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This work provides a unified analysis of the properties of the sample covariance matrix �n over the class of
p × p population covariance matrices � of reduced effective rank re(�). This class includes scaled factor
models and covariance matrices with decaying spectrum. We consider re(�) as a measure of matrix com-
plexity, and obtain sharp minimax rates on the operator and Frobenius norm of �n − �, as a function of
re(�) and ‖�‖2, the operator norm of �. With guidelines offered by the optimal rates, we define classes of
matrices of reduced effective rank over which �n is an accurate estimator. Within the framework of these
classes, we perform a detailed finite sample theoretical analysis of the merits and limitations of the empiri-
cal scree plot procedure routinely used in PCA. We show that identifying jumps in the empirical spectrum
that consistently estimate jumps in the spectrum of � is not necessarily informative for other goals, for
instance for the selection of those sample eigenvalues and eigenvectors that are consistent estimates of their
population counterparts. The scree plot method can still be used for selecting consistent eigenvalues, for
appropriate threshold levels. We provide a threshold construction and also give a rule for checking the con-
sistency of the corresponding sample eigenvectors. We specialize these results and analysis to population
covariance matrices with polynomially decaying spectra, and extend it to covariance operators with polyno-
mially decaying spectra. An application to fPCA illustrates how our results can be used in functional data
analysis.

Keywords: covariance matrix; eigenvalue; eigenvector; fPCA; high dimensions; minimax rate; optimal rate
of convergence; PCA; scree plot; sparsity

1. Introduction

High dimensional covariance matrix estimation has received a high amount of attention over the
last few years. This was largely motivated by the fact that the sample covariance matrix �n, based
on a sample of size n, is not necessarily a consistent estimator of the covariance matrix � of a
random vector X ∈ R

p , if p > n. In this regime, the shortcomings of �n have been well under-
stood for over a decade, whenever we estimate a spiked covariance matrix; see, for instance, the
seminal works of Baik and Silverstein [3] and Johnstone [17]. By definition, spiked models have
a fixed number of large eigenvalues and the rest equal to one. Therefore, the effective number
of parameters in such models is of order p2, and there is no hope to estimate them accurately
from a small sample. To address this issue, classes of sparse covariance matrices have been in-
troduced in recent years. Depending on the type of sparsity (entry-wise, row-wise, off-diagonal
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decay), appropriate estimators have been introduced and shown to adapt to the unknown sparsity
structures, see, for instance, [5,6,9,10], among many others. It is important to note that although
sparse matrices, by definition, have a reduced number of parameters, they can still be spiked.
Therefore, the usage of the sample covariance matrix �n in this context would still be ques-
tionable, in addition to not rendering the appropriate sparse structure. It is also of importance to
observe that all sparse covariance matrix models carry with them implicit modeling assumptions.
For instance, they are appropriate whenever many of the components of X are weakly correlated.
They are also powerful for modeling temporally or spatially ordered variables, in cases where it
is reasonable to assume that variables apart in time or space have very little association.

However, there are many instances where these assumptions are not satisfied, for example
when the observed variables are known to have strong associations with each other. If the asso-
ciation is approximately linear, � will be close to being a degenerate, rank r < p matrix, with
possibly much fewer parameters than p2, if r is small. To treat general, positive definite covari-
ance matrices, which have effectively reduced rank, we make use of the notion of effective rank,
first suggested by Vershynin [25] and given by

re(�) = trace(�)

‖�‖2
. (1.1)

Here ‖�‖2 denotes the operator norm, or the largest singular value, of �. Clearly, re(�) is
smaller than the rank for degenerate matrices and, in general, it can be significantly smaller than
p if a large number of eigenvalues of � are relatively small.

Perhaps surprisingly, the finite sample properties of the sample covariance matrix as an estima-
tor of population matrices of reduced effective rank are largely unstudied. For classes of matrices
� for which re(�) and ‖�‖2 are appropriately bounded, but allowed to vary with n and p, we
study the following problems:

(1) Rate optimal estimation of � via �n, with respect to the Frobenius and operator norms,
in finite samples.

(2) Finite sample estimation of the location of a jump in the spectrum of �, via �n.
(3) Finite sample determination of the number of eigenvalues and eigenvectors of �n that are

accurate estimates, respectively, of the eigenvalues and eigenvectors of �.
(4) Extensions of (2) and (3) to covariance operators, for functional data.

We study problem (1) in Section 2. For data generated from a class of sub-Gaussian distri-
butions defined in Section 2.1, we establish upper bounds on the Frobenius norm ‖�n − �‖F

and operator norm ‖�n − �‖2 that hold, with high probability, and are near minimax optimal.
We summarize these results in Table 1, which reveals that even if p > n, as long as re(�) and
‖�‖2 are appropriately small, �n continues to be an accurate estimator of �. The derivation of
these bounds is presented in Section 2.2, where we also study E‖�n − �‖F and E‖�n − �‖2,
which have similar bounds, but sharper by lnn factors. Guided by these results, we introduce and
discuss classes of covariance matrices of reduced effective rank, also in Section 2.2.

For problems (2) and (3), and their extension to (4), we investigate in detail estimation per-
formed by the ubiquitous scree plot method, described below. Let {λk,1 ≤ k ≤ p}, arranged in
descending order, denote the eigenvalues of �. Similarly, let {̂λk,1 ≤ k ≤ p}, arranged in de-
scending order, denote the eigenvalues of the sample covariance matrix �n, henceforth called
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Table 1. Optimal rates for the Frobenius and operator norm of �n − �: orders of magnitude depending on
the regime of p. Within each regime, the sizes of re(�) and ‖�‖2 govern the rate

Norm/values of p p = O(nγ ), γ ≥ 0 p = O{exp(n)}

Frobenius: ‖�n − �‖F ‖�‖2 · re(�) ·
√

lnn
n ‖�‖2 · re(�) ·

√
lnn
n

Operator: ‖�n − �‖2 ‖�‖2 · re(�) · lnpn
n , if re(�) ≥ n

lnpn
‖�‖2 · re(�) ·

√
lnn
n

‖�‖2 · √re(�) ·
√

lnpn
n , if re(�) ≤ n

lnpn

the sample eigenvalues. For a given number τ , called the threshold level, the scree plot method
consists in calculating the number K =: max{k : λ̂k ≥ τ } and retaining the K largest sample
eigenvalues. Typically, one also retains the corresponding sample eigenvectors ψ̂k , k ≤ K , for
further analysis. In Sections 3 and 4, we study when this practice can be justified and for which
threshold levels. To the best of our knowledge, no theoretical study of the thresholding method
applied to �n, of this nature, exists in the literature.

We study problem (2) in Section 3, where we give a data-dependent construction of τ for
detecting minimal jumps in the spectrum of �. We say that a minimal spectral jump occurs
when there exists an index s such that λs is a constant multiple of the noise level, and there is a
gap of at least the size of the noise level between λs and λs+1. The appropriate noise level for
this class of problems is proportional to E‖�n −�‖2. The precise definition and result are given
in Theorem 3.2. We apply this result to consistent estimation of the number of factors in factor
models in Example 3.1, complementing existing methods, for example the AIC-type criterion
in [2].

For population matrices with special structures, a spectral jump at the minimal noise level may
not exist. This is, for example, the case of population matrices whose spectra exhibit a polynomial
decay, which we study in Section 3.1. In this case, spectral jumps can still be detected, but they
have to be larger than the noise level, with order of magnitude depending on the rate of decay. We
treat this in Theorem 3.3, where we offer guidance on a data-dependent choice of τ for consistent
jump detection under this scenario.

We study problem (3) in Section 4. Finite sample bounds on the difference between sample
eigenvalues and eigenvectors and their population counterparts have been much less studied when
p > n, and no unifying analysis over the class of covariance matrices of reduced effective rank
exists. The study of consistent estimation of the eigenvalues and eigenvectors of � via �n, in
the classical asymptotic framework where p is fixed and n → ∞, dates back half a century, with
notable works including those of Anderson [1] and Muirhead [22]. Asymptotic analyses that
allow p to grow with n have been chiefly conducted in spike models, when p/n converges to a
constant, and mostly concern the behavior of the largest sample eigenvalue and corresponding
eigenvector, see, for instance, [17] and [23]. None of these analyses can be directly used or
extended for studying problem (3). The most closely related results to ours are those of Kneip
and Sarda [19], who studied the finite sample convergence rates of the sample eigenvalues and
eigenvectors of �n/p in factor models, where re(�/p) is finite and independent of n and p.
We show in Section 4 that their results are particular cases of ours on studying problem (3) over
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classes of population matrices of reduced effective rank. We show in Theorem 4.1 that, for a given
desired precision level α, we can construct a data-dependent threshold level, which is a function
of an estimate of the minimum noise level and α, such that all sample eigenvalues above this
threshold are close to the theoretical values at this precision level, with high probability. A known
result by Kneip and Utikal [20] can be used to show that, in general, it would be misleading to
conclude that the sample eigenvectors corresponding to the sample eigenvalues thus selected are
also close to their population counterparts. Our Theorem 4.2 shows how to complement the scree
plot method by another simple strategy, in order to further determine which sample eigenvectors
are accurate estimates. Interestingly, when the spectrum of � decays polynomially, the scree plot
method once again suffices for accurate estimation of both eigenvalues and eigenvectors and we
make this precise in Theorem 4.3.

In Section 5, we treat problem (4), by showing how the results of the previous sections can
be employed in fPCA. The data consists in a sample of n independent trajectories Xi(t), of a
background stochastic process X(t) with covariance operator K. Each trajectory is observed at
the same m discrete data points t1 < t2 < · · · < tm, and is corrupted by noise. Problem (2) has not
been studied in this context, but aspects of problem (3) have been thoroughly studied, however
only in asymptotic contexts. For perfectly observed trajectories, at all time points t and without
additive noise, Hall and Hosseini-Nassb [14] use a result by Dauxois et al. [12] to develop a boot-
strap based approach for selecting the sample eigenvalues and eigenfunctions that estimate the
population counterparts at the parametric rate. For discretely observed trajectories, the theoretical
properties of the estimated eigenvalues and eigenvectors have been established by, for instance,
Yao et al. [27], Hall et al. [15] and Benko et al. [4]. However, all these results are relative to the
first few fixed eigenvalues and eigenfunctions of K, are of asymptotic nature, and the selection
of the appropriate number of features, in finite samples, is left open. We bridge this gap here.

