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The univariate quantile–quantile (Q–Q) plot is a well-known graphical tool for examining whether two
data sets are generated from the same distribution or not. It is also used to determine how well a specified
probability distribution fits a given sample. In this article, we develop and study a multivariate version of
the Q–Q plot based on the spatial quantile. The usefulness of the proposed graphical device is illustrated
on different real and simulated data, some of which have fairly large dimensions. We also develop certain
statistical tests that are related to the proposed multivariate Q–Q plot and study their asymptotic properties.
The performance of those tests are compared with that of some other well-known tests for multivariate
distributions available in the literature.
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1. Introduction

The univariate quantile–quantile (Q–Q) plot is a diagnostic tool, which is widely used to as-
sess the distributional similarities and differences between two independent samples (see, e.g.,
Gnanadesikan and Wilk [18], Gnanadesikan [17] and Chambers et al. [9]). As discussed in
Doksum [12], Doksum and Sievers [13] and Koenker ([23], pages 31 and 32), there are some
fundamental connections between the Q–Q plot and the two-sample problem involving a semi-
parametric treatment effect model. The Q–Q plot is also a popular device for checking the appro-
priateness of a specified probability distribution for a given univariate data. While the univariate
Q–Q plot has a long history as a graphical tool for data analysis, there are only limited attempts in
the literature to generalize the Q–Q plot for multivariate samples. One can construct the Q–Q plot
for multivariate data using the marginal quantiles. However, a Q–Q plot based on the marginal
quantiles fails to capture the nature of dependence among the marginals of a multivariate distri-
bution. Such a Q–Q plot can only compare the marginal distributions, but it is inadequate for a
proper comparison of two multivariate distributions because the marginal quantiles do not char-
acterize a multivariate distribution (see the supplemental article (Dhar, Chakraborty and Chaud-
huri [11]) for an illustrative example).
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Breckling and Chambers [7], Chaudhuri [10] and Koltchinskii [24] extensively studied a mul-
tivariate quantile, which is popularly known as the spatial quantile. Koltchinskii ([24], Corol-
lary 2.9, page 446) established that these spatial quantiles characterize multivariate distributions.
In this article, we propose an extension of the Q–Q plot using the spatial quantiles for multivariate
data. As we will see in subsequent sections, these Q–Q plots are in many ways natural gener-
alizations of the univariate Q–Q plot. In particular, for a d-dimensional multivariate data, there
will be d two-dimensional plots, where the points in each plot cluster around a straight line with
slope = 1 and intercept = 0 if and only if the two multivariate distributions under comparison
are identical.

Motivated by the one-sample Q–Q plot, Shapiro and Wilk [33] proposed a test for normality
of univariate data. We also propose and study some statistical tests for multivariate distribu-
tions, which are related to our multivariate Q–Q plots. In our numerical and asymptotic studies,
those tests turn out to have either comparable or superior performance when compared with the
Kolmogorov–Smirnov and the Cramer–von Mises tests for multivariate distributions.

2. Multivariate Q–Q plots

Recall that a univariate Q–Q plot based on two samples with sizes n and m consists of r (r =
n+m if n �= m and r = n if n = m) points in the two-dimensional plane, where for i = 1,2, . . . , r ,
the two coordinates of the ith point are the (i/r)th quantiles of the two samples. Here, in order
to compare the quantiles, one has to match the quantiles of one data set with the corresponding
quantiles of another data set. Easton and McCulloch [14] made an attempt to solve a similar
matching problem for multivariate data. Their procedure was based on the permutation of the
data that produced the minimum sum of the Euclidean distances between the matching data
points in the two given samples. Consequently, in order to assess how well a specified probability
distribution fits a given multivariate sample, they used a sample simulated from the specified
distribution. The Q–Q plots proposed by them can be used in two-sample problems only if the
two samples have the same size. In this paper, we use a matching procedure based on the spatial
rank and the spatial quantile. The procedure is computationally simple and can be used in a
two-sample problem even if the two samples do not have the same size. Further, in the case of a
one-sample problem, where one tries to test whether a specified distribution fits the data well or
not, the construction of our Q–Q plot does not require generation of a sample from the specified
distribution.

The spatial rank of z ∈ R
d with respect to the data cloud formed by the observations

X = {x1, . . . ,xn} is defined as n−1 ∑
i:xi �=z ‖z − xi‖−1(z − xi ) (see, e.g., Möttönen and Oja [29],

Chaudhuri [10] and Serfling [32]). For a random vector x with a probability distribution
F on R

d , the d-dimensional spatial quantile QF (u) = (QF,1(u), . . . ,QF,d(u)) is defined as
QF (u) = arg minQ∈Rd E{�(u,x − Q) − �(u,x)} (see Chaudhuri [10] and Koltchinskii [24]).
Here �(u, s) = ‖s‖ + 〈u, s〉, u ∈ Bd = {v: v ∈ R

d ,‖v‖ < 1}, 〈·, ·〉 is the Euclidean inner
product, and ‖ · ‖ is the Euclidean norm induced by the inner product. For a random sample
X = {x1, . . . ,xn}, the empirical spatial quantile QX (u) = (QX ,1(u), . . . ,QX ,d (u)) is obtained
by replacing F with its empirical version Fn. When different coordinate variables in a multivari-
ate data are measured in different units, the spatial quantiles and the spatial ranks are usually
computed after standardizing each coordinate variable appropriately. Note that when our objec-
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tive is to compare the distributions of two random vectors x and y, the problem is equivalent
to comparing the distributions of A−1x and A−1y, where A is any appropriate positive definite
matrix used to standardize the variables.

We now consider a one-sample multivariate problem involving a d-dimensional data set
X = {x1, . . . ,xn}, where xi = (xi,1, . . . , xi,d) has distribution F , and let F0 be a specified prob-
ability distribution on R

d . Let u1, . . . ,un be the spatial ranks of the data points xi , i = 1, . . . , n.
Suppose that QF0(uk) = (QF0,1(uk), . . . ,QF0,d (uk)) is the uk th spatial quantile of the specified
distribution F0, where k = 1, . . . , n. Note that since QX (uk) = xk , where QX (uk) is the uk th
empirical spatial quantile of the data set X , a natural way of matching the quantiles of the data
set with those of the specified probability distribution will be by setting the correspondence be-
tween xk and QF0(uk) (see also Marden [27,28]). Consider the set of points in R

2 defined as
Sn,i(X ,F0) = {(xk,i ,QF0,i (uk)): k = 1, . . . , n}, where QF0,i (uk) and xk,i are the ith compo-
nents of QF0(uk) and xk , respectively, and i = 1, . . . , d . In particular, when d = 1, Sn,1(X ,F0)

coincides with the set of points that form the univariate Q–Q plot for the one-sample problem.
Theorem 2.1, stated below, ensures that for all i = 1, . . . , d , the points in the ith two-dimensional
plot will lie close to a straight line with slope = 1 and intercept = 0 if and only if F = F0.

Theorem 2.1. Suppose that F0 is a specified distribution having a positive density function,
which is bounded on every bounded subset of R

d (d ≥ 2), and the same is true for F , the true
distribution of the data. Assume that Sn,i(X ,F0) is constructed using the uk’s lying in any given
closed ball in R

d with the center at the origin and the radius strictly smaller than one. Let L(ε)

be the collection of points that lie in an ε-neighborhood of a straight line with slope = 1 and
intercept = 0. Then, for every ε > 0, we have

lim
n→∞P

(
d⋂

i=1

[
Sn,i(X ,F0) ⊆ L(ε)

]) = 1,

if and only if F = F0.

