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Probability Based Independence Sampler for
Bayesian Quantitative Learning in Graphical

Log-Linear Marginal Models

Ioannis Ntzoufras∗, Claudia Tarantola†, and Monia Lupparelli‡

Abstract. We introduce a novel Bayesian approach for quantitative learning for
graphical log-linear marginal models. These models belong to curved exponential
families that are difficult to handle from a Bayesian perspective. The likelihood
cannot be analytically expressed as a function of the marginal log-linear inter-
actions, but only in terms of cell counts or probabilities. Posterior distributions
cannot be directly obtained, and Markov Chain Monte Carlo (MCMC) methods
are needed. Finally, a well-defined model requires parameter values that lead to
compatible marginal probabilities. Hence, any MCMC should account for this im-
portant restriction. We construct a fully automatic and efficient MCMC strategy
for quantitative learning for such models that handles these problems. While the
prior is expressed in terms of the marginal log-linear interactions, we build an
MCMC algorithm that employs a proposal on the probability parameter space.
The corresponding proposal on the marginal log-linear interactions is obtained
via parameter transformation. We exploit a conditional conjugate setup to build
an efficient proposal on probability parameters. The proposed methodology is
illustrated by a simulation study and a real dataset.

Keywords: graphical models, marginal log-linear parameterisation, Markov
Chain Monte Carlo computation.

1 Introduction

Statistical models which impose restrictions on marginal distributions of categorical data
have received considerable attention especially in social and economic sciences; see, for
example, in Bergsma et al. (2009). A particular appealing class is that of log-linear
marginal models introduced by Bergsma and Rudas (2002), that includes as special
cases log-linear and multivariate logistic models. The marginal log-linear interactions
are estimated using the frequencies of appropriate marginal contingency table, and
expressed in terms of log-odds ratios. This setup is important in cases where information
is available for specific marginal associations via odds ratios (i.e. marginal log-linear
interactions) or when partial information (i.e. marginals) is available.

Log-linear marginal models have been used to provide parameterisations for dis-
crete graphical models; see Lupparelli et al. (2009), Rudas et al. (2010) and Evans and
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Richardson (2013). In particular, Lupparelli et al. (2009) used them to define a pa-
rameterisation for discrete graphical models of marginal independence represented by
a bi-directed graph. The absence of an edge in the bi-directed graph indicates marginal
independence, and the corresponding marginal log-linear interactions (i.e. the corre-
sponding log-odds ratio) are constrained to zero.

Despite the increasing interest in the literature for graphical log-linear marginal mo-
dels, Bayesian analysis has not been developed as much as traditional methods. Some
context specific results have been presented by e.g. Silva and Ghahramani (2009b),
Bartolucci et al. (2012) and Ntzoufras and Tarantola (2013). For graphical log-linear
marginal models, no conjugate analysis is available. Therefore, Markov chain Monte
Carlo (MCMC) methods must be employed. Nevertheless, the likelihood of the model
cannot be analytically expressed as a function of the marginal log-linear interactions.
This creates additional difficulties on the implementation of MCMC methods since, at
each step, an iterative procedure needs to be applied in order to calculate the cell proba-
bilities and consequently the model likelihood. Moreover, in order to have a well-defined
model of marginal independence, we need to construct an algorithm which generates pa-
rameter values that lead to a joint probability distribution with compatible marginals.
To achieve this, we need an MCMC scheme which moves within the restricted space
of parametrisations satisfying the conditions induced by the compatibility of marginal
distributions.

In this paper we construct a novel, fully automatic, efficient MCMC strategy for
quantitative learning for graphical log-linear marginal models that handles the pre-
viously discussed problems. We assign a suitable prior distribution on the marginal
log-linear parameter vector, while the proposal is expressed in terms of the probability
parameters. The proposal distribution of marginal log-linear interactions is constructed
by simply transforming generated candidate values of probability parameters. The cor-
responding proposal density is directly available by implementing standard theory about
functions of random variables. The advantages of this strategy are clear: the joint dis-
tribution factorises under certain conditional independence models, and the likelihood
can be directly expressed in terms of probability parameters. Furthermore, efficient pro-
posal distributions can be constructed applying the conditional conjugate approach of
Ntzoufras and Tarantola (2013), that exploit the representation of the model in terms of
an augmented Direct Acyclic Graph (DAG). We present two probability based samplers:
the probability-based independence sampler (PBIS) and the prior adjustment algorithm
(PAA). The first one is an augmented Metropolis-Hasting algorithm, while the latter
it is only an approximation of an independence Metropolis-Hastings algorithm. Hence,
related theoretical results cannot be invoked directly for it. Nevertheless, empirical com-
parisons between the two methods indicate that PAA provides results similar to the ones
obtained via PBIS in a faster and in more efficient way.

Assigning a prior distribution on the marginal log-linear interactions rather than on
the probability parameters represents a novel approach and is particularly handy in the
presence of informative prior about odds for specific marginal associations. For instance,
symmetry constraints, vanishing high-order associations or further prior information
about the joint and marginal distributions can be easily specified by setting linear con-
straints on marginal log-linear terms instead of non-linear multiplicative constraints on
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the probability space. Finally, marginal log-linear parameters are more appealing than
probabilities because they are interpretable measures of association between observed
variables.

The plan of the paper is as follows. In Section 2, we introduce discrete graphical
models of marginal independence and the marginal log-linear parameterisation. In Sec-
tion 3, we describe the considered prior set-up. Section 4 is devoted to the proposed
MCMC strategies. The methodology is illustrated in Section 5 which presents a simu-
lation study and a real data analysis. In Section 6, we conclude with a brief discussion
and ideas for future research.

2 Model Specification and Parameterisation

In this section we briefly introduce discrete graphical models of marginal independence,
the related notation and terminology, and the corresponding marginal log-linear param-
eterisation.

A bi-directed graph G = (V , E), is a graph with vertex set V , and edge set E,
such that (u, v) ∈ E if and only if (v, u) ∈ E. Following Richardson (2003) edges
are represented via bi-directed arrows. An alternative representation, proposed by Cox
and Wermuth (1993), is by undirected dashed edges. The skeleton G of a bi-directed
graph G is the graph obtained by making all edges undirected. A ∨ configuration is
every triplet of vertices (u, v, z) in G with edges (u, v) and (v, z) and with no edge
connecting u and z. A vertex set is connected if there is a path between every pair
of vertices belonging to it. We consider a set of random variables YV = (Yv, v ∈ V),
each one taking values iv ∈ Iv; where Iv is the set of possible levels for variable v.
The cross-tabulation of variables YV produces a |V|-way contingency table with cell

frequencies n = (n(i), i ∈ I) where I = × v∈V Iv . We further assume that
n ∼ Multinomial(p, N) with p = (p(i), i ∈ I); p(i) is the joint probability for cell i ∈ I,
and N =

∑
i∈I

n(i). A bi-directed graph G is used to represent marginal independencies

between variables YV which are expressed as non-linear constraints over the set of the
joint probabilities p. The list of independencies implied by a bi-directed graph can
be obtained using the pairwise Markov property (Cox and Wermuth, 1993) and the
connected set Markov property (Richardson, 2003). For discrete variables the connected
set Markov property implies the pairwise Markov property, whereas the converse is not
generally true. Following Drton and Richardson (2008), we define a discrete graphical
model of marginal independence as the family of probability distributions for YV that
satisfy the connected set Markov property. For example the bi-directed graph in Figure 1
encodes the marginal independencies Y{A,B}⊥⊥YD and YA⊥⊥Y{D,C} under the connect
set Markov property.