We study the class of covariance operators K with spectra having polynomial decay, of which
the Brownian motion is a chief example. For this class, we show how the sample covariance ma-
trix, in connection with the scree plot method, can be employed to detect jumps in the spectrum
of the covariance operator, and to determine the number of sample eigenvalues and eigenvectors
that are accurate estimates of the population eigenvalues and eigenfunctions, the latter evalu-
ated at the discrete observation points. Instrumental in this analysis, and new relative to what we
already developed in Sections 3 and 4, are the results of Section 5.1.

We denote by πm the projection mapping X(t) into an m-dimensional space R
m, defined by

πm(X) = (X(t1), . . . ,X(tm)). We refer to the distributions on R
m induced by πm as the finite-

dimensional distributions of X. Let K = m−1{K(tj1, tj2)}1≤j1,j2≤m be the scaled covariance ma-
trix corresponding to the m-dimensional distribution of X. In Section 5.1, we establish finite
sample approximations of the eigenvalues and eigenfunctions of the operator K by the eigen-
values and eigenvectors of K. This allows us to transfer the assumptions on the operator K to
the matrix K, which in turn allows us to apply the theory developed in Sections 2–4 to func-
tional data. Jump detection is presented in Section 5.2 and the selection of the accurate sample
eigenvalues and eigenvectors is treated in Section 5.3.

The proofs of all our theoretical results are given in the Appendix and in the supplemental
material. We shall use the following notation throughout our paper: ‖ · ‖F , the Frobenius norm;
‖ · ‖2, the spectral/operator norm; ‖ · ‖1, the nuclear norm; ‖ · ‖, the Euclidean norm of a vec-
tor; tr(·), the trace of a square matrix; Ip , an identity matrix of dimension p. We will also use
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the notation � for inequalities that hold up to multiplicative constants independent of n and p

(or m). Throughout this paper, we regard a sample eigenvector ψ̂ as an estimate of its population
counterpart ψ and assume the sign of ψ̂ is selected so that ψ̂

′
ψ ≥ 0.

2. Some inequalities for the sample covariance matrix

2.1. Sub-Gaussian distributions

All the results of this paper are proved for a certain class of sub-Gaussian distributions. In partic-
ular they all hold for Gaussian vectors or processes. We recall that a zero-mean random variable
X ∈ R is sub-Gaussian if there exists a constant σ > 0 such that E exp(tX) ≤ exp(t2σ 2/2), for
all t ∈ R. Then it can be shown that supk≥1 k−1/2(E|X|k)1/k < ∞ and the sub-Gaussian norm

of X is defined to be ‖X‖ψ2 = supk≥1 k−1/2(E|X|k)1/k . A zero-mean random vector X ∈ R
p is

sub-Gaussian if for any non-random u ∈ R
p , u′X is sub-Gaussian. The sub-Gaussian norm of X

is defined as ‖X‖ψ2 = supu∈Rp\{0} ‖u′X‖ψ2/‖u‖. We will impose an additional assumption on a
sub-Gaussian random vector:

Assumption 1. For a zero-mean sub-Gaussian random vector X ∈ R
p , we assume that there

exists a constant c0 > 0 such that E(u′X)2 ≥ c0‖u′X‖2
ψ2

for all u ∈R
p .

Assumption 1 effectively bounds the higher moments of X as polynomial functions of the
second moments of X. Let � be the covariance matrix of X, then u′�u ≥ c0‖u′X‖2

ψ2
, for all

u ∈ R
p , under Assumption 1. We will provide a number of distributions of interest that meet

this assumption below. Note first that if X ∈ R
p is sub-Gaussian and satisfies Assumption 1 and

O ∈ R
p×p is an orthonormal matrix, then OX is also sub-Gaussian and satisfies Assumption 1

with the same c0.

Example 2.1. Let X ∈R
p be a random vector from a zero-mean multivariate normal distribution.

Then X satisfies Assumption 1 with c0 = π/2 ([26]).

Example 2.2. Let X = (X1, . . . ,Xp)′ and the components Xj are independent and have a
zero-mean sub-Gaussian distribution. Suppose there is a common constant σ > 0 such that
E exp(tXj/

√
�jj ) ≤ exp(t2σ 2/2) for all j , where �jj is the variance of Xj . Then X is sub-

Gaussian and satisfies Assumption 1. Moreover, if X̃ = OX where O ∈R
p×p is an orthonormal

matrix, then X̃ is sub-Gaussian and satisfies Assumption 1.

A proof of the statements in Example 2.2 is provided in Appendix A.1.2.

2.2. Accuracy of the sample covariance matrix over classes of population
matrices of reduced effective rank

Let X1, . . . ,Xn be i.i.d. observations of a random vector X ∈ R
p . Without loss of generality, we

assume that E(X) = 0. Let X̄ = n−1 ∑n
i=1 Xi and �n = n−1 ∑n

i=1(Xi − X̄)(Xi − X̄)′ be the
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sample covariance matrix. We establish below sharp probability upper bounds on �n − �, in
terms of both the Frobenius and the operator norms, as well as sharp bounds on the expectation
of either norm. The bounds stated below hold up to multiplicative constants defined precisely in
Appendix A.1.3. Specifically, c1, c2 and c3 are defined in Propositions A.2, A.3 and A.4, respec-
tively. The constants are independent of n and p and depend only on c0 in Assumption 1. As
announced in the Introduction, we show that the effective rank defined in (1.1) governs the size
of these bounds. As a consequence, we introduce classes of population matrices over which �n

can be employed accurately even if p > n. In some cases, we offer high-level practical guidance
on assessing whether, for a given data set, it is reasonable to assume the covariance matrix of a
generating distribution belongs to these classes.

Theorem 2.1. Suppose X is a random vector that satisfies Assumption 1. With probability at
least 1 − 5n−1,

‖�n − �‖F ≤ 2c1 · ‖�‖2 · re(�) ·
√

lnn

n
.

Furthermore,

E
(‖�n − �‖2

F

) ≤ 2 · ‖�‖2
2 · re(�)2

n2
· {16c2

1c2 + 1 + 2
(
c2

1 + c1
)

exp(1)
}
.

Theorem 2.2. Suppose X is a random vector that satisfies Assumption 1. With probability at
least 1 − 4n−1,

‖�n − �‖2 ≤ (1 + c1 + c3) · ‖�‖2 · max

{√
re(�) · lnpn

n
,
re(�) · lnpn

n

}
.

Furthermore, with C =: 2{5c2
3 + 1 + 2(c2

1 + c1) exp(1)},

E
(‖�n − �‖2

2

) ≤ C · ‖�‖2
2 · max

{
re(�) · lnp

n
,

(
re(�) · lnp

n

)2}
.

Remark 2.1.

(i) As it can be seen from the proofs in Appendix A.1.3, all our results continue to hold if �

is singular.
(ii) Probability bounds on ‖�n − �‖2, similar to those in Table 1, have been first derived for

distributions with bounded support in [25], Section 5.4.3.
(iii) A probability bound on ‖�n − �‖2, of the same order of magnitude as the one given by

Theorem 2.2, has been established independently by Lounici [21], as this work developed.
However, our proof is based on a version of Berstein’s inequality for unbounded matrices,
whereas Lounici [21] employs a version of this inequality developed for bounded matri-
ces, and therefore uses a different argument to complete his proof. The rest of the results
presented in Theorems 2.1 and 2.2, including the bounds on expected values in both cases
are, to the best of our knowledge, new. The rates given by Theorems 2.1 and 2.2 above are
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minimax optimal over the class of matrices with effective rank bounded by min(
√

n,p),
up to logarithmic terms. We refer to Theorem 2 of [21] for the lower bound derivations
with respect to the operator norm. The lower bound with respect to the squared Frobenius
norm derived in Theorem 2 of [21] is of the order of ‖�‖2

2 · re(�) ·p/n and is larger than
the rate we derived in Theorem 2.1. However, the proof of Theorem 2 in [21] can be
tightened, by keeping only the first line of his inequality (5.27), to show that the minimax
lower bound is in fact ‖�‖2

2 · r2
e (�)/n. Therefore, our rate is near minimax optimal, over

the class of matrices of effective ranks bounded by min(
√

n,p).
(iv) It is noteworthy that the sample estimator �n is already minimax rate optimal, in both

Frobenius and operator norm, over the class of matrices of effective ranks bounded by
min(

√
n,p). This suggests that, over this class, very little can be gained from further

thresholding or shrinking operations. For instance, the nuclear norm penalized estimator,
that would have appeared to be a more appropriate estimator over this class, has the same
and optimal bound in operator norm ([21]), and very similar performance to �n in the
simulations we have conducted.

In most situations, a scale-independent accuracy measure for �n is desired. One such measure
is provided by the ratio between ‖�n − �‖F or ‖�n − �‖2 and ‖�‖2. Then, recalling that �
denotes inequalities that hold up to multiplicative constants, Theorems 2.1 and 2.2 show that,
with high probability,

‖�n − �‖F

‖�‖2
� re(�)

√
lnn

n
, (2.1)

and

‖�n − �‖2

‖�‖2
� max

{√
re(�) · lnpn

n
,
re(�) · lnpn

n

}
. (2.2)

The above relative measures are informative even if ‖�‖2 increases with p and they motivate
the introduction of the following classes of population matrices. Let ε ∈ (0,1) be a complexity
index that may decrease to zero with n and p. Let γ ≥ 0 be a given number. Define

P1(ε) :=
{
� : re(�) � ε

n

lnpn
;p = O

(
nγ

)}
,

and

P2(ε) :=
{
� : re(�) � ε

√
n

lnn

}
.