An implication of Theorem 2.1 is that the plots constructed using Sn,i(X ,F0) for i = 1, . . . , d

can be used, just like the univariate Q–Q plot, to determine whether the specified distribution F0
fits the data well or not. In practice, F0 may involve some unspecified parameters that need to be
estimated from the data. For instance, there may be some unknown location and scatter parame-
ters associated with F0, and we can estimate them using standard techniques like the maximum
likelihood method. In such a case, we can make an affine transformation of the data using the
maximum likelihood estimates of the location and the scatter parameters. In view of the asymp-
totic consistency of the maximum likelihood estimate under appropriate conditions, the assertion
in Theorem 2.1 about the linearity of the Q–Q plots remains valid if we construct the Q–Q plots
using such transformed data, and the data are actually generated from F0. One may also use
other consistent estimates of the location and the scale parameters having high breakdown points
(e.g., the minimum covariance determinant estimates; see Rousseeuw and Leroy [30]), which are
robust against outliers. It will be appropriate to point out that Easton and McCulloch [14] also
proposed an affine transformation of the data before constructing their Q–Q plots in the one-
sample problem. Their proposal is not related in any way to the maximum likelihood estimation
based on the specified distribution F0, and it involves an iterative algorithm for computing the
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affine transformation. Easton and McCulloch [14] did not consider the case when the specified
distribution involves unknown parameters other than the location and the scatter parameters. Any
such parameter can be estimated by the maximum likelihood method using F0 and the data.

We next consider the two-sample multivariate problem involving two independent d-
dimensional data sets, namely, X = {x1, . . . ,xn} and Y = {y1, . . . ,ym}, where xi = (xi,1, . . . ,

xi,d) has distribution F , and yj = (yj,1, . . . , yj,d ) has distribution G. Suppose that u1, . . . ,un

and un+1, . . . ,un+m are the spatial ranks of these observations within their respective data
sets X and Y , respectively. As in the case of the one-sample problem, QX (uk) = xk for
k = 1, . . . , n, and QY (uk) = yk for k = n + 1, . . . , n + m. We compute QX (uk) for k =
n + 1, . . . , n + m and QY (uk) for k = 1, . . . , n using the algorithm given in Chaudhuri ([10],
pages 864 and 865). Then, we can match the two sets of quantiles by setting the correspon-
dence between QX (uk) and QY (uk) for k = 1, . . . , n + m. As in the case of the one-sample
problem, one may construct the Q–Q plots for the two-sample problem as a collection of d

two-dimensional plots, where each plot corresponds to a component of the spatial quantile. Let
Sn,m,i(X , Y ) = {(QX ,i (uk),QY ,i (uk)): k = 1, . . . , (n + m)}, where QX ,i (uk) and QY ,i (uk)

are the ith components of QX (uk) and QY (uk), respectively, and i = 1, . . . , d . Note that when
d = 1, our proposed multivariate matching coincides with the usual way of matching the univari-
ate quantiles in a two-sample problem, and the points in Sn,m,1(X , Y ) are same as those used in
constructing the univariate two-sample Q–Q plot. Theorem 2.2, stated below, ensures that for all
i = 1, . . . , d , the points in the ith two-dimensional plot will lie close to a straight line with slope
= 1 and intercept = 0 if and only if F = G.

Theorem 2.2. Suppose that F and G have positive density functions, which are bounded on
every bounded subset of R

d (d ≥ 2), and Sn,m,i(X , Y ) is constructed using the uk’s lying in any
given closed ball in R

d with the center at the origin and the radius strictly smaller than one.
Further, let L(ε) be the collection of points that lie in an ε-neighborhood of a straight line with
slope = 1 and intercept = 0, and assume that n,m → ∞ in such a way that limn,m→∞ n

(n+m)
=

λ ∈ (0,1). Then, for every ε > 0, we have

lim
n,m→∞P

(
d⋂

i=1

[
Sn,m,i(X , Y ) ⊆ L(ε)

]) = 1,

if and only if F = G.

In view of the equivariance of the spatial quantiles under location and homogeneous scale
transformations, the assertions in Theorems 2.1 and 2.2 will also hold for the straight line with
slope = σ and intercept = μi (i = 1, . . . , d) if and only if F(x) = F0((x − μ)/σ ) and F(x) =
G((x − μ)/σ ), respectively, where μ = (μ1, . . . ,μd) ∈ R

d and σ > 0.
We now briefly discuss some earlier attempts to develop graphical tools for comparing mul-

tivariate distributions. For bivariate data, Marden [27,28] proposed a version of the Q–Q plot,
which is based on drawing arrows from the spatial quantiles in one sample to the correspond-
ing spatial quantiles in another sample in a two-sample problem (or to the corresponding spatial
quantiles of a specified probability distribution in a one-sample problem). However, such an ar-
row plot can be drawn only for a bivariate data. Also, when the two samples are related to each
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other by a location and a homogeneous scale transformation, such arrow plots cannot detect that
unlike our Q–Q plots. Friedman and Rafsky [16] proposed a different visualization procedure for
comparing the distributions of two multivariate samples. Their methodology is based on the idea
of a minimal spanning tree. Liu, Parelius and Singh [26] proposed an alternative visualization
device called the DD-plot for comparing two multivariate data sets based on the concept of data
depth. However, none of these graphical tools developed by Marden [27,28], Friedman and Raf-
sky [16] and Liu, Parelius and Singh [26] will coincide with the usual univariate Q–Q plot when
they are applied to the univariate data, and none of them can be taken as a natural multivariate
extension of the univariate Q–Q plot.

3. Tests for comparing multivariate distributions

For each two-dimensional plot in our Q–Q plots, the overall deviation of the points from
the straight line with slope = 1 and intercept = 0 can be measured by

∫ {QX ,i (u) −
QF0,i (u)}2 du and

∫ {QX ,i (u) − QY ,i (u)}2 du for the one-sample and the two-sample prob-
lems, respectively, where i = 1, . . . , d . These deviations in d different plots can be aggre-
gated as

∑d
i=1

∫ {QX ,i (u)−QF0,i (u)}2 du = ∫ ‖QX (u)−QF0(u)‖2 du and
∑d

i=1

∫ {QX ,i (u)−
QY ,i (u)}2 du = ∫ ‖QX (u) − QY (u)‖2 du for the one-sample and the two-sample problems, re-
spectively. These aggregated quantities can be taken as the total deviations in our Q–Q plots.
These measures of total deviations can be used to construct tests for comparing multivariate dis-
tributions. Such tests will be rotationally invariant in view of the rotational equivariance of the
spatial quantiles.

Let X = {x1, . . . ,xn} consist of i.i.d. observations from an unknown distribution F having a
density function, which is assumed to be bounded on every bounded subset of R

d (d ≥ 2). Sup-
pose that we want to test H0: F = F0(⇔ QF (u) = QF0(u) for all u ∈ Bd ) against the alternative
H1: F �= F0(⇔ QF (u) �= QF0(u) for some u ∈ Bd ), where F0 is a specified distribution having
a density function, which is bounded on every bounded subset of R

d (d ≥ 2). In order to test H0

against H1, we can use the test statistic Vn = n
∫ ‖QX (u) − QF0(u)‖2 du, where the integral is

over a closed ball with the center at the origin and the radius strictly smaller than one. Note that
the test statistic Vn (as well as the test statistic Tn,m considered later in this section) can be viewed
as the sum of the arrow lengths in the arrow plot considered by Marden [27] for a bivariate data.

