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Low Information Omnibus (LIO) Priors for
Dirichlet Process Mixture Models

Yushu Shi∗, Michael Martens†, Anjishnu Banerjee‡, and Purushottam Laud§

Abstract. Dirichlet process mixture (DPM) models provide flexible modeling
for distributions of data as an infinite mixture of distributions from a chosen
collection. Specifying priors for these models in individual data contexts can be
challenging. In this paper, we introduce a scheme which requires the investigator
to specify only simple scaling information. This is used to transform the data to
a fixed scale on which a low information prior is constructed. Samples from the
posterior with the rescaled data are transformed back for inference on the original
scale. The low information prior is selected to provide a wide variety of compo-
nents for the DPM to generate flexible distributions for the data on the fixed scale.
The method can be applied to all DPM models with kernel functions closed under
a suitable scaling transformation. Construction of the low information prior, how-
ever, is kernel dependent. Using DPM-of-Gaussians and DPM-of-Weibulls models
as examples, we show that the method provides accurate estimates of a diverse
collection of distributions that includes skewed, multimodal, and highly dispersed
members. With the recommended priors, repeated data simulations show perfor-
mance comparable to that of standard empirical estimates. Finally, we show weak
convergence of posteriors with the proposed priors for both kernels considered.

Keywords: Bayesian nonparametric methods, density estimation, survival
analysis, low-information prior, Dirichlet process mixture model.

1 Introduction

The Dirichlet process mixture (DPM) model was first proposed by Lo (1984). The
marginal distribution of a DPM is a convolution of a kernel density function and a

Dirichlet process, g(y) =

∫
f(y|G)DP (dG). This model uses the Dirichlet process (DP)

of Ferguson (1973) effectively to estimate density functions even though the DP almost
surely generates discrete distributions. The DPM model can be written also as:

yi|θi ∼ f(·|θi)
θi|G ∼ G

G|G0, ν ∼ DP (G0, ν).

Here each observation yi arises from a density function f(·|θi) with corresponding pa-
rameter θi, which in turn arises from a discrete distribution G. The distribution G is
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randomly generated from a DP with baseline distribution G0 and concentration param-
eter ν. The choice of kernel density f(·|θ) determines the mixture components to use
in a DPM; for example, if f(·|θ) is a normal kernel, then this DPM is a mixture of
Gaussians.

The Gaussian kernel was employed and computationally implemented by Escobar
and West (1995). Kottas (2006) considered a mixture of Weibulls model for positive
valued survival data. In contrast with much development of the DPM model itself
in various directions, the prior specification for it is often undertaken in an ad-hoc
fashion with little formal guidance available in the literature. The method proposed here
attempts to address this gap in cases where prior information is scant or intentionally
avoided in the analysis.

Using as input some simple scaling information for the data to be analyzed, we
transform the data to a common axis on which we construct the prior. This transfor-
mation and axis depends on the kernel chosen for the DPM, as does the method of
construction of the prior. Once constructed, the LIO prior is fully specified and can be
used a black-box for the DPM with this kernel. Inference on the original data scale is
recovered by a back transformation of the posterior samples. In the case of the Gaussian
DPM, we do this construction for univariate as well as multivariate data.

The paper is organized as follows. Section 2 introduces general guiding objectives
in constructing low information priors. Sections 3 and 4 apply these notions to the
construction of particular prior specifications for Gaussian and Weibull DPMs, illus-
trating the priors’ use through implementation on real and simulated data sets. Section
5 conducts sensitivity analysis and compares repeated data simulation results from the
Gaussian and Weibull DPMs using the proposed priors with those from empirical meth-
ods. The comparison is intended primarily to demonstrate the low information nature of
the prior, not to claim performance superiority. Any advantages over empirical methods
accrue from well-recognized aspects of Bayesian nonparametric models, such as distribu-
tional flexibility and easy estimation of functionals of the underlying distribution (e.g.,
density and hazard rate) along with attendant uncertainty quantification for each. Fi-
nally, Section 6 establishes posterior weak convergence properties with the priors, while
Section 7 concludes the paper with a brief discussion.

2 Rationale and Construction Outline for
Low-information Omnibus (LIO) Priors

When applying a DPM model to data, the base distribution G0 should be specified
with care, as G0 represents prior knowledge about the distribution of the data in an
intricate combination with ν. One’s first instinct might be to use a vague G0. However,
it is well known that this is not advisable. For example, the authors of Chapter 23 of
Gelman et al. (2014) point out that using such a choice of G0 places “a heavy penalty
on the introduction of new clusters”. In effect, a highly dispersed choice of G0 is highly
informative, as it implies that all data points belong to a common cluster in the pos-
terior predictive distribution. They recommend standardizing the data and using “an
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informative G0 that places high probability on introducing clusters near the support of
the data”. Similar uses of data scaling and low information prior can be seen in para-
metric Bayesian data analysis. Gelman et al. (2008) suggested specific scaling and a low
information prior that is “vague enough to be used as a default in routine applied work”
instead of aiming for a no-information prior. The latter pursuit can be challenging both
theoretically and computationally.

With this rationale, we propose a specific data-scaling that depends on the DPM
kernel and a particular hierarchical specification of the prior on G0 for the scaled ob-
servations, which jointly serve as a “black box” for various data contexts. The prior
elicitation requires minimal scale-related information (such as a high percentile of the
population distribution for the mixture-of-Weibulls model; and the median and 95th
percentile for the mixture-of-Gaussians model) from the investigator knowledgeable in
the subject matter. While fitting a particular DPM with an already constructed LIO
prior might be seen as a black box method, deriving the prior for the kernel chosen
requires much care, and is certainly not a black box. For some kernels, even a trial and
error process with visual inspection might be needed (as for the Weibull kernel below)
but only once per kernel.

