ≥ k

) − P
(
R(t) ≥ k + 1

)
(14)

= P
(
W {�(k)} ≤ t

) − P
(
W {�(k + 1)} ≤ t

)
.

The distribution of the number of runs of length at least k may also be com-
puted remarkably easily through associating Markov chains {Z(i)

t }, i = 1, . . . , r

with each occurrence (r being the maximum number of occurrences of interest),
and then using a renewal argument. An absorbing state � is included in SZ to
denote the occurrence of a run of length at least k. Also placed in SZ are “contin-
uation” states (s,→) that indicate that the (i − 1)st occurrence of the run is still
in progress in {Z(i)

t }, where s denotes an m-tuple of the last m state values that
either led to the occurrence or to the continuation of the run (as with the absorbing
state �, a common set of continuation states are used by the various chains {Z(i)

t },
although the exact interpretation of all the states in SZ depends on which chain is
being considered). Entries are added into the transition matrix Mt corresponding
to transition probabilities from the continuation states into the other states. The
continuation states either transition to one of the continuation states, which would
indicate the run is still in progress, or to one of the other states in SZ when the run
has ended. The probabilities for the continuation state transitions are determined
in an identical way to the other transition probabilities in Mt . No states in SZ tran-
sition into the continuation states other than the continuation states themselves.
Otherwise, in this algorithm, there are no changes to Mt .

The first Markov chain {Z(1)
t } follows the movements of {Zt } up to the first

occurrence of a run of length k, and with that occurrence the chain enters state �.
The chain is initialized through ψ0, with zeroes added for the continuation states.
Subsequent chains {Z(i)

t }, i = 2, . . . , r , are initialized in the “continuation” states
since a pattern of length k has just occurred, and track the movements of {Zt }
between the (i − 1)st and ith run occurrences. Each chain enters the absorbing
state once the run of the desired length occurs.

In this algorithm, the 1 × |SZ| row vector ψt = ψ0(
∏t

j=1 Mj) of (13), which
gives the probability of the chain lying in its various states at time t ≥ 1, is now
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replaced by an r × |SZ| matrix 	t (|B| denotes the number of elements of the
set B). The matrix elements 	t(i, j) give the joint probabilities of there having
been (i − 1) run occurrences of length at least k, and the chain {Z(i)

t } lying in
state j . These probabilities must be incremented at time t by adding the prob-
ability that the (i − 1)st run occurs at that time. At time t = 0, the first row of
	0 consists of ψ0, with zeroes added to account for the continuation states, as
mentioned above. Rows 2, . . . , r , respectively, corresponding to the chains {Z(i)

t },
i = 2, . . . , r , consist of all zeroes, since there is zero probability that there has been
an occurrence of a run of length k or longer at that time. The algorithm is given in
the following theorem.

THEOREM 3.3 (Number of run occurrences of at least a certain length in
HMMs). For an mth order HMM and auxiliary Markov chain {Zt }T ∗

t=0 as in

Theorem 3.2, let {Z(i)
t }T ∗

t=0 be the corresponding chains that track movements of
{Zt }T ∗

t=0 between the (i − 1)st and ith run of length at least k. Then conditional on
Y (T ), the distribution of the number of runs of length at least k may be computed
through

P
(
Z

(i)
t ∈ �

) = 	t(i, ·)U(�),(15)

where 	t(i, ·) is the ith row of 	t . In (15), 	t(0, ·) consists of ψ0 appended with
zeros for the continuation states, and the entries for the other rows of 	0 are all
zero. Also, 	t is calculated from the following iterative scheme, for t = 1, . . . , T ∗:

	t = 	t−1Mt(16)

	t(i, (s,→)) ← 	t(i, (s,→)) + 	t(i − 1,�) − 	t−1(i − 1,�),
(17)

i = 2, . . . , r,

where ← denotes that the quantity on the right replaces that on the left.

The theorem is similar to (13), but is modified slightly. The justification for the
algorithm (16)–(17) is as follows. Equation (16) is the standard matrix multiplica-
tion for each time step as in (13). The extra operation (17) is inserted to increment
the row probabilities, as mentioned above, as the elements of row i of 	t give the
joint probability of there having been (i − 1) occurrences with the chain lying in
the various states. With this setup, the probability of being in the absorbing state of
Z

(i)
t equals the probability of at least i occurrences having taken place. Once the

system is evaluated for all t up to T ∗, the values in the column of 	T ∗ correspond-
ing to the absorbing state � give the probabilities of the pattern having occurred
at least 1, . . . , r times by time T ∗. More details on the derivation of the algorithm
are given in the Appendix.

