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Bayesian Zero-Inflated Negative Binomial
Regression Based on Pólya-Gamma Mixtures

Brian Neelon

Abstract. Motivated by a study examining spatiotemporal patterns in inpatient
hospitalizations, we propose an efficient Bayesian approach for fitting zero-inflated
negative binomial models. To facilitate posterior sampling, we introduce a set
of latent variables that are represented as scale mixtures of normals, where the
precision terms follow independent Pólya-Gamma distributions. Conditional on
the latent variables, inference proceeds via straightforward Gibbs sampling. For
fixed-effects models, our approach is comparable to existing methods. However,
our model can accommodate more complex data structures, including multivariate
and spatiotemporal data, settings in which current approaches often fail due to
computational challenges. Using simulation studies, we highlight key features of
the method and compare its performance to other estimation procedures. We
apply the approach to a spatiotemporal analysis examining the number of annual
inpatient admissions among United States veterans with type 2 diabetes.

Keywords: zero inflation, zero-inflated negative binomial, Pólya-Gamma
distribution, data augmentation, spatiotemporal data.

1 Introduction

Count data with an abundance of zeros arise commonly in many scientific fields, in-
cluding ecology, infectious disease epidemiology, and health services research. Consider,
for example, our motivating application, which examines the number of inpatient hos-
pitalizations among United States (US) veterans with type 2 diabetes. The majority
of patients had no inpatient admissions, resulting in a count of zero, while some had a
handful of admissions and a small fraction had numerous admissions. When the number
of zeros is greater than expected under a standard count model, the data are said to
be zero inflated relative to the standard model. Zero-inflated count data often require
flexible two-part mixture models to address both the excess zeros and the heterogeneous
distribution of nonzero counts. A common choice is the zero-inflated model (Lambert,
1992), which is a mixture of a point mass that accounts for the excess zeros and a
count distribution for the remaining values. The zero-inflated negative binomial (ZINB)
model is a popular choice for modeling zero-inflated data because it simultaneously
accommodates zero inflation and overdispersion in the count portion of the model.

Frequentist inference for the ZINB model is carried out using Newton-Raphson rou-
tines or the EM algorithm, where the excess zeros are treated as a type of missing data.
However, frequentist procedures become computationally challenging for complex data
structures, including longitudinal, spatial and spatiotemporal data that incorporate
multivariate random effects. This has prompted increased interest in tractable Bayesian
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approaches to fitting zero-inflated models (Ghosh et al., 2006; Neelon et al., 2010; Zurr
et al., 2012). Bayesian inference for the ZINB model is typically implemented in pre-
packaged Bayesian software such as WinBUGS (Lunn et al., 2014). While such programs
are suitable for relatively simple models, they become computationally infeasible for
fitting zero-inflated models with high-dimensional random effects. In our motivating
application, for example, WinBUGS was incapable of fitting a ZINB model with spatially
correlated random intercepts and slopes.

To allow for additional flexibility, we propose a computationally efficient Bayesian
approach to fitting ZINB models that is specifically designed to handle high-dimensional
data where existing methods often fail. We augment the data by introducing two
latent variables, each following a mixture of normal distributions with independent
Pólya-Gamma precision terms (Polson et al., 2013a). As such, our model extends the
approach of Polson et al. (2013a) and Pillow and Scott (2012) to the zero-inflated setting.
Because the latent variables are conditionally normal, they admit the convenient poste-
rior distributions available under standard Bayesian linear model theory. This leads to
efficient Gibbs sampling routines, and enables closed-form updates for various random
effect models.

The remainder of the paper is organized into four sections. Section 2 describes the
proposed ZINB model, outlines the Bayesian model fitting approach, and discusses
extensions to mixed effects models for longitudinal and spatial data. Section 3 presents
numerical examples that highlight salient properties of the model and the proposed
Gibbs sampler. In Section 4, we apply the model to a study examining spatiotemporal
patterns in inpatient admissions among US veterans residing in three southeastern states
from 2011–2015. The final section provides a discussion and offers directions for future
research.

2 Bayesian Zero-Inflated Negative Binomial Model

2.1 The Zero-Inflated Negative Binomial Model

Zero-inflated models are mixtures of a point mass at zero, representing the excess zeros,
and a count distribution for the remaining values. The term “excess” denotes the fact
that the data contain more zeros than expected under a standard count model. By
construction, zero-inflated models partition zeros into two types. The first type, typically
referred to as a “structural” zero, corresponds to individuals who are not at risk for an
event, and therefore have no opportunity for a positive count. The second type, termed
the “at-risk” or “chance” zero, applies to a latent class of individuals who are at risk
for an event but nevertheless have an observed response of zero. For example, in our
application examining the number of inpatient hospitalizations, the structural zeros
might represent patients who are in good health or can be treated through outpatient
care, and thus have no recorded inpatient days. In contrast, the at-risk zeros might
correspond to patients with more serious chronic conditions who, for various reasons,
have had no inpatient admissions in a given year. Thus, zero-inflated models can be
viewed as latent class models in which the classes are formed by the two types of zeros.
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The ZINB model is a common choice for modeling zero-inflated data because it
addresses not only zero inflation, but also overdispersion among the counts in the at-
risk class. In its generic form, the ZINB model is expressed as

yi ∼ (1− πi)1(wi=0∧ yi=0) + πiNB(μi, r)1(wi=1), i = 1, . . . , n, (1)

where yi is the count response for individual i, 1(·) is the indicator function, and wi

is a latent “at-risk” indicator variable such that with probability 1 − πi, wi = yi = 0
implying a structural zero, and with probability πi, wi = 1 and yi is in turn drawn from
a negative binomial distribution with mean μi and dispersion parameter r > 0. Thus,
πi denotes the probability of being in the at-risk class while μi denotes the mean count
among the at-risk population.

The at-risk indicators, w1, . . . ,wn, are typically modeled using a logistic model of
the form

logit(πi) = logit [Pr(wi = 1|β1)] = xT
i β1 = η1i, (2)

where xi is a p × 1 vector of covariates and β1 is a vector of regression parameters.
Equation (2) is commonly referred to as the binary or logistic component of the ZINB
model, which we denote with the subscript “1” in equation (2). Next, for reasons dis-
cussed below, we follow Pillow and Scott (2012) and parameterize the negative binomial
component (conditional on wi = 1) as

p(yi|r,β2,wi = 1)
d
=

Γ(yi + r)

Γ(r)yi!
(1− ψi)

rψyi

i ∀ i s.t. wi = 1, where

ψi =
exp

(
xT
i β2

)
1 + exp

(
xT
i β2

) =
exp (η2i)

1 + exp (η2i)
. (3)

Equation (3) is often referred to as the count or negative binomial component of the
ZINB model, which we denote with the subscript “ 2 ”. The expected value and variance
among the counts in the at-risk class are

E(yi|r,β2,wi = 1) =
rψi

1− ψi
= r exp(η2i) = μi,

Var(yi|r,β2,wi = 1) =
rψi

(1− ψi)2
= r exp(η2i) [1 + exp(η2i)]

= μi(1 + μi/r). (4)

The marginal mean, averaged over wi, is E(yi) = πiμi. The parameter α = 1/r cap-
tures the overdispersion in at-risk class, so that as α → ∞, the at-risk counts become
increasingly dispersed relative to the Poisson. Above, we have assumed the same set
of covariates xi for both the binary and count components, but in general this is not
necessary.

