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Dynamic Quantile Linear Models: A Bayesian
Approach

Kelly C. M. Gonçalves‡, Hélio S. Migon∗,†,§, and Leonardo S. Bastos¶

Abstract. The paper introduces a new class of models, named dynamic quan-
tile linear models, which combines dynamic linear models with distribution-free
quantile regression producing a robust statistical method. Bayesian estimation for
the dynamic quantile linear model is performed using an efficient Markov chain
Monte Carlo algorithm. The paper also proposes a fast sequential procedure suited
for high-dimensional predictive modeling with massive data, where the generating
process is changing over time. The proposed model is evaluated using synthetic
and well-known time series data. The model is also applied to predict annual in-
cidence of tuberculosis in the state of Rio de Janeiro and compared with global
targets set by the World Health Organization.

Keywords: asymmetric Laplace distribution, Bayes linear, Bayesian quantile
regression, dynamic models, Gibbs sampling.

1 Introduction

The paper proposes a broad new class of models by combining two innovative areas de-
veloped during the last quarter of the twentieth century, namely dynamic linear models
and quantile regression. In the 1970’s, a new idea to model time series data was proposed
by Harrison and Stevens (1976), which can be viewed as the use of regression models
with parameters varying across time. Around the same time, Koenker and Bassett
(1978) introduced the quantile regression model, a robust statistical procedure which
generalizes the L1 regression. Quantile regression is advantageous compared to stan-
dard mean regression since it provides richer information about the covariate effects, is
robust to heteroscedasticity and outliers, and can accommodate the non-normal errors
often encountered in practical applications.

The inferential approaches of dynamic linear models and quantile regression are,
nevertheless, completely distinct. While the first contribution follows the Bayesian
paradigm, the second resorts to optimization techniques to solve the stated minimiza-
tion problem, and its inference is theoretically based on large sample theory. In the next
paragraphs, we state the main novelties in both consolidated areas.
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A simple minimization problem yielding the ordinary sample quantiles in the loca-
tion model was shown to generalize naturally to the linear model, generating a broad
new class of models introduced in the 1970s by Koenker and Bassett (1978), named
“quantile regression models”. Bayesian inference for quantile regression proceeds by
forming the likelihood function based on the asymmetric Laplace distribution (Yu and
Moyeed, 2001). Kozumi and Kobayashi (2011) proposed a Gibbs sampling to sample
from the posterior distribution of the unknown quantities using the normal-exponential
mixture representation for the asymmetric Laplace distribution. The recent literature
has introduced Bayesian quantile regression in: Tobit models (Yu and Stander, 2007),
censored models (Reich and Smith, 2013), binary models (Benoit and Van den Poel,
2012), ordinal models (Rahman, 2016), hierarchical linear models (Yu, 2015), longitu-
dinal data models (Luo et al., 2012; Alhamzawi and Ali, 2018; Rahman and Vossmeyer,
2018), time series models (Cai et al., 2012), spatial models (Reich et al., 2011) and
spatiotemporal models (Reich, 2012; Neelon et al., 2015).

Applications of quantile regression have become widespread in recent years: in fi-
nance, actuarial modeling (Taylor, 1999; Bassett Jr and Chen, 2002; Kudryavtsev, 2009;
Sriram et al., 2016), public policy evaluation (Neelon et al., 2015; Rahman, 2016) and
residual lifetime analysis(Li et al., 2016).

Dynamic linear models (DLMs) were introduced by Harrison and Stevens (1976)
and extended to generalized linear models by West et al. (1985). DLMs are part of a
broad class of models with time varying parameters, useful for modeling and forecasting
time series and regression data (West and Harrison, 1997; Durbin and Koopman, 2002;
Migon et al., 2005; Petris et al., 2009; Prado and West, 2010). The advent of stochas-
tic simulation techniques stimulated applications of the state space method to model
complex stochastic structures, like dynamic spatiotemporal models (Gamerman et al.,
2003), dynamic survival models (Bastos and Gamerman, 2006), dynamic latent factor
models (Lopes et al., 2008), and multiscale models (Ferreira et al., 2011; Fonseca and
Ferreira, 2017). Real applications of the method have been also appeared in hydrology
(Ravines et al., 2008; Fernandes et al., 2009), intraday electricity load (Migon and Alves,
2013), finance (Zhao et al., 2016), and many other areas.

We extend the dynamic linear models to a new class, named dynamic quantile linear
models, where a linear function of the state parameters is set equal to a quantile of the
response variable at time t, yt, similar to the quantile regression of Koenker (2005). This
method is suited to high-dimensional predictive modeling applications with massive
data in which the generating process itself changes over time. Our proposal keeps the
most relevant characteristics of DLMs such as: (i) all relevant information sources are
used: history, factual or subjective experiences, including knowledge of forthcoming
events; (ii) everyday forecasting is generated by a statistical model and exceptions can
be taken into account as an anticipative or retrospective base; (iii) what happened and
what if analyses are easily accommodated; and (iv) the model can be decomposed into
independent components describing particular features of the process under study.

The relative ease with which Markov chain Monte Carlo (MCMC) methods can be
used to obtain the posterior distributions, even in complex situations, has made Bayesian
inference very useful and attractive, but at the expense of losing the sequential analysis
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of both states and parameters. Therefore, some fast computing alternatives exploring
analytical approximations have been welcome, as in Da-Silva et al. (2011) and Souza
et al. (2018). In this paper, we introduce the inference via MCMC methods, and also via
an alternative approach based on normal approximations and Bayes linear estimation
(West et al., 1985), which besides being computationally faster than MCMC, recovers
the sequential analysis of the data. Our approximation procedure provides the marginal
likelihood sequentially as new data arrive, which is essential to perform sequential model
monitoring and model selection (West, 1981).

The remainder of the paper is organized as follows. Section 2 explores in more details
the dynamic quantile linear model. Section 3 presents our efficient MCMC algorithm
and the sequential approach for dynamic quantile linear modeling. Section 4 illustrates
the proposed method with synthetic data, and also presents some results of the well-
known time series of the annual flow of the Nile River at Aswan from 1871 to 1970.
The model is also applied to time series data on tuberculosis in Rio de Janeiro state,
Brazil, from 2001 to 2015. We also predict the incidence for future years and compare
the results with those of the global tuberculosis strategy targets established. Finally,
Section 5 concludes with discussion of the paper and some possible extensions.