Theorem 3.3 may be modified to allow for general numbers of occurrences of
runs to be counted when using overlapping or nonoverlapping counting (for length
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exactly k rather than length at least k) in a similar manner. The continuation states
would not be needed in these cases, as the initial states for the chains {Z(i)

t }, i =
2, . . . , r will already be in SZ . As can be seen, when r = 1, the iterative scheme of
Theorem 3.3 is not needed.

4. Examples. In this section two applications of the methodology outlined
in the last section are given. The first, to eruptions of the old faithful geyser, is
a simple example given mainly to illustrate various aspects of the method, such
as the choice of the auxiliary Markov chain, the determination of its state space
and the formation of its transition probability matrix. The second example is more
substantive, dealing with the CpG island problem that was discussed briefly in the
Introduction.

4.1. Old Faithful geyser. The durations of successive eruptions from August 1
to August 15, 1985 of the Old Faithful geyser in Yellowstone National Park were
presented by Azzalini and Bowman (1990) and analyzed using a second-order
Markov chain. The durations were classified as either being short (0) or long (1) to
give a binary time series of length T = 299. However, what is observed is not nec-
essarily what is happening with the underlying system. Specifically, there could be
a long eruption even though the state of the geyser is more in line with a short erup-
tion. MacDonald and Zucchini (1997) extended the model to a second-order HMM
to mitigate the noise in the system. Their model is used here to find distributions
of patterns in the underlying system.

The state spaces are SX = SY = {0,1}. The transition probabilities for the
hidden states {Xt } are p(0|0,0) = p(0|1,0) = 0, p(0|0,1) = 0.717, p(0|1,1) =
0.414 and p(1|xt−1, xt ) = 1−p(0|xt−1, xt ). The initial distribution is π(0,0) = 0,
π(1,0) = π(0,1) = π(1,1) = 1

3 . The output probabilities conditioned on states are
γ (0|0) = 0.928, γ (0|1) = 0, with γ (1|xt ) = 1 − γ (0|xt ).

This is actually an example of a reduced second-order Markovian state se-
quence, as Xt+1 = 1 whenever Xt = 0, regardless of any values of previous states.
This indicates that a short eruption state is always followed by a long one. It is only
when the current state is 1 that Xt−1 is needed to determine probabilities for tran-
sitions to Xt+1. The initial distribution accounts for the fact that the state where
X−1 = X0 = 0 is not possible under the model.

Two types of patterns in the eruption process are typical; either there are runs
in the underlying state process of long eruptions, or the system alternates between
the long and short eruption states. Little is known about why these patterns occur
other than that the short eruption state is always followed by the long one [Perkins
(1997)]. It is of interest to see how these pattern distributions modeled through
HMMs correspond to pattern distributions unconditional on data. Here, the alter-
nating pattern is analyzed. The corresponding compound pattern is

�(k) =
k︷ ︸︸ ︷

0101..01∪
k︷ ︸︸ ︷

1010...10,
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where �(k) denotes an alternating run of length exactly k, and
k︷︸︸︷· indicates there

are k symbols under the bracket. The above formula represents the case where k

is even. If k were odd, the next alternating symbol would be added to each of the
two simple patterns of �(k), that is, the last symbol would be the same as the first.
Progress into the simple patterns can be any of the following (assuming that k is
even):

{0,1,01,10,010,101, . . .

k−1︷ ︸︸ ︷
0101..0,

k−1︷ ︸︸ ︷
1010...1}.

The states of SZ are defined as ordered vector pairs, the first element being the
2-tuple that gives the last two values of the {Xt } sequence, and the second element
being the progress into a pattern:

(00,0), (11,1), (01,01), (01,101), (01,0101), . . . , (01,

k−1︷ ︸︸ ︷
1010..1),

(10,10), (10,010), (10,1010), . . . , (10,

k−1︷ ︸︸ ︷
0101..0),�.