In using the prior, there are three simple steps:

1. With the scaling information provided by the investigator, transform the data to
a suitable fixed scale.

2. Apply the recommended LIO prior to the fixed-scale data and obtain posterior
samples using established computational methods. The prior specification is aimed
at providing a variety of mixture components rich enough to allow flexible mod-
eling of observations on the fixed scale. We thus find a set of hyperparameters
capable of generating such components. The process of finding these hyperparam-
eters is discussed for two specific DPMs in the sequel.

3. Transform back the samples representing posterior inference to obtain originally
targeted inference.

Currently, we have two such distinct black-box implementations: one is for the
mixture-of-Gaussians model that is well-suited to modeling real-valued and vector-
valued data. The other is for the mixture-of-Weibulls model, which is more appropriate
for time-to-event data as the Weibull distribution has a positive domain and conve-
nient mathematical forms for interpretable functions such as the survival and hazard
functions.

When considering the kernel density components needed for fixed-scale data, we keep
a modest goal in sight: give a reasonable and rich variety of components a fair chance
to be selected by the data. The DPM model itself is robust in that the information
in the data will be dominant when the prior is sufficiently flexible. Specifics of prior
construction are given in the next two sections. In implementing inference with the
proposed priors, for all computational results reported here, we used the 8th algorithm
of Neal (2000).
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3 LIO Prior for DPM of Gaussian Distributions

A Dirichlet process mixture of Gaussian distributions is versatile in that it applies
straightforwardly to univariate as well as multivariate data. Below, after establishing
notation, we develop LIO prior specifications; first for univariate and then for multi-
variate data.

3.1 Model Specification

We use a Gaussian DPM model similar to that employed by the DPdensity function
in the R package DPpackage (Jara et al., 2011). Assume y1, · · · ,yn are conditionally
iid vector observations, each of length p. Our approach is to make a location-scale
transformation of the data, apply the DPM model to estimate the transformed data’s
distribution, and then estimate the original data’s distribution by transforming back to
the original scale. More specifically, we choose some quantities a ∈ R

p and a positive
definite p × p matrix B to rescale the data as zi = B−1(yi − a). Then, the following
model is fitted to the transformed data:

zi|μi,Ti
ind∼ No(μi,Ti),

(μi,Ti)|G iid∼ G,

G|G0 ∼ DP (G0, ν),

ν ∼ Ga(a, b),

G0|λ,Ψ = NoWi(mμ, λ, kT ,Ψ),

λ ∼ Ga(aλ, bλ),

Ψ ∼ Wi(kψ,Wψ).

Here No(m,U) denotes a normal distribution with mean m and precision matrix U,
and Ga(a, b) denotes a Gamma distribution with shape parameter a and rate parame-
ter b. With Wi(k,W) denoting a Wishart distribution with degrees of freedom k and
inverse scale matrix W (expectation kW−1), G0 has a hierarchical specification, the
first level being a normal-Wishart distribution with parameters mμ, λ, kT , and Ψ and
the second level having independent Gamma and Wishart distributions for λ and Ψ,
respectively. To be specific, (μ,T) ∼ NoWi(m, λ, k,Ψ) means μ|T, λ ∼ No(m, λT)
and T|Ψ, k ∼ Wi(k,Ψ). Because the support of the Wishart distribution is the set of
p × p positive definite matrices, all Ti obtained from this model are positive definite.
The concentration parameter ν is set to have a Ga(a, b) prior with a = 1 and b = 1
(Escobar and West, 1995).

As the zi arise from an infinite mixture of normal distributions, their cumulative
distribution function (CDF) is

Fz(z) =

∞∑
i=1

piFzi|μi,τi(z) =

∞∑
i=1

piΦp

[
Λi(z− μi)

]
, z ∈ R

p,

where Φp is the CDF of a p-variate normal distribution No(0, I), Λi resulting from the
unique Cholesky decomposition Ti = ΛiΛ

′
i, and

∑∞
i=1 pi = 1. By the correspondence
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between the yi and zi, this implies that the original data’s distribution is an infinite
mixture of normal distributions with CDF

Fy(y) = Fz[B
−1(y − a)] =

∞∑
i=1

piΦp

{
ΛiB

−1[y − (Bμi + a)]
}
, y ∈ R

p.

Thus, fitting this model to the transformed data induces a DPM model on the original
data and provides an estimate of its CDF. Through this, one can estimate any function-
als of the distribution of the original data through posterior sampling of θi = (μi,Ti).
We want to transform the data to a common location and dispersion; this will justify
applying the same model to all transformed data sets. In our location-scale transfor-
mation, a and B are measures of the location and scale of the original data that need
specification. We employ contextual choices of some quantiles of the data’s underlying
distribution. The investigator supplies values ck and dk that are reasonable pre-data
estimates of the median and the 95th percentile of each component y1k of the data
vector. These percentiles are natural quantities to consider and should facilitate elic-
itation based on existing results or expert opinion. The scale (or standard deviation)
of the kth component can be estimated roughly by (dk − ck)/2, so we set a = c and
B = Diag{(d− c)/2}. The transformation zi = B−1(yi − a), then, is a standardization
of the data based on the investigator’s input. Finally, we state a theorem – a corollary
of Theorem 3 in Ferguson (1973) – that is of use in the next two sections.

Theorem 1. Let p ≥ 1, (μi,Ti) ∼ G, G ∼ DP (α,G0). Take (μ0,T0) ∼ G0. Then
E(μi) = E(μ0), E(μiμ

′
i) = E(μ0μ

′
0), E(Ti) = E(T0) and E(T−1

i ) = E(T−1
0 ).