The marginal log-linear parameterisation for bi-directed graphs has been proposed
by Lupparelli (2006) and Lupparelli et al. (2009); it is based on the class of log-linear
marginal models of Bergsma and Rudas (2002). According to Bergsma and Rudas (2002)
the parameter vector λ, containing the marginal log-linear interactions, can be obtained
as
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Figure 1: Example of bi-directed graph.

λ = C log
(
MP

)
with P = vec(p), (1)

where vec(p) is a vector of dimension |I| obtained by rearranging the elements p in a
reverse lexicographical ordering of the corresponding variable levels, with the level of
the first variable changing first. Each marginal log-linear interaction satisfies identifia-
bility constraints (here sum-to-zero constraints), and this is achieved via an appropriate
contrast matrix C. The interactions are calculated from a specific marginal table identi-
fied via the marginalisation matrix M . They are characterised by two sets of variables:
one set that refers to the marginal table in use and a second set (subset of the first
one) that identifies which variables are involved in the interaction of interest. Finally,
the first order interactions correspond to the main effects. We denote with λMm the pa-
rameter vector containing all interactions estimated from the marginal probability table
pMm . Matrices C and M define a smooth mapping between the probability space and
the marginal log-linear space; see Forcina et al. (2010) for technical details about the
smoothness. Matrix C controls the induced log-linear parameterisation. In this work we
have used the sum-to-zero parameterisation which is one of the possible configurations
leading to different sets of log-linear parameters. Details for the construction of C and
M are available in Section 3.1 and in the Supplementary Material of this paper; see
Appendices B and C (Ntzoufras et al., 2018).

A graphical model of marginal independence is defined by zero constraints on spe-
cific marginal log-linear interactions. More precisely, we apply the following procedure
presented by Lupparelli (2006) and Lupparelli et al. (2009): (i) define a hierarchical or-
dering (see Bergsma and Rudas, 2002) of the marginals corresponding to disconnected
sets of the bi-directed graph; (ii) append the marginal corresponding to the full table
at the end of the list if it is not already included; (iii) for every marginal table estimate
all interactions that have not been already obtained from the marginals preceding it in
the ordering; (iv) for every marginal table corresponding to a disconnected set of G,
restrict the highest order log-linear interaction to zero.

The graphical structure imposes constraints of the type

K log
(
MP

)
= 0

with K being the sub-matrix of C for which the corresponding elements of λ are re-
stricted to zero. This parameterisation depends on the ordering of the marginals selected
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in step (i). Furthermore, it does not always satisfy variation independence; see Luppar-
elli et al. (2009), Rudas et al. (2010), and Evans and Richardson (2013). If the marginal
selected in step (i) are order decomposable then variation independence is guaranteed
(Bergsma and Rudas, 2002) so that the marginal-log linear parameter space is rectan-
gular. Hence, in this paper we focus on models based on an order decomposable set of
marginals. Graphical log-linear marginal models based on bi-directed graphs with three
and four vertices are always variation independent whichever the chosen ordering of the
marginals.

3 Bayesian Model Set-Up

3.1 Prior Specification for Marginal Log-Linear Interactions

In order to specify our prior setting for graphical marginal log-linear models it is useful
to rewrite the model described by (1) in the following extended form

⎛
⎜⎜⎜⎜⎜⎜⎝

λM1

...

λMm

...

λ|M|

⎞
⎟⎟⎟⎟⎟⎟⎠

= diag
(
C1, · · · ,Cm, · · · ,C|M|

)
⎛
⎜⎜⎜⎜⎜⎜⎝

logPM1

...

logPMm

...

logP |M|

⎞
⎟⎟⎟⎟⎟⎟⎠

, (2)

where M = {M1, . . . ,Mm . . . ,M|M|} is the set of marginals under consideration, λMm

is the parameter vector obtained from the marginal probability table pMm which is re-
arranged to a vector denoted by PMm for all m = 1, 2, . . . , |M|. The marginals under
consideration correspond to the disconnected sets of the graph. If the graph is connected,
we need to append the margin that corresponds to the full table to the previous set of
marginals. The contrast matrix C is a block diagonal matrix with elements Cm. Each
sub-matrix Cm is obtained by inverting the design matrix XMm of the saturated model
fitted on marginal Mm, and deleting rows corresponding to interactions that are not
estimated from that specific marginal table; see the Supplementary Material (Appendix
C) for details. From (2), we directly obtain that the interactions λMm of the marginal
Mm are obtained by

λMm = Cm logPMm for all Mm ∈ M.

Every λMm may contain interactions that are constrained to zero due the graphical
structure G and the induced contrast matrix. In the following we focus only on non-
zero elements of λ, on which we assign a suitable prior distribution. We denote by �λ
the set of elements of λ not restricted to zero, that is

�λ =
(
�λ
Mm

;Mm ∈ M
)

with �λ
Mm

=
(
λMm
j : λMm

j �= 0, j = 1, . . . ,rCm

)
,

where rCm is the number of rows of the contrast matrix Cm for marginal Mm ∈ M.
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When no information is available about �λ, we can work separately on each element
of �λ, assigning suitable independent normal prior distributions with large variance to
express ignorance, i.e.

f(�λj) ∼ N(0, σ2
j ) for j = 1, 2, . . . , d�λ,

where d�λ is the number of elements of �λ.

A more sophisticated approach can be based on the prior suggestion of Dellapor-
tas and Forster (1999) for standard log-linear models of the form logμ = Xβ. They
considered the following prior distribution

β ∼ N
(
θ, 2|I|

(
XTX

)−1
)
with θ = (logn, 0, . . . , 0)T , (3)

where μ is the vector of the expected number of cell frequencies and |I| =
∏
v∈V

|Iv| is the

number of cells of the contingency table. Matrix X represents the design matrix of the
model; see Supplementary Material (Appendix C) for more details and full specification.

This prior was suggested as a default choice for model comparison of log-linear
models and it arises naturally for log-linear marginal models since within each marginal
we essentially work by fitting standard log-linear models. In fact, following the procedure
described in Section 2, for every marginal we fit a saturated log-linear model, and then
we keep only interactions that have not been already estimated from the marginal
preceding it in the examined ordering.

Dellaportas and Foster prior was obtained after matching the prior moments of
other default priors used for the probability parameters in conjugate analysis of graph-
ical models such as the Jeffreys and the Perks prior distributions, for more details see
Sections 3.2 and 3.3 in Dellaportas and Forster (1999). Moreover, the prior distribution
induced for the log-odds ratios remains the same even if extra, marginally independent,
categorical variables are added in the model. Finally, such prior arises naturally in our
context since the adopted parameterisation allows us to work by fitting standard log-
linear models within each marginal. These are the main reasons why we recommend
adopting this prior here.