Consider now a multivariate Gaussian process Z1(u) having zero mean and the covariance
kernel

k1(u1,u2) = [
D1

{
QF0(u1)

}]−1[
D2

{
QF0(u1),QF0(u2),u1,u2

}][
D1

{
QF0(u2)

}]−1
.

Here D1{QF0(u)} = EF0[‖x − QF0(u)‖−1{Id − ‖x − QF0(u)‖−2(x − QF0(u))(x − QF0(u))T }],
D2{QF0(u),QF0(v),u,v} = EF0[{‖x − QF0(u)‖−1(x − QF0(u)) + u}{‖x − QF0(v)‖−1(x −
QF0(v)) + v}T ]. Henceforth, Id denotes the d × d identity matrix, all vectors are assumed to be
column vectors, and the superscript T denotes the transpose of a vector. Let V = ∫ ‖Z1(u)‖2 du,
where the integral is over the same closed ball as in the definition of Vn. We now state a theorem
describing the asymptotic behaviour of the test based on Vn.
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Theorem 3.1. Let c1(α) be the (1 − α)th quantile (0 < α < 1) of the distribution of V . A test,
which rejects H0 for Vn > c1(α), will have asymptotic size α. Further, when H1 is true, the
asymptotic power of the test will be one if the integral defining Vn is taken over an appropriately
large closed ball in R

d .

In order to implement our test, we need to compute Vn, and we have approximated the in-
tegral that appears in this test statistic by an average of the integrand over 1000 i.i.d. Monte
Carlo replications obtained from the random generations of u from the uniform distribution on a
closed ball with the center at the origin and the radius = 0.99. In view of the asymptotic Gaussian
distribution of the process

√
n{QX (u) − QF0(u)} under H0 and the well-known orthogonal de-

composition of a finite-dimensional multivariate normal distribution, the distribution of the test
statistic Vn under H0: F = F0 can be approximated by a weighted sum of chi-square random
variables each with one degree of freedom. In our numerical work, we have computed c1(α) by
generating 1000 Monte Carlo replications from a weighted sum of chi-square variables, where
the weights are the eigenvalues of the covariance matrices of appropriate normal random vectors.
Note that the covariance matrices involve the spatial quantiles and certain expectations under the
specified distribution F0, and those can be computed numerically.

Let us next consider a two-sample problem with two independent sets of i.i.d. observations
X = {x1, . . . ,xn} and Y = {y1, . . . ,ym} from the distributions F and G, respectively. We assume
the same conditions on the density functions of F and G as for the density functions of F and
F0 in the one-sample problem discussed above. In this two-sample problem, our hypotheses are
H ∗

0 : F = G(⇔ QF (u) = QG(u) for all u ∈ Bd ) and H ∗
1 : F �= G(⇔ QF (u) �= QG(u) for some

u ∈ Bd ). In order to test H ∗
0 against H ∗

1 , one can use the test statistic Tn,m = (n+m)
∫ ‖QX (u)−

QY (u)‖2 du, where the integral is over a closed ball with the center at the origin and the radius
strictly smaller than one.

Let Z2(u) be a multivariate Gaussian process having zero mean and the covariance kernel

k2(u1,u2) = [D1{QF (u1)}]−1[D2{QF (u1),QF (u2),u1,u2}][D1{QF (u2)}]−1

λ(1 − λ)
,

where λ is as defined in the statement of Theorem 2.2, and D1, D2 are as defined before the
statement of Theorem 3.1. Define T = ∫ ‖Z2(u)‖2 du, where the integral is over the same closed
ball as in the definition of Tn,m. We now state a theorem describing the asymptotic behaviour of
the test based on Tn,m.

Theorem 3.2. Let c2(α) be the (1 − α)th quantile (0 < α < 1) of the distribution of T . A test,
which rejects H ∗

0 for Tn,m > c2(α), will have asymptotic size α. Further, when H ∗
1 is true, the

test will have asymptotic power one if the integral defining Tn,m is taken over an appropriately
large closed ball in R

d .

For numerical implementation, one can compute Tn,m and c2(α) for the two-sample problem
in a similar way as we have computed Vn and c1(α), respectively, in the one-sample problem.
However, here we have estimated the unknown quantities (i.e., the spatial quantiles and certain
expectations under H ∗

0 ) appearing in the covariance kernel based on the combined sample of the
x’s and the y’s. In Sections 5 and 6, we have compared the performance of our tests with that
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of the Kolmogorov–Smirnov and the Cramer–von Mises tests for multivariate distributions. For
numerical implementation, we have used R codes that are available from the first author of the
paper.

4. Demonstration of multivariate Q–Q plots using simulated
and real data

We begin with the one-sample problem and consider two simulated data sets each consisting
of 100 i.i.d. observations. The observations in the first set were generated from the trivariate
normal distribution having zero mean and scatter matrix � = ((σij ))1≤i,j≤3 with σi,i = 1 for
i = 1,2,3, σ1,2 = 0.5, σ1,3 = 0.2 and σ2,3 = 0.3. For the second set, the observations were
generated from the trivariate Laplace distribution with p.d.f. f (x) = (1/8π) exp−‖x‖. For both
of them, we considered the trivariate normal distribution as the specified distribution F0 with
unknown parameters μ and �. Following the remarks after Theorem 2.1, μ and � were estimated
from each data set using the sample mean vector and the sample dispersion matrix, respectively,
which are the maximum likelihood estimates in this case. We standardized the data sets using
these estimates and compared the spatial quantiles of the standardized data with those of the
standard trivariate normal distribution. We computed the spatial quantiles for standard trivariate
normal distributions using the results in Marden ([27], pages 824 and 825). The Q–Q plots for
the two simulated data sets are displayed in Figure 1.

It is clearly evident from the plots in the first row of Figure 1 that the specified distribution
fits the data well as the points in those plots are tightly clustered around the straight line with

Figure 1. The Q–Q plots for the one-sample examples, where the specified distribution is trivariate normal.
The plots in the first and the second rows are for the examples, where the distributions of the data are
trivariate normal and trivariate Laplace, respectively.
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Figure 2. The Q–Q plots for the two-sample problem. The plots in the first row for an example, where the
samples are generated from the same distribution, and those in the second row for an example, where the
samples are generated from different distributions.

slope = 1 and intercept = 0. On the other hand, in each Q–Q plot in the second row, the points
are significantly deviating from the straight line with slope = 1 and intercept = 0, and the points
are actually clustered around a nonlinear curve. We have also computed the p-values for the
one-sample test discussed in Section 3 for testing H0: F = F0 against H1: F �= F0 for these two
simulated data sets. We have obtained a high p-value = 0.784 for the first sample whereas the
p-value for the second example is 0.049, which is quite small.

We next consider two simulated data sets to demonstrate our Q–Q plots for the two-sample
problem. In both the data sets, the distribution of the first sample F was chosen to be the standard
trivariate normal distribution while G, the distribution of the second sample, was taken to be the
standard trivariate normal in one set and the trivariate Laplace distribution in the other set. The
size of each sample was 100. The Q–Q plots for the two data sets are displayed in Figure 2. In
each plot in the first row of Figure 2, the points are tightly clustered around the straight line with
slope = 1 and intercept = 0. On the other hand, the points are significantly deviating from the
straight line with slope = 1 and intercept = 0 in each plot in the second row of Figure 2. We also
carried out the two-sample test described in Section 3 for testing H ∗

0 : F = G against H ∗
1 : F �= G,

and we obtained a high p-value = 0.731 for the first data set whereas a small p-value = 0.048
was obtained for the second data set.