The definition of these classes resembles sparsity definitions in sparse covariance matrix mod-
els, where a certain sparsity measure is controlled. The introduction of P1(ε) or P2(ε) com-
plements therefore the literature on sparse models, by advocating the study of low complexity
models, where re(�) is used as a complexity measure. Then, similar to existing results which
show that accurate estimation over classes of population covariance matrices of a certain low
complexity level is possible even if p > n, Theorems 2.1 and 2.2 show that estimation of covari-
ance matrices with reduced effective ranks can also be performed accurately even if p > n, as
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long as the complexity index ε is appropriately small. And this can be achieved, in terms of rate
optimality, by the ubiquitously used sample covariance matrix. Specifically:

(i) For any n and p, if � ∈ P2(ε), then Theorems 2.1 and 2.2 yield:

‖�n − �‖2

‖�‖2
≤ ‖�n − �‖F

‖�‖2
� ε,

since ‖M‖2 ≤ ‖M‖F for any matrix M . Thus, if ε = o(1), the scaled operator and Frobe-
nius norms will be small. Note that this size of ε implies that re(�) = o(

√
n/ lnn).

(ii) If p = O(nγ ), γ ≥ 0, then Theorem 2.2 guarantees the accuracy of �n with respect to
the operator norm over a larger class of population matrices, with a less restrictive size of
re(�). Specifically, if � ∈ P1(ε), then

‖�n − �‖2

‖�‖2
� ε,

which is small as long as ε = o(1), implying that re(�) = o(n/ lnpn). We note that the
restriction on the growth of p is induced by the explicit dependency on p in the logarith-
mic term of the bound (2.2), which makes this bound non-informative if p = O{exp (n)},
or if p → ∞ independently of n. If this is the case, we can use the results from (i) above,
which are valid for any n and p, albeit over a smaller class of population matrices.

In general, it is challenging to determine whether the population covariance matrix is in P1(ε)

or P2(ε), for some ε. Whereas a full solution to this problem is beyond the scope of this paper, we
offer guidance for a particular case below. It is based on the following result, also independently
derived by Lounici [21].

Theorem 2.3. For any random vector X satisfying Assumption 1,

∣∣tr(�n) − tr(�)
∣∣ ≤ 4c1

√
lnn

n
· tr(�),

with probability at least 1 − 5n−1.

Remark 2.2. By Theorems 2.2 and 2.3 we have, for any p and n large enough and with high
probability that

‖�n − �‖2 ≤ ‖�n − �‖F � tr(�)

√
lnn

n
≤ 2 tr(�n)

√
lnn

n
,

or

E‖�n − �‖2 ≤ E‖�n − �‖F � tr(�)√
n

≤ 2 tr(�n)√
n

.

Theorem 2.3 provides direct practical guidance on the accuracy of the un-scaled Frobenius and
operator norm, irrespective of the size of ‖�‖2. It shows that, as a first simple check, one should
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compare tr(�n) to
√

n in order to decide whether �n suffices as an estimator of �. This is
particularly useful when we have reasons to believe that the population covariance matrix has a
large number of very small eigenvalues.

Remark 2.3. By Theorems 2.2 and 2.3, we can derive an upper bound for re(�n) as an estimator
of re(�); see Theorem A.4 in Appendix A.1.7.

3. Detectable spectral jumps for population covariance matrices
of reduced effective rank

In this section, we discuss consistent estimation of an index s of a population eigenvalue that
is sufficiently separated from the next one, and therefore sufficiently large itself. We will refer
to such an index as a jump. In what follows, sufficiently large and sufficiently separated will be
defined relative to the bounds on E‖�n − �‖2 given by Theorems 2.1 and 2.2 in Section 2.2.
We will use a slightly enlarged, by a

√
lnn multiplicative factor, version of these bounds, which

yields the appropriate noise levels for index consistency analysis, as illustrated in Theorem 3.1
below. Specifically, if p = O(nγ ), for some γ ≥ 0, the noise level is

η1 := C‖�‖2 · √re(�) · √lnpn/n, (3.1)

and, if p = O{exp(n)}, the noise level is

η2 := C‖�‖2 · re(�) · √lnn/n. (3.2)

To avoid notational clutter, we introduced above a constant C > 0 to bound all other constants
appearing in the bounds of Theorems 2.1 and 2.2. Note that C does not depend on n or p. For a
data-dependent threshold τ̃ , define

ŝ (̃τ ) := max{k : λ̂k ≥ τ̃ }, (3.3)

where we recall that λ̂k , 1 ≤ k ≤ p, in decreasing order, are the sample eigenvalues. The follow-
ing general theorem shows the interplay between the quantities needed to define an index s of
the spectrum of � that can be regarded as a jump and consistently estimated and the conditions
required of a data-dependent thresholding level τ̃ that makes ŝ (̃τ ) a consistent estimate of s.
Recall that λk , 1 ≤ k ≤ p, in decreasing order, are the population eigenvalues.

Theorem 3.1. Let j ∈ {1,2} be fixed. Suppose � ∈ Pj (ε), for some ε ∈ (0,1) and that Assump-
tion 1 holds. If there exist an index s and positive quantities τ1 and τ2 such that

λs ≥ τ1 + ηj and λs+1 ≤ τ2 − ηj , (3.4)

and a data-dependent threshold τ̃ that satisfies

P(τ2 ≤ τ̃ ≤ τ1) ≥ 1 − δ (3.5)
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for some δ ∈ (0,1), then

P
(̂
s(̃τ ) = s

) ≥ 1 − 5n−1 − δ.

Remark 3.1.

(i) Note that if (3.4) holds, with either j = 1 or j = 2, then implicitly

τ1 ≥ τ2 > ηj and λs − λs+1 > 2ηj + (τ1 − τ2).

Thus, condition (3.4) re-states the well understood fact that in order to estimate with high
probability the index s of what we declare a large enough eigenvalue, at least larger than
the noise level, there must also be a gap larger than the noise level between this eigenvalue
and the one following it.

(ii) If an index s satisfying (3.4) exists, we will call it a jump in the spectrum of � relative to
the triplet (τ1, τ2, η).

Theorem 3.1 makes it clear that, for each j ∈ {1,2}, the minimal allowable values for τ1 and
τ2 are of the order of ηj , and are larger than ηj . The following result specializes Theorem 3.1
to this situation and offers a concrete construction of data-dependent thresholds that satisfy (3.5)
with δ = O(n−1). We begin by defining two data-dependent levels:

η̃1 = C‖�n‖2 ·
√

re(�n) · lnpn

n
, (3.6)

and

η̃2 = C‖�n‖2 · re(�n) ·
√

lnn

n
, (3.7)

where the constant C is the same as in the definitions of η1 and η2. We will also use the following
notation throughout this section: we let c1, c2 and c3 be the constants defined in Section 2, and
we let

ε1 = 4c1
√

lnn/n, C1 = 0.9, C2 = 1. (3.8)

Theorem 3.2. Let j ∈ {1,2} be fixed. Suppose � ∈ Pj (ε), for some ε ∈ (0,1) and that Assump-
tion 1 holds. Let ηj be defined by either (3.1) or (3.2) above. Assume that there exists an index
sj such that

λsj ≥ 2(1 + ε1)

Cj

ηj + ηj , λsj +1 < 2Cj (1 − ε1)ηj − ηj .

Then, if j = 1 and (1 + c1 + c3)
√

ε < 0.19,

P
{̂
s(2η̃1) = s1

} ≥ 1 − 11n−1.

If j = 2,

P
{̂
s(2η̃2) = s2

} ≥ 1 − 11n−1.
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Remark 3.2. Theorem 3.2 shows that it is possible to detect, with high probability, fine jumps, at
the minimal level of the noise levels quantified by (3.1) or (3.2), respectively, via data-dependent
thresholds. However, the expressions given for η̃1 and η̃2 above depend on unknown constants,
that in turn depend on the unknown distribution of the data. For practical use, we suggest cross
validation.

Example 3.1 (Estimating the number of factors in a factor model). Let � be a covariance
matrix arising from a finite factor model (see, for example, [11,13]), with the decomposition

�

p
=

R∑
r=1

λrξ rξ
′
r + σ 2

p
Ip, (3.9)

where R is a fixed number, λ1 > · · · > λR > 0 can be upper bounded independently of
p, and � = [ξ1, . . . , ξR] satisfies �′� = IR . Then �/p has finite effective rank, η2 = C ·
tr(�/p)

√
lnn/n = O(

√
lnn/n). Assume further that n = o(p2). Then, when n is sufficiently

large, both σ 2/p < 2(1 − ε1)η2 − η2 and λR + σ 2/p ≥ 2(1 + ε1)η2 + η2 hold. By Theorem 3.2,
ŝ(2η̃2/p) estimates R, the number of factors, accurately, with high probability.

3.1. Population covariance matrices with polynomially decaying spectrum:
Jump detection

In this section, the analysis presented in Theorem 3.1 is specialized to particular modeling
assumptions on �. With a view towards Section 5, in which we discuss functional data, we
treat here in more detail the class of population covariance matrices whose spectrum exhibits
a polynomial decay. Specifically, we consider matrices satisfying the conditions below. Let
EG(�) := {λ1, . . . , λp}.

Assumption 2. There exist absolute constants C1λ, C2λ and β2 ≥ β1 > 1 such that C2λk
−β2 ≤

λk ≤ C1λk
−β1 , for all k. Moreover, there exist absolute constants C3λ and β3 > β2 such that

minλ∈EG(�),λ
=λk
|λ − λk| ≥ C3λk

−β3 , for all k.