The states

(00,∅), (01,∅), (10,∅), (11,∅), (01,1), (10,0)

are also needed; the first four as possible states for Z0, and the latter two as possible
values of Z1. Here ∅ denotes that there is no progress into a simple pattern of the
system. These initialization states are needed for times t < 2 since, for these values
of t , some or all of the 2-tuple does not count, rendering pattern progress different
than for times t ≥ 2. After time t = 1, the Markov chain can never return to these
states, and thus, they are deleted from the state space after that time.

The transition probability matrix for Zt is constructed using transition proba-
bilities determined through Lemma 3.1. The transition probabilities required are
based on the transition probabilities determined for the {Xt } sequence through the
2-tuple, while the entire vector state from SZ determines the possible destination
of the state. A few example transition probabilities are listed below, with the others
determined in a similar manner:

P
(
Zt = (10,

i+1︷ ︸︸ ︷
01 . . .010)|Zt−1 = (01,

i︷ ︸︸ ︷
01 . . .01)

)
= P

(
Xt = 0|Xt−2 = 0,Xt−1 = 1, Y (T )), i = 1, . . . , k − 2,

P
(
Zt = (11,1)|Zt−1 = (01,

i︷ ︸︸ ︷
10 . . .101)

)
= P

(
Xt = 1|Xt−2 = 0,Xt−1 = 1, Y (T )), i = 1, . . . , k − 1,(18)
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P
(
Zt = (10,10)|Zt−1 = (11,1)

)
= P

(
Xt = 0|Xt−2 = 1,Xt−1 = 1, Y (T )),

P
(
Zt = �|Zt−1 = (10,

k−1︷ ︸︸ ︷
0101 . . .0)

)
= P

(
Xt = 1|Xt−2 = 1,Xt−1 = 0, Y (T )),

P (Zt = �|Zt−1 = �) = 1.

Using {Zt }, the waiting time probability for an alternating sequence of length
k can be found through Theorem 3.2 and then using (14). The probability mass
function P(R(T ) = k) for alternating runs of lengths k = 1, . . . ,70 given all the
data (T = T ∗ = 299) is shown in Figure 1. This plot indicates that, conditional on
the observations, only very specific alternating run lengths are likely. Indeed, as
the probability of two short eruption states following one another is zero, the pat-
tern is highly likely to start in state 1 and end in state 1, hence, the specific lengths.
However, the conditional distribution given the observations is very different from
the unconditional distribution, showing that information from the observation se-
quence is very useful for determining probabilities for patterns in the underlying
states.

FIG. 1. Graph of the probability mass function of the length of the longest alternating underlying
short/long eruption states, both conditional and unconditional on the observation sequence, for the
Old Faithful geyser, Yellowstone National Park, from August 1 to August 15, 1985.
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4.2. DNA sequence analysis—CpG islands. The use of HMMs to model DNA
sequences with heterogenous segments was pioneered by Churchill (1989), and
since that time their use for that cause has increased. As mentioned in the intro-
duction, HMMs have been shown to be especially suitable for the analysis of CpG
islands.

Define SX = {A+,C+,G+, T +,A−,C−,G−, T −}, where a superscript “+”
indicates that the state is within a CpG island and “−” that it is not, and let
SY = {A,C,G,T }. The transition probability matrix associated with the state se-
quence {Xt } is taken to be

{p(xi+1|xi )}

(19) =

A+

C+

G+

T +

A−

C−

G−

T −




0.17635 0.26838 0.41719 0.11761 0.0037214 0.0055995 0.0086354 0.0025226

0.16737 0.36005 0.26811 0.18400 0.0035381 0.0074703 0.0055940 0.0038774

0.15775 0.33201 0.36726 0.12250 0.0033417 0.0068982 0.0076165 0.0026225

0.077468 0.34768 0.37607 0.17831 0.0017034 0.0072179 0.0077973 0.0037613

0.0004247 0.0003297 0.0004087 0.0003347 0.29953 0.20472 0.28456 0.20971

0.0004466 0.0004227 0.0002019 0.0004266 0.32148 0.29753 0.077969 0.30152

0.0003018 0.0003637 0.0004167 0.0004167 0.17677 0.23865 0.29154 0.29154

0.0003727 0.0003707 0.0004227 0.0003327 0.24763 0.24563 0.29753 0.20771


 .