4.1. Detection of special features using multivariate Q–Q plots

We now consider a two-sample problem, where the first sample consists of 100 i.i.d. observa-
tions from the standard trivariate normal distribution (F ), and the second sample consists of
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Figure 3. The Q–Q plots for the two-sample problem, where the first sample is generated from the standard
trivariate normal distribution, and the second sample is generated from a trivariate skew-normal distribution.

100 i.i.d. observations from a trivariate skew-normal distribution (G) (see Azzalini and Dalla
Valle ([4], page 717)). The p.d.f. of the trivariate skew-normal distribution is given by f (z) =
2φ3(z;
)�(αT z), where z ∈ R

3, αT = λT �−1�−1√
1+λT �−1λ

, � = diag(

√
1 − δ2

1,

√
1 − δ2

2,

√
1 − δ2

3),

λ = ( δ1√
1−δ2

1

, δ2√
1−δ2

2

,
δ3√
1−δ2

3

)T , and 
 = �(� + λλT )�. Here φ3(z;
) denotes the p.d.f. of a

trivariate normal distribution with standardized marginals and correlation matrix 
, and � is the
distribution function of the standard univariate normal distribution. In this study, we have consid-
ered δ1 = δ2 = δ3 = 0.9 and � = Id . The Q–Q plots for this two-sample problem are displayed
in Figure 3, and we see a heavier tail in one direction in each plot in this figure. This is an indica-
tion that one sample is generated from a more skewed distribution than the other. Also, the small
p-value = 0.048 obtained using our two-sample test for testing H ∗

0 : F = G against H ∗
1 : F �= G

implies that the two distributions are significantly different in this data set.
We next consider an example to demonstrate how our Q–Q plots can be used to detect outliers

present in the data. We again consider a two-sample problem, where the first sample consists of
100 i.i.d. observations from the standard trivariate normal distribution. The second sample con-
sists of 97 i.i.d. observations from the standard trivariate normal distribution and the remaining
three data points in the sample are (10,10,10), (9,9,9) and (8,8,8). The Q–Q plots for this
data set are displayed in Figure 4. The presence of three outliers in the second sample is clearly
indicated by the plots in Figure 4.

Figure 4. The Q–Q plots for the two-sample problem, where the first sample is generated from the standard
trivariate normal distribution, and the second sample contains some outliers.
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4.2. Analysis of real data

We first consider Fisher’s Iris data, which is available in http://archive.ics.uci.edu/ml. In this data,
there are three multivariate samples corresponding to three different varieties of Iris, namely, Iris
setosa, Iris virginica and Iris versicolor. Each sample has size 50. In each sample, there are four
measurements, namely, the sepal length, the sepal width, the petal length and the petal width. We
would like to determine how close is the distribution of each sample to a four-dimensional nor-
mal distribution. This can be formulated as a one-sample problem, where F is the distribution of
a sample, and the four-dimensional normal distribution is our specified distribution F0. Note that
F0 involves an unknown mean μ and an unknown dispersion �. For each species, following the
remarks after Theorem 2.1, we estimated μ and � by the sample mean vector and the sample dis-
persion matrix, which are maximum likelihood estimates. Then we standardized the data in each
sample using the corresponding sample mean vector and the corresponding sample dispersion
matrix. The Q–Q plots in Figure 5 were constructed using the spatial quantiles of a standardized
sample and the spatial quantiles of the standard four-dimensional normal distribution.

Figure 5. The Q–Q plots for Iris setosa (first row), Iris virginica (second row) and Iris versicolor (third
row).

http://archive.ics.uci.edu/ml
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It is visible in the plots in Figure 5 that in almost all cases, the points are tightly clustered
around the straight line with slope = 1 and intercept = 0 except in the first plot for Iris virginica,
where the points deviate to some extent from that straight line. Our one-sample test for testing
H0: F = F0 against H1: F �= F0 led to very high p-values, namely, 0.841, 0.413 and 0.582 for
Iris setosa, Iris virginica and Iris versicolor, respectively. These p-values imply that H0 is to be
accepted, and multivariate normal distributions seem to fit the data well for all three Iris species.

Our next real data set is the Vertebral Column data, which is available in http://archive.ics.uci.
edu/ml/datasets/Vertebral+Column. This data set contains six variables on 310 patients, who be-
long to two groups. Among the 310 patients, 100 are normal, and the remaining 210 of them are
abnormal. We view it as a two-sample problem with F as the distribution of the measurements
corresponding to the normal patients, and G as the distribution of the measurements correspond-
ing to the abnormal patients. In this study, we considered only two variables, namely, the pelvic
incidence and the pelvic tilt as these two pelvic parameters are strongly associated with the sever-
ity and the stiffness of lumbosacral spondylolisthesis. Both the pelvic incidence and the pelvic tilt
are angles and measured in the same unit, and no standardization of the data is necessary in order
to compute and compare the spatial quantiles of these two samples. In Figure 6, we display the
Q–Q plots for this data. The points in the Q–Q plots are clearly not clustered around any straight
line. In fact, most of the points in each plot lie on a stretched S-shaped curve, which indicates
that the distribution G associated with the abnormal patients has heavier tails than the distribu-
tion F associated with the normal patients. The p-value obtained using the two-sample test for
testing H ∗

0 : F = G against H ∗
1 : F �= G is 0.038, which also indicates that the two distributions

are significantly different.
The third real data set that we consider is the Monthly Sunspot number data, which is avail-

able in http://www.ngdc.noaa.gov/stp/solar/ssndata.html. This data set contains monthly average
number of sunspots during the period of 1749 to 2009. As data for 1749 and 2009 are incomplete,
we have carried out our analysis on the observations for the remaining 259 (1750 to 2008) years.
We divided the data into two samples. One sample contains six-dimensional data corresponding
to the six months January, February, March, October, November and December, and the other
one consists of six-dimensional data corresponding to the months April, May, June, July, August
and September. The motivation behind splitting the data into two parts corresponding to the peri-
ods October–March and April–September comes from the fact that one equinox in a year occurs
on March 20–21 and another on September 22–23. We treat this as a two-sample problem, where

Figure 6. The Q–Q plots for the vertebral column data.

http://archive.ics.uci.edu/ml/datasets/Vertebral+Column
http://www.ngdc.noaa.gov/stp/solar/ssndata.html
http://archive.ics.uci.edu/ml/datasets/Vertebral+Column
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Figure 7. The Q–Q plots for the monthly sunspot number data.

F and G are the distributions corresponding to the sunspot numbers during the periods October–
March and April–September, respectively. The Q–Q plots for the data are presented in Figure 7.
In each of the plots, the points lie very close to a straight line with slope = 2 and intercept = 0.
In view of the remark after Theorem 2.2, these plots indicate that the distributions F and G are
related by the equation F(x) = G(x/2). Hence, the two multivariate samples corresponding to
the two periods October–March and April–September have distributions that differ only in the
scales of the variables. The two distributions have the same location, and one distribution can be
obtained from the other by a scale transformation using the scale factor 2. This fact was further
confirmed when we carried out some alternative statistical analysis of the data such as the com-
parison of the marginal quantiles and the direct comparison of the means and the variances of the
variables.