3.2 Hyperparameter Selection for Scalar Data

We first consider the scalar data case, where p = 1. The DPM model requires choosing
6 scalar hyperparameters of the distribution of G0 : mμ, kτ , aλ, bλ, kψ, and Wψ. We
consider the standardization of the data in choosing values for the prior moments of G.
Having specified these moments, which are functions of the hyperparameters, we can
solve for the hyperparameters themselves. Given its parameters θi, the distribution of a
data point zi is normal with mean μi, precision Ti, and variance T−1

i . Because the data
are standardized, we expect that, on average, these means are near 0 and variances are
near 1. Thus, we set the expectations of μi and T−1

i equal to these values:

0 = E(μi) = E(μ0) = mμ (1)

and

1 = E(T−1
i ) = E(T−1

0 ) =
kψ

(kT − 2)Wψ
, (2)

provided kT > 2, where (μ0, T0) ∼ G0.

Next, we desire for the μi drawn from the prior distribution to lie near any of the
standardized data points. That is, we choose the prior variance of μi to be large enough
so that the spread of the μi’s matches, a priori, the spread of the standardized data.
Let v = SD(μi); since E(μi) = E(μ0) = 0, Theorem 1 implies

v2 = V ar(μi) = V ar(μ0) = V ar[E(μ0|T0, λ)] + E[V ar(μ0|T0, λ)]
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= V ar(mμ) + E(λ−1T−1
0 ) = 0 + E(λ−1)E(T−1

0 ) =
bλ

aλ − 1
(3)

provided aλ > 1, using (1), (2), and prior independence of λ and T0.

To choose v, we appeal to Chebyshev’s inequality. Since we are concerned with the
spread of the standardized data, we apply this inequality to its empirical distribution,
which has mean 0 and variance (n− 1)/n. This gives

1

n

n∑
i=1

I(|zi| ≤ c) ≥ 1− n− 1

nc2
for any c > 0.

Suppose we require that the left hand side is at least a proportion π ∈ (0, 1). Chebyshev’s
inequality implies that choosing c =

√
(n− 1)/[n(1− π)] satisfies this condition that

the proportion π of the zi will fall in [−c, c]. Now, μ0|T0, λ has a normal distribution,
so we expect that π of its density lies within d = z1−(1−π)/2 standard deviations of its
mean, mμ = 0. From (3), we have

E[V ar(μ0|λ, T0)] = v2,

so we expect π of the area under the probability density of μ0|T0, λ to lie in [−dv, dv].
Matching this range of values of μ0 to the range of data points, [−c, c], gives v =√
(n− 1)/[nz21−(1−π)/2(1− π)]. To capture most of the data in this range and to ensure

that newly sampled μi’s lie near these data points, we would choose π to be large, say
95% or 99%. Experimentation suggests that π = 99% works well for a wide range of data
distributions, so we recommend this value. Also, the factor (n − 1)/n can be replaced
by 1 as this inflates v by a small amount for most practical sample sizes.

Now, we have three equations (1)–(3) and two constraints, namely kT > 2 and
aλ > 1, for the six hyperparameters mμ, kψ, kT ,Wψ, , aλ, bλ. While (1) yields mμ = 0, it
is unclear how to choose others exactly. However, smaller values of kψ, kT and aλ give less
informative priors for the corresponding Gamma and Wishart distributed parameters.
A choice of aλ = 3/2 implies λ has a scaled χ2 distribution with 3 degrees of freedom,
the minimal integer degrees that give aλ > 1. Similarly, in the case p = 1,Wi(k,W ) is a
scaled χ2 distribution with k degrees of freedom. Then 3 is the minimal integer degrees
of freedom that will satisfy the constraint kT > 2, so we set kT = 3 and kψ = 1. With
these choices and v as chosen above, (1)–(3) give unique values for mμ, bλ, and Wψ,
completing the prior specification.

3.3 Hyperparameter Selection for Vector Data

Here again, we need to specify 6 hyperparameters; the only changes are that mμ is
a vector and Wψ is a matrix. Similar to the univariate case, on the average we ex-
pect zi|μi,Ti has mean close to 0 and covariance matrix close to I, since the data is
standardized. This implies

0 = E(μi) = E(μ0) = mμ (4)
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and

I = E(T−1
i ) = E(T−1

0 ) =
kψ

kT − p− 1
W−1

ψ , (5)

provided kT > p+ 1. Standardization also implies that setting V ar(μi) = v2I for some
v > 0 is sensible. Since E(μi) = E(μ0) = 0, then

v2I = V ar(μi) = V ar(μ0) = V ar[E(μ0|T0, λ)] + E[V ar(μ0|T0, λ)] =
bλ

aλ − 1
I (6)

provided aλ > 1 and using (4), (5), and prior independence of λ and T0.

The empirical distribution of the standardized data has mean 0 and covariance
matrix I(n − 1)/n. Applying a multivariate version of Chebyshev’s Inequality (Chen,
2007) to the empirical distribution, we get

1

n

n∑
i=1

I(zTi zi ≤ c2) ≥ 1− p(n− 1)

nc2
for any c > 0.

To ensure that the Euclidean length of the zi is within c units of the origin for a
proportion π of the data, we set c =

√
p(n− 1)/[n(1− π)]. Also, μ0|T0, λ is normally

distributed with mean mμ = 0 and E[V ar(μ0|T0, λ)] = v2I, so we expect π of the
volume under the density of μ0 to lie within Euclidean distance dv of the origin for
some d > 0. Then, on the average, V ar(μ0|T0, λ) is close to v2I, so

π = P (μT
0 μ0 ≤ d2v2|T0, λ) = P (μT

0 (v
2I)−1μ0 ≤ d2|T0, λ)

≈ P (χ2
p ≤ d2).