This matrix is based on the transition probability matrices given in Durbin,
Eddy, Krogh and Mitchison (1998), which were calculated using maximum like-
lihood methods from human DNA with 48 putative CpG islands present (which
were predetermined using other methods).

If Q represents a generic nucleotide, that is, Q ∈ {A,C,G,T }, then γ (Q|
Q−) = γ (Q|Q+) = 1. Even though the observed nucleotide is totally determined
if the underlying state is known, it is not possible to know whether an observa-
tion came from a CpG island or not. Finally, define π(A−) = π(C−) = π(G−) =
π(T −) = 1

4 , that is, the underlying state sequence is equally likely to start in any
of the non-CpG island states.

The patterns of interest are sequences of +’s, which indicate that the system is
currently in a CpG island (since + denotes A+ ∪ C+ ∪ G+ ∪ T +). This is slightly
different from the traditional definition of runs (consecutive occurrences of one
symbol). Of interest will be the distribution of the length of CpG islands in a given
sequence of nucleotides, and the distribution of the number of CpG islands of
length at least k, for specified values of k.

The state space for the auxiliary {Zt } chain is given by

⋃
Q∈{A,C,G,T }

{
(Q+,+), (Q+,++), . . . , (Q+,

k−1︷ ︸︸ ︷+· · ·+),Q−} ∪ �,(20)

where k is a specified run length, (Q+,

i︷ ︸︸ ︷+· · ·+) gives the value of Xt and the cur-
rent run of +’s, and � is an absorbing state to indicate that k consecutive +’s have
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occurred. The desired run occurs by time t if and only if Zt = �, and thus theorems
from Section 3 may be used to compute probabilities. As it is assumed that the state
sequence does not begin in a CpG island state, no additional states are needed to
initialize the chain. [To relax this assumption, the states

⋃
Q∈{A,C,G,T }{(Q+,∅)}

would need to be added as initialization states for Z0.]
The HMM described in this subsection was used to analyze several human ge-

nomic sequences. First, chromosome 20, locus AL133339 [Barlow (2005)] with
18,058 base pairs was investigated (thus, T = T ∗ = 18,058), that is, AL133339 is
the observed sequence {Yt }. This sequence is known to contain at least one exam-
ple of a putative CpG island. Given that the definition of a CpG island is slightly
open to interpretation, the distribution of the CpG island lengths in the sequence is
of interest. This is calculated through (14), if �(k) is taken to mean a run of +’s
of length k. Waiting time probabilities are computed through Theorem 3.2.

Approximate locations of CpG islands are indicated by the jumps in the prob-
ability plot of Figure 2(a). In that plot, when k = 100, there is a jump around
sequence position 4,500, and then another jump approximately at position 14,000.
However, when the length k is increased, the jump around sequence position 4,500
disappears, indicating that the first CpG island is smaller than the second one.
These locations and size differences were verified by using the software CpG is-
lands searcher [Takai and Jones (2003)], which is based on the (non-HMM) algo-
rithm of Takai and Jones (2002) and requires the use of predetermined thresholds.
However, though the analysis using the latter software concurred with the rela-
tive lengths found in this work, the actual lengths of the CpG islands given by
the software (which gives a fixed length and not a distribution) were longer than
those expected using the full distribution. Note that both the CpG island lengths
determined by the software, and the length distribution computed here, depend on
initial settings, the initial parameters for the software or the transition probabilities
for the {Xt } sequence when using HMMs.

The standard method of detecting CpG islands using HMMs is to use the Viterbi
algorithm to find the most probable state sequence and then search for CpG islands
as though the derived state sequence gives the true underlying states. However, as
was mentioned in the introduction, although the Viterbi algorithm gives the most
probable state sequence, using it does not necessarily lead to the most probable
CpG island length. Using the Viterbi algorithm, a CpG island of length 362 is
found in the data. This corresponds to the small jump in the distribution at the
corresponding location [toward the right tail of the probability distribution plotted
in Figure 2(b)]. Thus, while 362 is the CpG island length from the most probable
state sequence, it is not the most probable CpG island length for this data set.

By definition, CpG islands are often required to be at least 100 base pairs long,
and thus, the number of islands of at least size 100 is of significant interest. Defin-
ing continuation states

⋃
Q∈A,C,G,T {(Q+,→)}, and using Theorem 3.3, the distri-

bution of the number of CpG islands of length at least k is computed (Figure 3).
This distribution yields an estimated mean for the number of islands of length at



600 J. A. D. ASTON AND D. E. K. MARTIN

(a) Probability distribution of a CpG island of length at least k having occurred at or before different

sequence positions.