2 Dynamic quantile linear model

The τ -th quantile of a random variable yt at time t can be represented as a linear
combination of explanatory variables,

Qτ (yt) = F′
tθ

(τ)
t ,

where Qτ (yt) is the τ -quantile of yt, formally defined as Qτ (yt) = inf{y∗ : P (yt < y∗) ≥
τ}, for 0 < τ < 1. Ft is a p× 1 vector of explanatory variables at time t, and θ

(τ)
t is a

p × 1 vector of coefficients depending on τ and t. From now on, the superscript τ will
be omitted in order to keep the notation as simple as possible.

For a given time t, Koenker and Bassett (1978) defined the τ -th quantile regression
estimator of θt as any solution of the quantile minimization problem

min
θt

ρτ (yt − F′
tθt) ,

where ρτ (.) is the loss (or check) function defined by ρτ (u) = u(τ − I(u < 0)), with
I(·) denoting the indicator function. Minimizing the loss function ρτ (·) is equivalent
to maximizing the likelihood function of an asymmetric Laplace (AL) distribution, as
pointed out by Yu and Moyeed (2001). However, instead of maximizing the likelihood,
as in Yu and Moyeed (2001), we derive the posterior distribution of the τ -th quantile
regression coefficients at time t using the AL distribution. Therefore, regardless of the
distribution of yt, it is enough to assume that:

yt | μt, φ, τ ∼ AL
(
μt, φ

−1/2, τ
)
, t = 1, 2, . . . , T, (2.1)



338 Dynamic Quantile Linear Models

where μt = F′
tθt ∈ R is a location parameter, φ−1/2 > 0 is a scale parameter, and

τ ∈ (0, 1) is a skewness parameter representing the quantile of interest. In dynamic
modeling, one goal is also to obtain the predictive distribution. This can be done in
a robust fashion using a grid of values of τ ∈ (0, 1) to describe the full predictive
distribution of yt. Nevertheless, in this paper, we focus on providing precise inference
about the linear predictor μt for each τ -th quantile.

In a dynamic linear model, the states at time t depend on the states at time t − 1
according to an evolution equation θt = Gtθt−1 + wt, where Gt is a (p × p) matrix
describing the evolution parameters and wt is a zero mean Gaussian error with variance
matrix Wt. Therefore the proposed dynamic quantile linear model (DQLM) is defined
as:

yt|θt, φ, τ ∼ AL
(
F′

tθt, φ
−1/2, τ

)
,

θt|θt−1,Wt ∼ Np(Gtθt−1,Wt), t = 1, 2, . . . , T,
(2.2)

where Np(μ,Σ) denotes a multivariate Gaussian distribution with p-dimensional mean
vector μ and p× p covariance matrix Σ.

In the next section, we present two methods of inference for the proposed model.
In the first one, we extend the algorithm proposed by Kozumi and Kobayashi (2011)
to Bayesian (static) quantile regression and propose an efficient MCMC algorithm to
sample from the posterior distribution of the unknown quantities of the dynamic quantile
linear model in equation (2.2). The second one is a computationally cheaper alternative
that explores analytical approximations and Bayes linear optimality. An advantage of
the last one is that it provides the marginal likelihood sequentially as new data arrive.

3 Posterior inference for the DQLM

The main tasks involved in state space model inference are estimation of the states and
prediction of future values based on the current information. The conditional densities
π(θs | Dt), where Dt = {Dt−1 ∪ It ∪ yt} represents all information until time t, are
calculated for different values of s and t. The filtering corresponds to the case s = t,
state prediction to s > t and smoothing to s < t, for t = 1, 2, . . . , T.

The inference in DLM assumes the data come sequentially in time. The expressions
for updating from the filtering density π(θt−1 | Dt−1) to π(θt | Dt) are easily obtained
following the Bayesian argument. Given the state posterior distribution at time t − 1,
denoted by π(θt−1|Dt−1), we obtain the prior distribution π(θt|Dt−1) using the state
parameters’ time evolution equation. As soon as we get new information, we can obtain
by Bayes’ theorem the posterior distribution at time t. The one step ahead predictive
distribution is obtained by π(yt | Dt−1) =

∫
π(yt,θt|Dt−1)dθt.

The retrospective analysis instead consists of estimating the state sequence at times
1, . . . , t, given Dt. It is solved by computing the conditional distribution of (θ1, . . . ,θt)
given Dt. As for filtering, smoothing can be implemented via a recursive algorithm.

Moreover, for a DLM including a possibly multidimensional unknown parameter
in its specification, the joint posterior distribution of the parameter and unobservable
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states, in general, is not available in closed form. The inclusion of the states in the poste-
rior distribution usually simplifies the design of an efficient sampler. In fact, drawing the
posterior distribution of the parameter given the states is almost invariably easier than
drawing it from the marginal. In addition, efficient algorithms to generate the states
conditionally on the data and the unknown parameter are available, such as forward
filtering backward sampling (FFBS) in the normal case (Frühwirth-Schnatter, 1994).

However, if one needs to update the posterior distribution after one or more new
observations become available, then one has to run MCMC all over again, which can
be extremely inefficient (Petris et al., 2009, chapter 4, p. 149). On-line analysis and
simulation-based sequential updating of the posterior distribution of states and unknown
parameters are best dealt with by employing sequential techniques, such as Sequential
Monte Carlo (SMC) methods (Doucet et al., 2001).

Based on those ideas, we present two different algorithms to make inferences in the
proposed dynamic quantile linear model in equation (2.2). The first method consists
of an efficient MCMC algorithm to sample from the posterior distribution of the un-
known quantities of the model. The second one is a faster alternative which performs a
sequential analysis as new data arrive.

3.1 Efficient MCMC algorithm

Kotz et al. (2001) presented a location-scale mixture representation of the AL distri-
bution that allows finding analytical expressions for the conditional posterior densi-
ties of the model. In this way, if a random variable follows an AL distribution, i.e.
yt | μt, φ, τ ∼ AL

(
μt, φ

−1/2, τ
)
, then we can write yt using the following mixture rep-

resentation:

yt | μt, Ut, φ, τ ∼ N(μt + aτUt, bτφ
−1/2Ut),

Ut | φ ∼ Ga(1, φ1/2),
(3.1)

where aτ = 1−2τ
τ(1−τ) and bτ = 2

τ(1−τ) are constants that depend only on τ , with Ga(α, β)

denoting the gamma distribution with mean α/β and variance α/β2.