4.3. Multivariate Q–Q plots for data with large dimensions

When the dimension of the data is large, there will be too many two-dimensional plots, and
it will be inconvenient to display and visually examine all of them. In that case, one can plot
(l,QX ,l(uk) − QY ,l(uk)) for k = 1, . . . , (n + m) and l = 1, . . . , d in a single two-dimensional
plot with d vertical lines parallel to one another. We next demonstrate this procedure on some
simulated and real data sets.

First, we consider a two-sample problem, where the data in each sample consists of 10 i.i.d.
observations from a standard Brownian motion with its mean function m(t) = 0 and covariance
kernel k(s, t) = min(s, t), where s, t ∈ [0,1] (note that F = G here). For our second data set, one
sample consists of 10 i.i.d. observations from a standard Brownian motion with its mean function



1496 S.S. Dhar, B. Chakraborty and P. Chaudhuri

Figure 8. The quantile difference plots for the data on Brownian motions and sea level pressures.

m1(t) = 0 and covariance kernel k1(s, t) = min(s, t) as before (i.e., we have the same F as
before). However, the second sample in the second data consists of 10 i.i.d. observations from a
Brownian motion with its mean function m2(t) = 2 and covariance kernel k2(s, t) = 2 min(s, t)

(which corresponds to the distribution G). In our study, we considered equally spaced points
t1, . . . , t20 in [0,1] and sampled the observations at those time points.

The fourth real data set that we consider is the Sea Level Pressures data, which is avail-
able in http://www.cpc.noaa.gov/data/indices/darwin and http://www.cpc.noaa.gov/data/indices/
tahiti. This data set consists of monthly sea level pressures from two different islands in the
southern Pacific ocean, namely, Darwin (13◦S, 131◦E) and Tahiti (17◦S, 149◦W) during the pe-
riod 1850–2008. Thus, we have a two-sample problem with each sample corresponding to an
island and containing 159 twelve-dimensional observations. Here F and G are the distributions
of the multivariate observations corresponding to the two islands. For this data, each data point
corresponds to a year, and each coordinate of a data point corresponds to an observation in a
particular month.

The plots of the quantile differences for the above three data sets are displayed in Figure 8.
In the first plot in Figure 8, the points in each vertical line are tightly clustered around a hor-
izontal straight line passing through the origin, which indicates that the samples are obtained
from similar distributions. It is further confirmed by the large p-value = 0.623 obtained using
our two-sample test for testing H ∗

0 : F = G against H ∗
1 : F �= G. On the other hand, the differ-

ence in the locations and the scales of the two distributions F and G are clearly visible in the
second plot in Figure 8. The p-value obtained using our two-sample test in this case is 0.042,
which indicates significant difference between the two distributions and strong support in favour
of H ∗

1 : F �= G. It is also amply indicated by the third plot in Figure 8 as well as the small p-value
= 0.045 obtained using our two-sample test that the distributions F and G for the two samples
corresponding to the two islands Darwin and Tahiti are significantly different.

5. Finite sample level and power study for different tests

Here we carry out some simulation studies to compare our tests with the well-known multi-
variate extensions of the Kolmogorov–Smirnov (KS) and the Cramer–von Mises (CVM) tests
(see, e.g., Burke [8] and Justel, Peña and Zamar [20]) in the one-sample and the two-sample
problems. For testing H0: F = F0 against H1: F �= F0, the KS and the CVM test statistics

http://www.cpc.noaa.gov/data/indices/darwin
http://www.cpc.noaa.gov/data/indices/tahiti
http://www.cpc.noaa.gov/data/indices/tahiti
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are T
(1)
n = supx∈Rd

√
n|Fn(x) − F0(x)| and T

(2)
n = n

∫
x∈Rd [Fn(x) − F0(x)]2 dF0(x), respec-

tively, where Fn(x) is the empirical version of F(x). To test H ∗
0 : F = G against H ∗

1 : F �= G,

the KS and the CVM test statistics are T
(1)
n,m = supx∈Rd

√
n + m|Fn(x) − Gm(x)| and T

(2)
n,m =

(n + m)
∫

x∈Rd [Fn(x) − Gm(x)]2 dM(n,m)(x), respectively, where (n + m)M(n,m)(x) = nFn(x) +
mGm(x), and Fn and Gm are the empirical versions of F and G, respectively. The KS and the
CVM tests for multivariate data can be implemented using the asymptotic distributions of the
corresponding test statistics.

For the one-sample problem, we have considered F0 = Nd and F = (1 − β)Nd + βCd and
(1 −β)Nd +βLd . Here β ∈ [0,1], Nd , Ld and Cd are the d-dimensional standard normal distri-
bution, the d-dimensional Laplace distribution with p.d.f. f (x) = (�(d/2)/2�(d)πd/2) exp−‖x‖
and the d-dimensional Cauchy distribution with p.d.f. f (x) = (�((d + 1)/2)/

√
π�(d/2))(1 +

‖x‖2)−(d+1)/2, respectively. In the case of the two-sample problem, we have considered F = Nd

and G = (1 − β)Nd + βCd and (1 − β)Nd + βLd .
In Figure 9, we have plotted the ratio between the empirical power of our test (numerator)

and that of another test (denominator) for different values of the parameter β . It is evident from
Figure 9 that our test is significantly more powerful than the KS test in all the cases considered
in our simulation study. However, the CVM test performs better than our test in some cases, and
our test outperforms the CVM test in some other cases.

Friedman and Rafsky [15] proposed a multivariate generalization of the Wald–Wolfowitz run
test using the idea of minimum spanning tree (the MST-run test). We have compared the em-
pirical powers of our two-sample test with those of the MST-run test for F = Nd(0, Id) and

Figure 9. The graphs of the ratios of empirical powers based on 1000 Monte Carlo replications at 5%
nominal level. The numerator in each ratio is the power of our test while the denominators of the ratios
corresponding to the solid and the dotted curves are the powers of the KS and the CVM tests, respectively.
The first row corresponds to the one-sample problem with n = 10, and the second row corresponds to the
two-sample problem with n = m = 10.
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Figure 10. The Pitman efficacy of our test relative to the KS test (solid curve) and the CVM test (dotted
curve) at 5% nominal level. The first row corresponds to the one-sample problem, and the second row
corresponds to the two-sample problem.

G = Nd(d−1/2�1d, σ Id), where Nd(μ,�) is the d-dimensional normal distribution with mean
μ and dispersion �, 1d is the d-dimensional vector of 1’s, and the values of � and σ are chosen
as in Friedman and Rafsky ([16], page 706). For sample sizes n = m = 100 and 5% nominal
level, the results are reported in Table 1, and it is clear that the MST-run test has inferior perfor-
mance compared to our test.

For univariate data, our proposed tests in the one-sample and the two-sample problems lead
to new tests that have previously not been considered in the literature. In addition to the KS and
the CVM tests, there are several other tests that are available in the literature (see, e.g., Shapiro
and Wilk [33], Anderson and Darling [3] and Ahmad [1,2]) for comparing the distributions of
univariate data in the one-sample and the two-sample problems. We have discussed and compared

Table 1. Comparison of the empirical powers based on 100 Monte Carlo replications of our two-sample
test and the MST-run test in different dimensions

d = 2 d = 5 d = 10 d = 20
� = 0.5, σ = 1 � = 0.75, σ = 1 � = 1.0, σ = 1 � = 1.2, σ = 1

Our test 0.55 0.70 0.83 0.99
MST-run test 0.35 0.64 0.78 0.86

� = 0, σ = 1.2 � = 0, σ = 1.2 � = 0, σ = 1.1 � = 0, σ = 1.075

Our test 0.17 0.26 0.07 0.14
MST-run test 0.14 0.21 0.09 0.13
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the performance of these tests for univariate data in detail in the supplemental article (see Dhar,
Chakraborty and Chaudhuri [11]).