We will show in Section 5 that these conditions appear naturally in the study of data generated
from the Brownian motion, and in that case we give specific values for β1, β2 and β3. Note that
the largest eigenvalue of any population matrix � satisfying Assumption 2 is a constant inde-
pendent of p. Moreover, since β1 > 1, the effective rank re(�) of such matrices will also have
a constant value. Therefore, Assumption 2 ensures that � belongs to P2(ε) with ε �

√
lnn/n,

irrespective of the value of p. If p = O(nγ ), then � ∈ P2(ε), with ε � lnpn/n. Note further
that the order of the noise levels η1 and η2 given by (3.1) and (3.2), respectively, are, under As-
sumption 2,

√
lnpn/n and

√
lnn/n, and therefore only differ by a

√
lnp factor when re(�) is a

constant.
In the analysis below we will consider only η2 = O(

√
lnn/n), to allow for the possibility of p

growing independently of n. We will specialize Theorem 3.1 by determining the minimal values
of τ1 and τ2 that define a detectable jump. We note that they will differ from the values given by



The sample covariance matrix and reduced effective rank population matrices 1211

Theorem 3.2, which is not applicable to the class of models satisfying Assumption 2. To see why,
first notice that Theorem 3.2 presupposes the existence of an index s such that λs (or λs+1) and
λs − λs+1 are constant multiples of the noise level η2. An index with these properties does not
exist under Assumption 2. It is immediate to see why: assuming that such an s exists would imply
that 1

sβ1
< 1

sβ3
, which cannot hold for β3 > β1. However, if the jump in the theoretical spectrum

occurs at a level that is larger, in order, than the noise level, then it can be again detected, with
high probability, as illustrated by the following theorem.

Theorem 3.3. Suppose � satisfies Assumptions 1 and 2. Assume n is sufficiently large such that
the following mild technical condition holds,

(1 + ε1)
β1/β3 − (1 − ε1)

β1/β3 < C−1
1λ

(
3C−1

3λ

)−β1/β3η
1−β1/β3
2 .

If there exists an index s such that

λs ≥ {
C4λ(1 + ε1)η2

}β1/β3 + η2, λs+1 <
{
C4λ(1 − ε1)η2

}β1/β3 − η2

with C4λ = 3C−1
2λ C

β3/β1
1λ , then

P
{̂
s
(
(C4λη̃2)

β1/β3
) = s

} ≥ 1 − 11n−1.

Remark 3.3.

(i) The technical condition holds for sufficiently large n because (1 + ε1)
β1/β3 −

(1 − ε1)
β1/β3 = O(ε1) = O(η2) = o(η

1−β1/β3
2 ).

(ii) The discussion prior to Theorem 3.3 above illustrates that attempting to determine spec-
tral jumps in the population matrix that occur at the minimal noise level may be an ill
posed problem for certain classes of covariance matrices. Theorem 3.3 offers a solution
when Assumption 2 is met.

(iii) Under Assumption 2, Theorem 3.3 shows that by setting τ̃ = (C4λη̃2)
β1/β3 =

OP {(lnn/n)β1/(2β3)} in (3.3) we can estimate the jump with high probability.

4. Accuracy of the sample eigenvalues and eigenvectors selected
via scree plot methods

In this section, we investigate whether the eigenvalues and the corresponding eigenvectors, ob-
tained via the simple thresholding method, for appropriate data-dependent thresholds, are accu-
rate estimates of their population counterparts. We begin by discussing eigenvalue estimation.
By Weyl’s theorem, we always have |̂λk − λk| ≤ ‖�n − �‖2, for all k. However, this inequality
is not particularly informative when λk is small, and the relative difference λ̂k/λk − 1 may be
more appropriate and is used here. By combining Weyl’s theorem and the results in Section 2.2,
we obtain the following corollary.
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Corollary 4.1. Suppose that Assumption 1 holds. Let ηmin be either η1 or η2, defined in (3.1)
and (3.2).

(i) Then ∣∣∣∣ λ̂k

λk

− 1

∣∣∣∣ ≤ ηmin

λk

, (4.1)

holds simultaneously for all k, with probability larger than 1 − 5n−1.
(ii) For any n and p, and for all k, we have

|̂λk − λk|
p

� tr(�)

p

√
lnn

n
, (4.2)

with probability larger than 1 − 5n−1.

Example 4.1 (Estimation of eigenvalues in a factor model). For the factor model (3.9) defined
above, Kneip and Sarda [19], in their Theorem 2, bound the left-hand side in (4.2), for all k ≤ R,
by a term of order 1/p + (logp/n)1/2, when p >

√
n. Under this scenario both their bound and

ours have the same order of magnitude, O(
√

lnn/n). Corollary 4.1 above shows that, moreover,
the O(

√
lnn/n) rate of convergence is still valid when (i) p <

√
n; (ii) p grows independently

of n or p = O{exp(n)}, since (4.2) does not contain a logp factor.

Inequality (4.1) of Corollary 4.1 shows that, in order to have |̂λk/λk − 1| ≤ α, where α is a
small number in (0,1), for all k ≤ K , the index K has to satisfy λK ≥ ηmin/α. Note further that
the last population eigenvalue that can be accurately estimated only needs to be larger than this
threshold, and there are no further requirements on the relative size of the following eigenvalue or
on the size of their gap. Therefore, taking K equal to one of the estimators of the detectable jumps
derived in the previous section is unnecessary and would be misleading, as in this way we would
identify only the consistent estimates of those population eigenvalues up to where jumps occur.
The following theorem shows how to identify the data-dependent number of sample eigenvalues
close to their population counterparts, under very mild assumptions.

Theorem 4.1. Let j ∈ {1,2} be fixed. Suppose � ∈ Pj (ε), for some ε ∈ (0,1) and that Assump-
tion 1 holds. For ε1 and Cj defined in (3.8) above, and for some given α ∈ (0,1), let

K̃j = max

{
k : λ̂k ≥ η̃j

Cj (1 − ε1)

(
1 + α−1)} (4.3)

for the data dependent η̃j given by (3.6) or (3.7) above. Then, |̂λk/λk − 1| ≤ α, for all k ≤ K̃j ,
with probability larger than 1 − 11n−1.

The study of the accuracy of the sample eigenvectors is more complex and Proposition 4.1
below shows that the accuracy of sample eigenvectors depends on both ηmin and the gaps between
successive eigenvalues. Recall that ψk is the eigenvector of � associated with λk and denote
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by ψ̂k the counterpart from the sample covariance matrix. The sign of ψ̂k is selected so that
ψ̂

′
kψk ≥ 0.

Proposition 4.1. Let Assumption 1 hold. Let ηmin be given by either (3.1) or (3.2). Assume that
λ1 > λ2 > · · · > λp > 0. Then, with probability 1 − 5n−1,

‖ψ̂k − ψk‖ ≤ ηmin

minλ∈EG(�),λ
=λk
|λ − λk| + 6(ηmin)

2

minλ∈EG(�),λ
=λk
|λ − λk|2 (4.4)

for each k = 1, . . . , n ∧ p.

The above proposition follows by combining Lemma A.1 in [20] with the results of Sec-
tion 2.2. Furthermore, by taking ηmin = η2 and using the same reasoning as the one following
Corollary 4.1, we can derive sharper bounds on the left-hand side of (4.4) than those derived, for
factor models, in Theorem 2 of [19]. These bounds will hold for all n and p, and are valid for
more general matrices �.

Proposition 4.1 makes it clear that, without further information on the degree of separation of
the spectrum of �, the scree plot method applied to the spectrum of �n, for any data-adaptive
threshold, cannot guarantee that the retained sample eigenvectors are close to their population
counterparts. The theorem below provides a simple way for evaluating accuracy of estimated
eigenvectors, based on the gaps between consecutive sample eigenvalues.

Theorem 4.2. Let 0 < α < 1 be given and define λ̂0 = +∞, and λ̂p+1 = 0. Let j ∈ {1,2} be
fixed. Suppose � ∈ Pj (ε), for some ε ∈ (0,1) and that Assumption 1 holds. Let ε1 and Cj as
defined in (3.8) above, and let η̃j be given by (3.6) or (3.7). Then for all k ≥ 1 such that

min(̂λk−1 − λ̂k, λ̂k − λ̂k+1) ≥ η̃j

Cj (1 − ε1)

(
2 + 3α−1), (4.5)

we have ‖ψ̂k − ψk‖ ≤ α, with probability larger than 1 − 11n−1.

Remark 4.1. The theorem shows that, in order to establish accuracy of a certain sample eigen-
vector, one just needs to check whether (4.5) holds. The procedure is general, but η̃j still depends
on unknown constants that in turn depend on the distribution of the data. We suggest the usage
of a cross-validation type criterion for practical use. Also, note that if both consistent eigenvalue
and eigenvector estimation is of interest, then one can use the scree plot method outlined in The-
orem 4.1 to determine the maximum number of consistent eigenvalues, then use the procedure
described in Theorem 4.2 to evaluate which of the retained eigenvectors are also consistent.

4.1. Population covariance matrices with polynomially decaying spectrum:
Accurate feature estimation

If Assumption 2 holds, we have knowledge of the degree of separation of the population spec-
trum. In this case, Theorem 4.2 suggests that we just need to find the largest k such that (4.5)
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holds, since (4.5) will hold for all smaller k. Furthermore, under Assumption 2, the two inequali-
ties in (4.3) and (4.5) will be equivalent. This means that we can use again the scree plot method
and develop a data-dependent threshold η̃ev that guarantees both eigenvalue and eigenvector con-
sistency. We formalize this below, again using η2 as the benchmark noise level. Results in terms
of η1 can be derived in a similar manner.

Theorem 4.3. Let 0 < α < 1 be given. Suppose that Assumption 1 holds and let ε1 be given by
(3.8) above. Under Assumption 2, define

η̃ev = C1λ

[
3η̃2

(1 − ε1)C3λα

]β1/β3

+ η̃2

1 − ε1
(4.6)

for η̃2 given in (3.7). Let

K̃ev = max{k : λ̂k ≥ η̃ev}.
Then ‖ψ̂k − ψk‖ ≤ α and |̂λk/λk − 1| ≤ α/3, for all k ≤ K̃ev, with probability larger than
1 − 11n−1.

5. An application to fPCA

In this section, we specialize our results to the analysis of sample covariance matrices constructed
from functional data. Let Xi(s), i = 1, . . . , n, denote an i.i.d. sample of trajectories from a Gaus-
sian process {X(t) : 0 ≤ t ≤ 1}, with covariance function K(s, t) = cov{X(s),X(t)}. Assume that
we observe discretized versions of these trajectories, possibly corrupted by noise

Yi(tj ) = μ(tj ) + Xi(tj ) + Eij , (5.1)

where μ(·) is the mean function and Eij are mean zero measurement errors that are independent
of Xi(·). Assume var(Eij ) = σ 2 is finite. We assume that all trajectories are observed at the same
set of m points {0 < t1 < t2 < · · · < tm−1 < tm < 1} in [0,1].