The prior mean vector θ has all its elements equal to zero except the first one which
is equal to the logarithm of the average number of observations per cell n. Under sum-
to-zero constraints, XTX is a block diagonal matrix resulting to a set of independent
priors for interactions referring to different set of variables.

In order to construct the prior distribution on �λ, we work separately on each single
set λMm obtained from marginal Mm and we proceed as follows. Let λMm

S be the
parameter vector for the saturated model that can be estimated from marginal Mm;
by construction, it coincides with the parameter vector of the saturated standard log-
linear model obtained from this marginal. In terms of Dellaportas and Forster (1999)
parameterisation, λMm

S can be written as λMm

S = βMm − log(N)X−1
Mm

1. Hence, from

(3), the default prior for λMm

S is given by

λMm

S ∼ N
(
θ − log(N)X−1

Mm
1 , 2|IMm |

(
XT

Mm
XMm

)−1 )
. (4)
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The prior of �λ
Mm

is obtained via marginalisation from (4) since �λ
Mm

is a subset of
λMm

S . When using sum-to-zero constraints, then X−1
Mm

1 = (1, 0, . . . , 0)T resulting to a

prior mean equal to θj = 0 for all �λ
Mm

j except for the intercept for which the prior mean
is given by logn− log(N). This prior is greatly simplified to a product of independent
N(0, 2) for all marginal log-linear interactions (except for the intercept) in the case

of binary variables. Finally, the prior for the full parameter vector �λ is obtained as a

product of the priors on �λ
Mm

.

3.2 Likelihood Specification and Posterior Inference

The likelihood cannot directly be expressed in terms of λ (or equivalently �λ) but only
as a function of the probability parameter

f(n|λ) =
Γ(N + 1)∏

i∈I
Γ
(
n(i) + 1

) ∏
i∈I

℘i(λ)
n(i),

where ℘i(λ) ≡
{
p(i) : λ = C log

(
MP

)}
, for all i ∈ I . (5)

Unfortunately, in order to obtain ℘i(λ), or equivalently P , from (1), we need to im-
plement an iterative algorithm, and therefore the likelihood cannot be written in a
closed form expression; see, for example, Bergsma and Rudas (2002) and Lupparelli
et al. (2009). As a consequence of this, the corresponding posterior distribution of λ (or

equivalently �λ), cannot be evaluated straight away. Hence, MCMC methods are needed

for posterior inference of �λ.

Metropolis-Hastings scheme on the marginal log-linear interactions can be imple-
mented to estimate the posterior distributions of the parameter vector. Nevertheless,
such an algorithmic strategy will be inefficient since in every MCMC iteration, the joint
probabilities corresponding to the proposed values of λ need to be calculated using an
iterative algorithm. This will considerably slow down the MCMC sampler. The use of
the iterative procedure may also result to unstable solutions for specific combinations of
lambda values. During simulations, we have encountered several inconsistencies in the
estimates for specific configurations that may have unpredicted effect on the MCMC
runs and the corresponding estimated posterior distributions. Another important is-
sue is the fact that the constructed algorithm should generate parameter values that
lead to well-defined joint probability distributions with compatible marginals. Defining
a proposal distribution that allows moving within the space of variation independent
log-linear marginal models is still an open issue.

For the above reasons, in the following section, we propose a novel MCMC strategy
based on the probability representation of the model. Such probabilities are compatible
by construction, the corresponding marginal log-linear interactions will be also compati-
ble. For comparative purposes, we have implemented a “vanilla” random walk algorithm
MCMC on �λ (referred to as RW-λ), which proposes to change each log-linear parameter
vector independently for every single marginal based on a decomposable ordering.
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4 Probability Based MCMC Samplers

4.1 Initial Set-Up and Data Augmentation for MCMC

Following the notation of Ntzoufras and Tarantola (2013), we can divide the class of
graphical log-linear marginal models in two major categories: homogeneous and non-
homogeneous models. A bi-directed graph is named homogeneous if it does not include a
bi-directed 4-chain or a chordless 4-cycle as sub-graphs. Both type of models are shown
to be compatible, in terms of independencies, with a certain DAG representation (aug-
mented DAG); see Pearl and Wermuth (1994), Drton and Richardson (2008) and Silva
and Ghahramani (2009b,a). Nevertheless, while homogeneous models can be generated
via a DAG with the same vertex set, for the non-homogeneous ones it is necessary to
include some additional latent variables which makes Bayesian inference challenging.
The advantage of the augmented DAG representation is that the joint probability over
the augmented variable space (including both observed and latent variables) can be
written using the standard DAG factorisation. An example of the DAG representation
with latent variables for a non-homogeneous bi-directed graph is provided in Figure 2.

Figure 2: Bi-directed 4-chain graph and the corresponding Markov equivalent DAG over
the observed margin.

In order to construct the augmented DAG, with the minimal set of latent variables,
we apply the following procedure presented in Pearl and Wermuth (1994). Given the
skeleton G of the examined graph, we assign arrows vı −→ vj ←− vk to each ∨ configura-
tion (vı, vj, vk) in G, constructing in this way the sink orientation of G. If no edge in the
sink orientation is bi-directed we consider an acyclic orientation of the undirected edges.
If the sink orientation contains bi-directed edges, we substitute every bi-directed edge
v1 ←→ v2 with the directed configuration v1 ←− � −→ v2, where vertex � represents
a hidden or latent variable. Finally, a DAG is constructed via an acyclic orientation of
the undirected edges which are present in the sink orientation of the graph. Any DAG
obtained via the previously described procedure is called augmented DAG of G. In case
of homogeneous models the augmented DAG will not involve latent variables, while for
non homogeneous ones we add as many latent variables as the number of bi-directed
edges of the corresponding sink orientation.

Ntzoufras and Tarantola (2013) exploited the connection between bi-directed graphs
and DAGs to develop a Gibbs sampler based on a probability parameterisation of the
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model. They parameterised the augmented DAG model in terms of a set of marginal and
conditional probability parameters Π, on which they implemented a conjugate analysis
based on products of Dirichlet distributions. For homogeneous bi-directed graphs, the
posterior distribution of the probability vector for the observed variables can be ob-
tained analytically. On the other hand, for non-homogenous graphs, a Gibbs sampler
can be obtained by calculating appropriate contrasts of the logarithms of the probability
parameters within the proposed data augmentation scheme. The Gibbs sampler for the
non-homogenous models is essentially composed by three steps:

Step 1: Generate random splits for each bi-directed edge in the sink orientation of G
by using a multinomial distribution (i.e. we generate the latent data).

Step 2: Generate random samples from the induced Dirichlet posterior conditional
distributions for each set of probability parameters of the augmented DAG, given
the augmented table of Step 1.

Step 3: Calculate the joint and the marginal probabilities for the observed variables
by implementing the appropriate marginalising transformations to the probability
parameter values of Step 2.

