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Bayes Factor Testing of Multiple Intraclass
Correlations

Joris Mulder∗ and Jean-Paul Fox†

Abstract. The intraclass correlation plays a central role in modeling hierarchi-
cally structured data, such as educational data, panel data, or group-randomized
trial data. It represents relevant information concerning the between-group and
within-group variation. Methods for Bayesian hypothesis tests concerning the in-
traclass correlation are proposed to improve decision making in hierarchical data
analysis and to assess the grouping effect across different group categories. Esti-
mation and testing methods for the intraclass correlation coefficient are proposed
under a marginal modeling framework where the random effects are integrated
out. A class of stretched beta priors is proposed on the intraclass correlations,
which is equivalent to shifted F priors for the between groups variances. Through
a parameter expansion it is shown that this prior is conditionally conjugate under
the marginal model yielding efficient posterior computation. A special improper
case results in accurate coverage rates of the credible intervals even for minimal
sample size and when the true intraclass correlation equals zero. Bayes factor
tests are proposed for testing multiple precise and order hypotheses on intraclass
correlations. These tests can be used when prior information about the intraclass
correlations is available or absent. For the noninformative case, a generalized frac-
tional Bayes approach is developed. The method enables testing the presence
and strength of grouped data structures without introducing random effects. The
methodology is applied to a large-scale survey study on international mathematics
achievement at fourth grade to test the heterogeneity in the clustering of students
in schools across countries and assessment cycles.

Keywords: Intraclass correlations, Bayes factors, stretched beta priors, shifted
F priors, hierarchical models.

1 Introduction

The intraclass correlation plays a central role in the statistical analysis of hierarchical
data. It quantifies the relative variation between groups or clusters. A large (small) intr-
aclass correlation implies a strong (weak) degree of clustering which implies that there is
much (little) variation between groups. In cluster-randomized trials, entire groups (e.g.,
hospitals, schools) are assigned to the same treatment or intervention. When planning a
cluster-randomized experiment, the intraclass correlation is used as an indicator of the
level of efficiency of a multistage sample design. Optimal sample size requirements to
obtain adequate statistical power and statistical precision depend on the variation be-
tween and within groups (Hedges and Hedberg, 2007; Raudenbush, 1997; Spiegelhalter,
2001). When conducting an experiment in different regions and contexts, the statisti-
cal variation in intraclass correlations is relevant to optimally plan cluster-randomized
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experiments across regions and to obtain adequate statistical power in each region.
Knowledge about the intraclass correlation is also important to verify that conclusions
of a statistical analysis are valid. When incorrectly ignoring a grouping effect, standard
errors are generally too small and conclusions about the statistical significance of a
treatment effect might be incorrect (Raudenbush, 1997).

Testing intraclass correlations can reveal relevant information about the level of
heterogeneity between groups and across different group types. For example, Mulder
and Fox (2013) tested the intraclass correlation of Catholic schools and public schools
to learn that there is more variation in performance of Catholic schools in comparison
to public schools. Van Geel et al. (2017) examined differences in intraclass correlations
of teacher scores nested in schools in a pretest-posttest study design. After the teachers
participated in an intervention program to improve teacher performances, a decrease of
the intraclass correlation was measured. It was assumed that at the posttest teachers
performed less alike leading to less similarity between teachers in each school, where
some teachers did improve their performances while others did not. We will propose
Bayes factor tests to formally test differences between intraclass correlations to be able
to make inferences about the heterogeneity in teacher improvements.

In this paper, a Bayesian approach is presented for testing multiple precise and
order hypotheses on multiple intraclass correlations belonging to different group cat-
egories, ρ = (ρ1, . . . , ρC)

′, where ρc is the intraclass correlation in group category c,
for c = 1, . . . , C. The intraclass correlation ρc is defined as the ratio of the between-
groups variance in group category c and the total variance in group category c. The
Q hypotheses have the following general form with equality and order constraints on
intraclass correlations:

Hq : RE
q ρ = 0,RI

qρ > 0, (1)

for q = 1, . . . , Q, where the rows of the coefficient matrices RE
q and RI

q are permutations
of either (1,−1, 0, . . . , 0) or (±1, 0, . . . , 0), q = 1, . . . , Q. Thus, restrictions are considered
where intraclass correlations are equal to, larger than, or smaller than zero, or equal
to, larger than, or smaller than other intraclass correlations. This class covers the most
important hypotheses on intraclass correlations in statistical practice.