2.2 Bayesian Inference for the ZINB Model

We now outline the posterior sampling algorithm for the fixed effects ZINB model. The
details are presented in the following sub-sections, but in brief, the algorithm proceeds
in four steps:
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1. Given current parameter values, update the latent at-risk indicators, w1, . . . ,wn,
from their discrete full conditional distributions

2. Update β1 using the Gibbs sampler proposed by Polson et al. (2013a) for logistic
regression

3. Conditional on wi = 1, update β2 using the negative binomial Gibbs sampler
proposed by Pillow and Scott (2012)

4. Update r using either a random-walk Metropolis-Hastings step or the two-stage
Gibbs sampler proposed by Zhou and Carin (2015)

Steps 1, 2 and 3 involve Gibbs updates that admit closed-form full conditionals, and
Step 4 involves either a straightforward Metropolis-Hastings update or a Gibbs update.

Step 1: Update the Latent At-Risk Indicators

In Step 1 of the sampler, we update the at-risk indicators, w1, . . . ,wn. As outlined in the
online supplement (Neelon, 2018), the full conditional for wi is a discrete distribution
with probabilities that depend on whether the observed count, yi, is zero or non-zero. If
yi > 0, then subject i belongs to the at-risk class, and hence by definition, wi = 1 with
probability 1. Conversely, if yi = 0, then we observe either a structural zero (implying
that wi = 0) or an at-risk zero (implying wi = 1). Here, we draw wi from a Bernoulli
distribution with probability

θi = Pr(wi = 1|yi = 0, rest) = Pr(at-risk zero|at risk or structural zero)

=
πiυ

r
i

1− πi(1− υr
i )
, (5)

where, from equation (2), πi = exp(η1i)/[1 + exp(η1i)] is the unconditional probability
that wi = 1, and υi = 1−ψi, where ψi is the negative binomial event probability defined
in equation (3). The result follows from a direct application of Bayes’ Theorem. The
proof is presented in Appendix A of the supplement.

Step 2: Update β1

To implement Step 2, we employ the data-augmentation Gibbs sampler proposed by
Polson et al. (2013a). The approach introduces a vector of latent variables that are
scale mixtures of normals with independent Pólya-Gamma precision terms. A random
variable ω is said to have a Pólya-Gamma distribution with parameters b > 0 and c ∈ �,
if

ω ∼ PG(b, c)
d
=

1

2π2

∞∑
k=1

gk
(k − 1/2)2 + c2/(4π2)

, (6)

where the gk’s are independently distributed according to Ga(b, 1).
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Polson et al. (2013a) establish two important properties of the PG(b, c) density.
First, for a ∈ � and η ∈ �, it follows that

(eη)
a

(1 + eη)
b
= 2−beκη

∫ ∞

0

e−ωη2/2p(ω|b, 0) dω, (7)

where κ = a − b/2 and p(ω|b, 0) denotes a PG(b, 0) density. Next, the conditional
distribution p(ω|b, c) ∼ PG(b, c) arises from an “exponential tilting” of the PG(b, 0)
density:

p(ω|b, c) =
exp(−c2ω/2)p(ω|b, 0)
Eω[exp(−c2ω/2)]

=
exp(−c2ω/2)p(ω|b, 0)∫∞
0

e−c2ω/2p(ω|b, 0) dω
. (8)

Under the logistic model in equation (2), the Bernoulli likelihood for the at-risk
indicators w = (w1, . . . ,wn)

T is

p(w|β1) =

n∏
i=1

p(wi|β1)

=

n∏
i=1

(
exp(η1i)

1 + exp(η1i)

)wi
(

1

1 + exp(η1i)

)1−wi

=

n∏
i=1

(eη1i)
wi

1 + eη1i
, (9)

where η1i = xT
i β1. The i-th element of the Bernoulli likelihood has the same form

as the left-hand expression in equation (7), with ai = wi and b = 1. Thus, we can
re-write the Bernoulli likelihood in terms of the Pólya-Gamma random variables ω1 =
(ω11, . . . , ω1n)

T according to equation (7):

p(wi|β1) ∝ eκiη1i

∫ ∞

0

e−ω1iη
2
1i/2p(ω1i|1, 0) dω1i, (10)

where κi = wi − 1/2. Let ω1i (i = 1, . . . , n) be independently distributed according to
PG(1, η1i). By appealing to the above properties the Pólya-Gamma distribution, Polson
et al. (2013a) show that the full conditional distribution of β1, given w and ω1, is

p(β1|w,ω1) ∝ π(β1) exp

[
−1

2
(z1 −Xβ1)

TΩ1(z1 −Xβ1)

]
, (11)

where π(β1) is the prior distribution for β1; for i = 1, . . . , n, z1i =
wi−1/2

ω1i
with z1 =

(z11, . . . , z1n)
T ; Ω1 = diag(ω1) is an n× n precision matrix; and X is an n× p design

matrix. It is clear that, given β1 and Ω1, z1 is normally distributed with mean η1 =
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Xβ1 and diagonal covariance Ω−1
1 . Thus, assuming a Np(β0,Σ0) prior for β1, the full

conditional for β1 given z1 and Ω1 is Np(μ,Σ), where

Σ =
(
Σ−1

0 +XTΩ1X
)−1

,

μ = Σ
(
Σ−1

0 β0 +XTΩ1z1

)
. (12)

The derivation can be found in Polson et al. (2013a); for convenience, we provide a
summary in Appendix A of the online supplement.

Given these results, the Gibbs sampler for Step 2 proceeds by selecting initial values
for β1 and w and iterating through the following steps:

1. For i = 1, . . . , n, update ω1i from a PG(1, η1i) density, where η1i = xT
i β1

2. For i = 1, . . . , n, define z1i =
wi−1/2

ω1i

3. Conditional on z1, update β1 from Np(μ,Σ), where μ and Σ are given in (12).

An efficient accept-reject algorithm is used to sample from the Pólya-Gamma distribu-
tion and can be implemented in the R package BayesLogit (Polson et al., 2013b).

Step 3: Update β2

The update for β2 is similar to the one for β1. Adopting the parameterization of the
negative binomial in equation (3), the conditional likelihood of yi given wi = 1 is

p(yi|r,β2,wi = 1) ∝ (1− ψi)
rψyi

i

=
exp(η2i)

yi

[1 + exp(η2i)]
r+yi

, (13)

where η2i = xT
i β2. Exploiting property 1 of the Pólya-Gamma distribution in equation

(7), it follows that

p(yi|r,β2,wi = 1) ∝ eκiη2i

∫ ∞

0

e−ω2iη
2
2i/2p(ω2i|r + yi, 0) dω2i, (14)

where κi = (yi − r)/2. If we let ω2i be distributed according to PG(yi + r, η2i), then
following Pillow and Scott (2012), the full conditional for β2 is

p(β2|y∗, r,w,ω2) ∝ π(β2) exp

[
−1

2
(z2 −X∗β2)

TΩ2(z2 −X∗β2)

]
, (15)

where y∗ is the n∗ × 1 subvector of y corresponding to wi = 1; n∗ =
∑n

i=1 wi is the
number of individuals in the at-risk class (i.e., for whom wi = 1); ω2 is a vector of
length n∗ with elements ω2i; z2 is a vector of length n∗ with elements z2i = yi−r

2ω2i
;

Ω2 = diag(ω2) is an n∗×n∗ precision matrix; and X∗ is an n∗×p design matrix. From
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(15), it is clear that z2 is normally distributed with mean η2 = X∗β2 and diagonal
covarianceΩ−1

2 . Thus, assuming a Np(β0,Σ0) prior for β2, the conjugate full conditional
for β2 given z2 and Ω2 is Np(μ,Σ), where

Σ =
(
Σ−1

0 +X∗TΩ2X
∗
)−1

,

μ = Σ
(
Σ−1

0 β0 +X∗TΩ2z2

)
. (16)

The proof can be found in Pillow and Scott (2012) and is summarized in the context of
the ZINB model in Appendix A of the online supplement. Thus, given current values
for β2, w, and r, the Gibbs sampler for Step 3 proceeds as follows:

1. For wi = 1, draw ω2i from its PG(yi + r, η2i) distribution, where η2i = xT
i β2

2. For wi = 1, define z2i =
yi−r
2ω2i

3. Update β2 from its N(μ,Σ) distribution, where μ and Σ are given in (16).

Step 4: Update r

In the final step, we update r using either a Metropolis-Hastings step or a conjugate
Gibbs update. For the Metropolis update, we select a uniform prior with positive support
and draw candidate values of r from a zero-truncated normal proposal centered at the
current value of r. Alternatively, one can adopt the two-stage Gibbs update proposed by
Zhou and Carin (2015) and discussed more recently by Dadaneh et al. (2018). In stage
1, latent counts are introduced according to a Chinese restaurant table distribution; in
stage 2, r is sampled from a conjugate Gamma distribution given the latent counts. De-
tails are provided in the online supplement. In our experience, the Metropolis-Hastings
update works well in practice, and we therefore present Metropolis-based results in the
sections below.