We consider classes of covariance operators satisfying the following assumptions.

Assumption A. K(s, t) is continuous and a positive semi-definite kernel.

Under Assumption A, Mercer’s theorem guarantees that K(s, t) admits the representation∑∞
k=1 ρkφk(s)φk(t), where {ρ1 ≥ ρ2 ≥ · · · ≥ 0} are non-decreasing eigenvalues and {φk(·), k =

1, . . .} are eigenfunctions that are orthonormal in L2[0,1]. Moreover,
∑

k ρk =: ρ0 < ∞.

Assumption B. supk sups∈[0,1] |φk(s)| is bounded by a constant C5λ.

Assumption C. ∂K(t,t)
∂t

is continuous in (0,1), right continuous at 0 and left continuous at 1.

Moreover,
∫ | ∂K(t,t)

∂t
|dt is finite.
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Assumption D. sups∈[0,1] |φ(1)
k (s)| ≤ C6λk

γ1 for all k where φ
(1)
k (s) is the derivative of φk and

C1, γ1 are positive constants. Here φ
(1)
k (0) is the right derivative of φk at 0 and φ

(1)
k (1) is the left

derivative of φk at 1.

Note that the trigonometric basis satisfies Assumptions B–D.

Assumption E. Assumption 2 of Section 3.1 holds for the eigenvalues of K, and moreover, β1 >

γ1.

Remark 5.1. All these assumptions hold for the Brownian motion and the Brownian bridge on
[0,1], with β1 = β2 = 2, β3 = 3, and γ1 = 1.

We denote by πm the projection mapping X(t) into an m-dimensional space R
m, defined

by πm(X) = (X(t1), . . . ,X(tm)). We refer to the distributions on R
m induced by πm as the

finite-dimensional distributions of X. Let K = m−1{K(tj1, tj2)}1≤j1,j2≤m be the scaled covari-
ance matrix for the m-dimensional distribution of X. Let Yi = {Yi(t1), . . . , Yi(tm)}′, Ȳ (t) =
n−1 ∑n

i=1 Yi(t) and Ȳ = {Ȳ (t1), . . . , Ȳ (tm)}′. To facilitate the application of the results derived
in the previous sections to functional data we denote

� = K + m−1σ 2Im. (5.2)

An estimate of � is the scaled sample covariance matrix, corresponding to discretely observed
trajectories:

�n = m−1n−1
∑

i

(Yi − Ȳ )(Yi − Ȳ )′.

To keep our presentation focused, we have employed the sample mean Ȳ as an estimator of the
mean function of the process. For the scenario we study below, of densely sampled trajectories,
Ȳ suffices. One may also use a smooth estimator, but then an appropriate equivalent of Proposi-
tion A.2 will be needed and it is deferred to future work.

We shall discuss in detail the usage of the scree plot method based on the sample covariance
matrix �n for estimating: (i) the location of jumps in the spectrum of the covariance operator
K; (ii) the number of sample eigenvalues and eigenvectors that are accurate estimates of their
population counterparts. The diagram below illustrates the connections needed for this analysis.{
K(s, t)

}
s,t∈[0,1] ←→1 K =: m−1{K(tj1 , tj2)

}
1≤j1,j2≤m

←→2 � =: K + m−1σ 2Im ←→3 �n.

First, recall that we assumed (Assumption E) that the spectrum of the covariance operator K
has polynomial decay, and that in Sections 3.1 and 4.1 we addressed in detail (i) and (ii) for
covariance matrices whose spectra have polynomial decay such that the largest eigenvalue and
the effective rank are both finite. In order to employ these results here, we need to identify a
matrix that can be formed from K by evaluating it at a discrete set of points and whose spectrum
has essentially the same properties as that of K. For us, this matrix is K defined above: without
scaling it by m their respective spectra cannot be close, as they are not of the same order. We show
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this in Proposition 5.1 below and, moreover, we show that the eigenvectors of K are close to the
vectors formed by evaluating the eigenfunctions of K at the time points (t1, . . . , tm). Assumptions
B–D above are crucial for establishing these connections. To account for error terms in model
(5.1), we will consider a slight modification of K, namely � defined above in (5.2), which has
features similar to K. We therefore expect that the scree plot method applied to �n will lead to
consistent estimates of (i) and (ii) above, and we show that this is indeed the case in Sections 5.2
and 5.3.

5.1. Finite approximations of eigenfunctions and eigenvalues

Here we provide a deterministic analysis of the quality of K as an approximation to K. With slight
abuse of notation, we denote the eigenvalues of K by {λ1, λ2, . . .} and the associated eigenvectors
by {ψ1,ψ2, . . .}. The eigenvalues and eigenvectors of � are then {λk +m−1σ 2,ψk}. We let φk =
m−1/2(φk(t1), . . . , φk(tm))′. Note that we intend to compare ψk , which is an eigenvector and
therefore has Euclidean norm equal to one, with φk , hence the need for scaling in its definition.
We also denote by EG(K) the spectrum of K. The following assumption is also needed.

Assumption F. For the fixed design points {tj : 1 ≤ j ≤ m}, there exists a constant M > 0 such
that M−1m−1 ≤ min0≤j≤m |tj+1 − tj | ≤ max0≤j≤m |tj+1 − tj | ≤ Mm−1. Here t0 = 0, tm+1 = 1.

Proposition 5.1. If Assumptions A–F hold and if m is sufficiently large so that m(1−β1)/(β1+γ1) ≤
1/12C7λ, for C7λ given in (A.6), then we have

sup
k≥1

|λk − ρk| ≤ C8λm
(1−β1)/(β1+γ1), (5.3)

where C8λ = C2
5λC1λ/(β1 − 1) + C1λ + 13C7λλ0 and also∣∣tr(K) − ρ0

∣∣ ≤ C9λm
−1 (5.4)

for some fixed positive constant C9λ, independent of m. Moreover, we have

‖ψk − φk‖ ≤ C8λm
(1−β1)/(β1+γ1)

minρ∈EG(K),ρ 
=ρk
|ρ − ρk|

(5.5)

+ 6

{
C8λm

(1−β1)/(β1+γ1)

minρ∈EG(K),ρ 
=λk
|ρ − ρk|

}2

+ 7C7λm
(1−β1)/(β1+γ1)

for all k ≤ m1/(β1+γ1).

To the best of our knowledge, the result in Proposition 5.1 is new. The proof is given in Ap-
pendix A.4.1. Whereas the global result (5.4) is an immediate consequence of approximating
integrals by finite sums, the derivation of (5.3) and (5.5) is much more involved, and depends
crucially on the behavior of the spectrum and eigenfunctions of the covariance operator K. The
combination of (5.3) and (5.4) immediately yields the result below.
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Corollary 5.1. Under the assumptions of Proposition 5.1, re(K) = O(1) and, moreover, re(�) =
O(1).

This result shows that the finite dimensional distributions of processes with eigenvalues de-
caying as in Assumption E automatically have scaled covariance matrices K of finite effective
rank.

5.2. Detectable jumps in the spectrum of a covariance operator

The results derived in Theorem 3.3 can be easily extended to the consistent estimation of an
index of the spectrum of the covariance operator where a jump occurs. The following theorem
shows that we can detect spectral jumps of an appropriate size via a data driven thresholding of
the spectrum of �n. Since Proposition 5.1 guarantees that the spectra of K and K are close, the
construction of these thresholds follows from Theorem 3.3.

Theorem 5.1. Suppose that X(t) is a Gaussian process with a covariance function that satisfies
Assumptions A–F. The assumption on m is the same as in Proposition 5.1. Let η2 be given by
(3.7). Assume n is sufficiently large such that the following mild technical condition holds,

(1 + ε1)
β1/β3 − (1 − ε1)

β1/β3 < C−1
1λ

(
3C−1

3λ

)−β1/β3η
1−β1/β3
2 .

If there exists an index s such that

ρs ≥ {
C4λ(1 + ε1)η2

}β1/β3 + C8λm
(1−β1)/(β1+γ1) + m−1σ 2 + η2,

ρs+1 <
{
C4λ(1 − ε1)η2

}β1/β3 − C8λm
(1−β1)/(β1+γ1) − m−1σ 2 − η2

with C4λ = 3C−1
3λ C

β3/β1
1λ , then

P
{̂
s
(
(C4λη̃2)

β1/β3
) = s

} ≥ 1 − 11n−1

for η̃2 given by (3.7) above.

Remark 5.2. We have stated Theorem 5.1 in terms of η2 given by (3.2) of Section 3 above. Since
re(�) and ‖�‖2 are finite in the context of Section 4, then η2 = O(

√
lnn/n). From the results

of Section 2.2, summarized in Table 1, we recall that this is the optimal bound on ‖�n − �‖2,
in the regime m = O{exp(n)}, as η2 is independent of m, and can therefore be employed even
if m → ∞. This facilitates the direct translation of our results to the ideal case of perfectly
sampled trajectories, when m = ∞. For each fixed m, the noise level η1 given by (3.1), of or-
der O(

√
lnnm/n) can also be employed, and in this case the data adaptive threshold will be a

function of η̃1.

Remark 5.3. Recall that for the Brownian motion β1 = β2 = 2, β3 = 3 and γ1 = 1. In this
case, Theorem 5.1 shows that by thresholding the sample covariance matrix at a level of
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OP {(lnn/n)1/3 + m−1/3} we can identify the location of the population eigenvalue larger
than the minimal level O{(lnn/n)1/3 + m−1/3}, as long as the following eigenvalue is also
O{(lnn/n)1/3 + m−1/3} apart. This is similar to the results of Section 3.1. The difference re-
sides in the existence of the extra additive term m−1/3, which quantifies the approximation error.