Therefore, the dynamic quantile linear model in equation (2.2) can be rewritten as
the following hierarchical model:

yt|θt, Ut, φ, τ ∼ N
(
F′

tθt + aτUt, bτφ
−1/2Ut

)
,

θt|θt−1,Wt ∼ Np (Gtθt−1,Wt) ,
Ut|φ ∼ Ga(1, φ1/2),

(3.2)

for t = 1, . . . , T . To allow for some flexibility in the model in equation (3.2), we can even
assume that φ−1/2 changes with time, which can be done in logarithmic scale according
to a random walk or by using discounted variance learning through the multiplicative
gamma-beta-gamma model (West and Harrison, 1997, chapter 10, p. 357).

The model is completed with a multivariate normal prior for θ0, θ0 ∼ Np (m0,C0),
an independent gamma prior for φ1/2, φ1/2 ∼ Ga(nφ/2, sφ/2), and W−1

t ∼ Wish(nw,
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Sw), where Wish(ν, V ) denotes the Wishart distribution with ν degrees of freedom and
scale matrix V .

The posterior distribution of the parameters in the model in equation (3.2) is given
by

π(Θ,U,W, φ | DT ) ∝
T∏

t=1

[π(yt|θt, Ut, φ)π(θt|θt−1,Wt)π(Ut)π(Wt)] (3.3)

π(φ1/2)π(θ0),

where Dt = {Dt−1 ∪ It ∪ yt} represents all information until time t, for t = 1, 2, . . . , T .
The quantity It represents all external information at time t. If there is no external
information at time t, then It = ∅. All prior information is summarized in D0 = I0,
containing all hyperparameters associated with the prior distributions. The unknown
quantities are defined as follows: Θ = (θ0,θ1, . . . ,θT ); U = (U1, U2, . . . , UT ); and W =
(W1,W2, . . . ,WT ).

We can sample from the posterior distribution in equation (3.3) through a MCMC
algorithm. Our starting point is the efficient Gibbs sampler for Bayesian (static) quantile
regression proposed by Kozumi and Kobayashi (2011). The dynamic coefficients are
then sampled using a FFBS algorithm (Carter and Kohn, 1994; Frühwirth-Schnatter,
1994; Shephard, 1994). The FFBS is a two-step efficient block sampler that draws the
states jointly, given the parameters for linear Gaussian state-space models. The data are
sequentially processed to update numerical summaries of the filtering densities π(θt|Dt)
at time t (forward filtering) and then the joint distribution is simulated via the implied
backward compositional form (backward sampling). In this case, using standard results
about the multivariate Gaussian distribution, it is easily proved that the random vector
(Θ,DT ) has a Gaussian distribution so, the marginal and conditional distributions are
also Gaussian distributions.

Theorem 3.1 displays the full conditionals and the sampling algorithm.

Theorem 3.1. Let Φ = (Θ,U,W, φ, t = 1, . . . , T ). A Gibbs sampling algorithm for the
dynamic quantile model in equation (3.2) involves two main steps:

1. First, sample φ1/2, Ut, and W−1
t for t = 1, . . . , T from their full conditional distri-

butions:

(i) φ1/2 | DT ,Θ,U ∼ Ga
(
n∗
φ/2, s

∗
φ/2

)
, where n∗

φ = nφ + 3T and

s∗φ = sφ +

T∑
t=1

(yt − F′
tθt − aτUt)

2

bτUt
+ 2

T∑
t=1

Ut.

(ii) Ut | DT ,θt, φ ∼ GIG
(
χ∗
t , κ

∗
t ,

1
2

)
, where χ∗

t =
(yt−F′

tθt)
2φ1/2

bτ
and

κ∗
t = φ1/2

(
a2
τ

bτ
+ 2

)
and GIG is the generalized inverse Gaussian distribution

(Jorgensen, 2012).
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(iii) W−1
t | DT ,θt ∼ Wish (n∗

w,S
∗
w) , where n∗

w = nw + p+ 1 and

S∗
w = Sw + (θt −Gtθt−1)

′
(θt −Gtθt−1).

2. Next, use the FFBS method to sample from π(θ | ·):

(i) Forward filtering: for t = 1, . . . , T calculate

mt = E(θt|Dt) = at +RtFtq
−1
t (yt − ft) and

Ct = V (θt|Dt) = Rt −RtFtq
−1
t F′

tRt,

with at = E(θt|Dt−1) = Gtmt−1, Rt = V (θt|Dt−1) = GtCt−1G
′
t +Wt,

ft = E(yt|Dt−1) = F′
tat+Utaτ and qt = V (yt|Dt−1) = F′

tRtFt+ bτUtφ
−1/2.

(ii) Backward sampling: sample θT ∼ Np(mT ,CT ) and for t = T − 1, . . . , 0
sample θt ∼ Np(ht,Ht), where

ht = mt +CtG
′
tR

−1
t+1(θt+1 − at+1) and Ht = Ct −CtG

′
t+1R

−1
t+1Gt+1Ct.

In place of assuming a Wishart prior for W−1
t it is also possible to use a discount

factor δ ∈ (0, 1) subjectively assessed, controlling the loss of information. In this case,
the only difference is that Rt is recalculated according to a discount factor δ such as
Wt =

1−δ
δ GtCt−1G

′
t. Hence, Rt can be rewritten as Rt =

1
δGtCt−1G

′
t.

The full conditional distribution of Ut is obtained using Lemma 3.1, which shows
that the generalized inverse Gaussian distribution (GIG) is conjugate to the normal
distribution in a normal location-scale mixture model.

Lemma 3.1. Let y = (y1, . . . , yn) be a normal random sample with likelihood func-
tion π(y|U) =

∏n
i=1 N(yi|a+ bU, cU) and suppose that the prior distribution for U is

GIG (χ, κ, λ). Then, the posterior distribution U | y ∼ GIG(χ∗, κ∗, λ∗), where χ∗ =
χ+ c−1

∑n
i=1 (yi − a)2, κ∗ = nb2c−1 + 2κ and λ∗ = λ− n/2.

The proof of this result is immediate and is omitted in the text. Moreover, note that
a Ga(α, β) distribution is a particular case of a GIG with χ = 0, κ = 2β and λ = α.

3.2 Approximate dynamic quantile linear model

On the other hand, considering that data arrive sequentially, we propose an efficient
and fast sequential inference procedure obtained with a closed-form solution, in order
to update inference about unknown parameters online. This is useful, for example, in
financial applications where one has to estimate the term structure of interest rates
hourly as new data continuously arrive. In particular, the main interest in the approxi-
mate method proposed is that besides being faster than MCMC algorithms, it does not
require assessing chain convergence.

The approach also explores the mixture representation of the AL distribution de-
scribed in equation (3.1). Hence, posterior computation can be conveniently carried
out using conventional Bayesian updating, conditional on the gamma random variable
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Ut. We also use a normal approximation to Ut’s distribution in the logarithm scale,
introducing explicit dynamic behavior, once again, generalizing the model presented in
equation (3.2).