To complete the prior specification for the ZINB model, we assign weakly informative
Np(0, 100Ip) priors to β1 and β2. These choices work well for the analyses presented
in Sections 3 and 4. More generally, we expect little sensitivity to prior specification,
except perhaps in cases where there is an extremely high or low percentage of zeros (e.g.,
> 95% or < 5%). In the former case, there are relatively few nonzero values, resulting in
a small at-risk sample; in the latter, there tend to be very few structural zeros, in which
case a standard (non-inflated) negative binomial model provides adequate fit. However,
these are instances in which maximum likelihood methods also break down. In general,
the proposed sampling algorithm works well for scenarios commonly encountered in
practice, as illustrated by the numerical examples presented in Section 3.

The MCMC algorithm cycles through Steps 1–4 until convergence, which can be
assessed using standard Markov chain Monte Carlo (MCMC) diagnostics such as trace
plots, Geweke z-statistics (Geweke, 1992) and Monte Carlo standard errors. These di-
agnostics can be obtained from the R packages coda (Plummer et al., 2006) and mcmcse

(Flegal et al., 2017). In our experience, convergence for fixed effects models is almost
immediate with excellent mixing. Even for more complex models, we typically observe
rapid convergence, as illustrated by the simulated examples presented in Section 3.
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2.3 Extensions to Longitudinal and Spatial Data

Equipped with the latent normal variables z1 and z2, the ZINB model can easily be
extended to accommodate longitudinal, spatial, and time series data — essentially any
setting where the model parameters are linear in z1 and z2. Suppose, for example, we
have count responses, yij , measured at occasions j = 1, . . . , ni for individual i. We can
model the data using a longitudinal version of the ZINB model, which is expressed as

yij ∼ (1− πij)1(wij=0∧ yij=0) + πijNB(μij , r)1(wij=1), (17)

where, for the ij-th observation, wij denotes the at-risk indicator taking value 1 with
probability πij , and μij is the negative binomial mean analogous to the one presented
in line 1 of equation (4). As before, we model πij using a logit link

logit(πij) = logit [Pr(wij = 1|β1,φ1i)] = xT
ijβ1 + vT

ijφ1i = η1ij , (18)

where xij is a p × 1 vector of covariates including appropriate functions of time (e.g.,
linear or polynomial time trends); β1 is a p×1 vector of fixed effect coefficients; vT

ij is a
q × 1 random effect design vector that includes functions of time; and φ1i ∼ Nq(0,G1)
is a q×1 vector of random effects for the binary component, with q× q prior covariance
G1. Similarly, the negative binomial component (conditional on wij = 1) is modeled as

p(yij |r,β2,φ2i,wij = 1)
d
=

Γ(yij + r)

Γ(r)yij !
(1− ψij)

rψ
yij

ij , ∀ i, j s.t. wij = 1,

ψij =
exp

(
xT
ijβ2 + vT

ijφ2i

)
1 + exp

(
xT
ijβ2 + vT

ijφ2i

) =
exp (η2ij)

1 + exp (η2ij)
, (19)

where φ2i ∼ Nq(0,G2) is a q×1 vector of random effects for the count component with
q × q covariance G2. Often it is reasonable to retain the same random effect structure
for both components, although in general this is not necessary. For example, we might
include only a random intercept in the binary component but a random intercept and
slope in the count component. Without loss of generality, we assume throughout that q
is the same for both components; however, the proposed models can be easily modified
to accommodate separate dimensions q1 and q2 for the two parts of the ZINB model.

To facilitate posterior computation, we again augment the data with latent normal
variables for each component. Let z1ij = (yij − 1/2)/ω1ij be the latent normal variable
for the binary component of the ZINB at occasion ij, and let z2ij = (yij − r)/(2ω2ij) be
the latent normal variable for the count component conditional on wij = 1, where ω1ij

and ω2ij follow independent Pólya-Gamma distributions. We model the ni × 1 vector
z1i = (z1i1, . . . , z1ini)

T as

z1i|η1i,Ω1i ∼ Nni

(
η1i,Ω

−1
1i

)
, (20)

where, for subject i, η1i = (η1i1, . . . , η1ini)
T = Xiβ1 + V iφ1i is the ni × 1 linear

predictor for the binary component; Xi and V i are, respectively, ni×p and ni×q fixed
and random effect design matrices; Ω1i = diag(ω1i) is an ni × ni diagonal precision
matrix; and ω1i = (ω1i1, . . . , ω1ini)

T . Similarly, for the count component, we have

z2i|η2i,Ω2i ∼ Nn∗
i

(
η2i,Ω

−1
2i

)
(21)
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Here, z2i is a vector of length n∗
i , where n∗

i =
∑ni

j=1 wij is the number of at-risk

observations for subject i; η2i = X∗
iβ2 + V ∗

iφ2i is the n∗
i × 1 linear predictor for the

count component, where X∗
i and V ∗

i are n∗
i × p and n∗

i × q fixed and random effect
design matrices; Ω2i = diag(ω2i) is an n∗

i × n∗
i precision matrix; and ω2i is an n∗ × 1

vector of PG precisions for the count component.

Note that if n∗
i = 0, then none of the observations fall into the at risk class – that

is, wij = 0 for all j = 1, . . . , ni. This is unlikely to occur unless ni is small or φij

is low for j = 1, . . . , ni, leading to few at-risk observations for subject i. When n∗
i is

small, we must rely more heavily on the multivariate normal prior for φ2i to shrink the
random effects toward a global population mean of zero, thus stabilizing the random
effect predictions. As we illustrate in Section 3, the proposed random effect ZINB model
performs well even for small n∗

i .

In many cases, it is reasonable to assume that the binary and count components are
correlated, thus allowing for dependence between the at-risk probability and the count
distribution among those at risk. In our motivating application, for example, patients
who are at high risk for inpatient hospitalizations may also have a greater number
of re-admissions compared to those with low risk of inpatient hospitalizations. Recent
work suggests that ignoring this association can lead to biased inferences in zero-inflated
models (Su et al., 2009). We can accommodate this dependence by allowing φ1i and φ2i

to be correlated according to a multivariate normal distribution. Let φi = (φT
1i,φ

T
2i)

T

denote the 2q × 1 vector comprising the random effects for both the binary and count
components. We assume the following multivariate normal distribution for φi:

φi|Γ ∼ N2q(0,Γ),

where Γ =

(
G1 G12

G21 G2

)
(22)

is a 2q × 2q positive-definite covariance matrix under the default assumption that q is
the same for the binary and count components. The covariance between the components
is captured by the q × q off-diagonal elements G12 = GT

21.