(b) Probability mass function of maximal CpG island length.

FIG. 2. CpG island distributions for the 18,058 nucleotide gene sequence locus AL133339 from
Human Chromosome 20. The first plot shows the probability of islands of lengths k = 100, k = 200,
and k = 300 occurring at or before the various locations of the sequence, while the second gives the
probability mass function of the maximal CpG island length using the entire data sequence.
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least 100 in the sequence of 3.26, and a mode of 3 islands. Using the method based
on the Viterbi algorithm [Durbin, Eddy, Krogh and Mitchison (1998)], four islands
were identified, however, only two of them are at least 100 base pairs in length,
showing that the most probable state sequence does not necessarily give the most
probable number of islands when important biological constraints are applied.

It would be very difficult to find a way to constrain the Viterbi algorithm to find
the most probable state sequence subject to biological constraints. However, if,
once the most likely state sequence is found using the Viterbi algorithm, biologi-
cal constraints are imposed, the state sequence is modified, changing some island
states into non-island states. The state sequence is then not guaranteed to be the
most probable one, nor even the most probable state sequence among those which
conform to the desired constraints.

For the purposes of counting, it is often desirable to have gaps of at least a
certain length, before allowing a new island to start. This is biologically realistic
as islands are presumed not only to be longer than a certain length but also to be
infrequent and not particularly close to one another [Takai and Jones (2002)]. In
this case, a problem again arises when using the Viterbi algorithm for CpG island
detection. If two islands are close together, they are deemed one island and again
the state sequence found by the Viterbi algorithm is modified (the intermediate
non-island states in the sequence between the two islands are changed to be island
states). This also cannot then be guaranteed to be the most probable state sequence
among all sequences that conform to the biological constraints. On the other hand,
gaps are very easily handled in the computation of pattern distributions presented
here.

The distribution of the number of CpG islands of at least a certain length, and
having gaps separating them, may be calculated by extending the ideas of ordered
patterns [Fu and Chang (2003)]. However, the state space needed would become
very large. It is much more efficient to calculate the distribution using an argument
very similar to that used to compute the distribution of the total number of islands
of length at least 100 (Theorem 3.3). In this case, two Markovian systems are
used, one to find CpG islands of at least a certain length, and another to find non-
CpG island intervals after the CpG island has finished. This essentially requires
finding patterns of +’s in one conditional Markov chain and then patterns of −’s
in another conditional chain. The probability of entering the absorbing state of a
“+” pattern is then used as the probability for an initial state of the conditional
chain for the “−” pattern and visa versa, in a similar manner as the absorption
probability from the (i − 1)st chain is used as the initial probability in (23) of the
Appendix. For example, the second “+” chain is now conditioned on both a “+”
pattern having occurred previously and also a separation of “−” of a certain length
having occurred after that.

A separation of at least 100 base pairs is often chosen to be the minimum that
is required for two CpG islands to be distinct [Takai and Jones (2003)]. The CpG
island searcher software requires a minimum of 200 base pairs to be present for
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(a) Probability distribution of number r of CpG islands of length at least 100 having occurred at or

before different sequence positions.

(b) Probability mass function of number of CpG islands of length at least 100.

FIG. 3. CpG island distributions for the 18,058 nucleotide gene sequence locus AL133339 from
Human Chromosome 20. The first plot shows the probability of having r islands of lengths at least
100 occur at or before the various locations of the sequence. The second plot depicts the probability
mass function of the number of CpG islands of length at least 100 using the entire observed data
sequence, as well as unconditional on the data.
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a segment to be counted as a CpG island, as well as a minimum separation of at
least 100 base pairs between islands, and these lengths will be used here to provide
a comparison. However, the analysis could easily be modified to deal with other
biological constraints, if necessary. The CpG islands present in the DNA sequence
AL133339 are relatively short (as evidenced by the length distribution), which
means that there is less chance of the patterns being split into two islands with
both being counted as being above a certain length. However, the DNA sequence
AL117335 [Smith (2007)] of length 44,527 base pairs, also from chromosome
20, contains an example of a long CpG island. If this island were split without
a minimum separation distance between the pieces, a higher number of islands
could be predicted by the model. Indeed, when using the Viterbi algorithm, it is not
unusual to see islands with small breaks between them in the most probable state
sequence (without any constraints placed on it). These would then be modified and
counted as being from one island. Thus, the condition of a minimum separation
between islands is a useful biological constraint that should be imposed on the
analysis.