6. Asymptotic power study under contiguous alternatives

Since our tests, the KS and the CVM tests are all asymptotically consistent, a natural question is
how the asymptotic powers of our tests and the KS and the CVM tests compare with one another
under contiguous alternatives (see Hájek and Šidák [19]). In the case of the one-sample problem,
the null hypothesis is given by H0: F(x) = F0(x), and we consider a sequence of contiguous
alternatives Hn: F(x) = (1 − γ /

√
n)F0(x) + (γ /

√
n)H(x) for a fixed γ > 0 and n = 1,2, . . . .

Consider a multivariate Gaussian process Z′
1(u) with the mean function

m1(u) = γ
[
D1

{
QF0(u)

}]−1
EH

{
x − QF0(u)

‖x − QF0(u)‖ + u
}

and the covariance kernel k1(u1,u2), where k1(u1,u2) is as defined before Theorem 3.1. Let
V ′ = ∫ ‖Z′

1(u)‖2 du, where the integral is over the same closed ball as in the definition of Vn in
Section 3. We now state a theorem describing the asymptotic powers of the test based on Vn as
well as the KS and the CVM tests under contiguous alternatives.

Theorem 6.1. Assume that F0 and H have continuous and positive densities f0 and h, respec-
tively, on R

d(d ≥ 2), and EF0{ h(x)
f0(x)

− 1}2 < ∞. Then, the sequence of alternatives Hn form a
contiguous sequence. Under such alternatives, the asymptotic power of the test based on Vn is
given by Pγ [V ′ > c1(α)], where c1(α) is as defined in Theorem 3.1 such that Pγ=0[V ′ > c1(α)] =
α. Further, under those alternatives, the asymptotic powers of the tests based on T

(1)
n and T

(2)
n

are given by Pγ [supt∈Rd |Z′′
1 (t)| > c∗

1(α)] and Pγ [∫t∈Rd {Z′′
1 (t)}2 dF0(t) > c∗∗

1 (α)], respectively,
where Z′′

1 (t) (t ∈ R
d) is a Gaussian process with its mean function m′

1(t) = γ {H(t)−F0(t)} and
covariance kernel k3(t1, t2) = F0(min(t1, t2)) − F0(t1)F0(t2). Here “min” denotes the coordi-
natewise minimum of the two vectors in R

d , and c∗
1(α) and c∗∗

1 (α) satisfy Pγ=0[supt∈Rd |Z′′
1 (t)| >

c∗
1(α)] = α and Pγ=0[

∫
t∈Rd {Z′′

1 (t)}2 dF0(t) > c∗∗
1 (α)] = α.

Next, for the two-sample problem, the null hypothesis is given by H ∗
0 : F(x) = G(x), and we

consider a sequence of alternatives H ∗
n,m: G(x) = (1 − γ /

√
n + m)F(x) + (γ /

√
n + m)H(x)

for a fixed γ > 0 and n,m = 1,2, . . . . Consider a multivariate Gaussian process Z′
2(u) with the

mean function

m2(u) = −γ
[
D1

(
QF (u)

)]−1
EH

{
y − QF (u)

‖y − QF (u)‖ + u
}

and the covariance kernel k2(u1,u2). Here k2(u1,u2) is as defined before Theorem 3.2. Let
T ′ = ∫ ‖Z′

2(u)‖2 du, where the integral is over the same closed ball as in the definition of Tn,m

in Section 3. We now state a theorem describing the asymptotic powers of the test based on Tn,m

as well as the KS and the CVM tests under contiguous alternatives.
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Theorem 6.2. Assume that F and H have continuous and positive densities f and h, respec-
tively, on R

d (d ≥ 2), EF { h(y)
f (y)

−1}2 < ∞, and n,m → ∞ in such a way that limn,m→∞ n
(n+m)

=
λ ∈ (0,1). Then, the sequence of densities associated with alternatives H ∗

n,m form a contiguous
sequence. Under such alternatives, the asymptotic power of the test based on Tn,m is given by
Pγ [T ′ > c2(α)], where c2(α) is as defined in Theorem 3.2 such that Pγ=0[T ′ > c2(α)] = α. Fur-

ther, under those alternatives, the asymptotic powers of the tests based on T
(1)
n,m and T

(2)
n,m are given

by Pγ [supt∈Rd |Z′′
2 (t)| > c∗

2(α)] and Pγ [∫t∈Rd {Z′′
2 (t)}2 dF(t) > c∗∗

2 (α)], respectively, where
Z′′

2 (t) (t ∈ R
d) is a Gaussian process with its mean function m′

2(t) = −γ {H(t) − F(t)} and co-

variance kernel k4(t1, t2) = F(min(t1,t2))−F(t1)F (t2)
λ(1−λ)

. Here also “min” denotes the coordinatewise

minimum of the two vectors in R
d , and c∗

2(α) and c∗∗
2 (α) are such that Pγ=0[supt∈Rd |Z′′

2 (t)| >

c∗
2(α)] = α and Pγ=0[

∫
t∈Rd {Z′′

2 (t)}2 dF(t) > c∗∗
2 (α)] = α.

Theorems 6.1 and 6.2 enable us to derive the Pitman efficacies of our tests relative to the
KS and the CVM tests. The Pitman efficacy (see, e.g., Serfling [31] and Lehmann and Ro-
mano [25]) of our test relative to another test for varying choices of the asymptotic power (de-
termined by γ ) is given by (γ ′/γ )2, where γ and γ ′ are such that the asymptotic power of our
test under contiguous alternatives (1−γ /

√
n)F0(x)+ (γ /

√
n)H(x) (or (1−γ /

√
n + m)F(x)+

(γ /
√

n + m)H(x)) is the same as the asymptotic power of the other test under contiguous alter-
natives (1 − γ ′/

√
n)F0(x) + (γ ′/

√
n)H(x) (or (1 − γ ′/

√
n + m)F(x) + (γ ′/

√
n + m)H(x)).

In order to compute the critical values and the powers of our one-sample and two-sample tests,
we have used 1000 simulations of each Gaussian process and approximated the integral of the
squared norm of a multivariate Gaussian process by the average of the squared norms of some
appropriate multivariate normal random vectors. In this numerical study, we could compute the
true covariance matrices as the underlying distributions were known. We have computed the
critical value and the asymptotic power of the CVM test in a similar way. However, in the case
of the KS test, we have approximated the supremum of a Gaussian process by a maximum over
1000 simulations of the process.

In Figure 10, we have plotted the Pitman efficacy of our test for different values of the asymp-
totic power. It is clearly indicated by Figure 10 that our test and the CVM test outperform the
KS test in terms of the Pitman efficacy in all the cases considered here. However, between our
test and the CVM test, one has superior performance in some cases while the other has superior
performance in some other cases, and there is only a small difference in their performance.

Appendix: Proofs

Proof of Theorem 2.1. In view of the results in Chaudhuri [10] and Koltchinskii [24], we have

sup
u

∥∥QX (u) − QF (u)
∥∥ = oP (1), (A.1)

where the supremum is taken over any given closed ball with the center at the origin and the
radius strictly smaller than one. When F = F0, we have QF (u) = QF0(u) for all ‖u‖ < 1. This
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along with the uniform convergence result in (A.1) leads to the proof of the “if part” of the
theorem.