The normal approximation of the gamma distribution, described in Bernardo (1981),
is presented below and the proof is presented in Appendix A (Gonçalves et al., 2019).

Lemma 3.2. Using the Kullback-Leibler divergence, in a large class of transformations,
we have:

(i) The best transformation, to approximate θ ∼ Ga(a, b) for a normal distribution is
ζ(θ) = log(θ). Then ζ � N [E(ζ), V (ζ)], where E(ζ) � log

(
a
b

)
− 1

2a and V (ζ) � 1
a .

(ii) If ζ ∼ N [E(ζ), V (ζ)] then θ = exp(ζ) is such that E(θ) � exp [E(ζ) + V (ζ)/2]
and V (θ) � exp [2E(ζ) + V (ζ)]V (ζ).

Therefore, an approximate conditional normal dynamic quantile regression is ob-
tained as:

yt | θt, ut, φ ∼ N
(
F′

tθt + aτφ
−1/2 exp(ut), φ

−1bτ exp(ut)
)
,

θt | θt−1,Wt, φ ∼ Np

(
Gtθt−1, φ

−1Wt

)
,

ut | ut−1,Wu,t, φ ∼ N
(
ut−1, φ

−1Wu,t

)
,

(3.4)

where ut = log(Ut), with Ut ∼ Ga(a, b). The model in equation (3.4) is more flexible
than the original one in equation (3.2) because it allows ut to change with time according
to a random walk. Furthermore, the scale parameter here is introduced in all the model
equations.

The model is completed assuming the following independent initial information:
θ0 | D0 ∼ Np(m0, φ

−1C0), u0 | D0 ∼ N(mu,0, φ
−1Cu,0) and φ−1 | D0 ∼ Ga(n0/2, d0/2).

The model in equation (3.2) can be viewed as a particular case of the one proposed in
equation (3.4) assuming that Wu,t = 0, ∀t, mu,0 = −1/2 and Cu,0 = 1 and ignoring the
multiplicative factor included here just to facilitate analytical expressions.

The inference procedure is described below. First we present all results conditional
on both ut and φ and later we integrate out those quantities.

Normal conditional model

We start the inference procedure by exploiting the advantage that, conditional on ut

and φ, we have normal distributions in one-step forecasting and posterior distributions
of θt at time t, so all the properties of a normal model can be used here. The dependence
on ut appears first due to the one-step forecast distribution at time t and it will appear
in the posterior distribution as time passes. Let us define u1:t = (u1, . . . , ut). Theorem
3.2 presents the main steps in the inference procedure conditional on ut.

Theorem 3.2. Assuming that the states’ posterior distribution at time t − 1 is θt−1 |
Dt−1, u1:(t−1),Wt, φ ∼ N [mt−1, φ

−1Ct−1] and the conditions defining the model in
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equation (3.4), it follows that the prior distribution of θt and the conditional predic-
tive distribution for any time t, given ut and φ, are respectively:

θt | Dt−1, u1:(t−1),Wt, φ ∼ Np[at, φ
−1Rt],

yt | Dt−1, u1:t,Wt, φ ∼ N [ft(ut), φ
−1qt(ut)], (3.5)

with at = Gtmt−1 and Rt = GtCt−1Gt + Wt, ft(ut) = F′
tat + aτφ

−1/2 exp(ut) and
qt(ut) = F′

tRtFt+bτ exp(ut). The conditional joint covariance between yt and θt, given
Dt−1, u1:t, φ, is easily obtained as RtFt completing the joint normal prior for θt and
yt. Therefore, the posterior density of θt follows as:

θt | Dt, u1:t,Wt, φ ∼ Np[mt(ut), φ
−1Ct(ut)], (3.6)

where mt(ut) = at +RtFtqt(ut)
−1(yt − ft(ut)) and Ct(ut) = Rt −RtFtqt(ut)

−1F′
tRt.

It is worth pointing out that the mean and variance of the predictive and the state
posterior distributions are functions of ut, as reinforced by the notation used. However,
since ut is unknown for all t, we must find those distributions marginal on them. We
will do this sequentially in the one-step forecast distribution in equation (3.5) for each
time t.

Marginalizing on ut

From now on, we will rewrite the time evolution equation in (3.4) as θ∗
t | θ∗

t−1,W
∗
t , φ ∼

Np+1

(
G∗

tθ
∗
t−1, φ

−1W∗
t

)
, where θ∗

t = (θt, ut)
′
, G∗

t = BlockDiag (Gt, 1) and W∗
t =

BlockDiag (Wt,Wu,t) with prior distribution given by θ∗
0 | D0, φ ∼ (m∗

0, φ
−1C∗

0), where

m∗
0 = (m0,mu,0)

′
and C∗

0 =

(
C0 Λ0

Λ′
0 Cu,0

)
.

Assuming the posterior distribution at time t−1, θ∗
t−1 | Dt−1,W

∗
t , φ ∼ Np+1(m

∗
t−1,

φ−1C∗
t−1). By evolution, it follows that θ∗

t | Dt−1,W
∗
t , φ ∼ Np+1(a

∗
t , φ

−1R∗
t ), with

a∗t = G∗
tm

∗
t−1 and R∗

t = G∗
tC

∗
t−1G

∗
t +W∗

t .

In particular, we have that ut | Dt−1,Wu,t, φ ∼ N(au,t, φ
−1Ru,t) and the result (ii)

of Lemma 3.2 leads to this distribution in the original (gamma) scale as:

Ut | Dt−1,Wu,t, φ ∼ Ga(αt, βt), (3.7)

where αt = φR−1
u,t and βt = exp(−au,t)φR

−1
u,t.

Thus, the one-step forecast distribution in equation (3.5) can be seen as a normal-
gamma mean-variance mixture, with the following different features from those stated
in equation (3.1): (i) Ut in this case is gamma distributed with shape parameter different
from 1; and (ii) qt(ut) is a linear function of ut with non-null linear coefficient. These
comments lead us to a recent class of distributions, a variant of the AL, as described in
Theorem 3.3.
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Theorem 3.3. The one-step ahead forecast distribution, conditional on φ and marginal-
ized on ut arises as the convolution of an independent normal and a generalized asym-
metric Laplace distribution (GAL). It can be represented as:

yt = ζt + εt,

where ζt ∼ GAL(F′
tat, aτφ

−1/2β−1
t , bτφ

−1β−1
t , αt) and εt ∼ N

(
0, φ−1F′

tRtFt

)
. We will

refer to this as the NGAL distribution.