Additionally, the posterior distribution of the log-linear interactions can be obtained as
by-product of this approach. This can be achieved by calculating appropriate contrasts of
the logarithms of the joint probability parameters obtained in Step 3. We may implement
this by either adding a step to the above algorithm or by implementing the induced
transformation on the final MCMC output of the algorithm.

However, this approach is open to the following critics. First of all, prior information
is usually available about the marginal association of the observed variables. This is typ-
ically expressed by the size of log-linear interactions which correspond to log-odds. Any
prior information available for log-odds cannot be incorporated in a probability based
method in a trivial manner. For instance, symmetry constraints, context specific in-
dependence assumptions, vanishing high-order associations or further prior information
about the joint and marginal distributions can be specified by setting zero or linear con-
straints on the marginal log-linear parameter space, instead of non-linear multiplicative
constraints on the probability space. Specifying sub-models based on a priori knowledge
is an important issue for discrete bi-directed graph models. In fact, they generally require
to estimate a higher number of parameters compared to models of conditional indepen-
dencies, such as undirected graph and DAG models; see Lupparelli et al. (2009) for a dis-
cussion which compares the number of parameters in discrete bi-directed and undirected
graph models with the same skeleton. From this perspective, the marginal log-linear pa-
rameterisation is definitively more appealing than the probability based approach.

In this paper, we introduce a novel MCMC strategy, in which the model and the
prior are expressed in terms of the marginal log-linear interactions, while the proposal
is defined on the probability parameter space. By this way, we can incorporate any
source of prior information that might be available regarding marginal associations by
specifying the prior values of selected log-odds ratios (i.e. interactions). Moreover, we can
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exploit the advantages of the conditional conjugacy of the algorithm of Ntzoufras and
Tarantola (2013) in order to obtain efficient proposals based on probability parameters.
This approach allows us to control the induced values and constraints on interactions
in the log-linear space in more natural way than working in the probability space of the
(augmented) DAG.

Our approach does not account for any additional non-independence constraints
which may arise by marginalising the latent variables from the augmented DAGs. Defin-
ing the exact class of marginal DAGs still represents an open issue; see Evans (2016)
who discusses possible approximations. Moreover, these inequality constraints are not
of great interest as they do not have a straightforward interpretation. Intuitively, if
non-independence constraints are included after marginalising over the latent variable,
we expect the resulting posterior distribution of the marginal log-linear interactions to
be a close approximation of the posterior distribution of the corresponding interactions
obtained by the true model.

Using the methodology of Ntzoufras and Tarantola (2013), we construct an MCMC
sampler based on proposing values in terms of joint probabilities, avoiding compatibility
problems. If the model is homogeneous the dimension of Π is the same as the dimension
of �λ. This is not true for non-homogeneous models since the dimension of Π is greater
than the dimension of �λ. In this case we need to augment the parameter space in order
to implement Metropolis-Hastings algorithm. In the following, we denote the augmented
set of marginal log-linear interactions by with λA. If the model is homogeneous, then
λA = �λ. Otherwise, we set λA = (�λ, ξ); where ξ is selected to be the last dξ elements

of λA with dξ = dim(Π)− dim(�λ). The vector ξ can be thought as an auxiliary set of
parameters which are used to retain the dimension balance in the Metropolis-Hastings
algorithm.

More precisely, for any graphical log-linear marginal modelG we can obtain a Markov
equivalent DAG over the observed margins, denoted by DG, with augmented vertex set
A = {V ,L}, where L is the set of additional latent variables; if G is homogeneous then
L = ∅ and A = V . Under this approach, the joint probabilities can be written as

p(i) =
∑

iL∈IL

pA(i, iL) for i ∈ IV , (6)

pA(i, iL) = pA(i∗) =
∏
v∈A

πv|pa(v)

(
i∗v|i∗pa(v)

)
for i∗ = (i, iL) ∈ IA, (7)

and the probability parameter set is given by

Π = vec
(
πv|pa(v)(i

∗
v|i∗pa(v)); i∗v ∈ Iv \

{
|Iv|

}
, i∗pa(v) ∈ Ipa(v), v ∈ A

)
,

where pA(i∗) = P (YV = i∗V , YL = i∗L) is the joint probability for the observed variables
YV and the latent variables YL, pa(v) stands for the parents set of v in graph DG,
πv|pa(v)(i

∗
v|i∗pa(v)) = P (Yv = i∗v|Ypa(v) = i∗pa(v)) is the conditional probability of each

variable Yv given variables Ypa(v) in the parent set pa(v) of v. By using the induced
augmented likelihood representation, we are able to construct a Gibbs sampler based on
the conditional conjugate Dirichlet prior distributions on Π (Ntzoufras and Tarantola,
2013).
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4.2 The General Algorithm

The posterior distribution of the augmented set of marginal log-linear interactions is
given by

f(λA|n) ∝ f
(
n|℘(λ)

)
f(�λ)f(ξ),

where f(ξ) is a pseudo prior used for the additional parameters.

We consider a Metropolis-Hastings algorithm which can be summarised by the fol-
lowing steps.

For t = 1, . . . , T , repeat the following steps:

1. Propose a new vector Π′ from q(Π′|Π(t)); where Π(t) are the values of Π at t
iteration.

2. From Π′, calculate the proposed joint probabilities p′ (for the observed table)
using (6) and (7).

3. From p′, calculate λ′ using (1) and then obtain the corresponding non-zero ele-

ments �λ′.

4. Set ξ′ = Π′
ξ; where Π

′
ξ is a pre-specified subset of Π′ of dimension dξ = dim(Π)−

dim(�λ); in our implementation we have used as ξ the last dξ terms of Πξ.

5. Accept the proposed move with probability α = min(1, A) with

A =
f
(
n|℘

(
λ′))f(�λ′)f (

ξ′
)
q
(
�λ(t), ξ(t)

∣∣�λ′, ξ′
)

f
(
n|℘

(
λ(t)

))
f
(
�λ(t)

)
f(ξ(t))q

(
�λ′, ξ′

∣∣�λ(t), ξ(t)
)

=
f(n|Π′)f

(
�λ′)f(ξ′)q(Π(t)|Π′)

f(n|Π(t))f
(
�λ(t)

)
f(ξ)q(Π′|Π(t))

× abs

⎛
⎝J

(
Π(t), �λ(t), ξ(t)

)
J
(
Π′, �λ′, ξ′

)
⎞
⎠ , (8)

where abs(·) stands for the absolute value, Πξ = ξ, and J = J (Π, �λ, ξ) is the

determinant of the Jacobian matrix of the transformation Π = g(�λ, ξ) specified

by (6), (7), and (1). Similarly to Step 1, �λ(t), ξ(t) and λ(t) are used to denote the
values of the corresponding parameters in the current iteration t of the algorithm.

6. If the move is accepted, then set Π(t+1) = Π′, ξ(t+1) = ξ′, and �λ
(t+1)

= �λ′

otherwise set Π(t+1) = Π(t) and �λ
(t+1)

= �λ
(t)
.