Therefore, we set d =
√

χ2
p,π. Setting dv = c as before, we get v =

√
p(n−1)

nχ2
p,π(1−π) .

Similar to the univariate case, we set aλ = 3/2 and kT = p + 2 and kψ = p, the
minimal integer degrees of freedom that satisfy kT > p + 1 as required. Then we can
obtain mμ, bλ, and Wψ from equations (4)–(6). Using the fact that χ2

1,π = z21−(1−π)/2

for any π, it is easy to see that the choice of hyperparameters for the vector data case
reduces to the scalar case when p = 1.

3.4 A Different View: Prior Specification on Mixture Components

In the preceding, we derived a prior for G by placing constraints on moments of its
distribution. This, in turn, places a prior on the θi, since θi|G ∼ G. From another view-
point, we have specified a prior for the normal mixture components f(·|θi). We wish
to have mixture components that are suitable for density estimation of the standard-
ized data. Because the majority of data points will lie near 0, we set E(μi) = 0 and
V ar(μi) = v2I in order to ensure that, a priori, most mixture components are centered
near 0. Setting E(T−1

i ) = I places a constraint on how dispersed the components are,
providing mixture components that are, on the average, neither extremely dispersed nor
extremely concentrated.
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Figure 1: A Hundred Gaussian DPM Mixture Components from LIO Prior; Section 3.4.

Figure 1 shows two sets of randomly generated mixture components from our prior
in the scalar data case; each plot contains 50 components. To obtain the components,
we generated a sample of θi from G using the stick breaking procedure in Sethuraman
(1994). The black line shows the height of a standard normal density at 0 and is included
as a benchmark. We see many mixture components centered near the origin, in the range
[−5, 5]; this includes both sharply peaked and more diffuse curves. By Chebyshev’s
inequality, 96% of standardized data points will lie in [−5, 5], so this set of components
will be useful for estimating density at points near the origin. A few curves, including
sharply peaked ones, are centered outside of the range [−5, 5] and help to estimate
the density at outliers. Our specification intends for 99% of mixture components to be
centered in [−10, 10]; in these plots, 98% of the components are centered there.

As a result of specifying a prior on the mixture components, we have also specified
a prior for the infinite mixture of these components. In Figure 2, we show 20 prior pre-
dictive densities, 10 in each plot. Though the majority of these curves are centered near
0, we do see densities centered outside of [−1, 1]. Moreover, the sample includes skewed,
multimodal, heavy-tailed, and sharply peaked densities. This permits the model to ac-
commodate many data distributions and shows that, though we expect the transformed
data to be centered at 0 with unit scale, the LIO prior does not strictly enforce these
conditions.

3.5 Examples

In the first example, we test this prior with 200 points generated from a univariate
standard Cauchy distribution. In Figure 3, we see the estimates and 95% pointwise
credible intervals (CI) for the density of this distribution along with the true density
curve. A rug plot is included; 25 points fell outside the range [-6,6] and are not shown.
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Figure 2: Twenty Prior Predictive Densities from Gaussian DPM with LIO Prior; Sec-
tion 3.4.

Figure 3: Density estimation of Cauchy distribution; Example 1, Section 3.5.

The credible intervals contain all of the true density, showing that this model performs
well even with such “badly behaved” data. The plot also shows the density of a t
distribution with 2 degrees of freedom. The credible intervals exclude the t2 density for
the range [−0.5, 1.0]. This demonstrates that the Gaussian DPM with our LIO prior
can adeptly estimate a Cauchy distribution and, furthermore, is sensitive enough to
discriminate between Cauchy/t1 and t2 distributions. In this simulated example, we
used the true median and 95th percentile of the Cauchy distribution as scaling input.
Sensitivity to such choices is considered in Section 5.
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Figure 4: Plots from air quality data; Example 2, Section 3.5.

The next example uses data from air quality measurements in New York, from May

to September 1973, contained in the R dataset “airquality”. We estimate the bivariate

distribution of ozone and solar radiation levels from 111 pairs of measurements in this

set. Figure 4 has a scatter plot of the data and the density estimate. The estimate

appears to fit the data quite well. Because the ozone and radiation levels only take on

positive values, however, some density is placed outside the possible range of values.

Using a log transformation of the levels before fitting might give even better estima-

tion while ensuring that all density is placed within the possible range of values. In

the absence of external information, for illustrative purposes, we used needed scaling

percentiles from the data.

Example 3 illustrates density estimation using 400 data vectors from a bivariate

mixture distribution, F = 0.5F1 + 0.5F2. Here F1 is the bivariate t distribution with

5 degrees of freedom and an identity covariance matrix, while F2 is a bivariate nor-

mal with mean

(
2
0

)
and covariance matrix

(
1/3 1/3
1/3 4/3

)
. Figure 5 shows four plots: a

scatter plot of the data, contour plots of the true and estimated density of the mix-

ture distribution, and a coverage plot. The density was estimated on a 127x127 grid of

points. The coverage plot shows whether the true density falls within the 95% pointwise

credible interval at each point in the grid, with white squares indicating coverage and

red indicating noncoverage. The density estimate is quite similar to the true density.

This is impressive, considering that the data’s distribution is a mixture of a bivariate

normal distribution with positive correlation of 0.5 and a more dispersed, uncorrelated

t distribution. Furthermore, the 95% CIs contain the true density at approximately 98%

of the grid points.
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Figure 5: Plots from bivariate t5 and normal mixture; Example 3, Section 3.5.