A brief presentation of the NGAL distribution, its moments, the characteristic func-
tion, and the proof of Theorem 3.3 are presented in Appendix B. Although, the NGAL
distribution suffers from a lack of closed-form expressions for its probability density and
cumulative distribution functions, they can be efficiently determined using numerical
integration as discussed in Appendix B. In particular, the one-step ahead forecast mean
and variance marginal on ut, can be easily obtained through properties of conditional
mean and variance as:

E (yt | Dt−1, φ) = E [E (yt | Dt−1, Ut) | Dt−1] = F′
tat + aτφ

−1/2E (Ut | Dt−1)

= F′
tat + aτφ

−1/2αt/βt = ft, and

V (yt | Dt−1, φ) = E [V (yt | Dt−1, Ut) | Dt−1] + V [E (yt | Dt−1, Ut) | Dt−1]

= φ−1 [F′
tRtFt + bτE (Ut | Dt−1)] + a2τφ

−1V (Ut | Dt−1)

= φ−1
(
F′

tRtFt + bταt/βt + a2ταt/β
2
t

)
= φ−1qt.

The recurrences for posterior mean and variance may also be derived using ap-
proaches that do not invoke the normal assumption, since they possess strong optimality
properties that are derived when the distributions are only partially specified in terms
of means and variances. The Bayes linear estimation procedure, presented in West and
Harrison (1997, Chap. 4), provides an alternative estimate that can be viewed as an
approximation of the optimal procedure. Theorem 3.4 presents the main steps in the
inference procedure, now marginal on ut.

Theorem 3.4. The joint distribution of θ∗
t and yt is partially described using its first

and second moments, as follows:(
θ∗
t

yt

∣∣∣∣Dt−1,W
∗
t , φ

)
∼

[(
a∗t
ft

)
, φ−1

(
R∗

t Atqt
qtA

′
t qt

)]
,

where At = q−1
t

(
RtFt + φ−1/2aτ exp(au,t)Λt

Λ′
tFt + φ−1/2aτ exp(au,t)Ru,t

)
and Λt = GtΛt−1.

The joint covariance between yt and θ∗
t , given Dt−1 and φ, is obtained using the

first-order Taylor series approximation exp(ut) ≈ exp(au,t)[1 + ut − au,t].

Through the Bayes linear estimation procedure, we get:

θ∗
t | Dt,W

∗
t , φ ∼ [m∗

t , φ
−1C∗

t ], (3.8)

where m∗
t = a∗t +At(yt − ft) and C∗

t = R∗
t −AtqtA

′
t and we can easily return to the

normality assumption.
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The discount factor strategy can be used in place of W∗
t .

Although one of the attractive features of this approach is that estimation and
forecasting can be applied sequentially as new data become available, one can use
the backward-recursive algorithm and get the smoothed estimates: θ∗

t | DT ,W
∗
t , φ ∼

[h∗
t , φ

−1H∗
t ], where

h∗
t = m∗

t +C∗
tG

∗′
t+1R

∗−1

t+1(h
∗
t+1 − a∗t+1) and

H∗
t = C∗

t −C∗
tG

∗′
t+1R

∗−1

t+1(R
∗
t+1 −H∗

t+1)R
∗−1

t+1G
∗
t+1C

∗
t .

(3.9)

Estimating φ

The steps of the method described above are conditional on φ. In the case where φ
is unknown, a practical solution is to use a plug-in estimator for φ obtained from the
maximum a posteriori estimation.

The posterior distribution of φ given the observed data is given by:

p(φ | DT ) =

T∏
t=1

p(yt | Dt−1, φ)p(φ | D0), (3.10)

where p(yt | Dt−1, φ) is the predictive distribution conditional on φ.

The density and the cumulative distribution function can be obtained numerically
using the convolution form or the inversion of the characteristic function. In particular,
using the convolution to represent the density function, we get:

p(yt | Dt−1, φ) =

∫ ∞

−∞
pε(yt − z)pζ(z)dz, (3.11)

where pζ(.) is the density of the GAL distribution, and pε(.) is the density of a normal
distribution with mean 0 and variance c. Also, using the inversion of the characteristic
function, we get:

p(yt | Dt−1, φ) =
1

2π

∫ ∞

−∞
e−isytϕ(s)ds, (3.12)

where ϕ(.) is the characteristic function of the NGAL distribution.

The integrals in equations (3.11) and (3.12) can be evaluated numerically using cur-
rent quadrature methods. For example, Kuonen (2003) discussed numerical integration
using Gaussian quadrature and adaptive rules, which dynamically concentrate the com-
putational work in the sub regions where the integrand is most irregular, and the Monte
Carlo method. They concluded that adaptive Gauss-Kronrod quadrature performed best
in their examples.

Finally, a brief summary of the algorithm is stated in the following steps:

(1) for k = 0 give an initial value φ−1(0);
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(2) calculate for t = 1, . . . , T :

(i) a∗t = G∗
tm

∗
t−1, R∗

t = G∗
tC

∗
t−1G

∗
t + W∗

t , αt = φR−1
u,t and βt =

exp(−au,t)φR
−1
u,t;

(ii) ft = F′
tat + aτφ

−1/2αt/βt and qt =
(
F′

tRtFt + bταt/βt + a2ταt/β
2
t

)
;

(iii) get p(yt | Dt−1, φ
(k)) numerically using equations (3.11) or (3.12);

(iv) calculate m∗
t = a∗t + At(yt − ft) and C∗

t = R∗
t − AtqtA

′
t, where At is a

function of φ−1(k).

(3) do k = k + 1 and get φ−1(k) maximizing p(φ|Dt) in equation (3.10).

(4) repeat (2) and (3) until convergence is achieved.

4 Applications

To illustrate the performance of the proposed model and inference procedures, we apply
the method to some synthetic data and well-known time series data. Then, we apply
it to the incidence of tuberculosis in Rio de Janeiro, in which it is important to assess
if public health policies are effective, not only in reducing the trend in the number of
cases, but also the variability of total cases. Moreover, the upper quantiles may be useful
to detect an epidemic.

Although the approximate method presents less computing burden and keeps the
relevant sequential analysis of the data, we interchange the use of the MCMC approach
with the approximate method in the following applications.