The pseudo-parameter vector ξ is used only to retain the dimension balance between
the marginal log-linear parameterisation and the probability parameterisation used in
Ntzoufras and Tarantola (2013). Furthermore, it is directly matched to specific proba-
bility parameters of the bi-directed graph G. Hence, we can indirectly “eliminate” the
effects of ξ on the algorithm by assuming that its elements are uniformly distributed in
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the zero-one interval. Under this view, we set f(ξı) = I{0<ξı<1} having as a result the

elimination of the ratio f(ξ′)/f(ξ(t)) from (8). In the following, we consider this choice
in order to simplify all proposed algorithms.

A good choice of the proposal q(Π′|Π(t)) will lead to high (close to one) acceptance
rates. Therefore, an efficient proposal for the Metropolis Hastings scheme described in
this section, intuitively seems to be the following

q(Π′|Π(t)) =
∑
nA

fq
(
Π′|nA)f(nA|Π(t),n

)
, (9)

where f(nA|Π,n) is the distribution of counts nA given the observed frequency table
n and the probability parameter set Π of the augmented table induced by A; and
fq(Π|nA) is the conditional posterior distribution of the probability parameter vector
Π given a proposed set of augmented data nA. Considering all possible configurations in
(9) within each MCMC iteration is cumbersome and time-consuming. One solution can
be obtained by using a random sub-sample of nA. Hence, we construct our MCMC by
employing just one realisation of nA which will play the role of intermediate nuisance
parameter that facilitates the construction of a sensible proposal distribution. This
approach corresponds to an MCMC scheme with a target posterior distribution given by

f(λA,nA|n) ∝ f
(
n|℘(λ)

)
f(�λ)f(ξ)f(nA).

The parameter vector nA plays the role of (nuisance) augmented data with f(nA) be-
ing a pseudo-prior. More precisely, we introduce nA in order to augment the target
posterior and to achieve a dimension balance between the two parameterisations: the
marginal log-linear parameterisation and the probability based one. This trick assists us
to retain the balance between the two parametrisations and it enables us to implement
standard MCMC methods.

In order to simplify the MCMC configuration, we consider a uniform distribution as
pseudo-prior over all possible configurations of nA. Under this formulation, the accep-
tance probability in the Metropolis-Hastings is equal to α = min(1, A) with A given by

A =
f
(
n|Π′)f(�λ′)fq(Π(t)|nA(t)

)
f
(
nA(t)|Π′,n

)
f
(
n|Π(t)

)
f
(
�λ(t)

)
fq
(
Π′|n′A

)
f
(
n′A|Π(t),n

) × abs

(
J
(
Π(t), �λ(t), ξ(t)

)
J
(
Π′, �λ′, ξ′

)
)
. (10)

In (10), the probability functions f(n′A|Π,n) and f(nA(t)|Π′,n) are readily avail-
able from the model construction and the likelihood representation of the augmented
table. We only need to specify fq(Π

′|n′A) which is the first component of (9) and it has
the form of a posterior conditionally on the frequencies of the augmented table. For this
component, we can exploit the conditional conjugate approach of Ntzoufras and Taran-
tola (2013). In order to do so, we consider as a “prior” fq(Π) a product of Dirichlet
distributions in order to obtain a conjugate “posterior” distribution fq(Π

′|n′A). Under
this approach, and by further considering that f(n|Π)f(nA|Π,n) = f(nA|Π), then
(10) is further simplified to

A =
f
(
nA(t)|Π′)f(�λ′)fq(Π(t)|nA(t)

)
f
(
n′A|Π(t)

)
f
(
�λ(t)

)
fq
(
Π′|n′A

) × abs

(
J
(
Π(t), �λ(t), ξ(t)

)
J
(
Π′, �λ′, ξ′

)
)

. (11)
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In the following of this manuscript, we will refer to this approach as the probability-based
independence sampler (PBIS).

4.3 Prior Adjustment Algorithm

As we have already stated, although PBIS simplifies the MCMC scheme, the parameter
space is still considerably extended by considering the augmented frequency table nA.
We can further simplify PBIS by using the following two-step procedure:

Step 1: Run the Gibbs sampler of Ntzoufras and Tarantola (2013) to obtain a
sample from Π (see Section 4.1 for more details).

Step 2: Use the sample of step 1 (or sub-sample of it) as a proposal in the general
Metropolis-Hastings algorithm with acceptance rate (8).

Since the sample of Step 1 is obtained from an MCMC algorithm, auto-correlation
will be present. A random (independent) sub-sample from the posterior distribution
can be obtained by following different strategies. The most common approach can be
obtained by using thinning, where we keep one observation for every set of K iterations.
The thinning interval K can be easily defined by monitoring autocorrelation function
or using the convergence diagnostic of Raftery and Lewis (1992) which is available in R
packages such as CODA (Plummer et al., 2006) or BOA (Smith, 2007). A drawback of this
approach is that we may end up having a considerably lower number of simulated obser-
vations. For this reason, we suggest considering a random permutation of the full MCMC
sample to “destroy” the induced autocorrelation. We believe that the effect of this strat-
egy will be minimal, since this sample is only used as a proposal in the second MCMC
procedure. As a referee pointed out, by following either of these approaches, the sample
variance will get close to the independent variance asymptotically. Although intuitively
this approach will lead to a sample from a close an approximation of the target poste-
rior distribution, to our knowledge no mathematical proof is available. Indeed, empirical
comparisons (see Section 5.1) indicate no differences between the posterior distribution
obtained by a correctly thinned MCMC sample and the re-ordered sample or even with
the one-shot MCMC sampler of Section 4.2. Therefore, we believe that this sampler
provides an efficient approximation of an independence Metropolis-Hastings algorithm.

Using such sample (or sub-sample) as proposed values within the Metropolis-Hasting
algorithm is equivalent to using the posterior distribution fq(Π|n) as proposal in (8),

that is q(Π′|Π(t)) = fq(Π
′|n). Under this proposal, (8) now simplifies to

A =
f(�λ′)fq(Π

(t))

f(�λ(t))fq(Π
′)

× abs

⎛
⎝J

(
Π(t), �λ(t), ξ(t)

)
J
(
Π′, �λ′, ξ′

)
⎞
⎠ . (12)

We will refer to this algorithm as the prior-adjustment algorithm (PAA) due to its
characteristic to correct for the differences between the prior distributions used under
the two parameterisations.
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The “prior” distribution fq(Π) is only used to build the proposal. Therefore, it can
be considered as a pseudo-prior. It does not influence the target posterior distribution
but only affects the convergence rates of PAA. We can choose the parameters of this
pseudo-prior in such a way that (12) is maximized and an optimal acceptance rate is

achieved. When a non-informative prior distribution for �λ is used, all Dirichlet param-
eters involved in fq(Π) can be set equal to one. Under this choice, the effect of the
pseudo-prior is eliminated from the proposal, leaving the data-likelihood to guide the
MCMC algorithm. PAA is less computationally demanding that the single-run MCMC
algorithm introduced in Section 4.2, since in we avoid four additional likelihood evalu-
ations at each iteration required in the later.