A key step in our methodology is the use of a marginal modeling framework, where
the random effects in the multilevel model are integrated out. In this marginal model-
ing framework the intraclass correlations can attain negative values (Searle et al., 1992,
p. 60–61). The allowed parameter space under the marginal model is in line with the
restriction following from the expression for the intraclass correlation of Harris (1913),
which states that the intraclass correlation is greater than − 1

p−1 , where p equals the
number of observations per group. Unlike the marginal modeling framework of Liang
and Zeger (1986) using generalized estimating equations, our marginal approach con-
nects more closely to integrated likelihood methods where the nuisance parameters are
integrated out (Berger et al., 1999). In this integrated likelihood approach inferences
concerning the intraclass correlations are also invariant under shifts of the random group
means. In our approach, the integrated likelihood is defined for Helmert-transformed
grouped observations (Lancaster, 1965). The orthonormal Helmert transformation is
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used to partition the integrated likelihood in a component containing the between-
groups sum of squares and a component containing the within-groups sum of squares,
which are the sufficient statistics for the between-groups variance and within-groups
variance, respectively (Fox et al., 2017).

To aid Bayesian estimation and testing a class of stretched beta priors is proposed for
the intraclass correlations. This class of priors has positive support for negative intraclass
correlations under the marginal model. Furthermore this class of priors is equivalent to
shifted F distributions for the between-groups variances which has an additional shift
parameter. To our knowledge this class of priors is novel in the Bayesian literature.
Note that the F distribution is equivalent with the scaled-beta2 prior (Pérez et al.,
2017) and the half-t prior (Gelman, 2006; Polson and Scott, 2012), which are becoming
increasingly popular for modeling variance components (Mulder and Pericchi, 2018).

The proposed class of stretched beta priors under the marginal model has several
attractive features. By allowing intraclass correlations to be negative it is possible to test
the appropriateness of a random effects model using the posterior probability that an
intraclass correlation is positive. Moreover using a noninformative improper prior under
the marginal model, we can obtain accurate coverage rates for the credible intervals,
even in the case of samples of minimal size with two groups and two observations per
group for a zero intraclass correlation in the population. Note that frequentist matching
priors play an important role in objective Bayesian analysis (Welch and Peers, 1963;
Severini et al., 2002; Berger and Sun , 2008). Another consequence of the marginal
modeling approach is that significance type tests of whether an intraclass correlation
equals zero can be performed using credible intervals with accurate error rates. This is
possible because testing whether ρ = 0 is not a boundary problem. Another important
property of the proposed class of priors is that it can be made conditionally conjugate
through a parameter expansion. As will be shown the shifted F distribution on the
between-groups variance is equivalent to a gamma mixture of shifted inverse gamma
distributions. These shifted inverse gamma priors are conditionally conjugate under the
marginal model. This results in efficient posterior sampling with a Gibbs sampler.

For the testing problem (1), a Bayes factor testing procedure is proposed under the
marginal model. This test can be applied when prior information about the intraclass
correlations is available and when no prior information is available or when a default
Bayesian procedure is preferred. In the informative case, proper truncated stretched
beta priors are specified on the unique intraclass correlations under each constrained
hypothesis Hq where the hyperparameters can be elicited from prior knowledge. A
special case is the uniform prior, which assumes that all intraclass correlations are
equally likely a priori. In the noninformative case, truncated improper reference priors
will be used in combination with a generalized fractional Bayes approach (O’Hagan,
1995; De Santis and Spezzaferri, 2001; Hoijtink et al., 2018).

The paper is organized as follows. First, the marginal model is introduced, where two
parameterizations are discussed and the integrated likelihood of the Helmert-transformed
observations is given. Then, two prior classes are discussed, where a stretched beta dis-
tribution and a shifted F distribution is introduced to describe the distribution of the
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intraclass correlation and the between-groups variance, respectively, while taking ac-
count of restrictions on the parameter space to ensure that the covariance matrix is
positive definite. A Gibbs sampler is then described, and its performance is evaluated
through a simulation study. Then a Bayes factor and a generalized fractional Bayes
factor are proposed, and their numerical performances are evaluated. Both tests are
applied to data from the Trends in International Mathematics and Science Study to
evaluate hypotheses concerning the heterogeneity of the intraclass correlation across
countries and assessment cycles. Finally, a discussion is given and some generalizations
are presented.