5.3. On the accuracy of the sample eigenvalues and eigenvectors selected
via thresholding methods for functional data

We specialize the results of Section 4 for data generated as in (5.1), and when Assumptions
A–F hold. For this, we first establish finite sample upper bounds for the sample eigenvalues and
eigenvectors.

Proposition 5.2. Suppose that X(t) is a Gaussian process with a covariance function that sat-
isfies Assumptions A–F. The assumption on m is the same as in Proposition 5.1. Let C10λ =
max(m−1σ 2 + c2ρ0,C8λ) where c2 is as in Theorem 2.1 and C8λ is as in Proposition 5.1. Define

ηf =: C10λ

(
η2 + m(1−β1)/(β1+γ1)

)
. (5.6)

Then with probability at least 1 − 5n−1, the following holds for each k:

|̂λk − ρk| ≤ ηf .

Furthermore, with probability at least 1 − 5n−1, for each 1 ≤ k ≤ m1/(β1+γ1),

‖ψ̂k − φk‖ ≤ ηf

minρ∈EG(K),λ
=ρk
|ρ − ρk| + 6η2

f

minρ∈EG(K),ρ 
=ρk
|ρ − ρk|2

(5.7)
+ 7C8λm

(1−β1)/(β1+γ1).

The proof of Proposition 5.2 follows directly from Proposition 5.1, Corollary 4.1, and Propo-
sition 4.1, hence the details are omitted.

Remark 5.4. Proposition 5.2 evaluates the accuracy of sample eigenvalues and eigenvectors as
a function of both the sample size and the number of observations per subject. In particular, for
the Brownian motion, we recall that η2 = O{(lnn/n)1/2} and thus

|̂λk − ρk| � (lnn/n)1/2 + m−1/3 for each k

with high probability. Reasoning as in Theorem 4.1 of Section 4, it also follows that the ratio
between all sample eigenvalues above ηf , or above an estimate of it, and the corresponding
theoretical values, will also be close to one, with high probability.

We recall that the accuracy of the sample eigenvectors also depends on how well separated
the eigenvalues of the operator K are from each other. Under our assumptions on the covariance
operator, we have control on the degree of separation. We can therefore derive the analogue of
Theorem 4.3 of Section 4 for functional data, and state it below.
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Theorem 5.2. Assume the settings in Proposition 5.2 hold. Then, with ηf given by (5.6) above
we define

ηop = C1λ

(
3ηf

C3λα

)β1/β3

+ ηf .

Let

Kop = max{k : λ̂k ≥ ηop}.
Then ‖ψ̂k − φk‖ ≤ α, for all k ≤ min{Kop,m

1/(β1+γ1)}, and |̂λk/ρk − 1| ≤ α/3, for all k ≤ Kop,
with probability larger than 1 − 11n−1.

Remark 5.5. The proof is immediate, and identical to the one of Theorem 4.3 above. In light of
Theorem 4.3, the result above continues to hold when ηf is replaced by an estimate; in order to
keep the presentation clear we contented ourselves here with the usage of the theoretical level
ηf . For the Brownian motion β1 = 2, γ1 = 1 and β3 = 3, resulting in

ηf = O
{
(lnn/n)1/2 + m−1/3} and ηop = O

{
(lnn/n)1/3 + m−2/9}.

Reasoning as in Section 4, we conclude that a thresholding level that is larger than the minimal
ηop guarantees the accuracy of the sample eigenvalues and eigenvectors. For the Brownian mo-
tion, the number of accurate sample eigenvectors is always upper-bounded by m1/3, but it may
be smaller, depending on the relative value of Kop.

Appendix A: Technical proofs

The proofs for the lemmas, propositions and theorems not included below are provided in the
supplemental article ([8]).

A.1. Technical proofs of Section 2

A.1.1. Three useful lemmas

Lemma A.1. Let X ∈ R
p be a generic vector. Let � = {u = (u1, . . . , up)′ ∈ R

p : |u1| = · · · =
|up| = 1}. Then for any positive integer d ,

‖X‖2d ≤ 1

2p

∑
u∈�

(
u′X

)2d
.

Remark A.1. In the following proofs, we will assume sometimes, without loss of generality,
that � is a diagonal matrix. This can be immediately justified as follows. Consider the eigende-
composition � = ODO ′, where O is an orthonormal matrix and D is a diagonal matrix. Then
cov(O ′X) = D and ‖X‖ = ‖O ′X‖. Similar arguments can be employed when we consider or-
thonormal transforms of matrices, and evaluate either their Frobenius or operator norm.
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Lemma A.2. Let X ∈ R
p be a zero-mean sub-Gaussian random vector that satisfies Assump-

tion 1. For any positive integer d ,

E‖X‖2d ≤ (2d)d

cd
0

[
tr(�)

]d
.

Lemma A.3. Let X ∈ R
p be a zero-mean sub-Gaussian random vector and satisfies Assump-

tion 1. Then

‖‖X‖‖2
ψ2

≤ 2 tr(�)

c0
.

A.1.2. Proof of the statements in Example 2.2

Proof of the statements in Example 2.2. We only need to show that X is sub-Gaussian and
satisfies Assumption 1. Let u ∈R

p be an arbitrary non-random vector. Then for any t ≥ 0,

E exp
(
tu′X

) =
p∏

j=1

E exp(tujXj ) ≤
p∏

j=1

exp
{
(tuj

√
�jj )

2σ 2/2
} = exp

{
t2(u′�u

)
σ 2/2

}
,

where the last equality holds because � is a diagonal matrix as the components of X are indepen-
dent. Hence, u′X is sub-Gaussian and X is a sub-Gaussian random vector. The above inequality
also implies

E exp
{
t
(
u′X

)
/
√

u′�u
} ≤ exp

(
t2σ 2/2

)
.

By Lemma 5.5 in [25], there exists a constant c0 (depends only on σ 2) such that
√

c0‖(u′X)/√
u′�u‖ψ2 ≤ 1. By the linearity of the sub-Gaussian norm, we have c0‖u′X‖2

ψ2
≤ u′�u as de-

sired. �

A.1.3. Proofs of Theorems 2.1 and 2.2

For our analysis, we write �n = �∗
n − X̄X̄′, where �∗

n = n−1 ∑n
i=1 XiX

′
i . Then ‖�n − �‖F ≤

‖�∗
n − �‖F + ‖X̄‖2 and ‖�n − �‖2 ≤ ‖�∗

n − �‖2 + ‖X̄‖2. Hence to derive the upper bounds
for ‖�n − �‖2

F and ‖�n − �‖2
2, we just need to obtain the upper bounds for ‖�∗

n − �‖2
F ,

‖�∗
n − �‖2

2 and ‖X̄‖4. Because of the fact that P(X + Y ≥ c + d) ≤ P(X ≥ c) + P(Y ≥ d) for
any two univariate random variables X and Y and arbitrary numbers c and d , to study the tail
behaviors of ‖�n −�‖F and ‖�n −�‖2, we only need to study those of ‖�∗

n −�‖F , ‖�∗
n −�‖2

and ‖X̄‖2. As a result, Theorem 2.1 is proved by combining Propositions A.2 and A.3, and
Theorem 2.2 is proved by combining Propositions A.2 and A.4. Materials that are needed for
proving Propositions A.3 and A.3 are provided in the next two subsections.

We begin with the study of X̄X̄′. Since this is a rank 1 matrix, we make use of the basic
fact ‖X̄X̄′‖F = ‖X̄X̄′‖2 = ‖X̄‖2. The following proposition is instrumental in the proofs of
Propositions A.2 and A.3.
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Proposition A.1. Let Assumption 1 hold. There exist two fixed positive constants C∗, c∗ such
that, if |t | > c∗(4c−1

0 + 1) tr(�),

E exp

{‖X‖2 − tr(�)

t

}
≤ exp

{
C∗

[
(4c−1

0 + 1) tr(�)

t

]2}
.

Proof. Let ‖ · ‖ψ1 be the sub-exponential norm of a sub-exponential random variable (see Defi-
nition 5.13 of [25]). We have∥∥‖X‖2 − tr(�)

∥∥
ψ1

≤ ∥∥‖X‖2
∥∥

ψ1
+ ∥∥tr(�)

∥∥
ψ1

≤ 2‖‖X‖‖2
ψ2

+ tr(�) (A.1)

≤ tr(�)
(
4c−1

0 + 1
)
.

For the second inequality above, we used Lemma 5.14 of [25] and for the third inequality we
used Lemma A.3. Because ‖X‖2 − tr(�) is a zero-mean sub-exponential random variable, by
Lemma 5.15 of [25], there exist two fixed constants C∗, c∗ such that if |t | ≥ c∗‖‖X‖2 − tr(�)‖ψ1 ,

E exp

{‖X‖2 − tr(�)

t

}
≤ exp

{
C∗

‖‖X‖2 − tr(�)‖2
ψ1

t2

}
.

Combining (A.1) with the above inequality, we obtain the proposition. �

Proposition A.2. Let Assumption 1 hold. For any t ≥ 0,

P

{
‖X̄‖2 ≥ 1 + c1t

n
· tr(�)

}
≤ exp(1 − t), (A.2)

where c1 = max{max(
√

C∗, c∗)(4c−1
0 + 1),2} is a constant. Furthermore,

E
(‖X̄‖4) ≤ {

1 + 2
(
c2

1 + c1
)

exp(1)
} tr(�)2

n2
.

Proof. It is straightforward to verify that
√

nX̄ is sub-Gaussian and satisfies Assumption 1
with the same c0. Applying the Markov inequality to exp(n‖X̄‖2) we obtain, for any a > 0,

x ≥ c∗(4c−1
0 + 1) tr(�),

P
{
n‖X̄‖2 − tr(�) ≥ a

} ≤ exp
(−at−1)

E exp
{
x−1[n‖X̄‖2 − tr(�)

]}
≤ exp

(−ax−1) exp

{
C∗

[
(4c−1

0 + 1) tr(�)

x

]2}
,

where the last inequality holds by Proposition A.1. By letting x = c1 tr(�) and a = tx we obtain
(A.2). The expectation inequality is proved in the supplemental article ([8]). �
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Next, we study �∗
n − �. Let Zi = XiX

′
i − �. Then E(Zi) = 0 and �∗

n − � = n−1 ∑n
i=1 Zi .