3.6 Prior’s Effect on Number of Clusters

Although the main focus of this article is to construct a widely usable low information
prior for the purpose of density estimation, the DPM model has also been used for clus-
tering observations in many applications. See, for example, Dorazio et al. (2008), Canale
and Prünster (2017) and the references therein. It is well known (Antoniak, 1974) that
the so-called total mass parameter ν in the DPM of Section 3.1 strongly controls the
prior distribution of the number of components in a DPM. This prior distribution also
depends on the sample size n. To mitigate the issue Escobar and West (1995) first rec-
ommended a prior on ν, a gamma prior. It has been standard practice since to use such
a prior, and we have chosen this to be Ga(1, 1). Here we describe simulations intended
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Figure 6: Posterior distributions of number of clusters; Section 3.6.

to shed some light on how the posterior distribution of the number of components, using
the LIO prior, responds to the data generating distribution and the sample size.

We explored dependence of the posterior distribution of clusters under three choices
of prior for ν: Ga(0.1, 0.1), Ga(1, 1), and Ga(10, 10), all having mean 1 and with vari-
ances 10, 1, and 0.1, respectively. Sample sizes of 100, 1000, and 10000 were simulated,
200 times each, from three possible distributions: No(5, 1/4), a mixture of two normals
(0.8No(0, 4)+0.2No(2, 25)), and a standard Cauchy distribution, which can be viewed as
an infinite mixture of normals. We expect to see larger numbers of clusters appear more
frequently as the number of true normal mixture components of the data generating
distribution increases. Figure 6 displays averaged distributions of the posterior number
of clusters, obtained from histograms produced by retaining 10000 mcmc iterations after
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burnin under each sample size, data distribution, and prior for ν considered. Under the
Ga(0.1, 0.1) and Ga(1, 1) priors, this posterior distribution is quite responsive to the
number of true mixture components of the data, with the bulk of the densities placed
on cluster sizes of 5 or less for the normal and normal mixture and much larger cluster
sizes being prevalent for the Cauchy distribution. Under the Ga(10, 10) prior for ν, the
posterior number of components are much more similar across data distributions.

While the results seem to indicate reasonable behavior with the recommended prior,
we caution that for posterior number of clusters these are early investigations, and more
work is warranted. Other possibilities, using different models, may have better promise
as mentioned in the last paragraph of the Discussion section. On the other hand, we are
confident in our recommendation of the prior for inference on functions such as density,
cumulative distribution and hazard (Figure 1 in Supplementary Material (Shi et al.,
2018)) with the LIO prior parameter settings.

4 DPM of Weibull Distributions

The proposed prior here is designed for the model of Kottas (2006). When both param-
eters of the Weibull distribution are given a flexible DP prior, this model approximates
arbitrarily closely any distribution on the positive real line. The model is especially con-
venient for time-to-event data as the Weibull distribution offers simple mathematical
expressions for the survival, hazard, cumulative hazard and density functions. More-
over, likelihood expressions for right, left and interval censored data remain tractable.
After establishing notation for the model, we construct a LIO prior for it. Although the
details apply only to the DPM of Weibulls, we note that the method of construction
can be adapted to any DPM model with kernel family closed under scale change; for
example, the Gamma family.

4.1 Model Specification

We begin with y1, . . . , yn denoting conditionally iid observations modeled with a DPM
of Weibulls. As in the Gaussian case, the first step is to rescale the data to a conve-
nient fixed scale. Using a contextually specified value c for the 95th percentile of the
data’s underlying distribution, we make the transformation zi = 10yi/c. Then, generally
following Kottas (2006), we fit this model:

zi|αi, λi
ind∼ Weib(zi|αi, λi), i = 1, . . . , n

(αi, λi)|G ind∼ G, i = 1, . . . , n

G ∼ DP (G0, ν)

G0 ∝ Ga(λ|α0, λ0)Ga(α|αα, λα)I(f(λ),∞)(α)

λ0 ∼ Ga(α00, λ00)

ν ∼ Ga(a, b).
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Here again, x ∼ Ga(α, λ) means x has density
λα

Γ(α)
xα−1e−λx and x ∼ Weib(α, λ)

means its density is λαxα−1e−λxα

; with, in both cases, x > 0, α > 0, λ > 0. As before,
the concentration parameter ν is set to have a Ga(a, b) prior with a = 1 and b = 1
(Escobar and West, 1995).

The model here differs slightly from that in Kottas (2006) in one aspect: the form of
G0. The original model of Kottas (2006) uses λ ∼ Ga(·, ·) and an independent Uniform-
Pareto distributed α denoted α ∼ UPar(a, b) and defined by α|φ ∼ U(0, φ), φ ∼
Pareto(a, b) with density of φ given by babφ−(b+1)I(a,∞)(φ), a > 0, b > 0. We use instead
a bivariate prior for (α, λ) employing a product of two gammas with a restriction that
keeps G0’s support away from the origin through a choice of f(λ) made in Section 4.2
below.

As in Section 3, inference for quantities related to the original data y1, . . . , yn can

be recovered from fitting the above model to z1, . . . , zn since [z] =
∞∑
k=1

qkWeib(αk, λk)

implies [y] =
∞∑
k=1

qkWeib(αk, λka
αk), with a = 10/c.

4.2 Hyperparameter selection

The approach here is distinct from that for a mixture of Gaussians where we used
Chebyshev’s inequality and some expectation arguments. Here we work more directly
with Weibull distributed mixture components that are deemed desirable with our low-
information goals on the pre-fixed data scale. We generate (α, λ) pairs corresponding to
such components, inspect these visually, and use heuristics to find parameter specifica-
tions that generate similar collections. Details of the process follow.