As expected, adding the biological restriction of a minimum gap length of 100
base pairs reduces the likely number of islands counted in the data [see Figure 4].
The corresponding probabilities of occurrences at or before certain sequence loca-
tions under this restriction can also be found and are given in Figure 4(a). Using
the Viterbi algorithm, seven islands in total are found in AL117335. However,
only two of those have more than 200 base pairs and a separation of more than
100 base pairs. There are two additional islands which are close to being counted
(one island which, although longer than 200 base pairs, is only 95 base pairs from
another, and another one that is only 193 base pairs long). By using the CpG is-
land searcher software with the same restrictions, three islands were found in the
sequence. As can be seen in Figure 4(b), it is likely that there are two or three is-
lands in the data, probably arising close to locations 2,000, 18,000 and 26,000 [see
Figure 4(a)]. While the first island was not confirmed by the CpG island searcher
software, the locations of the latter two islands were. Thus, by using a combina-
tion of the distribution estimates and the probabilistic plots, an additional possible
location for a CpG island has been identified, which, although not satisfying the
predetermined threshold requirements used in the software, is consistent with the
HMM that is being used in the present analysis to identify CpG islands.

One could compute probabilities for the length of combined islands by allow-
ing the desired pattern to be a scan, thus extending work for scans in Markovian
sequences [see, e.g., Naus (1982), Koutras and Alexandrou (1995)] to the HMM
setting. However, careful definitions of what constitutes a scan would need to be
made so that the output would constitute a biologically plausible island.

Computing these distributions can be computationally expensive in terms of
CPU time. The programs were written in MATLAB and run on a standard desk-
top PC. To run the example for AL133339 with over 18,000 base pairs to find
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(a) Probability distribution of number r of CpG islands of length at least 200 with a separation gap

of at least 100 base pairs having occurred at or before different sequence positions.

(b) Probability mass function of number of CpG islands of length at least 200, with and without a

separation gap of 100 base pairs required.

FIG. 4. CpG island distributions for the 44,527 nucleotide gene sequence locus AL117335 from
Human Chromosome 20. The first plot shows the probability of the number of islands r of length at
least 200 occurring at or before the various locations of the sequence, while the second gives the
probability mass function of the number of CpG islands of length at least 200 using the entire data
sequence. The requirement that there should be a gap between CpG islands of at least 100 base pairs
is accounted for in the distributions.
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islands of length at least 100 takes approximately 8 minutes on a single PC. How-
ever, the actual time used in matrix multiplication is only 5 seconds, with the need
to constantly reassign the inhomogeneous transition probabilities to locations in
the transition probability matrix requiring the rest of the time. However, this means
that considerable savings can be made when determining the length distribution by
calculating it at once rather than sequentially, as the submatrices of a large transi-
tion matrix can be used to calculate distributions at each time point without needing
to reassign probabilities.

The calculation for AL117335 with over 44,000 base pairs, islands of at least
length 200 and separation gaps of least 100 base pairs takes just over 40 minutes
on a single PC. The use of a PC cluster could certainly facilitate much quicker
computation of these distributions.

5. Discussion. Distributions associated with runs and patterns in random se-
quences are usually computed based on some model, but with no additional infor-
mation. Here, a method is introduced to compute such probabilities in situations
where T observations of an observed sequence have been realized, but where the
patterns of interest occur in an underlying state sequence. The observation se-
quence gives incomplete or noisy information concerning the values of the unob-
served sequence. A hidden Markov model of an arbitrary order m is used to model
this situation. Using the methodology of this paper, distributions associated with
patterns in an underlying state sequence may be computed either up to index T , or
to an index T ∗ > T .

Probabilities are computed by associating with the underlying state sequence a
Markov chain that lies in its absorbing state if and only if the pattern of interest
has occurred. This allows the computation of probabilities through basic properties
of Markov chains. The types of patterns that may be investigated are of a general
nature and the distributions can be found for a variety of features, including, but
not limited to, the waiting time for a pattern to occur, the maximal length of a
run or repeated pattern and the number of pattern occurrences, all conditional on
the observed data and possibly subject to additional constraints. As has been seen,
these features have direct relevance to many applications.