We begin by stating the bounds with respect to the Frobenius norm.

Proposition A.3. Let Assumption 1 hold. For all n ≥ 1 and t ≥ 0:

P

{∥∥�∗
n − �

∥∥
F

≥ 2c1[
√

2 exp(1) + 8
√

t] · tr(�)√
n

}
≤ 2 exp

{−min(t,2
√

nt)
}
, (A.3)

where c1 is defined in Proposition A.2. Furthermore,

E
(∥∥�∗

n − �
∥∥2

F

) ≤
[

4c1 tr(�)√
n

]2

c2,

where c2 = exp(1) + ∫ ∞
0 exp{− 1

64 min(t,16
√

t)}dt .

Proof. By Theorem A.2, the Frobenius norm is 2-smooth on the space R
p×p of p × p real

matrices. Hence by Proposition A.5 and Theorem A.1,

P

{∥∥�∗
n − �

∥∥
F

≥ 2c1[
√

2 exp(1) + t] · tr(�)√
n

}
≤ 2 exp

{
− 1

64
min

(
t2,16t

√
n
)}

.

Inequality (A.3) follows by changing t to 8
√

t in the above inequality. The expectation inequality
is proved in the supplemental article ([8]). �

Proposition A.4. Let Assumption 1 hold. For all n ≥ 1 and t ≥ 0:

P

{∥∥�∗
n − �

∥∥
2 ≥ c3 · ‖�‖2 · max

{√
re(�)(t + lnp)

n
,
re(�)(t + lnp)

n

}}
≤ exp(−t), (A.4)

where c3 is a fixed constant that depends only on c0. Furthermore,

E
(∥∥�∗

n − �
∥∥2

2

) ≤ 5c2
3 · ‖�‖2

2 · max

{
re(�) · lnp

n
,

(
re(�) · lnp

n

)2}
.

Proof. Let Zi = XiX
′
i − �, then E(Zi) = 0. We derive that �∗

n = n−1 ∑n
i=1 XiX

′
i = n−1 ×∑n

i=1 Zi + � and hence ‖�∗
n − �‖2 = ‖n−1 ∑n

i=1 Zi‖2. With Proposition A.6, the probability
inequality (A.4) is proved by applying Theorem A.3. The expectation inequality is proved in the
supplemental article ([8]). �

A.1.4. Supplemental materials for proving Proposition A.3

The proof of Proposition A.3 consists in adapting results in [18] to our context and verifying its
hypotheses. For completeness, we state these results below.
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Theorem A.1. Let (E, ||| · |||) be κ-smooth with a norm ||| · ||| on E. Let {Z1,Z2, . . .} be E-valued,
zero-mean and independent. Assume that there exists a sequence of positive numbers {σ1, σ2, . . .}
such that E{exp(σ−1

i |||Zi |||)} ≤ exp(1), i ≥ 1. Then for all n ≥ 1 and t ≥ 0:

P

{∣∣∣∣∣∣∣∣∣∣∣∣Z1 + · · · + Zn

n

∣∣∣∣∣∣∣∣∣∣∣∣ ≥
√

exp(1)κ + t

n

√√√√ n∑
i=1

σ 2
i

}
≤ 2 exp

{
− 1

64
min

(
t2, t t∗n

)}
,

where t∗n = 16
√∑n

i=1 σ 2
i /max1≤i≤n σi .

Remark A.2. Theorem A.1 is a special case of Theorem 4.1 in [18] and the definition of a κ-
smooth space is on page 3 therein.

Theorem A.2. Let 2 ≤ p < ∞. The Schatten norm ‖Z‖p = {∑j [dj (Z)]p}1/p on the space
R

m×n of m × n real matrices, where d1(Z) ≥ d2(Z) ≥ · · · are the singular values of Z, is
κp(m,n)-smooth with

κp(m,n) = min
2≤ρ<∞,ρ≤p

{
max(2, ρ − 1)

}{
min(m,n)

}2/ρ−2/p
.

Remark A.3. Theorem A.2 is Example 3.3 in [18]. For p = 2 we have the Frobenius norm which
is κ-smooth with κ = 2.

Proposition A.5. Let Z = XX′ − �. Then E{exp[t−1‖Zi‖F ]} ≤ exp(1), for any t ≥ 2c1 tr(�),
where c1 is defined in Proposition A.2.

Proof. First we have ‖Z‖F = ‖XX′ − �‖F ≤ ‖XX′‖F + ‖�‖F = ‖X‖2 + ‖�‖F . It is easy to
show that ‖�‖F ≤ tr(�). Hence,

E
{
exp

[
t−1‖Z‖F

]} ≤ exp
{
t−1[‖�‖F + tr(�)

]}
E

{
exp

[
t−1(‖X‖2 − tr(�)

)]}
≤ exp

{
2t−1 tr(�)

}
exp

{
C

[
(4c−1

0 + 1) tr(�)

t

]2}
≤ exp(1)

as desired if t > 2c1 tr(�). In the above derivation, we used Proposition A.1. �

A.1.5. Supplemental materials for proving Proposition A.4

To derive the set of bounds on ‖�n − �‖2 presented in Proposition A.4, we will appeal to the
following result, which is adapted from Theorem 6.2 in [24].

Theorem A.3. Let {Zi, i = 1, . . . , n} be a sequence of independent and identically distributed
symmetric matrices of dimension p. Assume that there exist positive quantities R and σ such that

E(Zi) = 0 and
∥∥E

(
Zd

i

)∥∥
2 ≤ d!

2
· Rd−2σ 2 for d = 2,3, . . . . (A.5)
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Then for all t ≥ 0, with probability at least 1 − exp(−t),∥∥∥∥Z1 + · · · + Zn

n

∥∥∥∥
2
< 3 · max

{
σ

√
t + lnp

n
,R

t + lnp

n

}
.

The proof of Proposition A.4 consists in the non-trivial verification of condition (A.5). We do
this in the following proposition and two lemmas.

Proposition A.6. Let Assumption 1 hold, and define Z = XX′ − �, where � is the covariance
matrix of X. Let c̃1 = supd≥1 exp(−d)dd/d!, c̃2 = c̃1c

2
0 exp(−1) + c̃1 exp(−1)/4 + 3 and c̃3 =

max{4 exp(1)/c0,1}. If we let R = 2c̃3 · tr(�) and σ 2 = c̃2c̃
2
3 · tr(�) · ‖�‖2, then

∥∥E(
Zd

)∥∥
2 ≤ d!

2
· Rd−2σ 2 for d = 2,3, . . . .

Lemma A.4. Suppose A,B ∈ R
p×p are two positive semi-definite matrices. Let ODO ′ be an

eigendecomposition of A − B with D = diag(λ1, . . . , λp). Let D+ = diag(|λ1|, . . . , |λp|). Then
OD+O ′ ≤ A + 2‖B‖2 · Ip , where the notation “≤” was used to compare two matrices and for
two matrices E1 and E2, E1 ≤ E2 implies E2 − E1 is psd.

Lemma A.5. Suppose A,B ∈R
p×p are two positive semi-definite matrices. Fix u ∈R

p . For an
arbitrary positive integer d ,

u′(A − B)du ≤ ‖A − B‖d−1
2

{
u′(A + 2‖B‖2 · Ip

)
u
}
.

A.1.6. Proof of Theorem 2.3

Proof of Theorem 2.3. Observe that tr(�n) = tr(�∗
n) + ‖X̄‖2. With Proposition A.2, it suffices

to show that

P
{∣∣tr(�∗

n

) − tr(�)
∣∣ ≥ 2c1

√
t/n · tr(�)

} ≤ 2 exp(−t)

for any t ≥ 0. By the Markov inequality, if nx ≥ c1 tr(�),

P
{
tr
(
�∗

n

) − tr(�) ≥ a
} ≤ exp

(−ax−1)
E exp

{
x−1[tr(�∗

n

) − tr(�)
]}

≤ exp
(−ax−1){

E exp
{
n−1x−1[‖X‖2 − tr(�)

]}}n

≤ exp
(−ax−1) exp

{
C∗

[
(4c−1

0 + 1) tr(�)√
nx

]2}
,

where in the last inequality we used Proposition A.1. By letting x = c1 tr(�)/
√

nt and a =
2c1 tr(�) · √t/n we obtain from the above inequality that

P
{
tr
(
�∗

n

) − tr(�) ≥ 2c1
√

t/n · tr(�)
} ≤ exp(−t).
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With a similar argument, we can obtain

P
{
tr
(
�∗

n

) − tr(�) ≤ −2c1
√

t/n · tr(�)
} ≤ exp(−t)

which completes the proof. �

A.1.7. Bounds on re(�n)

Theorem A.4. Suppose X is a random vector that satisfies Assumption 1. Let n > 1. If � ∈
P1(ε), then with probability 1 − 11n−1,∣∣∣∣ re(�n)

re(�)
− 1

∣∣∣∣ � max

{√
re(�) · lnpn

2n
,
re(�) · lnpn

n

}
.

If � ∈P2(ε), then with probability 1 − 11n−1,∣∣∣∣ re(�n)

re(�)
− 1

∣∣∣∣ � re(�) · lnn

n
.