As two distinct percentiles determine (α, λ) for a Weibull distribution, we began by
working with the 5th and 95th percentiles, denoted t1 and t2, respectively. We let t1
range from 0.1 to 24.5 and t2 from t1 + 0.5 to 25, both by increments of 0.1. We also
added a restriction, t1/t2 < 0.95, to avoid very spikey distributions. This generated the
29487 pairs (α, λ) plotted in the left half of Figure 8.

Working first with the marginal of λ (Figure 7, left half), our goal was to determine
α0, α00 and λ00 related to λ in the model for z1, . . . , zn. Treating the 29487 λ’s as data,
with the following model and priors:

λ ∼ Ga(α0, λ0), λ0 ∼ Ga(α00, λ00)

α0 ∼ UPar(1, 1), α00 ∼ UPar(1, 1), λ00 ∼ Ga(0.001, 0.001)

we used medians of posterior MCMC (Markov chain Monte Carlo) samples to arrive at
α0 = 0.035, α00 = 1.354 and λ00 = 7.181. Using these values in the above hierarchical
model for λ, we generated samples which formed the histogram in the right half of
Figure 7.

With the marginal of λ in hand, the next task was to specify αα and λα in the prior
for α. In the model specification, the lower limit f(λ) is intended to avoid near-zero
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Figure 7: Matching histograms of log(λ); Section 4.2.

Figure 8: Scatter matching, α and log λ; Section 4.2.

values for both α and λ as such values correspond to distributions that have an infinite
spike at 0 yet assign substantial probabilities to large values. Since z1, . . . , zn are on a
pre-fixed scale not greatly exceeding 10, restricting the 95th percentile to 25 or less is a
reasonable specification. This leads to f(λ) = max(0, log{log(20)/λ}/ log(25)). Using a
trial and error process with visual inspections of scatter-plots of data generated under
various combinations of (αα, λα) resulted in the right half of Figure 8 with αα = 0.2 and
λα = 0.1. This completes the hyperparameter selection we recommend for the LIO prior.

Figure 9 offers an insight into the LIO prior by plotting 100 realizations of survival
functions generated from the full prior using the stick-breaking method (Sethuraman,
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Figure 9: Survival Functions Generated from LIO prior; Section 4.2.

1994). Colored lines show individual random survival functions at a grid of time points.
The black solid line is the pointwise median of 10000 such realizations and the dashed
black lines represent pointwise 2.5 and 97.5 percentiles. The prior appears to satisfy the
low-information goal on the pre-fixed scale.

4.3 Examples

In this section we present inference demonstrations using the LIO prior for survival, den-
sity and hazard functions with single datasets of 200 observations each, with 10% right
censoring and 10% interval censoring, generated from a mixture of lognormal distribu-
tions, 0.8LN(0, 0.25) + 0.2LN(1.2, 0.02), which was used in Kottas (2006) (Figure 10).
Figure 11 demonstrates the case of heavy right censoring as often occurs at end of study.
The Supplementary Material includes additional examples. In all examples the specified
95th percentile equaled the true value. Blue lines are the estimates (solid lines) and 95%
pointwise credible intervals (dashed lines) provided by the DPM of Weibulls model with
the LIO prior. Red lines show survival, density and hazard functions from which obser-
vations were generated. Black lines in the survival plots are the NPMLE (nonparametric
maximum likelihood estimate) (Turnbull, 1974) estimates and 95% pointwise confidence
intervals for them.

Figure 11 data generation consisted of 2000 observations, 95% right censored at
0.5, generated from the same mixture of log-normals as in the previous figure. It is
interesting to see the credible intervals beyond 0.5 immediately reflecting the lack of
information there. In practice, elicitation of the 95th percentile may be challenging in
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Figure 10: Survival Function, Density Function and Hazard Function Estimates of a
mixture of Lognormal distributions; Section 4.3.

Figure 11: Survival Function Estimates of Heavily Right Censored Data; Section 4.3.

the presence of heavy right censoring at the largest observed time tmax. We recommend
eliciting the survival probability q at tmax and using the prior mean survival (solid black
line in Figure 9) to find tq such that E(S(tq)) = q. Then specify the 95th percentile as
10tmax/tq.

5 Sensitivity Analysis and Comparison with Empirical
Methods

The only information that the LIO prior requires from the investigator is a specification
of the scale of the data’s underlying distribution, obtained from the median and 95th
percentile for the mixture-of-Gaussians model and the 95th percentile for the mixture-
of-Weibulls model. A question of interest is how much any misspecification of the scale
would affect the results. We address this question through simulations. In addition, we
compare the performance of the two DPM models under their respective LIO priors
with empirical methods.
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Figure 12: Sensitivity to median misspecification, Gaussian DPM: bias in top row, rmse
in bottom row for CDF at 9 deciles; Section 5.1.

5.1 Sensitivity Analysis

To evaluate sensitivity to specification of the median (95th percentile) we varied this
input, setting it to the true 30th, 40th, 50th, 60th, 70th (75th, 90th, 95th, 99th and
99.9th) percentiles of the underlying distribution. We then studied the performance of
the posterior mean CDF at 9 deciles of the underlying distribution. Thus the true value
of the estimation targets are 0.1 to 0.9 by increments of 0.1. We randomly generated
200 datasets of 100 observations each from the following three distributions:

1. t2: the standard t distribution with 2 degrees of freedom, representing a distribu-
tion with tails heavier than those of the Gaussian;

2. lnorm: the lognormal distribution, exp[Normal(2, 1)], representing a skewed dis-
tribution;

3. mixnorm: a mixture of two Gaussians, 0.5 Normal(0, 12) + 0.5 Normal(4, 1.52),
representing a multimodal distribution.