The computations themselves may be quite intensive, but are made simpler by
the mth order forward-backward algorithm, which provides a quick method to
determine the transition probabilities for the underlying state sequence, and thus
also for the auxiliary Markov chain. The number of additional states needed in
SZ over those required for SX depends on several factors. While the worst case
scenario is that the number of additional states increases exponentially with the
order of Markovian dependence, patterns are often associated with only a small
number of states of SX , and the number of additional states required then increases
exponentially in only these states. This is especially true in cases such as simple
patterns or small compound patterns, as in the examples. In simple patterns, for
example, runs of one symbol, only one state is associated with the pattern, and
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thus, the number of additional states does not increase at all. The complexity also
increases with the length of pattern, the number of patterns to be found and the
length of the data, but the increases are only of linear order. It should also be
noted that the structure of these transition matrices can become incredibly sparse,
which aids computation considerably. As an example, if the order of the underlying
Markovian sequence was changed to second order in the CpG islands example,
approximately four times as many states would be needed for each computation,
although most of these will have transition probabilities of zero between them.

In practice, the slowest part of computation often arises from the need to con-
tinually reassign the transition probabilities to appropriate locations in the transi-
tion probability matrix, due to the inhomogeneous nature of the auxiliary Markov
chain. The transition probabilities can all be calculated quickly outside the algo-
rithm, but assigning them to the correct positions in the Mt matrix can be time
consuming. This might be overcome, however, by using computer languages that
specialize in this sort of operation. However, in order to circumvent this problem
when calculating distributions of run lengths, the distributions can be calculated at
each time point using submatrices of a large transition matrix, rather than doing it
sequentially.

An alternative method for calculating the distributions is to sample from the
conditional distribution of the states through the conditional transition probabili-
ties given by Lemma 3.1 and then empirically calculate the distributions of pat-
tern lengths and number of patterns from these samples. For especially complex
patterns, this could well lead to improvements in the computation time, although
the computed distribution would then be approximate. However, given the inho-
mogeneous nature of the transition probabilities and the large number of samples
needed to get accurate distributions for long sequences, unless the patterns are
quite complicated, this method is likely to be less efficient. For example, to esti-
mate distributions of CpG islands of length at least 100, the computational cost of
generating one sample from the distribution (requiring 64 transition probabilities
at each point) is 1/50 of the cost of finding the exact distribution (requiring 3217
transition probabilities at each time point). Thus, only 50 samples could be drawn
before the sampling method is more computationally expensive. This ratio obvi-
ously decreases as the length of the pattern increases, but only linearly (e.g., to
find the exact distribution of islands of length at least 500 requires approximately
16,000 transition probabilities at each point). While the overhead of assigning the
probabilities to the transition matrices have not been included in this calculation,
the storage requirements for generating large numbers of samples and then search-
ing these samples have also not been included. These things being considered,
as the patterns get more complicated in terms of number or length, computation
through sampling will become relatively more efficient, and may well be appropri-
ate in some applications, especially for finding the distribution of the longest run.
In the examples here, using the sampling methods would not be computationally
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advantageous, and, as they also do not lead to exact distributions, they were not
used.

While the results of this paper facilitate the computation of general waiting time
probabilities, other possible applications of the methodology exist, an example
being change point problems. Indeed, the CpG island example above could be
considered as a problem of detecting change points between CpG islands and non-
CpG islands with Figures 2(a)–4(a) giving information about the locations of those
change points.

Two issues have not been addressed in this paper. First, in many instances, the
transition probabilities of the underlying state sequence need to be estimated, not
an easy task since the sequence is hidden. There has been considerable work on
this problem [see Cappé, Moulines and Rydén (2005) for the latest in techniques
in this area]. In this work, it is assumed that appropriate values for the transition
probabilities have been estimated, with the estimated parameters being used as in-
put to compute the desired waiting time distributions. There could, however, be an
appreciable effect of the estimation process on the probabilities that are eventually
determined. An area of future work is to determine the effect of small errors in
parameter estimation on the output waiting time distributions for patterns.