The correlated random effects model is especially attractive because it allows the
level of shrinkage imposed on the random effects to be correlated across components. By
applying two related sources of shrinkage to the random effects, the correlated model
improves inference in the presence of small n∗

i . In particular, when there are few at-risk
observations, so that n∗

i is small, the correlated model allows the random effects φ2i in
the count component to borrow information from φ1i in the binary component, which
typically has a greater sample size (i.e., ni ≥ n∗

i ) and hence more information available
for prediction.

The model can further extend to areal spatial and spatiotemporal data by assigning
a multivariate conditionally autoregressive (CAR) prior to φi in equation (22). For
example, an intrinsic CAR prior (Banerjee et al., 2014) takes the form

φi|φ(−i),Γ ∼ N2q

(
1

mi

∑
l∈∂i

φil,
1

mi
Γ

)
, (23)
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where mi is the number of neighbors for i-th areal unit, ∂i is the set of neighbors for unit
i, and Γ is the 2q×2q conditional covariance matrix given the remaining spatial random
effects, φ(−i). Whereas the multivariate normal prior in equation (22) permits “global”
shrinkage to a population mean of zero, the CAR prior borrows information across
neighboring spatial regions, resulting in “localized” shrinkage that yields a spatially
smoothed map.

As the dimension of q increases, the joint posterior update for φi can become un-
manageable. Consider, for example, a spatiotemporal intercept and slope model, where
each component includes a random intercept and linear time trend. Here, each compo-
nent includes q = 2 random effects, resulting in a 4× 4 covariance matrix Γ in equation
(23). Let φ11 = (φ111, . . . , φ1n1)

T and φ12 = (φ112, . . . , φ1n2)
T denote, respectively, the

n×1 vectors of random intercepts and slopes for the binary component. Similarly, define
φ21 = (φ211, . . . , φ2n1)

T and φ22 = (φ212, . . . , φ2n2)
T to be the intercept and slope vec-

tors for the count component. Finally, let φ = (φT
11, . . . ,φ

T
22)

T , be the 4n× 1 collection
of all random effects. Following Brook’s Lemma (Banerjee et al., 2014), the joint prior
for φ is given by

p(φ|Γ) ∝ exp

[
−1

2
φT

(
Γ−1 ⊗Q

)
φ

]
, (24)

where Q = M −A is an n×n “structure” matrix of rank n−1; M = diag(m1, . . . ,mn)
with diagonal elements equal to the number of neighbors for each spatial unit; and A
is an n× n adjacency matrix with aii = 0, ail = 1 if spatial units i and l are neighbors,
and ail = 0 otherwise. Because Q is rank-deficient — and hence p(φ|Γ) is improper —
a sum-to-zero constraint is typically applied to φ as part of the MCMC algorithm to
ensure an identifiable model (Banerjee et al., 2014).

From expression (24), the joint prior for φ is proportional to a multivariate nor-
mal density with 2qn × 2qn precision matrix Γ−1 ⊗ Q, which in many applications
is too unwieldy for efficient posterior inference. It is therefore convenient to partition
expression (24) into univariate conditional priors for each vector φkk (k = 1, . . . , q)
given the remaining random effects. This leads to efficient Gibbs sampling by permit-
ting separate updates for each n×1 vector φkk. For instance, under the spatiotemporal
intercept/slope model described above, the conditional prior for φ11, the n × 1 vector
of random intercepts for the binary component, is

p(φ11|φ12,φ21,φ22,Γ) ∝ exp

[
−1

2
(φ11 − μ11)

TΣ11(φ11 − μ11)

]
, where

Σ11 =
[
Γ11 − Γ(1,−1)Γ

−1
(−1,−1)Γ(−1,1)

]−1

Q,

μ11 =
[(

Γ(1,−1)Γ
−1
(−1,−1)

)
⊗ In

]
φ(−1), (25)

where Γ is the 4 × 4 covariance of φi, Γ11 denotes the first element of Γ, Γ(1,−1) is
the 1 × 3 vector comprising the first row of Γ with element 1 removed, Γ(−1,−1) is the
3 × 3 submatrix of Γ after removing row 1 and column 1, Γ(−1,1) is the 3 × 1 vector

comprising the first column of Γ with element 1 removed, and φ(−1) = (φT
12,φ

T
21,φ

T
22)

T

is a 3n× 1 vector of the remaining random effects. Equation (25) follows directly from
conditional multivariate normal theory. Similar expressions hold for φ12, φ21 and φ22.
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The conditional prior specification in (25) leads to efficient Gibbs updates for the
spatial effects. Consider once again the spatial intercept/slope model. As detailed in
the Appendix B of the online supplement, the updates for φ11 and φ12 in the bi-
nary component depend on the likelihood contributions from all N =

∑n
i=1 ni obser-

vations, whereas the updates for φ21 and φ22 in the count component rely only on
contributions from the N∗ =

∑n
i=1 n

∗
i ≤ N “at-risk” observations for which wij = 1

(i = 1, . . . , n; j = 1, . . . , ni). This sample-size imbalance prevents a joint Gibbs up-
date for φ = (φT

11, . . . ,φ
T
22)

T based on prior (24). The conditional prior (25) avoids
this problem by providing separate univariate updates for φ11, φ12, φ21 and φ22, the
first two based on all N observations and the latter two based on the N∗ at-risk ob-
servations. The approach can easily be generalized to q > 2 random effects for each
component, as well as to non-spatial longitudinal data, where Q = In is of full rank.
Additional details on the conditional prior specification can be found in Appendix B of
the supplement.

Prior specification for the spatial and non-spatial correlated ZINB models is com-
pleted by assigning conditionally conjugate Np(β0,Σ0) priors to the fixed effects and
an inverse-Wishart(2q,Λ) prior to Γ, where Λ is 2q × 2q scale matrix. By default, we
set β0 = 0, Σ0 = 100Ip, and Λ = I2q. To implement the MCMC for random effect
ZINB models, we initialize the model parameters and then cycle through the following
steps:

1. For all i, j, update the latent at-risk indicators, wij , according to the discrete
probability distribution

Pr(wij = 1|rest) =
{
1, if yij = 1

πijυ
r
ij

1−πij(1−υr
ij)

, if yij = 0
, (26)

where πij = exp(η1ij)/[1+exp(η1ij)] is the unconditional probability that wij = 1

given in equation (18), υij = 1−ψij , and ψij =
exp(η2ij)

1+exp(η2ij)
is the negative binomial

event probability defined in equation (19).

2. Update the parameters for the binary component:

(a) For all i, j, sample ω1ij from PG(1, η1ij), where η1ij is defined in equation
(18)

(b) For all i, j, define z1ij = (yij − 1/2)/ω1ij

(c) Update β1 from its normal full conditional

(d) For k = 1, . . . , q, update each n×1 vector φ1k from its normal full conditional
based on the conditional prior specification given in (25); apply sum-to-zero
constraints as needed

3. Update the parameters for the count component:

(a) For wij = 1, sample ω2ij from PG(1, η2ij), where η2ij is defined in equation
(19)
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(b) For wij = 1, define z2ij = (yij − r)/(2ω2ij)

(c) Update β2 from its normal full conditional

(d) For k = 1, . . . , q, update each n×1 vector φ2k from its normal full conditional
based on the conditional prior specification given in (25); apply sum-to-zero
constraints as needed

(e) Update r using a random-walk Metropolis-Hastings step or the two-stage
Gibbs sampler analogous to the ones outlined in Section 2.2

4. Update the 2q × 2q covariance matrix Γ from its conjugate inverse-Wishart full
conditional.

Appendix B of the supplement derives the full conditionals for the spatial intercept/slope
ZINB model implemented in Sections 3.3 and 4.