The choice of the quantile to be tracked depends on the specific aims of the problem.
In each application we arbitrarily fixed a small quantile (10%, 25%), the median, and a
large quantile (75%, 90%) to be monitored, with the purpose of illustrating the method
for different scenarios. However, in some specific contexts, there is a practical rationale
behind this choice. For example, in the Value-at-Risk (VaR) estimation, used by finan-
cial institutions and their regulators as the standard measure of market risk, the τ -th
quantile is often set to 0.01 or 0.05. Or in survival analysis, since the mean residual life
function of a survival time S, given by the expected remaining lifetime given survival
up to time tτ , is E(S − tτ | S > tτ ), this is especially useful when the tail behavior of
the distribution is of interest.

4.1 Artificial data examples

In order to assess the efficiency of the proposed sequential procedure and the convergence
of the MCMC estimation, two artificial datasets were generated. The proposed model
was fitted to these datasets and its estimates were then compared to the true values
used in the dataset generation process. In the first study, we generated a time series
with temporal trend and seasonal component with one harmonic from a Gaussian DLM
and estimated the linear predictor for 3 different quantiles and compared the results



K. C. M. Gonçalves, H. S. Migon, and L. S. Bastos 347

obtained from each inferential method. In the second one, the focus was to empirically

evaluate the ability of our proposed model to estimate the parameters with a non-normal

artificial dataset, for which a data transformation can be considered.

In both studies a non-informative prior distribution was assumed for the parametric

vector with: m0 = 0, C0 = 105, nφ = 0.001, sφ = 0.001. We took two approaches to deal

with the evolution variance: (i) we set a Wishart prior distribution for W−1
t ; and (ii)

we applied a discount factor δ = 0.95, setting Wt = Ct(1 − δ)/δ (West and Harrison,

1997, p. 51).

The results shown hereafter for the MCMC algorithm correspond to 110,000 MCMC

sweeps, after a burn-in of 10,000 iterations and chain thinning by taking every 10th

sample value. As the default FFBS-based approach produces results that use the poste-

rior based on the full dataset, for comparison purposes the results for the approximate

method are based in the smoothing equations in (3.9).

Trend and seasonal DLM

An artificial time series of size T = 100 was generated for a Gaussian dynamic linear

model, with the specification Ft = (1, 0, 1, 0)′ and Gt =

(
L2 0
0 J2(ω)

)
, where L2 =(

1 1
0 1

)
and J2(ω) =

(
cos(ω) sin(ω)

−sin(ω) cos(ω)

)
, with ω = 2π

12 . This corresponds to a

second-order polynomial model with a harmonic component. We arbitrarily fixed V = 49

and W =

(
W2 0
0 I2

)
, where W2 =

(
0.02 0.01
0.01 0.01

)
and In is an identity matrix of

dimension n.

The DQLM was fitted for τ = 0.1, 0.5 and 0.9 and both inference approaches pro-

posed in the paper were considered. In the MCMC algorithm, we assumed an inverse

Wishart prior distribution for W with hyperparameters nw = 8 and Sw = 0.1I4. Con-

vergence for all the parameters was achieved and Figures 2 and 3 in Appendix C show,

respectively, the trace plots with the posterior distribution of parameters θt’s and the

histograms of the posterior densities of some elements of the covariance matrix W.

Moreover, Figure 1 reports the inefficiency factor (INEFF) for some of the parame-

ters, defined as the ratio between the numerical variance of the posterior sample mean

and the variance of the sample mean, assuming uncorrelated draws from the target dis-

tribution. The larger INEFF is, the less efficient the sampling scheme will be (Gamerman

and Lopes, 2006, p. 126). The INEFF values are below 10 for each parameter, which

indicates that the sampler is mixing well, mainly for the lower quantile and the median.

Panels of Figure 2 present the posterior summary of the level and seasonal compo-

nents and the linear predictor F′
tθt for each quantile (from left to right τ = 0.1, 0.5, 0.9),

with the generated time series (points). The posterior mean is represented by the solid

line and the 95% credible region by the shaded area.
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Figure 1: Box plots of the inefficiencies of θ1t and θ3t, for t = 1, . . . , T and τ =
0.1, 0.5, 0.9.

Figure 3 presents the plot of the estimated values of the linear predictor for each
quantile in the MCMC approach versus the proposed approximate algorithm. The
lengths of the segments represent the 95% credibility interval obtained by the MCMC
approach. We conclude that both methods produce similar results, but while MCMC
takes about 5 minutes for 5,000 sweeps for a specific quantile, the approximate method
takes seconds. Both algorithms were implemented in the R programming language, ver-
sion 3.4.1 (R Core Team, 2017), in a computer with an Intel(R) Core(TM) i7-7700
processor with 3.60 GHz. This is first evidence of the relevance of the approximate
DQLM to deal with a scalable dataset.

Non-Gaussian artificial dataset

To illustrate how the method works with a non-Gaussian dataset, we generated an
artificial dataset from a first order dynamic gamma regression with mean μt, scale
parameter φ and a canonical link function ηt = log(μt) = F′

tθt. In particular, we
generated T = 100 observations assuming Ft = (1, xt), where xt is an auxiliary variable
at time t, Gt = I2×2, W = 0.01I2×2, for all t = 1, . . . , T and φ = 50. Each auxiliary
variable xt was generated independently from a uniform distribution defined in the
interval (2,4).

The model in equation (3.2) was fitted to the original data and to the log transformed
data, for the quantiles 0.10, 0.50, and 0.90. We particularly choose here to perform the
inference using only the MCMC algorithm. Although quantile regression is invariant
to monotonic transformations, that is, the quantiles of the transformed variable are
the transformed quantiles of the original variable (Koenker, 2005, chapter 2, p. 34),
the estimates of all the involved quantities were noticeably better when the data were
transformed.

In order to validate the former result, some simulation studies were developed. Sev-
eral samples were generated from the gamma model. A simple static model is proposed
in this exercise, with Ft = 1 and Wt = 0, for all t = 1, . . . , T . Fifty replications of
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Figure 2: Smoothed posterior mean (solid line), 95% credible region (shaded area) of
the level and seasonal components for each quantile, based on the MCMC output (a)
and in the approximate method (b). From left to right τ = 0.1, 0.5, 0.9.
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Figure 3: Plot of the estimated values (posterior mean) of the linear predictor under
the MCMC inference approach versus the approximate method.

samples of sizes T = 100 and T = 250 were generated using three different levels of
skewness.

Figure 4 reports the empirical nominal coverage of the 95% credibility intervals
measured in percentages and the relative mean absolute error (RMAE) for the posterior
mean of the quantiles for each case. The RMAE decreases when we apply the AL to
the logarithm of the sample observations and also as the sample size increases or the
distribution becomes more symmetrically distributed. The desired nominal level of 95%
is best achieved when the logarithm of the sample is considered, mainly as the level of
asymmetry decreases. The improvement in the results when using the log transformation
is more noticeable as the skewness decreases.