4.4 The Jacobian

We conclude this section by providing analytical expressions of the Jacobian required in
the acceptance probabilities within each MCMC step in Sections 4.2 and 4.3; see (11)

and (12). Specifically, the Jacobian terms are given by J (Π, �λ, ξ) = | ∂Π
∂(

�λ,ξ)
| and are

simplified to

J−1 =

∣∣∣∣∣∂(
�λ, ξ)

∂Π

∣∣∣∣∣ =
∣∣∣∣∣ ∂(�λ, ξ)

∂(Πξ,Π\ξ)

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∂�λ

∂Πξ

∂�λ

∂Π\ξ
∂ξ

∂Πξ

∂ξ

∂Π\ξ

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
∂�λ

∂Πξ

∂�λ

∂Π\ξ
I 0

∣∣∣∣∣∣ = −
∣∣∣∣∣ ∂�λ

∂Π\ξ

∣∣∣∣∣ ,
where Π\ξ is obtained from Π excluding the elements of Πξ.

The elements of the Jacobian matrix are given by

∂λk

∂Πj
=

cC∑
l=1

⎧⎪⎨
⎪⎩Ckl

⎛
⎝ |I|∑

ı=1

MlıPı

⎞
⎠

−1 |I|∑
ı=1

MlıΔıj

⎫⎪⎬
⎪⎭ with Δıj =

∂Pı

∂Πj
, (13)

where Pı denote the ı element of P , and cC is the number of columns of the contrast
matrix C. For the saturated model, the above equation simplifies to

∂λk

∂Pj
=

cC∑
l=1

Ckl(Mlj −Ml|I|)∑|I|
ı=1 MlıPı

since Π = P , and P|I| = 1 −
∑|I|−1

ı=1 Pı. More details on the calculation of (13) are
provided in Appendix A in the Supplementary Material.

In order to complete the specification of (13), we need to calculate the derivative
terms Δıj. Let us now denote by i′ the index of vector P such that Pi′ ≡ p(i). Moreover,
the index j corresponds to a variable uj ∈ A such that Πj ≡ πuj|pa(uj)(juj |jpa(uj)) for a

specific cell j of the augmented table IA. Therefore, for any ı = i′, terms Δıj are given by



I. Ntzoufras, C. Tarantola, and M. Lupparelli 791

Δıj = Δi′j =
∂Pi′

∂Πj
=

∂p(i)

∂πuj|pa(uj)

(
juj |jpa(uj)

) for every i′ �→ i and j �→ (uj , j). (14)

For the computation of each Δıj we consider two different cases: (A) uj ∈ V and
(B) uj ∈ L. In the following, to simplify notation, we denote uj by u. Furthermore,
we indicate with Lu = L ∩ pa(u) the latent variables that are parents of u, and with
Au = V ∪ {u} ∪ Lu.

For case A, when u is an observed variable, we obtain

∂p(i)

∂πu|pa(u)
(
ju|jpa(u)

) = δ(i, j)
pAu

(
i, jLu)

πu|pa(u)(iu|jpa(u)
) (15)

with

δ(i, j) =

⎧⎪⎪⎨
⎪⎪⎩

1 if iu = ju < |Iu| and ipa(u)\L = jpa(u)\L

−1 if ju �= iu = |Iu| and ipa(u)\L = jpa(u)\L
0 if ju �= iu < |Iu| or ipa(u)\L �= jpa(u)\L

, (16)

where

pAu
(
i, jLu

)
=

{
P
(
YV = i, YL∩pa(u) = jL∩pa(u)

)
Lu �= ∅

p(i) Lu = ∅
.

For case B, when u is a latent variable, pa(u) = ∅ due to the structure of the DAG
representation. Hence, the derivative is given by

∂p(i)

∂πu|pa(u)
(
ju|jpa(u)

) =
∂p(i)

∂πu

(
ju
) =

pAu(i, ju)

πu(ju)
−

pAu
(
i, |Iu|

)
πu

(
|Iu|

) for ju < |Iu| . (17)

Detailed derivation of expressions (15)–(17) are available in Appendix A in the
Supplementary Material.

5 Illustrative Examples

5.1 Simulation Study

In this section, we evaluate the performance of the proposed methodology via a simula-
tion study. We generated 100 samples from the marginal association model represented
by the bi-directed graph of Figure 1 and true log-linear interactions given in Table 1.
This model encodes the marginal independencies Y{A,B}⊥⊥YD and YA⊥⊥Y{D,C} under
the connected set Markov property.

We compare the methods introduced and discussed in this article in terms of accep-
tance rate, effective sample (ESS) per second of CPU time and the Monte Carlo Error
(MCE). In addition to the algorithms described in Section 4 (PBIS and PAA) we also
consider random walks on marginal log-linear interactions λ and on logits of probability
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Marginal Active interactions Zero interactions
AC λAC

∅ = −1.40, λAC
A (2) = −0.15, λAC

C (2) = 0.10, λAC
AC = 0

AD λAD
B (2) = 0.12, λBD

BD(2, 2) = 0
BD λBD

D (2) = −0.09, λAD
AD(2, 2) = 0

ACD λACD
CD (2, 2) = 0.20, λACD

ACD(2, 2, 2) = 0
ABD λABD

AB (2, 2) = −0.15, λABD
ABD(2, 2, 2) = 0

ABCD λABCD
BC (2, 2) = −0.30, λABCD

ABC (2, 2, 2) = 0.15,
λABCD
BCD (2, 2, 2) = −0.10, λABCD

ABCD(2, 2, 2) = 0.07.

Table 1: True effect values used for the simulation study.

parameters π (RW-λ and RW-π respectively). For all interactions and for each method
under consideration, we calculated the ESS per second of CPU time using both CODA
and RSTAN (Stan Development Team, 2017) packages in R. We calculated MCEs for
the mean and standard deviation of all interactions via the batch mean method using 50
batches of equal size. The previous quantities have been adjusted for computational time
by fixing the number of iterations of PAA and then considering as number of iterations
for the remaining methods the ones which correspond to the computational time of PAA.

In order to proceed with a more rigorous analysis, we first present the results for a
single randomly selected sample (see Table 2 for the specific dataset under consideration)
and then we discuss the main findings for all samples.

D1 D2

C1 C2 C1 C2

A (B1) (B2) (B1) (B2) (B1) (B2) (B1) (B2)
A1 25 44 47 21 6 36 65 29
A2 31 25 31 12 27 17 65 19

Table 2: Simulated dataset.

In terms of acceptance rate, PAA achieves a 50% rate which is satisfactory for an in-
dependence sampler and considerably higher than the corresponding one achieved by the
PBIS algorithm (≈ 15%). This could be justified by the fact that, in the later method,
increased uncertainty was introduced by the data augmentation approach, which ex-
pands the parameter space by introducing the latent counts as proposed in Section 4.2.
On the other hand, the RW algorithms (either for λ or for π) were tuned in order to
achieve an acceptance rate close to 35%. The acceptance rates of the independence
samplers (PBIS and PAA) and of the RW algorithms cannot be compared due to the
different nature of the proposals.