3 Simulated Examples

3.1 Simulation 1: Fixed Effects ZINB Model

To illustrate the properties of the model, we conducted a series of simulations of in-
creasing model complexity. First, we generated data from fixed effects ZINB model
and compared the results to maximum likelihood estimates (MLEs) obtained using the
SAS R© software procedure NLMIXED (SAS Institute, Cary, North Carolina). The aim was
to determine whether the proposed Bayesian approach with weakly informative priors
yielded regression estimates and uncertainty intervals similar to those obtained under a
classical, frequentist approach. To do so, we generated 1000 observations according to
the following ZINB model:

yi ∼ (1− πi)1(wi=0∧ yi=0) + πiNB(μi, r)1(wi=1),

logit(πi) = logit [Pr(wi = 1|β1)] = η1i = β10 + β11xi1 + β12xi2 + β13xi3,

p(yi|r,β2,wi = 1)
d
=

Γ(yi + r)

Γ(r)yi!
(1− ψi)

rψyi

i ,

ψi =
exp (η2i)

1 + exp (η2i)
,

η2i = β20 + β21xi1 + β22xi2 + β23xi3, (27)

where xi1 was simulated from an N(0, 1) distribution, xi2 was simulated from a
Bernoulli(0.5) distribution, xi3 was simulated from a discrete uniform distribution tak-
ing values {0, 1, 2}, β1 =(β10, . . . , β13)

T =(0.5,−0.5,−0.25, 0.25)T , β2 =(β20, . . . ,
β23)

T =(0.5,−1, 0.75,−0.25)T and r = 1. These values resulted in 60% zeros, a mean
count of 2.8, and the five-number summary (0, 0, 0, 2, 68). Figure S1 in Appendix C of
the online supplement presents a full histogram of the count distribution.

We assigned independent N(0, 100) priors to the regression coefficients and a
Unif(0, 10) prior to r. To update r, we used a zero-truncated normal proposal with
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variance 0.025 centered at the current value, resulting in a Metropolis-Hastings accep-
tance rate of 36%. Initial values were set at β1 = β2 = 0, and r = 1. We ran 50,500
iterations of the MCMC algorithm described in Section 2, discarding the first 500 as
burn-in. Figure S2 of the supplement presents trace plots, Monte Carlo standard er-
rors and p-values from the Geweke diagnostics for selected parameters. Non-significant
p-values are indicative of convergence. The p-values for simulation 1 ranged from 0.10
to 0.47, indicating reasonable convergence. The trace plots showed satisfactory mix-
ing. The algorithm took 6.20 minutes to run on a Dell R© Precision T3610 workstation,
compared to 0.50 seconds for SAS. However, a shorter run of 1500 iterations took ap-
proximately 11 seconds to run and produced similar results (Figure S3), indicating that
the proposed Bayesian method is comparable to SAS in terms of run time.

Watanabe (Watanabe, 2010) Information Criteria (WAIC) values for the ZINB and
negative binomial models were 3011 and 3067, respectively, indicating superior fit for
the ZINB model. We based our model comparisons on WAIC rather than the more
commonly used Deviance Information Criteria (DIC) because the DIC penalty term
can yield negative values for mixture models, such as the ZINB, when the posterior
mean deviates from the posterior mode (Celeux et al., 2006; Gelman et al., 2014). For
a detailed discussion of WAIC and its comparison to other information criteria, please
see Gelman et al. (2014).

Table 1 presents the parameter estimates and 95% intervals for the ZINB model
under Bayesian and maximum likelihood estimation. In all cases, the Bayesian estimates
were as or more accurate than the maximum likelihood estimates (MLEs). For both
methods, the 95% intervals encompassed the simulated values. These results suggest
that even for moderate sample sizes with a large percentage of zeros, the proposed
Bayesian approach provides a suitable alternative to frequentist estimation for fixed
effects ZINB models. The Bayesian approach might prove particularly attractive when
prior data can be incorporated into the analysis to improve inferences, as frequentist
approaches do not accommodate such information.

Model Simulated Estimate (95% Interval)
Component Parameter Value Proposed Model† MLE‡

Binary β10 0.50 0.51 (−0.00, 1.18) 0.39 ( 0.12, 0.90)
β11 0.50 0.47 ( 0.18, 0.85) 0.41 ( 0.12, 0.70)
β12 −0.25 −0.03 (−0.46, 0.38) −0.01 (−0.41, 0.38)
β13 0.25 0.09 (−0.15, 0.35) 0.09 (−0.15, 0.32)

Count β20 0.50 0.37 ( 0.04, 0.72) 0.33 (−0.01, 0.67)
β21 −1.00 −0.95 (−1.09, −0.82) −0.95 (−1.08, −0.81)
β22 0.75 0.62 ( 0.40, 0.84) 0.62 ( 0.40, 0.83)
β23 −0.25 −0.11 (−0.24, 0.02) −0.11 (−0.24, 0.02)
r 1.00 1.18 ( 0.77, 1.68) 1.25 ( 0.78, 1.73)

Table 1: Parameter estimates and 95% intervals for fixed effects ZINB model in simula-
tion study 1. †Posterior means and 95% credible intervals for proposed Bayesian ZINB
model. ‡MLEs and 95% confidence intervals obtained using SAS Proc NLMIXED.
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3.2 Simulation 2: Correlated Random Intercept ZINB Model

For the second simulation study, we generated data for 1000 subjects from the following
correlated random intercept model analogous to the one given in equation (17):

yij ∼ (1− πij)1(wij=0∧ yij=0) + πijNB(μij , r)1(wij=1),

logit(πij) = logit [Pr(wij = 1|β1, φ1i)]

= η1ij = β10 + β11xi + β12tij + φ1i,

p(yij |r,β2, φ2i,wij = 1)
d
=

Γ(yij + r)

Γ(r)yij !
(1− ψij)

rψ
yij

ij ,

ψij =
exp (η2ij)

1 + exp (η2ij)
,

η2ij = β20 + β21xi + β22tij + φ2i,

φi = (φ1i, φ2i)
T ∼ N2(0,Γ), (28)

where, for i = 1, . . . , 1000 and j = 1, . . . , ni, yij denotes the count for individual i at
occasion j; wij is the “at-risk” indicator for observation ij; πij is the corresponding
at-risk probability; xi ∼ Bern(0.5) is a time-invariant binary covariate (e.g., gender);
tij ∼ N(0, 2) denotes the timing of observation ij (after centering, say); and φi is a bi-
variate normal vector of random intercepts for the i-th individual, with mean zero and
covariance Γ. As with simulation 1, the goal was to compare the Bayesian estimates
under weakly informative priors to the corresponding MLEs. Maximum likelihood was
implemented using SAS Proc NLMIXED, which combines Gaussian quadrature for nu-
merical integration with Newton-Raphson for maximization.

For simulation 2, we generated ni according to a discrete uniform distribution rang-
ing from 1 to 10, resulting in a total sample size of N = 5585 with a mean of 5.59 obser-
vations per subject. Seven percent of the subjects had no at-risk observations (n∗

i = 0),
and another 17% had only one at-risk observation. Thus, we were able to evaluate the
performance of our model when approximately one quarter of the sample had few (or
no) at-risk observations. We assigned the following values to the model parameters:
β1 = (β10, β11, β12)

T = (0.25,−0.25, 0.25)T , β2 = (β20, β21, β22)
T = (0.50,−.25, 0.25)T ,

r = 1.25, and Γ =
(
0.50 0.25
0.25 0.75

)
. These values resulted in 52% zeros, a mean count of

3.34, and a five-number summary of (0, 0, 0, 4, 220). Figure S4 of the online supplement
presents a full histogram of the counts for simulation 2.