Those results encourage us, as future research, to explore in this context the idea of
using the AL distribution for random effects in the link function, instead of applying it
to the transformed response variable.

4.2 Real data example: Nile River flow

In this section, we revisit a classic univariate time series dataset previously analyzed
in the literature. We apply the proposal to the annual flow of the Nile River at Aswan
from 1871 to 1970 (Cobb, 1978). This series shows level shifts, so we considered here
a model which includes change points or structural breaks. The dataset is available in
the R software (R Core Team, 2017).

The dataset in Figure 5 corresponds to the measurements of the annual flow of Nile
River at Aswan (Egypt) from 1871 to 1970. The time series shows level shifts. The
construction of the first dam at Aswan started in 1898 and the second big dam was
completed in 1971, which caused enormous changes in the Nile flow and in the vast
surrounding area. The application of a quantile model for this kind of dataset could be
interesting to determine, for example, the return period of a flood. The return period
R(y) is defined to be the mean value of a geometrically distributed random variable
with probability parameter P (y > y∗) = 1− τ . Then, R(y) = 1/(1− τ).
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Figure 4: Empirical nominal coverage of the 95% credibility intervals (%) and the MAE
for the posterior mean of the quantiles for each case. The symbols • and � represent the
results obtained when fitting the quantile regression to the logarithm of the observations
for T = 100 and T = 250, respectively. ◦ and � represent the same results when the
quantile regression is applied to the observations on the original scale for T = 100 and
T = 250, respectively.

In order to capture these possible level changes, we consider here a model that does
not assume a regular pattern and stability of the underlying system, but can include
change points or structural breaks.

A simple way to account for observations that are unusually far from their one step-
ahead predicted value is to describe the evolution error using a heavy-tailed distribution.
The Student-t distribution family is particularly appealing in this respect for two rea-
sons: (i) the Student-t distribution admits a simple representation as a scale mixture of
normal distributions, which allows one to treat a DLM with t-distributed observation
errors as a Gaussian DLM, conditional on the scale parameters; and (ii) the FFBS al-
gorithm can still be used. Thus, we consider the DQLM with evolution characterized
by the Student-t distribution, given by:

θt ∼ N(Gtθt−1, λ
−1
t W),

λt ∼ Ga(ν/2, ν/2), t = 1, . . . , T.
(4.1)
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Figure 5: Measurements of the annual flow of Nile River at Aswan from 1871 to 1970.

The latent variable λ−1
t can be informally interpreted as the degree of non-Gauss-

ianity of wt. In fact, values of λ−1
t lower than 1 make larger absolute values of wt more

likely. Hence, the posterior distribution of λ−1
t can be used to flag possible outliers.

Through its degree-of-freedom parameter ν, which may also vary on time, different

degrees of heaviness in the tails can be attached. This class of models is discussed in

Petris et al. (2009).

In this example, we fitted a first-order polynomial dynamic model, thus we assumed

Ft = Gt = 1 in model in equation (3.2). We fitted the model in equation (4.1) and the

one with normal evolution, for the 0.25, 0.5, and 0.75- quantiles.

In both cases, for the variance of the states W , we considered a half-Cauchy prior

distribution, as discussed by Gelman (2006), with scale 25, set as a weakly informa-

tive prior distribution. Although we could even assume a prior distribution for this, as

described in Petris et al. (2009), we assumed ν known a priori and fixed at 2.5.

Figure 6 shows the linear predictor for each quantile, with its 95% credibility interval

represented by the shaded area, obtained from the normal (first column) and Student-t

fits (second column). The model in equation (4.1) results in smoother linear predictors

with more accurate credibility intervals.

Table 1 presents the posterior mean of the linear predictor for the 0.25, 0.5, and 0.75-

quantiles for the model with normal and Student-t evolution around the year 1899. The

abrupt regime change is better captured in the Student-t than in the normal model for

all quantiles.

Figure 7 shows the boxplots of the posterior distribution of λ−1
t in logarithmic scale

from 1871 to 1970 for each quantile. Values of log λ−1
t greater than 0 indicate an abrupt

regime change. Boxplots in gray do not include the value 0. Thus, it is possible to

observe that the model in fact accommodates the outliers. The regime change in 1899

was detected for all the quantile regression models fitted. However, for the 0.75- quantile,

other outliers were detected.
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Figure 6: Posterior mean of the linear predictor (represented by the solid line) and the
95% credible region (represented by the shaded area) for each quantile, under normal
and student-t evolution.



354 Dynamic Quantile Linear Models

Student-t Normal
Year 25% 50% 75% 25% 50% 75%
1896 1064.01 1134.51 1219.03 1046.11 1124.00 1216.96

1897 1004.97 1083.83 1147.69 984.23 1064.32 1137.24

1898 959.51 1047.47 1117.77 922.98 1016.65 1093.48

1899 792.07 890.29 972.25 836.57 943.65 999.19

1900 784.17 871.67 938.27 814.69 903.88 949.23

1901 771.33 863.93 926.85 794.25 882.78 930.59

Table 1: Posterior mean of the linear predictor for the 0.25, 0.5, and 0.75- quantiles of
the model with normal and Student-t evolution.

Figure 7: Boxplots of the posterior samples of λ−1
t in log scale for the 0.25, 0.5, and

0.75- quantiles over the years.
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4.3 Tuberculosis cases in Rio de Janeiro

According to the World Health Organization (WHO), tuberculosis (TB) is one of the
top 10 causes of death worldwide. Brazil is one of the countries with the highest number
of cases in the world and since 2003 the disease has been considered a priority by the
Brazilian Ministry of Health. As part of the overall effort to reduce the incidence and
mortality rate, the Ministry of Health, through the General Office to coordinate the
National Tuberculosis Control Program (CGPNCT), prepared a national plan to end
tuberculosis as a public health problem in Brazil, reaching a target of less than 10 cases
per 100,000 inhabitants by 2035. The plan to end the TB epidemic is a target under the
Sustainable Development Goals that requires implementing a mix of biomedical, public
health and socioeconomic interventions along with research and innovation. The World
Health Assembly passed a resolution approving with full support the new post-2015
End TB Strategy with its ambitious targets (WHO, 2014).