Performance was measured via bias = 1
200

∑200
i=1(θi − θ) and root mean squared error

(rmse) computed as
√

1
200

∑200
i=1(θi − θ)2 where θi is the posterior mean from dataset i

and θ the true value of the inference target. Figures 12 and 13 display the performance
measures in panels of six plots: bias in the top row, rmse in the second row. Columns
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Figure 13: Sensitivity to 95th percentile misspecification, Gaussian DPM: bias in top
row, rmse in bottom row for CDF at 9 deciles; Section 5.1.

correspond to the three data generating distributions. Horizontal axis markings in each
plot indicate the percentile at which posterior CDF means were calculated. Different
colors represent scaling input percentiles. An empirical estimate in black is also included
as a benchmark. Bias is slightly worse and rmse slightly higher with misspecification of
the median in the normal mixture case. Misspecification of the 95th percentile appears
to be even less consequential. Overall, agreement with empirical estimates is reasonable.

5.2 Comparison with Empirical Methods

Using the median and three specifications (90th, 95th, 99.9th) for the 95th percentile of
the data generating distribution as input to the LIO prior, we compared the performance
of the Gaussian DPM and the ECDF (empirical cumulative distribution function) for
the three specified distributions. Here, we used 200 simulated datasets of 100 or 1000 ob-
servations each. Figure 14 shows bias and root mean squared error (rmse) at the deciles
of the data’s underlying distribution. For each distribution and 95th percentile specifi-
cation, the plotted performance measures are averages of the corresponding quantities
at the 9 deciles. On the horizontal axis we use “100D” and “100E” to denote respective
results from the Gaussian DPM and ECDF on datasets of size 100; similarly, “1000D”
and “1000E” show these for sets of size 1000. Unlike the previous figure, colors here rep-
resent data generating distributions. Plot symbol shapes indicate prior specifications.
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Figure 14: Gaussian DPM Comparison with Empirical DF at 9 deciles, combined; Sec-
tion 5.2.

Figure 15: Comparison of Estimates of Survival function at 9 deciles from survival
package (S) and LIO Weibull DPM (D); Section 5.2.

The DPM with the LIO prior and the ECDF perform very similarly with respect to
bias and rmse.

For the mixture-of-Weibulls model, we used three specifications (90th, 95th, 99.9th)
for the 95th percentile of the data generating distribution and compared performance
with an empirical method, again using the same 4 data generating distributions as in the
examples of the previous section. To see the impact of censoring rate and sample size, we
added scenarios with 50% censoring (25% right censoring, 25% interval censoring) and
1000 observations. In Figure 15, the “S” on the x-axis represents the NPMLE estimates
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from the R package “survival”, while the “D” represents DPM of Weibulls model with
LIO prior. The numerals preceding these letters indicate the censoring rate 20% or 50%
(the latter figure in Supplementary Material). In each plot, the first 4 estimates are
based on datasets with 100 observations while the rest are based on datasets with 1000
observations. Again, we see that the performance of the DPM is quite similar to the
frequentist estimates in terms of bias and rmse.

A bivariate example is included in the Supplementary Material.

6 Convergence Considerations

Consistency of a Bayesian procedure is in a sense a frequentist validation of the proce-
dure: For a nonparametric or semi-parametric Bayesian procedure, consistency implies
convergence to a true unknown density as the number of data observations goes to ∞.
We use Ghosal et al. (1999), Tokdar (2006), Wu and Ghosal (2008) and Wu and Ghosal
(2010) to show convergence properties with the two LIO priors in previous sections.

Measuring convergence for a density estimation procedure is done in terms of con-
centration of the posterior probability around a neighborhood of the true unknown
density. Let X1, . . . , Xn be observed data ∈ R

p for some integer p ≥ 1. Let F denote
the space of all densities on R

p. Let f0 be some density on R
p. Also for any ε > 0 let us

denote by Nw
ε (f0) and Ns

ε (f0) the neighborhoods of f0 under weak and strong topol-
ogy respectively. Let Pf denote the probability measure corresponding to a density f .
Also let P∞

f denote the probability measure on the infinite dimensional random vector
{Xi}∞i=1, where the Xi are iid and ∼ f . We begin with the formal definitions of posterior
consistency.

Definition 1. A prior Π is said to be weakly consistent at a density f0 if for any ε > 0,
the random variable,

Xn(ε) =

∫
f∈Nw

ε (f0)

∏n
i=1 f(Xi)dΠ(f)∫

f∈F
∏n

i=1 f(Xi)dΠ(f)
→ 1

as n → ∞ almost surely with respect to the measure P∞
f0
.

Replacing the neighborhood under weak topology with the neighborhood under
strong topology (also called L1 topology), the definition of strong consistency is given
as,

Definition 2. A prior Π is said to be strongly consistent at a density f0 if for any
ε > 0, the random variable,

Xn(ε) =

∫
f∈Ns

ε (f0)

∏n
i=1 f(Xi)dΠ(f)∫

f∈F
∏n

i=1 f(Xi)dΠ(f)
→ 1

as n → ∞ almost surely with respect to the measure P∞
f0
.
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6.1 Equivalence Results

To establish posterior consistency properties of the LIO prior, we first show that it
suffices to study consistency on the scaled data.

Lemma 1. Let Zi = AXi + b, for each i ∈ 1, . . . , n be a linear scaling of the data
{Xi}ni=1 for some positive matrix A in R

p×p and any vector b in R
p. Then, a prior Π

achieves weak (strong) consistency at a density f0 on {Xi}ni=1 if the induced prior Π̃

achieved weak (strong) posterior consistency at the induced density f̃0 on {Zi}ni=1.