As in simulation 1, we assigned independent N(0, 100) priors to the fixed effects and
a Unif(0, 10) prior to r. We reparameterized the bivariate normal prior for φi using the
conditional specification described in equation (25), leading to a conditional prior for
φ1i of the form

φ1i|φ2i ∼ N(m, v),

v = Γ11 −
Γ12Γ12

Γ22
= (1− ρ2)Γ11,

m =
Γ21

Γ22
φ2i = ρ

√
Γ11

Γ22
φ2i, (29)
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where Γ11 and Γ22 are the marginal variances of φ1i and φ2i, respectively, and ρ =
Γ12√
Γ11Γ22

= Corr(φ1i, φ2i). The conditional prior for φ2i follows a similar expression.

Finally, we assigned an inverse-Wishart(2, I2) prior to Γ.

For posterior inference, we implemented the MCMC algorithm described at the end
of Section 2. Starting values for β1, β2 and r were identical to those in simulation 1. Ini-
tial values for φ1i and φ2i were drawn from independent standard normal distributions,
and Γ was initialized to I2. To update r, we used a zero-truncated normal proposal with
variance 0.003, resulting in an acceptance rate of 42%. We ran the sampler for 50,500
iterations, discarding the first 500 as burn-in. Figure S5 of the supplement presents trace
plots, Geweke diagnostic p-values and Monte Carlo standard errors for selected param-
eters. The results indicate excellent mixing. For comparison, we re-ran the algorithm for
2500 iterations (Figure S6 and Table S1), which took 78 seconds to run, compared to
55 seconds for SAS. An even shorter run of 1500 iterations yielded similar results and
took only 44 seconds to complete, confirming that the proposed model is competitive
with SAS in terms of computation time.

Table 2 presents the parameter estimates and 95% intervals under Bayesian and max-
imum likelihood estimation. The estimates for the two procedures were nearly identical,
with 95% intervals encompassing the true parameter values. These results suggest that
the proposed Bayesian approach performs similarly to maximum likelihood for com-
monly used mixed models with relatively few observations per subject, thus offering an
appropriate Bayesian alternative to frequentist estimation in such cases.

Model Simulated Estimate (95% Interval)
Component Parameter Value Proposed Model† MLE‡

Binary β10 0.25 0.06 (−0.17, 0.30) 0.05 (−0.19, 0.28)
β11 −0.25 −0.27 (−0.47, −0.08) −0.27 (−0.47, −0.08)
β12 0.25 0.29 ( 0.21, 0.38) 0.29 ( 0.20, 0.38)

Count β20 0.50 0.39 ( 0.20, 0.58) 0.39 ( 0.20, 0.58)
β21 −0.25 −0.11 (−0.27, 0.03) −0.12 (−0.27, 0.03)
β22 0.25 0.26 ( 0.21, 0.31) 0.26 ( 0.21, 0.30)
r 1.25 1.32 ( 1.17, 1.54) 1.35 ( 1.19, 1.53)

Random Γ11 = Var(φ1i) 0.50 0.54 ( 0.33, 0.79) 0.52 ( 0.28, 0.76)
Effects Γ22 = Var(φ2i) 0.75 0.77 ( 0.64, 0.90) 0.76 ( 0.63, 0.89)

Γ12 = Cov(φ1i, φ2i) 0.25 0.30 ( 0.18, 0.41) 0.31 ( 0.19, 0.42)

Table 2: Parameter estimates and 95% intervals for random effects ZINB model in
simulation study 2. †Posterior means and 95% credible intervals for proposed Bayesian
ZINB model. ‡MLEs and 95% confidence intervals obtained using SAS Proc NLMIXED.

3.3 Simulation 3: Spatiotemporal ZINB Model

For the final simulation, we generated data from a spatiotemporal intercept/slope model
analogous to the one described in Section 2. To emulate the spatial layout of our applica-
tion, we used the US Census county-level adjacency matrix for South Carolina, Georgia,
and Alabama U.S. Census Bureau (2014). This matrix contains n = 272 counties and
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1528 pairwise adjacencies. We simulated 50 observations per county over five years —
the study time frame for our application — for a total of N = 50 × 272 × 5 = 68, 000
observations. We simulated the data from the following spatiotemporal ZINB model:

yij ∼ (1− πij)1(wij=0∧ yij=0) + πijNB(μij , r)1(wij=1),

logit(πij) = logit [Pr(wij = 1|β1,φ1i)]

= η1ij = β10 + β11tij + φ1i1 + φ1i2tij ,

p(yij |r,β2,φ2i,wij = 1)
d
=

Γ(yij + r)

Γ(r)yij !
(1− ψij)

rψ
yij

ij ,

ψij =
exp (η2ij)

1 + exp (η2ij)
,

η2ij = β20 + β21tij + φ2i1 + φ2i2tij ,

φi|φ(−i),Γ ∼ N4

(
1

mi

∑
l∈∂i

φil,
1

mi
Γ

)
(30)

where tij ∈ {0, 1, 2, 3, 4} denotes study year, with 0 as baseline; φ1i = (φ1i1, φ1i2)
T is

a vector comprising the i-th random intercept (φ1i1) and slope (φ1i2) for the binary
component; φ2i = (φ2i1, φ2i2)

T is the corresponding vector of random effects for the
count component; φi = (φ1i1, φ1i2, φ2i1, φ2i2)

T is modeled as multivariate ICAR distri-
bution with conditional covariance Γ; and mi denotes the number of counties adjacent
to county i. The true parameter values are given in Table 3. These values resulted in a
count distribution containing 70% zeros with a five number summary of (0, 0, 0, 1, 158).
Figure S7 presents a full histogram of the counts. Unlike the models in simulations 1
and 2, the correlated spatial model (30) cannot be readily fit using existing frequentist
or Bayesian software. In WinBUGS, for example, we immediately encountered unavoid-
able “trap” errors when fitting the model. This may be due to the fact that the ZINB
model relies on the so-called “zeros trick” for implementation in WinBUGS, which may
contribute to numerical instability. Thus, the proposed approach offers a convenient
method for fitting complex ZINB models that cannot be easily accommodated by other
means.

As before, we assumed independent N(0, 100) priors for the fixed effects and a
Unif(0, 10) prior for r. Following equation (25), we partitioned the multivariate intrinsic
CAR prior for φi into separate univariate priors. We completed the prior specification
by assigning an inverse-Wishart(4, I4) prior to Γ. Starting values for β1, β2 and r were
identical to those in simulations 1 and 2. Initial values for the random effects were
drawn from independent standard normal distributions, and Γ was initialized to I4.
To update r, we used a zero-truncated normal proposal with variance 0.0002, resulting
in an acceptance rate of 43%. To improve efficiency of the algorithm, we used the R
package spam (Furrer and Sain, 2010; Gerber and Furrer, 2015) to convert the CAR
structure matrix Q in equation (24) to a sparse matrix object. This avoids computa-
tionally intensive matrix operations designed for dense matrices. We ran the sampler
for 50,500 iterations with a burn-in of 500. Trace plots, Geweke diagnostics and Monte
Carlo standard errors were indicative of convergence and showed reasonable mixing for
a range of model parameters (Figure S8). For comparison, we re-ran the analysis for



B. Neelon 845

2,500 iterations (Figure S9 and Table S2), as well as for 1500 iterations with a run time
of 9 minutes. We obtained similar results for all scenarios.

Table 3 presents the posterior means and 95% credible intervals (CrIs) for the model
parameters. Overall, the estimates were close to the true value with 95% intervals that
overlapped the simulated value. Figure 1 presents maps of the true values and pos-
terior mean predictions for φ1i1 and φ1i2 (i = 1, . . . , n), the random intercepts and
slopes for the binary component of the spatiotemporal ZINB model. In each case, the
spatial pattern for the estimated effects closely mirrored the true spatial distribution,
suggesting the proposed model accurately recovered the underlying spatial pattern in
the data. Figure 2 presents the corresponding maps for the count component. Again, the
predicted spatial pattern is similar to the true pattern, but with increased smoothing.
The additional smoothing is not surprising, as the count component conditions on the
at-risk class, and therefore has fewer observations available for spatial prediction than
the binomial component. As a result, it relies more heavily on the CAR smoothing prior
for prediction.