Summary statistics of ESS per second of CPU time are presented in Table 3, while
the detailed ESS for all interactions are depicted in Figure 3. These results indicate that
PAA is the most efficient method followed by PBIS and RW-λ having similar values,
while the RW-π appears as a rather inefficient way to approach the problem.

Figure 4 presents the estimated posterior distributions for all interactions. No major
differences are observed in most interactions with the true values being in the centre (or
near the centre) of the posterior distribution of interest. Some differences are observed in
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CODA STAN
Method Min Q1 Median Q3 Max Min Q1 Median Q3 Max
RW on π 1.6 2.7 3.2 5.3 7.0 1.2 2.6 3.1 5.3 6.5
RW on λ 25.3 32.2 33.7 34.8 37.4 23.9 28.6 31.8 34.6 35.8
PBIS 25.2 28.6 28.8 31.6 33.9 20.4 26.3 27.6 29.1 32.3
PAA 59.4 68.0 70.9 80.9 85.6 58.2 65.7 70.0 77.3 84.1
Min, Q1, Median, Q3, Max: Minimun, first quantile, Median, third quantile and maximun of accep-
tance rates over different interactions

Table 3: Summary statistics of ESS per second of CPU time for the simulated data of
Table 2.

Figure 3: ESS per second of CPU time for the simulated data of Table 2.

higher order interaction terms λABCD
ABC , λABCD

BCD and λABCD
ABCD estimated from the ABCD

marginal table. More specifically, for λABCD
ABC only RW-π seems to estimate exactly the

true value while PBIS slightly overestimates this effect and the rest of the methods
underestimate it. For λABCD

BCD , all methods provide similar posterior distributions with
the PBIS having lower dispersion. Finally, for the four-way interaction, all methods
correctly identify the true effect except for RW-λ that overestimates the true value.
Generally, the estimated posterior distribution obtained by our proposed method, PAA,
seems that correctly identifies the true values for all interactions.

In Figure 5 we represent the time adjusted MCEs for the posterior means for all
methods and all marginal log-linear interactions. We notice that PAA performs better
than all competing methods, since the corresponding MCEs are lower for almost all
interactions. In contrast, more dispersion is observed for the posterior distribution of
RW-π that is clearly performing worse than the other methods.

Figure 6 depicts time adjusted MCEs for all marginal log-linear interactions under all
methods under consideration. PAA and PBIS demonstrate overall a better performance
(in terms of Monte Carlo variability) in comparison to RW-λ and RW-π.
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Figure 4: Posterior densities for each parameter of the chain model estimated for the
simulated data of Table 2.

Regarding the simulation study, in Figures 7 and 8 we present the 95% error bars
of the average time adjusted MCEs for the posterior means and standard deviations.
Each error bar represents the 2.5 and the 97.5 percentiles as well as the average of the
quantities of interest (posterior means and standard deviations) for every interaction



I. Ntzoufras, C. Tarantola, and M. Lupparelli 795

Figure 5: MCEs for posterior mean adjusted for time for the simulated data of Table 2.

Figure 6: MCEs for posterior standard deviations adjusted for CPU time for the simu-
lated data of Table 2.

across all generated data sets. In most cases, PAA achieves values lower or at least of
comparable size to the corresponding one of the other methods.

If we examine the distribution of the ESS per second (over 100 simulated datasets),
we confirm the results found in the single-sample analysis which indicate that PAA is
clearly the most efficient between the four methods under consideration. PBIS and the
RW on λ are equally efficient (in terms of ESS/minute) while the RW-π is the least
efficient method. For a graphical representation see Figure D.1 in the Supplementary
Material. Moreover, the estimated posterior means (over 100 simulated datasets) under
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Figure 7: MCEs for posterior mean adjusted for CPU time for the 100 datasets of the
simulation study.

Figure 8: MCEs for posterior standard deviations adjusted for CPU time for the 100
datasets of the simulation study.

all methods successfully identify (with minor deviances) the true parameter as it is
illustrated in Figure D.2 in the Supplementary Material.

We conclude this section with a comparison of the dispersion of PAA and RW-λ.
Figure 9 illustrates the distributions of the ratio of the posterior standard deviations of
PAA versus RW-λ across all simulated datasets. We observe that for most interactions
this ratio is distributed around one. For the last four interactions, where the latent is
involved, we observe that PAA has systematically lower standard deviation.
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Figure 9: Boxplots of the ratio of posterior standard deviations of PAA vs. RW-λ for
the simulated 100 datasets of the simulation study.

5.2 Torus Mandibularis in Eskimoid Groups Data

We illustrate the proposed methodology by using the dataset of Muller and Mayhall
(1971) studying the incidence of the morphological trait torus mandibularis in different
Eskimo groups. Torus mandibularis is a bony growth in the mandible along the surface
nearest to the tongue. This morphological structure of the month is frequently used by
anthropologist to study differences among populations and among groups within the
same population. This data have been previously analysed by Bishop et al. (1975) via
log linear models, and by Lupparelli (2006) via marginal log-linear graphical models.

Age Groups (A)
Population (P) Sex (S) Incidence (I) 1-20 Over 20

Igloolik and Hall Beach
Male

Female

Present
Absent
Present
Absent

19
103
16
87

73
38
61
36

Aleut
Male

Female

Present
Absent
Present
Absent

6
19
4
17

18
14
10
20

Table 4: Torus Mandibularis in Eskimo Populations.

For our analysis, we consider the data presented in Table 4, cross-classifying age
(A), incidence of torus mandibularis (I), sex (S) and population (P). The dataset is a
dichotomized version of the original data of Muller and Mayhall (1971). The examined
Eskimo groups refers to different geographical regions, Igloolik and Hall Beach groups
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are from Foxe Basin area of Canada whereas Aleut are from Western Alaska. Further-
more, the data of the Aleuts group were collected by an investigator different from the
one who collected the data for the first two groups, with a time difference between in-
vestigations of about twenty years. For the previous reasons we decided to reclassify the
data in two groups: the first one including Igloolik and Hall Beach and the second one
Aleut. Finally, variable age has been classified in two groups according to the median
value.

From the analysis of Lupparelli (2006) we know that the model represented in Figu-
re 10 fits well the original data, hence, in the following, we concentrate on this specific
four-chain graph.

Figure 10: Bi-directed graph for Torus data.

Table 5 reports the posterior means and standard deviations for the marginal log-
linear interactions obtained via 10000 iteration with a burn in of 1000 with the pro-
posed PAA algorithm and the RW-λ. The maximum likelihood estimates (MLEs) and
corresponding approximate standard errors are also reported for comparative purposes.
MLEs are obtained implementing an algorithm for the optimization of the Lagrangian
log-likelihood which includes a set of zero constraints satisfying the marginal indepen-
dence model; see Lupparelli (2006) for details. Standard errors for the parameter esti-
mates can be simply derived from the estimate of the Hessian matrix of the Lagrangian
log-likelihood; see Aitchison and Silvey (1958).