A.2. Technical proofs of Section 3

Proof of Theorem 3.1. The proof follows from arguments similar to those used in Theorem 2 of
[7]. We sketch it here for completeness. Note that ŝ (̃τ ) = s is equivalent to λ̂s ≥ τ̃ and λ̂s+1 < τ̃ ,
or equivalently, λs − λ̂s ≤ λs − τ̃ and λ̂s+1 −λs+1 ≤ τ̃ −λs+1. By Weyl’s theorem, Theorem 2.1
and Theorem 2.2, with probability larger than 1 − 5n−1, |̂λk − λk| ≤ ‖�n − �‖2 ≤ ηj , for all k.
Therefore, with (3.5), it suffices to have λs − τ1 ≥ ηj and τ2 − λs+1 ≥ ηj , which is (3.4). �

Proof of Theorem 3.2. The proof is an application of Theorem 3.1 with τ1 = 2(1 + ε1)ηj /Cj

and τ2 = 2Cj (1 − ε1)ηj , and we just need to verify inequality (3.5) for appropriately chosen δ.
By Theorem 2.3, with probability 1 − 5n−1, | tr(�n) − tr(�)| ≤ ε1 tr(�). Let ε2 = (1 + c1 +
c3)

√
ε. For � ∈ P1(ε), by Theorem 2.2, with probability at least 1 − 4n−1, ‖�n − �‖2 ≤

ε2‖�‖2. Therefore, it is easy to show that, for � ∈ P1(ε), with probability at least 1 − 6n−1,√
(1 − ε1)(1 − ε2)η1 ≤ η̃1 ≤ √

(1 + ε1)(1 + ε2)η1, and 0.9(1 − ε1)η1 ≤ η̃1 ≤ (1 + ε1)η1/0.9
with the assumption that ε2 ≤ 0.19. For � ∈ P2(ε), with probability at least 1 − 5n−1,
(1 − ε1)η2 ≤ η̃2 ≤ (1 + ε1)η2. �

Proof of Theorem 3.3. The theorem is proved by combining Theorem 3.1 and the probability
inequality P{(1 − ε1)η2 ≤ η̃2 ≤ (1 + ε1)η2} ≥ 1 − 5n−1. �

A.3. Technical proofs of Section 4

Proof of Theorem 4.2. Note first that

min
λ∈EG(�),λ
=λk

|λ − λk| = min(λk−1 − λk,λk − λk+1),
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where we let λ0 = +∞ and λp+1 = 0. By Weyl’s theorem and the results in Section 4, it is easy
to show that

min(λk−1 − λk,λk − λk+1) ≥ min(̂λk−1 − λ̂k, λ̂k − λ̂k+1) − 2ηmin,

with probability larger than 1 − 5n−1. Because with probability larger than 1 − 6n−1, η̃j ≥
Cj (1 − ε1)ηmin, the assumption (4.5) in the theorem implies with probability larger than 1 −
11n−1,

min(λk−1 − λk,λk − λk+1) ≥ 3ηmin/α,

and the theorem holds by Proposition 4.1. �

Proof of Theorem 4.3. Note that with probability larger than 1 − 6n−1, η̃ev ≥ C1λ(
3η2

C3λα
)β1/β3 +

η2. It follows that with probability larger than 1 − 11n−1, λk ≥ λ̂k − η2 ≥ C1λ(
3η2

C3λα
)β1/β3 , for all

k ≤ K̃ev. By Assumption 2, we derive that k ≤ (
3η2

C3λα
)−1/β3 and λk − λk+1 ≥ C3λk

−β3 ≥ 3η2/α.

Therefore by Proposition 4.1, with probability larger than 1 − 11n−1, for all k ≤ K̃ev,

‖ψ̂k − ψk‖ ≤ η2

3η2/α
+ 6η2

2

9η2
2/α

2
≤ α,

and ∣∣∣∣ λ̂k

λk

− 1

∣∣∣∣ ≤ η2

λk

≤ η2

λk − λk+1
≤ α

3
. �

A.4. Technical proofs of Section 5

A.4.1. Proof of Proposition 5.1

Proof of Proposition 5.1. First, notice that ρ0 is the integral
∫

K(t, t)dt , while tr(K) =
m−1 ∑m

j=1 K(tj , tj ) is a finite approximation to the integral. Hence, equality (5.4) can be easily
proved because of Assumption D.

To prove (5.3) and (5.5), we need some initial derivations. By Assumptions D, E and F, we
have ∣∣φ′

k1
φk2

− δk1,k2

∣∣ ≤ C7λ max(k1, k2)
γ1/m (A.6)

for all k1 and k2. Here C7λ is a fixed constant that depends only on C6λ in Assumption D and
δk1,k2 equals 1 if k1 = k2 and 0 otherwise. Let �x� be the smallest integer that is no smaller
than x. Define N = �m1/(β1+γ1)� < m. Let A = [φ1, . . . ,φN ] be an m × N matrix and let D =
diag(λ1, . . . , λN). It follows that

K =
∑

k

λkφkφ
′
k = ADA′ +

∑
k>N

λkφkφ
′
k,
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and hence ∥∥K − ADA′∥∥
F

=
∥∥∥∥∑

k>N

λkφkφ
′
k

∥∥∥∥
F

≤
∑
k>N

λk

∥∥φkφ
′
k

∥∥
F

=
∑
k>N

λk‖φk‖2.

By Assumption E, λk ≤ C1λk
−β1 . Hence,

∑
k>N

λk ≤
∫ ∞

N

C1λx
−β1 dx = C1λ

1 − β1
x1−β1

∣∣∣∣∞
N

= C1λN
1−β1

β1 − 1
.

Combining the results above with (A.6), we obtain

∥∥K − ADA′∥∥
F

=
∑
k>N

λk‖φk‖2 ≤ C2
5λ

∑
k>N

λk ≤ C2
5λC1λ

β1 − 1
N1−β1 , (A.7)

where C5λ is an upper bound for all φk (see Assumption B). Next, we study the term ADA′.
Consider a QR decomposition of A, where Q is an m × N matrix with orthonormal columns
and R is an N × N upper-triangular matrix. Then ADA′ = Q(RDR′)Q′. Let Q and R be given
as in Lemma A.6 below. We can further derive for all 1 ≤ i, k ≤ N ,∣∣R2

ik − δi,k(1 + ri)
2
∣∣ ≤ 5C7λk

γ1

m
≤ 5C7λN

γ1

m

and for all 1 ≤ i, k, j ≤ N with i 
= j ,

|RikRjk| ≤ 5C7λk
γ1

m
≤ 5C7λN

γ1

m
.

We let D̃ = RDR′ and compute d̃ij below. First,

d̃ii =
∑

k

λkR
2
ik =

∑
1≤k≤N

λk

{
R2

ik − δi,k(1 + ri)
2} +

∑
1≤k≤N

λkδi,k(1 + ri)
2

and hence ∣∣d̃ii − λi(1 + ri)
2
∣∣ ≤

∑
1≤k≤N

λk

5C7λN
γ1

m
= 5C7λρ0N

γ1

m
.

Furthermore,

(d̃ii − λi)
2 ≤ (

d̃ii − λi − 2λiri − λir
2
i

)2 + (
2λiri + λir

2
i

)2

≤ 25ρ2
0C2

7λN
2γ1/m2 + 144λ2

i C
2
7λN

2+2γ1/m2.

Next for i 
= j ,

|d̃ij | =
∣∣∣∣∑

k

λkRikRjk

∣∣∣∣ ≤ 5ρ0C7λN
γ1

m
.
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It follows that

‖D̃ − D‖2
F =

∑
ij

(d̃ij − λiδij )
2 =

∑
i

(d̃ii − λi)
2 +

∑
i 
=j

d̃2
ij

≤ m−2
N∑

i=1

{
25ρ2

0C2
7λ + 144λ2

i C
2
7λN

2}N2γ1 + m−2
∑
i 
=j

25ρ2
0C2

7λN
2γ1

≤ 169C2
7λρ

2
0N2+2γ1/m2,

and hence ∥∥ADA′ − QDQ′∥∥
F

= ‖D̃ − D‖F ≤ 13C7λρ0N
1+γ1m−1. (A.8)

Inequalities (A.7) and (A.8) together lead to

∥∥K − QDQ′∥∥
F

≤ C2
5λC1λN

1−β1

β1 − 1
+ 13C7λρ0N

1+γ1

m
. (A.9)

Now we are ready to prove (5.3) and (5.5). First, we invoke Weyl’s theorem ([16], page 181),
to obtain, for each k,

|λ̃k − λk| ≤ ∥∥K − QDQ′∥∥
2 + 1{k>N}λk

≤ C2
5λC1λN

1−β1

β1 − 1
+ 13C7λρ0N

1+γ1

m
+ C1λN

−β1 (A.10)

≤ C8λm
(1−β1)/(β1+γ1),

where C8λ = C2
5λC1λ/(β1 − 1) + C1λ + 13C7λρ0 is a fixed constant and recall that N =

�m1/(β1+γ1)�. Since the upper bound in the above derivation does not depend on k, we obtain
(5.3).

Finally, we prove (5.5). As in Lemma A.6 below, we denote the columns of Q by v1, . . . ,vN .
Then for 1 ≤ k ≤ N , φk = ∑k

j=1 Rkj vj . It follows that

‖φk − vk‖ ≤
k∑

j=1

|Rkj − δk,j | ≤ |rk| +
k∑

j=1

3C7λj
γ1/m

(A.11)
≤ 7C7λk

1+γ1/m ≤ 7C7λN
1+γ1/m.

Next by Lemma A.1 in [20] (see also inequality (A.6) of [19]), we obtain from (A.9) that

‖ψk − vk‖ ≤ C8λm
(1−β)/(β+γ1)

minλ∈EG(K),λ
=λk
|λ − λk| + 6

{
C8λm

(1−β)/(β+γ1)

minλ∈EG(K),λ
=λk
|λ − λk|

}2

. (A.12)

Inequalities (A.11) and (A.12) together gives (5.5) which completes the proof. �
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Lemma A.6. Suppose the assumptions in Proposition 5.1 hold. Let A = [φ1, . . . ,φN ] be an
m × N matrix. Let (Q,R) be a QR decomposition of A where Q is an m × N matrix with
orthonormal columns and R is an N × N upper-triangular matrix. Denote the (k, j)th element
of R by Rkj . Let N be a positive integer such that 12C7λN

1+γ1 ≤ m where C7λ is the constant
as in inequality (A.6). If A has full rank, then there exists a pair of Q and R such that if k > j ,
Rkj = 0 and if k ≤ j ,

|Rkj − δk,j − δk,j rk| ≤ 3C7λj
γ1/m,

where rk is defined in such a way that for all k ≤ N

|rk| ≤ 4C7λk
1+γ1/m.
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