Second, in this paper the assumption is made that the length T of the obser-
vation sequence is fixed throughout the experiment. In many applications, such
as for DNA sequences, this assumption is appropriate, but in others, observations
may come in a continual stream, yielding a sequential analysis problem. While, in
principle, there is no restriction on using the methods of this paper to update dis-
tributions when a new observation arrives, computationally, this task may be very
burdensome. New transition matrices for the underlying state sequence would be
needed after every new observation, not only for future points but also for those
in the past as well, as the backward probabilities would change for all t . Whether
approximations can be found to ease this burden will also be a topic for future
consideration.

It is well known that one of the main problems associated with higher-order
HMMs, and higher-order Markov chains in general, is the growing number of pa-
rameters as the order of dependence increases. This is one of the reasons why
higher-order HMMs are not used more frequently. However, the methods pre-
sented here may be applied to various forms of higher-order HMMs, including
models with reduced parameter sets, such as that proposed by Raftery (1985). In-
deed, the Old Faithful geyser example demonstrates a second-order HMM with a
reduced parameter set.

In conclusion, this paper has suggested a general approach to the computation of
waiting time distributions for patterns in states of HMMs that is easy to implement,
and yet also flexible enough to be applicable to a wide variety of applications in
science and engineering.
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APPENDIX A: DERIVATION OF ALGORITHM

Let φ
(i)
0,t be the initial distribution for the Markov chain associated with the ith

occurrence, i = 2,3, . . . , r , when the chain starts at time t . Since i > 1, the chain
will start in one of the continuation states. Define W {�i(k)} to be the waiting time
for the ith occurrence of the pattern. Then

P
(
W {�i(k)} ≤ t

)
(21)

= ∑
0≤t1≤t

P
(
W {�i−1(k)} = t1

)

× P
(
W {�i(k)} ≤ t |W {�i−1(k)} = t1

)
.

This can be simplified using a renewal argument. The second term in the sum-
mation in (21) is the same as P(W {�(k)} ≤ (t − t1)), assuming that the chain starts
at time t1 (the chain is inhomogeneous, and thus, the starting time is needed), as
the probability of the ith occurrence conditioned on the (i − 1)st can be calculated
using the same probability structures as those of the first occurrence (but starting
in one of the continuation states). Hence, (21) equals∑

0≤t1≤t

P
(
W {�i−1(k)} = t1

)
P

(
W {�(k)} ≤ (t − t1)

)
(22)

= ∑
0≤t1≤t

P
(
W {�i−1(k)} = t1

)
φ

(i)
0,t1

(
t∏

j=t1+1

Mj

)
U(�)

by Theorem 3.2, where the product is taken to be an identity matrix if t1 = t .
Define

ψ
(i)
0,t1

= P
(
W {�i−1(k)} = t1

)
φ

(i)
0,t1

= [
P

(
W {�i−1(k)} ≤ t1

)
(23)

− P
(
W {�i−1(k)} ≤ t1 − 1

)]
φ

(i)
0,t1

.

Then (23) equals

∑
0≤t1≤t

ψ
(i)
0,t1

(
t∏

j=t1+1

Mj

)
U(�),(24)

which when expanded out equals

t︷ ︸︸ ︷(
. . .

(
ψ

(i)
0,0M1 +ψ

(i)
0,1

)
M2 +· · ·+ψ

(i)
0,t−2

)
Mt−1 +ψ

(i)
0,t−1

)
Mt +ψ

(i)
0,t

)
U(�),(25)
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where the probability of seeing the (i − 1)st occurrence at time 0 is defined to be 0
and hence, ψ

(i)
0,0 = 0. If ψ

(1)
0,0 ≡ ψ0 and ψ

(1)
0,t ≡ 0, t > 0, then the algorithm given in

(16)–(17) iteratively calculates the set of sums and products of each bracket given
in (25) for all i = 1, . . . , r occurrences simultaneously in i before the multiplica-
tion with U(�).

In the above it has been implicitly assumed that only one state leads to absorp-
tion, as in the CpG island example (the deterministic output Yt guarantees this),
and as such φ

(i)
0,t1

is a unit vector with a 1 in the initial state. However, the algo-
rithm can be easily modified in the case where there are multiple states leading to
absorption. This modification is needed, for example, in the case when calculating
CpG island distributions unconditional on the data, where four states can lead to
absorption.
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