Next, consider some u with ‖u‖ < 1. It follows from the conditions in the theorem that with
probability tending to one, the spatial rank vectors uk’s form a dense subset of the unit ball
around the origin as n → ∞. Since

lim
n→∞P

(
d⋂

i=1

[
Sn,i(X ,F0) ⊆ L(ε)

]) = 1

for every ε > 0, we must have QF (u) = QF0(u) in view of (A.1). It now follows from the charac-
terization of multivariate distributions by the spatial quantiles (see Corollary 2.9 in Koltchinskii
([24], page 446)) that F = F0. This completes the proof of the “only if part” of the theorem. �

Proof of Theorem 2.2. It follows from the results in Chaudhuri [10] and Koltchinskii
[24] that for the two independent samples X and Y , we have supu ‖(QX (u),QY (u)) −
(QF (u),QG(u))‖ = oP (1) when n, m → ∞ in such a way that limn,m→∞ n

(n+m)
= λ ∈ (0,1).

Here the supremum is taken over any given closed ball with the center at the origin and the radius
strictly smaller than one. Then the proof of the theorem follows by similar arguments as in the
proof of Theorem 2.1. �

Proof of Theorem 3.1. As proved in Koltchinskii [24], the centered and normalized stochastic
process

√
n{QX (u) − QF0(u)} converges weakly to the Gaussian process Z1(u) (defined in

Section 3) under H0. Here u lies in any given closed ball with the center at the origin and the
radius strictly smaller than one. It follows from the continuity of the integral functional that Vn

converges in distribution to V . Consequently, the asymptotic level of the test will be α.
The asymptotic power of the test is given by limn→∞ PH1[Vn > c1(α)]. Now, note that Vn >

c1(α) if and only if n
∫ ‖{QX (u)−QF0(u)}−{QF (u)−QF0(u)}‖2 du > c1(α)+n[∫ 〈{QF (u)−

QF0(u)}, {QF (u) − QF0(u)}〉du − 2
∫ 〈{QX (u) − QF0(u)}, {QF (u) − QF0(u)}〉du]. Here the

integrals are over a closed ball with the center at the origin and the radius strictly smaller than
one as before.

When F �= F0, in view of the characterization property of the spatial quantiles (see Corol-
lary 2.9 in Koltchinskii [24]), we have QF (u) �= QF0(u) for some u with ‖u‖ < 1. The uni-
form convergence of QX (u) to QF (u) and the continuity of the spatial quantiles QF (u) and
QF0(u) as functions of u imply that c1(α) + n[∫ 〈{QF (u) − QF0(u)}, {QF (u) − QF0(u)}〉du −
2
∫ 〈{QX (u) − QF0(u)}, {QF (u) − QF0(u)}〉du] tends to −∞ in probability as n → ∞. Hence,

PH1[Vn > c1(α)] → 1 as n → ∞. This completes the proof. �

Proof of Theorem 3.2. Arguing in a similar way as in the proof of Theorem 3.1 and using
the weak convergence results in Koltchinskii [24], and the independence of the two samples, if
n,m → ∞ in such a way that λ = limn,m→∞ n

(n+m)
∈ (0,1), one can show that Tn,m converges

in distribution to T under H ∗
0 , and consequently, the asymptotic level of the test that rejects H ∗

0
when Tn,m > c2(α) will be α. Next, the asymptotic power of the test is given by PH ∗

1
[Tn,m >

c2(α)]. Using similar arguments as in the second part of the proof of Theorem 3.1, one can
establish that PH ∗

1
[Tn,m > c2(α)] → 1 as n,m → ∞. �
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Proof of Theorem 6.1. The logarithm of the likelihood ratio for testing H0 against Hn is

Ln =
n∑

i=1

log
(1 − γ /

√
n)f0(xi ) + (γ /

√
n)h(xi )

f0(xi )
=

n∑
i=1

log

[
1 + (γ /

√
n)

{
h(xi )

f0(xi )
− 1

}]

= γ√
n

n∑
i=1

{
h(xi )

f0(xi )
− 1

}
− γ 2

2n

n∑
i=1

{
h(xi )

f0(xi )
− 1

}2

+ Rn (A.2)

= γ√
n

n∑
i=1

ki − γ 2

2
× 1

n

n∑
i=1

k2
i + Rn,

where ki = h(xi )
f0(xi )

− 1. Note that Rn
P→ 0 as n → ∞ since σ 2 := EF0[ h(x)

f0(x)
− 1]2 < ∞. Further,

by a straightforward application of the central limit theorem, the first term in (A.2) is asymptot-
ically normal with its mean = 0 and variance = γ 2σ 2, and the second term in (A.2) converges

in probability to γ 2

2 σ 2 by the weak law of large numbers. So, using Slutsky’s theorem, Ln is

asymptotically normal with mean = − γ 2

2 σ 2 and variance = γ 2σ 2. This ensures the contiguity
of the sequence Hn using the corollary to Lecam’s first lemma in Hájek and Šidák ([19], pages
204).

Now, we consider u1, . . . ,uk in a given closed ball with the center at the origin and the radius
strictly smaller than one, and t1, . . . , tl ∈ R

d . Then, under H0, one can establish that the joint
distribution of

√
n{QX (u1) − QF0(u1), . . . ,QX (uk) − QF0(uk),Fn(t1) − F0(t1), . . . ,Fn(tl ) −

F0(tl ),Ln/
√

n} is asymptotically multivariate normal. This follows using the Bahadur type linear
expansion of {QX (u) − QF0(u)} (see Chaudhuri [10]), the expansion of Ln (see (A.2) above)
and the fact that Fn(t) − F0(t) is a simple average of i.i.d. random variables. Note that for any
p = 1, . . . , k, the covariance between

√
n{QX (up) − QF0(up)} and Ln is

γ

n
EF0

[
n∑

i=1

{
D1

[
QF0(up)

]−1
{

xi − QF0(up)

‖xi − QF0(up)‖ + up

}}
×

{
h(xi )

f0(xi )
− 1

}]

= γ
[
D1

{
QF0(up)

}]−1
EH

{
x − QF0(up)

‖x − QF0(up)‖ + up

}
= m1(up),

because EF0{ x−QF0 (up)

‖x−QF0 (up)‖ +up} = 0. Also, one can show that for any j = 1, . . . , l, the covariance

between
√

n{Fn(tj ) − F0(tj )} and Ln is m′
1(tj ) = γ {H(tj ) − F0(tj )}.

Now, by a straightforward application of Lecam’s third lemma (see Hájek and Šidák [19],
page 208), one can establish that under contiguous alternatives,

√
n{QX (u1) − QF0(u1), . . . ,

QX (uk) − QF0(uk)} is asymptotically kd-dimensional multivariate normal with the mean vec-
tor having the d-dimensional pth block m1(up) (p = 1,2, . . . , k), and its kd × kd-dimensional
covariance matrix is obtained from the covariance kernel k1, which is given before Theorem 3.1.
Further, the spatial quantile process satisfies the tightness condition under contiguous alternatives
in view of the fact that it is tight under H0. The tightness under H0 follows from the weak con-
vergence of the spatial quantile process (see Koltchinskii [24]). So, the spatial quantile process
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√
n{QX (u)−QF0(u)} converges to Z′

1(u) under Hn, where Z′
1(u) is a Gaussian process with its

mean function m1(u) and covariance kernel k1(u1,u2). Hence, under Hn, the asymptotic power
of the test based on Vn is Pγ [V ′ > c1(α)].