Model Component Parameter Simulated Value Posterior Mean (95% CrI)
Binary β10 −0.25 −0.27 (−0.33, −0.19)

β11 0.25 0.22 ( 0.19, 0.26)
Count β20 0.50 0.49 ( 0.43, 0.54)

β21 −0.25 −0.24 (−0.26, −0.22)
r 1.00 1.03 ( 0.96, 1.09)

Random Γ11 = Var(φ1i1) 0.50 0.61 ( 0.42, 0.84)
Effects Γ12 = Cov(φ1i1, φ1i2) 0.10 0.03 (−0.05, 0.11)

Γ13 = Cov(φ1i1, φ2i1) 0.10 0.09 (−0.02, 0.20)
Γ14 = Cov(φ1i1, φ2i2) −0.10 −0.07 (−0.13, −0.01)
Γ22 = Var(φ1i2) 0.15 0.21 ( 0.14, 0.29)
Γ23 = Cov(φ1i2, φ2i1) 0.10 0.12 ( 0.05, 0.20)
Γ24 = Cov(φ1i2, φ2i2) 0.10 0.08 ( 0.04, 0.12)
Γ33 = Var(φ2i1) 0.50 0.55 ( 0.42, 0.71)
Γ34 = Cov(φ2i1, φ2i2) 0.10 0.06 ( 0.01, 0.11)
Γ44 = Var(φ2i2) 0.15 0.17 ( 0.13, 0.22)

Table 3: Parameter estimates and 95% credible intervals (CrIs) for the spatiotemporal
ZINB model in simulation study 3.

As a final comparison, we fitted two additional models. First, we fit a “partially cor-
related” model that assumed independence between the binary and count components
— that is, we assumed Γ in equation (22) to be block diagonal with G12 = G21 = 0.
For this model, we assigned independent inverse-Wishart(2, I2) priors to G1 and G2.
Second, we fit an uncorrelated model that assumed no correlation among any of the ran-
dom effects — i.e., we assumed Γ to be strictly diagonal. Here we assigned independent
inverse-Gamma(0.001,0.001) priors to the random effect variances. The WAIC values
were 143, 456 for the fully correlated model, 143, 480 for the partially correlated model,
and 143, 653 for the uncorrelated model, indicating superior predictive accuracy for the
fully correlated model. Because WAIC relies on a conditionally independent partition-
ing of the data, which can be problematic for spatially correlated data (Gelman et al.,
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Figure 1: Simulated and predicted (a) random intercepts and (b) random slopes for
the binary component of the ZINB model in simulation study 3. Top Left: Simulated
random intercepts. Top Right: Predicted random intercepts. Bottom Left: Simulated
random slopes. Bottom Right: Predicted random slopes.

2014), we additionally compared models based the root mean square predictive errors
(RMSPEs) for each random effect vector, φ11, φ12, φ21, φ22, using the expression

RMSPEkk =

√√√√ 1

n

n∑
i=1

(φkik − φ̂kik)2, k = 1, 2, (31)

where φkik denotes the simulated value of random effect kk for subject i, and φ̂kik is the
corresponding predicted value. Table S3 in the supplement presents the posterior mean
RMSPEs for each random effect under the three models. In all cases, the fully correlated
model produced the smallest RMSPEs, particularly in contrast to the uncorrelated
model. In addition, the parameter estimates for the uncorrelated model showed extreme
bias (Table S4). These results suggest that ignoring even modest association among the
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Figure 2: Simulated and predicted (a) random intercepts and (b) random slopes for
the count component of the ZINB model in simulation study 3. Top Left: Simulated
random intercepts. Top Right: Predicted random intercepts. Bottom Left: Simulated
random slopes. Bottom Right: Predicted random slopes.

random effects can result in diminished predictive performance and imprecise estimates.
These model comparison methods could also be used to test for other types of model
misspecification, such as the choice of link function for the binary component. Taken
together, the three simulations suggest that the proposed approach is comparable to
maximum likelihood for relatively simple models, but can accommodate more complex
scenarios where existing methods are impractical.

4 Analysis of Inpatient Admissions

We applied the spatiotemporal ZINB model to an analysis of inpatient hospital stays
among 23, 533 diabetic veterans residing in Alabama, Georgia, and South Carolina from
2011 to 2015. We modeled the annual number of inpatient admissions using a model
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analogous to equation (30). Covariates included patient age (centered), sex, and race
(non-Hispanic white vs other); Elixhauser score (Quan et al., 2005), a measure of co-
morbidity burden; and an indicator for service connected disability medical coverage,
with 1 implying full medical coverage and 0 implying partial coverage. The sample com-
prised 68% zeros, an average of 1.24 admissions annually, and a five-number summary
of (0, 0, 0, 1, 235). Figure S10 in Appendix D of the supplement provides a histogram of
the counts, and Table S5 presents sample summary statistics. Prior distributions and
MCMC specifications were identical to those for simulation 3. We ran the algorithm for
a 50,000 iterations with a conservative burn-in of 25,000. We additionally thinned the
chain by 25 to conserve disc space on the VA central server. Trace plots and Geweke
statistics suggested MCMC convergence with adequate mixing (Figure S11). Generally
speaking, shorter MCMC runs and burn-ins should be adequate for most applications.
For example, a run of 5500 iterations with a burn-in of 500 yielded nearly identical
results in the current case study (Figure S12 and Table S6). Table 4 presents the pos-
terior means and 95% CrIs for the model parameters. The negative fixed effects esti-
mates for year (β11 and β21) suggest that there was a general decline in admissions

Model Component Parameter Variable Posterior Mean (95% CrI)
Binary β10 Intercept 0.11 (−0.10, 0.34)

β11 Year −0.07 (−0.09, −0.06)
β12 Age 0.00 (−0.002, 0.002)
β12 Male Gender −0.02 (−0.12, 0.09)
β12 NHW Race 0.03 (−0.01, 0.08)
β12 Full Disability Coverage −0.12 (−0.17, −0.07)
β12 Elixhauser Score 0.43 ( 0.41, 0.45)

Count β20 Intercept 0.86 ( 0.72, 1.00)
β21 Year −0.04 (−0.05, −0.03)
β22 Age 0.003 ( 0.002, 0.005)
β22 Male Gender 0.05 (−0.01, 0.12)
β22 NHW Race −0.04 (−0.07, −0.01)
β22 Full Disability Coverage −0.04 (−0.09, −0.01)
β22 Elixhauser Score 0.16 ( 0.15, 0.17)
r Dispersion 0.77 ( 0.72, 0.83)

Random Γ11 Var(φ1i1) 0.04 (0.03, 0.05)
Effects Γ12 Cov(φ1i1, φ1i2) 0.01 (0.001, 0.01)

Γ13 Cov(φ1i1, φ2i1) 0.01 (0.002, 0.02)
Γ14 Cov(φ1i1, φ2i2) 0.01 (0.001, 0.01)
Γ22 Var(φ1i2) 0.02 (0.01, 0.02)
Γ23 Cov(φ1i2, φ2i1) 0.01 (0.001, 0.01)
Γ24 Cov(φ1i2, φ2i2) 0.003 (0.001, 0.01)
Γ33 Var(φ2i1) 0.06 (0.05, 0.09)
Γ34 Cov(φ2i1, φ2i2) 0.01 (0.01, 0.02)
Γ44 Var(φ2i2) 0.02 (0.01, 0.02)

Table 4: Parameter estimates and 95% credible intervals (CrIs) for the spatiotemporal
ZINB model in the VA inpatient study. NHW: Non-Hispanic white.
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over time. This finding is consistent with recent VA efforts to reduce inpatient admis-
sions through improved outpatient services (Kaboli et al., 2012). Additionally, patients
with full disability coverage had fewer admissions. This finding supports recent studies
showing that patients with full disability coverage are more likely to seek outpatient
care because their copays are fully covered (Chuan-Fen et al., 2012). Not surprisingly,
higher comorbidity scores were associated with increased admissions. The random ef-
fect covariances showed modest heterogeneity across counties in both components of
the model.