From Table 5 we observe that the posterior estimates (for both MCMC methods)
and the MLEs coincide for all interactions and main effects obtained by marginals where
no latent variable is involved; also Figure D.3 in the Supplementary Material. This is
not the case for λAIPS

IP (2, 2), λAIPS
IPS (2, 2, 2), λAIPS

AIPS(2, 2, 2), where the latent variable is
involved. More specifically, the posterior standard deviations are lower by 6.5%, 34%
and 26%, respectively. This result is intuitively expected since PAA moves across the
correct posterior distribution defined on the space of parameterisation with compatible
marginal probabilities. On the other hand, both the RW-λ and the approximate MLEs
standard errors are obtained without considering the restrictions imposed in order to
obtain parameterisations leading to compatible marginal probabilities.

Finally, differences are also observed for interaction λAIPS
AIP (2, 2, 2) where RW-λ pro-

vides posterior means far away from the corresponding MLEs with PAA being quite
closely and standard deviance slightly higher than both the corresponding values of
RW-λ and the MLEs standard errors.
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PAA RW-λ ML
Mean SD Mean SD Estimate SE

λAP
∅ -1.391 0.004 -1.391 0.004

λAP
A (2) -0.001 0.042 -0.003 0.043 -0.002 0.043

λAP
P (2) -0.072 0.043 -0.079 0.043 -0.072 0.043

λAP
AP (2, 2) 0.000 0.000 0.000 0.000 0.000

λAS
S (2) -0.697 0.053 -0.695 0.055 -0.699 0.054

λAS
AS(2, 2) 0.000 0.000 0.000 0.000 0.000

λIS
I (2) 0.234 0.045 0.241 0.044 0.232 0.044

λIS
IS(2, 2) 0.000 0.000 0.000 0.000 0.000

λAPS
PS (2, 2) 0.004 0.053 -0.009 0.055 0.003 0.054

λAPS
APS(2, 2, 2) 0.000 0.000 0.000 0.000 0.000

λAIS
AI (2, 2) -0.509 0.051 -0.505 0.052 -0.507 0.051

λAIS
AIS(2, 2, 2) 0.000 0.000 0.000 0.000 0.000

λAIPS
IP (2, 2) 0.057 0.058 0.082 0.063 0.052 0.062

λAIPS
AIP (2, 2, 2) 0.132 0.068 0.049 0.065 0.151 0.062

λAIPS
ISP (2, 2, 2) 0.029 0.041 0.066 0.063 0.072 0.062

λAIPS
AIPS(2, 2, 2) 0.047 0.046 0.034 0.063 0.037 0.062

Table 5: Posterior summaries and MLEs for marginal log-linear interactions for the
Torus Mandibularis data.

In terms of computational time, PAA was found to be faster with elapsed CPU time
lower by 46% compared with the corresponding one for RW-λ (32.6 versus 60.8 seconds

for 1000 iterations). Equivalently, the reported user CPU time was 48% lower for PAA
than the one for RW-λ (29.9 versus 57.2 seconds for 1000 iterations). All runs were

performed in a Windows 10 PC Intel Core i7-5500U CPU 2.4GHz with 16GB memory;
all timings were obtained with the system.time function in R.

For 11,000 iterations, the effective sample size (ESS) of the methods are of similar size
ranging from 43% in favour of RW-λ (for S main effect) to 36% in favour of our method

(for the four-way interaction). Taking into consideration also the computational time of
the two algorithms, the MCMC efficiency (ESS/Elapsed CPU time) for the proposed

algorithm is considerably higher for all interactions ranging from 2% increase to 141%.
The average relative MCMC efficiency is higher for our method by 65% compared with

the one of the random walk MCMC. The above statistics were calculated with the
effectiveSize function of CODA package in R. The overall picture is similar if we consider

results using the monitor function of rstan package in R; see Figure 11 for a visual
representation of the relative efficiency for all interactions.

Finally, the MCMC errors were lower for the majority of the interactions by using
the naive estimator of CODA package with relative values ranging from 0.61 up to 1.13

while the corresponding relative values for the time series based estimator are ranging
from 0.66 up to 1.30. The naive estimator of MCE is simply given by the usual standard

error ignoring autocorrelation (i.e. the MCMC estimated posterior standard deviation
over the square root of the number of iterations).
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Figure 11: Boxplots of the relative efficiency of Prior-Adjustment Algorithm (PAA)
compared to the random walk MCMC obtained by CODA and STAN for the Torus
Mandibularis data.

6 Discussion

A possible way to parametrise discrete graphical models of marginal independence is
by using the log-linear marginal models of Bergsma and Rudas (2002). The marginal
log-linear interactions are calculated from specific marginals of the original table, and
independencies imply zero constraints on specific set of interactions in a similar manner
as in conditional log-linear graphical models.

In this work we focus on the Bayesian estimation of the log-linear interactions for
graphical models of marginal independence. In particular, the method we propose al-
lows us to assign prior directly on marginal log-linear interactions rather than on the
probability interactions. This facilitates the incorporation of prior information since sev-
eral models of interest can be specified by zero/linear constraints on log-linear terms.
Bayesian analysis of such models is not widespread mainly due to the computational
problems involved in the derivation of their posterior distribution. More specifically,
MCMC methods need to be used since no conjugate analysis is available. Major diffi-
culties arise from the fact that we need to sample from a posterior distribution defined
on the space of parameterisations with compatible marginal probability distributions.
In the proposed algorithms (PBIS and PAA), we satisfy such restrictions by sampling
from the probability space of the graphical model of marginal independence under con-
sideration. Then we transform the probability parameter values to the corresponding
marginal log-linear ones avoiding the iterative procedure needed for the evaluation of
the likelihood. In order to achieve this, we exploit the augmented DAG representation
of the model. This not only facilitates the prior elicitation but also the construction of
the Jacobian matrix involved in the acceptance probability of the induced Metropolis
steps. PBIS is a more elaborate method but it leads to an automatic setup for sampling
log-linear interactions by the posterior distribution. On the other hand, PAA can be
implemented in a more straightforward manner. It leads to an efficient and fully au-
tomatic setup, which can be thought as a approximate method for sampling from the
posterior distribution. It further avoids any time-consuming and troublesome tuning of
MCMC parameters.

For future research, the authors would like to exploit and study the connections
between the prior and the posterior distributions for the two different parameterisa-
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tions (probability versus marginal log-linear). Moreover, extension of the method to
accommodate fully automatic selection, comparison and model averaging techniques is
an intriguing topic for further investigation.

Supplementary Material

Supplementary Material: Electronic for the Paper “Probability Based Independence
Sampler for Bayesian Quantitative Learning in Graphical Log-Linear Marginal Models”
(DOI: 10.1214/18-BA1128SUPP; .pdf). The Supplementary Material includes details
for the Jacobian calculations (Appendix A) and details for the construction of M and
C matrices (Appendices B and C respectively). Finally, some additional results for the
illustrated examples of Section 5 are provided in Appendix D.
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