Similarly, using the weak convergence of the stochastic process
√

n{Fn(t) − F(t)} under H0

to a Gaussian process (see, e.g., Bickel and Wichura [6]) together with Lecam’s third lemma,
one can show that under contiguous alternatives,

√
n{Fn(t1) − F0(t1), . . . ,Fn(tl ) − F0(tl )} is

asymptotically l-dimensional multivariate normal with the mean vector having the j th compo-
nent m′

1(tj ) (j = 1, . . . , l), and its l × l-dimensional covariance matrix is obtained from the
covariance kernel k3, which is given in the statement of the theorem. Now, it follows from the
finite-dimensional asymptotic distribution and the tightness of the process

√
n{Fn(t) − F0(t)}

under contiguous alternatives that the stochastic process
√

n{Fn(t) − F0(t)} converges to Z′′
1 (t)

under Hn, where Z′′
1 (t) is a Gaussian process with its mean function m′

1(t) and covariance kernel

k3(t1, t2). Consequently, under Hn, the asymptotic powers of the tests based on T
(1)
n and T

(2)
n

are Pγ [supt∈Rd |Z′′
1 (t)| > c∗

1(α)] and Pγ [∫t∈Rd {Z′′
1 (t)}2 dF0(t) > c∗∗

1 (α)], respectively. �

Proof of Theorem 6.2. The logarithm of the likelihood ratio for testing H ∗
0 against H ∗

n,m is

Ln,m = log

∏n
i=1 f (xi )

∏m
j=1{(1 − γ /

√
n + m)f (yj ) + γ /

√
n + mh(yj )}∏n

i=1 f (xi )
∏m

j=1 f (yj )

=
m∑

j=1

log

{
1 + γ√

n + m

(
h(yj )

f (yj )
− 1

)}
(A.3)

= γ√
n + m

m∑
j=1

k′
j − γ 2

2(n + m)
×

m∑
j=1

k′2
j + Rn,m,

where k′
j = h(yj )

f (yj )
− 1. Note that Rn,m

P→ 0 as n,m → ∞ since σ 2∗ := EF { h(y)
f (y)

− 1}2 < ∞.
Using similar arguments as in the proof of Theorem 6.1, Ln,m is asymptotically normal with

mean = − γ 2

2 (1 − λ)σ 2∗ and variance = γ 2(1 − λ)σ 2∗ . This fact ensures the contiguity of the
sequence of densities under H ∗

n,m using the corollary to Lecam’s first lemma in Hájek and Šidák
([19], page 204).

Now, here also, we consider u1, . . . ,uk in a given closed ball with the center at the origin
and the radius strictly smaller than one, and t1, . . . , tl ∈ R

d . Then, under H0, one can estab-
lish that the joint distribution of

√
n + m{QX (u1) − QY (u1), . . . ,QX (uk) − QY (uk),Fn(t1) −

Gm(t1), . . . ,Fn(tl )−Gm(tl ),Ln,m/
√

n + m} is asymptotically multivariate normal. This asymp-
totic normality is a consequence of the independence of the two samples, the Bahadur type
linear expansion of the difference of the spatial quantiles QX (u) − QY (u) (see Chaudhuri
[10]), the expansion of Ln,m given in (A.3) and the fact that Fn(t) and Gm(t) are simple
averages of i.i.d. random variables. Note that for any p = 1, . . . , k, the covariance between
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√
n + m{QX (up) − QY (up)} and Ln,m is

EF

[√
n + m

[
1

n

n∑
i=1

{
D1

[
QF (up)

]−1
{

xi − QF (up)

‖xi − QF (up)‖ + up

}}

− 1

m

m∑
j=1

{
D1

[
QF (up)

]−1
{

yj − QF (up)

‖yj − QF (up)‖ + up

}}]
× γ√

n + m

m∑
j=1

{
h(yj )

f (yj )
− 1

}]

= −√
n + mEF

[
1

m

m∑
j=1

{
D1

[
QF (up)

]−1
{

yj − QF (up)

‖yj − QF (up)‖ + up

}}

× γ√
n + m

m∑
j=1

{
h(yj )

f (yj )
− 1

}]
(since x and y are independent)

= −γ
[
DF

1

(
Q(u)

)]−1
EH

{
y − QF (up)

‖y − QF (up)‖ + up

}
= m2(up),

because EF { y−QF (up)

‖y−QF (up)‖ +up} = 0. Arguing in a similar way as in the proof of Theorem 6.1, one

can establish that under H ∗
n,m, the process

√
n + m{QX (u)−QY (u)} converges to Z′

2(u), where
Z′

2(u) is a Gaussian process with its mean function m2(u) and covariance kernel k2(u1,u2),
which is defined before Theorem 3.2. Hence, the asymptotic power of the test based on Tn,m is
Pγ [T ′ > c2(α)].

Also, under H ∗
0 , one can show that for any j = 1, . . . , l, the covariance between

√
n + m ×

{Fn(tj ) − Gm(tj )} and Ln,m is m′
2(tj ) = −γ {H(tj ) − F(tj )}. Further, under H ∗

0 , the stochas-
tic process

√
n + m{Fn(t) − Gm(t)} converges to a Gaussian process with zero mean and the

covariance kernel k4, which is given in the statement of the theorem (see, e.g., Bickel and
Wichura [6]). Now, it follows from the finite-dimensional asymptotic distributions and the tight-
ness of the process

√
n + m{Fn(t) − Gm(t)} under contiguous alternatives that the stochastic

process
√

n + m{Fn(t)−Gm(t)} converges to Z′′
2 (t) under H ∗

n,m, where Z′′
2 (t) is a Gaussian pro-

cess with its mean function m′
2(t) and covariance kernel k4(t1, t2). Consequently, under H ∗

n,m,

the asymptotic power of the test based on T
(1)
n,m is Pγ [supt∈Rd |Z′′

2 (t)| > c∗
2(α)].

In the case of T
(2)
n,m, we first show that (n + m)

∫
x∈Rd [Fn(x) − Gm(x)]2 d(Mn,m − F)

P→ 0

as n,m → ∞ under H ∗
0 . For that, it is enough to prove that T

(2,1)
n,m = (n + m)

∫
x∈Rd [Fn(x) −

Gm(x)]2 d(Fn − F)
P→ 0 and T

(2,2)
n,m = (n + m)

∫
x∈Rd [Fn(x) − Gm(x)]2 d(Gm − G)

P→ 0 as
n,m → ∞ under H ∗

0 . Now, it follows from the arguments in the proofs of the lemma on page 424

in Kiefer [21] and Theorem 2 in Kiefer and Wolfowitz [22] that T
(2,1)
n,m

P→ 0 and T
(2,2)
n,m

P→ 0 as

n,m → ∞ under H ∗
0 , and hence, (n + m)

∫
x∈Rd [Fn(x) − Gm(x)]2 d(Mn,m − F)

P→ 0 as n,m →
∞ under H ∗

0 . Therefore, (n+m)
∫

x∈Rd [Fn(x)−Gm(x)]2 d(Mn,m −F)
P→ 0 as n,m → ∞ under

contiguous alternatives H ∗
n,m. Hence, the asymptotic power of the test based on T

(2)
n,m under H ∗

n,m

is Pγ [∫t∈Rd {Z′′
2 (t)}2 dF(t) > c∗∗

2 (α)]. �
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Supplementary Material

Supplement to “Comparison of multivariate distributions using quantile–quantile plots and
related tests” (DOI: 10.3150/13-BEJ530SUPP; .pdf). In the supplement, we provide additional
multivariate Q–Q plots and discuss the performance of various tests for univariate data.
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