Figure 3: County maps of predicted spatial random effects (top panel) and posterior
significance (lower panel) for the VA inpatient study. From left to right, the maps
correspond to the random intercepts and slopes for the binary component, and the
random intercepts and slopes for the count component. For lower panel, dark gray
denotes significantly high random effect, light gray denotes significantly low, and white
denotes non-significant.

Figure 3 maps the spatial random effects for each component. The upper panels show
the predicted random effect values, while the lower panels map the posterior significance,
with the white shade representing non-significant effects (i.e., a 95% CrI overlapping
zero), the dark shade corresponding to positive significance (95% CrI > 0), and light
shade denoting counties with significantly negative effects (95% CrI < 0). VA medical
centers are superimposed on the maps. The random intercept for the count component
(upper panel, map 3) showed the greatest variability, confirming the result found in
Table 4 for Γ33. In general, the maps show a band of elevated spatial effects extending
from southeast South Carolina through central Georgia and Alabama, with several
hotspots of elevated random effects in urban areas such as Charleston and Columbia,
SC; Augusta and Atlanta, GA; and Birmingham, AL. These areas are home to large
VA facilities. Thus, after controlling for other factors, including comorbidity burden,
patients residing near urban VA facilities tend to have more annual admissions compared
to those in more rural areas. Recent studies have shown that urban medical facilities
typically have larger bed capacities compared to rural facilities; as a result, increased
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admissions may be a byproduct of “discretionary” factors such as hospital capacity
rather than clinical factors such as severity of illness (Fisher et al., 2000). Our findings
appear to support this conclusion.

Table 5 presents the predicted marginal mean number of admissions, E(yij) = πijμij ,
for patients residing in three hypothetical counties in years 2011 and 2015, along with
accompanying multiplicative ratios. All three patients were from the reference covariate
population. The first county corresponded to an “average” county in which spatial ran-
dom effects were set to zero. The spatial random effects for the remaining two counties
were one standard deviation above and one standard deviation below average, respec-
tively. As Table 5 indicates, there was a decrease in expected counts for patients in the
average and below-average counties. This is consistent with the negative fixed effect
coefficients for year (β11 and β21) found in Table 4. In contrast, for the above-average
county, there was an increase over time, reflecting the fact that the positive random
slope standard deviations (

√
0.02 = 0.14) were larger than the negative fixed effect

coefficients for year, resulting in a net increase over time. The multiplicative ratios com-
paring an average county to a below-average county were 1.42 (1.35, 1.46) in 2011 and
3.37 (3.05, 3.77) in 2015. Thus, in 2015, patients in the average county had 3.37 times
more admissions on average than patients in the below-average county. The multiplica-
tive ratios comparing above- and below-average counties were 1.98 (1.83, 2.18) in 2011
and an impressive 10.17 (8.35, 12.46) in 2015. These results suggest that while there is an
overall decline in admissions over time for patients residing in average or below-average
counties, there appears to be substantial spatial heterogeneity in the magnitude of the
trend across counties.

Year
Mean No. of Admissions 2011 2015
Average County 0.97 (0.85, 1.10) 0.71 (0.62, 0.81)
1 SD Above Average 1.36 (1.19, 1.54) 2.12 (1.82, 2.46)
1 SD Below Average 0.68 (0.59, 0.78) 0.21 (0.17, 0.25)
Multiplicative Ratios
Average vs. Below-Average 1.42 (1.35, 1.48) 3.37 (3.05, 3.77)
Above-Average vs. Average 1.40 (1.34, 1.46) 3.00 (2.74, 3.31)
Above-Average vs. Below-Average 1.98 (1.83, 2.18) 10.17 (8.35, 12.46)

Table 5: Mean number of annual admissions per patient and corresponding multiplica-
tive ratios for patients residing in 3 hypothetical counties. 95% credible intervals are
given in parentheses. Estimates are for the reference covariate group. Random effects
for the average county were set to 0. Random effects for the remaining counties were
set to 1 standard deviation (SD) above and 1 SD below average.

The space-time interaction is highlighted more prominently in Figures 4(a) and 4(b).
Figure 4(a) presents the mean number of admissions per patient for each county in 2011
and 2015, while Figure 4(b) displays the net change over time in expected admissions
per patient for each county. Estimates correspond to a patient in the reference covariate
group. Approximately 12% of the counties had increasing trends over time. These coun-
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ties were concentrated in urban areas such as Charleston, Augusta and Birmingham,
which again are home to large VA medical centers. These counties could be targeted for
policy initiatives, such as improved outpatient services, to reduce inpatient admissions.
Such efforts also have important cost-saving implications: a recent VA report estimates
the per-patient daily cost of inpatient care to be $3300 (Health Economic Resource
Center, 2017). By pinpointing facilities associated with frequent inpatient admissions,
the VA can help manage overhead costs while minimizing the burden imposed on both
patients and hospital staff.

Figure 4: Panel (a): Predicted per-patient admissions by county. Panel (b): Change in
mean number of admissions per patient from 2011–2015. Both figures correspond to a
patient in the reference covariate group. In Figure (b), the darkest shade shows counties
with net increase in admissions. “H” denotes VA medical center.
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5 Conclusion

We have proposed an efficient Bayesian approach to fitting ZINB models. The proposed
data-augmented Gibbs sampler makes use of easily sampled Pólya-Gamma random
variables; conditional on these latent variables, inference proceeds via straightforward
Bayesian inference for linear models. As such, the model can be easily extended to more
complex settings, including those involving multivariate, longitudinal and spatiotem-
poral data. Our simulations showed that the approach performs well across a range of
scenarios, even in the case of few at-risk observations. For simpler models, the approach
yields estimates similar to maximum likelihood, but can accommodate more complex
data that are not amenable to current methods. In terms of computation time, our
simulations suggest that the approach is comparable to existing software when such
comparisons are available.

There are a number of potential areas for future work. Although the ZINB is among
the most common choices for modeling zero-inflated data, it cannot accommodate un-
derdispersion, which occurs when there are fewer counts than expected under a standard
count model. Future work might consider alternative count distributions that permit
underdispersion, such as the generalized Poisson (Consul, 1989), while preserving the
convenient Gibbs updates presented here. The model could also be extended to ac-
commodate high-dimensional geostatistical data through the use of reduced rank and
predictive process models (Banerjee, 2017). Restricted spatial regression could further
be used to address spatial confounding due to collinearity between spatial random ef-
fects and spatially varying, cluster-level covariates (Hodges and Reich, 2010). Other
extensions include finite mixture ZINB models to study underlying subgroups in the
population, and shrinkage priors for high-dimensional predictors. More generally, the
proposed method should prove useful in settings where interest lies in modeling zero-
inflated count data within a Bayesian inferential framework.

Supplementary Material

Supplementary material for “Bayesian Zero-Inflated Negative Binomial Regression
Based on Pólya-Gamma Mixtures” (DOI: 10.1214/18-BA1132SUPP; .pdf). This supple-
ment contains derivations of the full conditionals discussed in Section 2 (Appendices A
and B), additional tables and figures for the simulation studies presented in Section 3
(Appendix C), and additional tables and figures for case study presented in Section 4
(Appendix D).
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