The state of Rio de Janeiro is located in southeastern Brazil, with over 16 million
residents in 2017. The state has one of the highest TB rates in the country. In 2015, there
were 13,094 new notified cases, representing 15% of new cases for the whole country.
We fitted the proposed DQLM with a trend component for monthly incidence in Rio de
Janeiro from January 2001 to December 2015. Figure 8 (a) presents the posterior mean
(dashed line) and the 95% credibility interval (region in gray) for the linear predictor
for the 0.1, 0.5, and 0.9- quantiles, in the MCMC procedure. Figure 8 (b) presents the
posterior summary of the interquantile range (IQR) between 10% and 90%. It is possible
to observe a decreasing pattern for the IQR, mainly after 2008.

Figure 8: Monthly incidence of TB in Rio de Janeiro state: (a) Posterior mean (dashed
line) of the linear predictor for the 0.1, 0.5, and 0.9- quantiles, and their 95% credibility
intervals for the 0.1 and 0.9- quantiles; (b) Posterior summary for the interquantile
range between the 0.1 and 0.9- quantiles.

One of the targets of the post-2015 global tuberculosis strategy is a 20% reduction in
tuberculosis incidence by 2020, compared with 2015, a 50% reduction by 2025, an 80%



356 Dynamic Quantile Linear Models

reduction by 2030 and a 90% reduction in tuberculosis incidence by 2035. In particular,
the interest here is to predict the incidence from January 2016 to December 2020, in
order to detect in terms of the median, if the target can be achieved.

In the MCMC inference procedure, samples from θT+k, with k a non-negative inte-
ger, are obtained by propagating the samples from the posterior distribution through
the evolution equation in (3.2). In the approximate method, this is done after estimating
φ through maximum posterior estimation. Hence, we get:

θ∗
T+k | DT ∼ [a∗T+k, φ

−1R∗
T+k], (4.2)

where a∗T+k = GT+ka
∗
T+k−1 and C∗

T+k = GT+kR
∗
T+k−1G

′
T+k can be recursively cal-

culated.

In order to capture the steep decline of new cases that represents the government
target, we considered beside a linear forecast function in the original scale, a linear
forecast for the log-transformation to the dataset and two higher-order models. First,
we considered a quadratic growth DLM (West and Harrison, 1997, chapter 7, p. 223),

which is obtained by specifying in equation (2.2) Ft = (1, 0, 0)′, Gt =

⎛
⎝ 1 1 1

0 1 1
0 0 1

⎞
⎠

and Wt a diagonal matrix.

Then, we considered a local approximation by a second-order Taylor series expansion
of the nonlinear Gompertz-type forecast functions (Harrison et al., 1977). The Gompertz
function involves three parameters and is defined by the equation:

g(t) = At +Bt exp(Ctt), (4.3)

To deal with the nonlinear form, the quadratic polynomial DLM, previously de-
scribed, was used to update the corresponding three parameters, so the form in equation
(4.3) was converted back and the full nonlinear form was used for the forecast function.

Figure 9 presents the forecast from 2016 to 2020 of the median of the monthly in-
cidence of TB per 100 thousand inhabitants for both alternatives using the MCMC
approach, for the four models previously described. The dashed line represents the pos-
terior mean, the region in gray is the 95% credibility interval and the red line indicates
the TB reduction targets calculated for Rio de Janeiro state using 2015 as the baseline.

According to all four models, the WHO’s 2020 target, estimated to be 5.28 cases per
month per 100 thousand inhabitants, can be achieved in Rio de Janeiro. The Gompertz
model captures the steep decline and it estimates for January 2020 a TB incidence of
5.19 (95%CI = (3.15, 8.29)) TB cases per 100 thousand inhabitants. As in the Gompertz
model fitting, we estimated BT < 0 (mean = - 0.99, 95%CI =(-1.12, -0.96)) and CT > 0
(mean = 0.04, 95%CI =(-0.11, 0.18)), g(t) defined in equation (4.3) is a non-increasing
model converging to At as t → ∞. Thus, considering a typical stagnation of the disease
incidence, the Gompertz model seems to be the most appropriate to capture such long-
term forecasts.
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Figure 9: Temporal predictions of monthly incidence of TB in Rio de Janeiro state from
January 2016 to December 2020. The solid line represents the observed time series and
the dashed line represents the mean of the predictive distribution for the median (0.5-
quantile), the region in gray represents the 95% credibility interval and the red line the
WHO’s reduction target, in each model considered.

5 Conclusions

In this article we propose a new class of models, named dynamic quantile linear models.
For the inference procedure, we develop two approaches: (i) a MCMC algorithm based
on Gibbs sampling and FFBS for the model of the location-scale mixture representation
of the AL distribution; and (ii) a faster sequential method, based on approximations
using Kullback-Leibler divergence and the Bayes linear method. The second inference
approach has the advantage of being computationally cheaper. A suggested alternative
approach is the use of SMC methods for online state and parameter estimation in the
state-space model proposed. In particular, the approach presented in Yang et al. (2018)
could be applied to the DQLM in equations (2.2) and (3.2). The approach considers
filtering and smoothing methods via SMC for general state space models in the context
of state and fixed parameters, providing a correction to the smoothing methods proposed
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by Carvalho et al. (2010). However, as illustrated by Yang et al. (2018), the filtering
and smoothing methods with SMC could have almost the same computational time of
a short MCMC, which was stated to make benchmark comparisons with a long MCMC,
which requires a lot more computational time than SMC.

We evaluated the DQLM in artificial and real datasets. In the simulation study, we
applied our model to a Gaussian example with trend and seasonal components where
the DQLM performed well, and the approximate DQLM was a computationally efficient
alternative to MCMC. We also applied our model in a non-Gaussian example generated
by a gamma model, encouraging the investigation of introducing the AL model in the
link function or in the response variable. In the classic real Nile River dataset example,
we illustrated our proposal by fitting a model for outliers and structural breaks where
the detection of occasional abrupt changes differs depending on the quantile of interest.

The application to the tuberculosis data in Rio de Janeiro, Brazil, illustrates the
practical importance of evaluating quantiles instead of the mean in the context of fore-
casting. It also encourages us to extend the proposal to joint modeling for the quantiles
and a dynamic quantile hierarchical model. In particular, our method can be applied
to any infectious disease, since it is important to assess whether public health policies
are effective, not only in reducing the trend in the number of cases, but also the vari-
ability of the number of total cases. Moreover, the upper quantiles can be useful for
early detection of an outbreak (epidemic). If the distribution of the number of cases
(represented by the quantiles) is much higher than usual, it is a strong indication that
attention is required.

Supplementary Material

Supplementary Material for “Dynamic Quantile Linear Models: A Bayesian Approach”
(DOI: 10.1214/19-BA1156SUPP; .pdf).
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