Proof. In Supplementary Material.

Next we consider the class of densities at which consistency is shown. In the next
lemma, we show that in addition to equivalence for posterior consistency, the regularity
conditions and the density classes are also equivalent between the observed data and
the scaled data.

Lemma 2. Let {Zi}ni=1 be a linear rescaling of the observed data {Xi}ni=1 as previously
stated, with induced densities and priors between them. The following conditions for the
induced density on rescaled data,

1. f̃0(z) is nowhere 0 and is bounded above by M , ∀z ∈ R
p

2. |
∫
f̃0(z) log f̃0(z)dz| < ∞

3. For some δ > 0, |
∫
f̃0(z) log

f̃0(z)
φδ(z)

dz| < ∞, where φδ(z) = inf‖t−z‖<δ f̃0(t)

4. For some η > 0,
∫
‖z‖2(1+η)f̃0(z)dz < ∞,

imply equivalent conditions on the density f0(x) on the observed data.

Proof. In Supplementary Material.

Earlier work in the literature (Walker, 2004; Choi and Schervish, 2007) contains
other slightly different regularity conditions on the true density f0, for all of which,
equivalence can be shown. We omit a detailed description here for the sake of brevity.

6.2 Consistency Results on the Scaled Data

The LIO prior in this article is used for the following three scenarios:

1. Mixture of univariate normals for scalar responses

2. Mixture of Weibulls for scalar responses

3. Mixture of multivariate normals for vector responses
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Items (1)&(2) have been dealt with in Ghosal et al. (1999) and Wu and Ghosal
(2008). The work in Wu and Ghosal (2008) is restricted to showing consistency at true
densities having a finite second moment, which excludes some commonly used densities,
e.g., the Cauchy. Tokdar (2006) significantly weakens the second moment condition,
while adding additional regularity conditions on the base measure. For our item (1),
results of Tokdar (2006) Theorem 3.3 directly apply. This implies weak consistency for
our procedure on a wide class of true densities, including those such as the Cauchy
density.

We show here briefly that a similar weakening on conditions for our item (2) is also
possible as our base measure satisfies similar regularity conditions in the next lemma.

Lemma 3. Let Π = DP (G0, ν) denote the prior specification for our mixture of
Weibulls scenario, where the base measure G0 is supported on R

+×R
+. The conditions

(1)–(4) of Tokdar (2006)’s Theorem 3.3 implies weak consistency of our procedure.

Proof. In Supplementary Material.

The proof of weak consistency for the multivariate case - for our item (3) follows from
Theorem 2 in Wu and Ghosal (2010). These results also do not permit true densities
for which second moment is not finite. It is possible to further impose conditions on the
base measure, implying conditions on the eigenvalues of covariance matrix, but this is
fairly involved, not following from earlier results; a discussion of this is omitted here.

Strong consistency (also referred to as L1 consistency) on a restricted class of densi-
ties as given by Theorem 3 in Wu and Ghosal (2010) applies directly to our scaled data
procedure, and by virtue of our equivalence results, to the induced procedure on the
observed data. Some weakening of the conditions of Theorem 3 is possible for admitting
a broader class of true densities, once again by imposing strict decay conditions on the
tails of the base measure, but further details are omitted here.

7 Discussion

We offer a technique for an omnibus low information prior specification that can han-
dle data of various scales in a mixture-of-Gaussians model and a mixture-of-Weibulls
model. Using data simulated from a variety of distributions we demonstrated the ef-
fectiveness of these prior specifications. To implement the Gaussian DPM model with
our prior, we have developed a wrapper for the DPdensity function of the R package
DPpackage (Jara et al., 2011) that provides density estimation for scalar and vector-
valued random samples. This is included in the R package DPWeibull (https:cran.r-
project/web/packages/DPWeibull) which also includes functions for DPM of Weibulls.

We illustrated this method of prior specification for DPMs of Gaussian and Weibull
distributions. A similar approach can be used to obtain a LIO prior for a DPM of any
location-scale family, such as t distributions. Additionally, a similar application could
be used for mixtures of distributions from a family that, like the Weibulls, are closed
under a change of scale; Gamma distributions are one such family.



700 LIO Priors for Dirichlet Process Mixture Models

The process of obtaining a low information prior only needs to be done once. It
is designed to generate a vague but robust prior. The construction process could be
based on moment arguments as in the mixture-of-Gaussians case, or may require a
more constructive effort with trial and error as we described in the mixture-of-Webulls
case.

Similar to De Iorio et al. (2004)’s Dependent Dirichlet process (DDP) of Gaussian
mixtures model, we have extended DPM-of-Weibulls model to a DDP regression model
for survival data that can directly model event time and address censoring as well
as competing risks. This work is contained in the first author’s recently completed
dissertation at the Medical College of Wisconsin and will be published elsewhere.

We note that Bayesian nonparametric modeling has evolved much beyond the still-
popular DPM model. For example, Gibbs-type partitions (Lijoi et al., 2008) and normal-
ized random measures with independent increments (NRMIs; Regazzini et al. (2003);
Lijoi et al. (2005, 2007)) are more general models with important special cases showing
robustness with respect to prior specification for the total mass parameter. It is quite
possible that the methods of this article could be extended to homogeneous NRMIs
(James et al., 2009), perhaps straightforwardly. We hope to report on such develop-
ments in the future, noting that our contribution for now remains a starting point. In
this regard, see also work in Argiento et al. (2010, 2016).

Supplementary Material

Supplementary Material for “Low Information Omnibus (LIO) Priors for Dirichlet Pro-
cess Mixture Models” (DOI: 10.1214/18-BA1119SUPP; .pdf).
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