2 The marginal model

We focus on the random intercept model, where measurement j in group (or cluster) i
in group category c is distributed according to

ycij = x′
cijβ + δci + εcij , where (2)

δci ∼ N (0, τ2c ),

εcij ∼ N (0, σ2),

for j = 1, . . . , p measurements, i = 1, . . . , nc groups in category c, and c = 1, . . . , C
categories. In (2), β is a vector of K fixed effects with covariates xcij for measurement
j in group i in category c, δci is the random intercept of group i in category c, τ2c is
the between-groups variance in category c, and σ2 is the common residual variance,
which can be interpreted as the within-groups variance. This random intercept model
can be recognized as a two-level multiple-group model, where level-1 units j are nested
in level-2 groups i for each group category c. For instance, in each country c, math
scores ycij of students j nested in schools i are assumed to be independently distributed
given the random school intercept δci. The dependencies between student scores within
each school can vary across countries.

The marginal model is obtained by integrating out the random effects δic. The
vectorized version of (2) then has a multivariate normal distribution with a covariance
matrix having a compound symmetry structure, i.e.,

yci ∼ N (Xciβ,Σc) , with Σc = σ2Ip + τ2c Jp, (3)

where yci = (yci1, . . . , ycip)
′, Xci is the p×K stacked matrix of covariates, Ip is the p×p

identity matrix, and Jp is a p× p matrix of ones. In order for the covariance matrix Σc

to be positive definite, it must hold that τ2c > −σ2

p and σ2 > 0, and thus τ2c does not

necessarily have to be positive as in (2). For this reason we introduce a more general
marginal model with covariance matrix

Σc = σ2Ip + ηcJp, (4)

where ηc > −σ2

p . We shall refer to ηc as the generalized between-groups variance in

category c. Note that (4) is equivalent to (3) when ηc > 0. Furthermore when there is
support in the data that ηc < 0, the multilevel model (2) may not be appropriate.



J. Mulder and J.-P. Fox 525

We can reparameterize model (4) using different intraclass correlations for different
categories, denoted by ρc = ηc

ηc+σ2 , for c = 1, . . . , C, and the total variance in group

category 1, denoted by φ2, such that⎧⎨
⎩

ρc = ηc

ηc+σ2 ,

for c = 1, . . . , C,
φ2 = η1 + σ2

⇔

⎧⎨
⎩

ηc = ρc

1−ρc
(1− ρ1)φ

2,

for c = 1, . . . , C,
σ2 = (1− ρ1)φ

2.

(5)

Note that the total variance φ2 and the fixed effects β are considered nuisance parame-
ters in the current paper. The intraclass correlation in group category c is defined as the
ratio of the generalized between-groups variance and the total variance. Thus, ρc quan-
tifies how much units in the same group resemble each other in category c. If ρc = 0,
then there is no clustering and measurements yijc are essentially randomly assigned to
the groups in category c.

Using the parameterization (β,ρ, φ2), the marginal model in (4) is given by

yci ∼ N (Xciβ,Σc) , with Σc = φ2(1− ρ1)

(
Ip +

ρc
1− ρc

Jp

)
, (6)

with ρc ∈ (− 1
p−1 , 1) in order for Σc to be positive definite. Hence, the intraclass corre-

lations can attain negative values under this generalized marginal model, which is not
the case in the conditional model (2), where ρc ∈ (0, 1), for c = 1, . . . , C. To get some
intuition about the impact of a negative intraclass correlation, Figure 1 displays the
sampling distribution of the between-groups sums of squares for population values of
σ2 = 1, β = 0, n1 = 8, and p = 4, and intraclass correlations of ρ1 = −.1, 0, or .3. As
can be seen the between-groups sums of squares is generally smaller in the case ρ1 is
negative in comparison to ρc = 0 corresponding to random group assignment. Note that
the estimated intraclass correlation is negative when the mean between-groups sums of
squares is smaller than the mean within-groups sums of squares (Searle et al., 1992, p.
60–62).

Due to the compound symmetry covariance structure, the orthonormal Helmert
transformation is useful to obtain transformed outcomes that are independent. The
p× p Helmert transformation matrix is given by (Lancaster, 1965)

Hp =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√
p

1√
p

1√
p · · · 1√

p
1√
2

− 1√
2

0 · · · 0

1√
6

1√
6

− 2√
6

. . .
...

...
...

...
. . . 0

1√
p(p−1)

1√
p(p−1)

1√
p(p−1)

· · · − p−1√
p(p−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Subsequently, the transformed observations are independently distributed according to

zci = Hpyci ∼ N
(
Wciβ, φ

2(1− ρ1)Dc

)
, (7)
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Figure 1: Sampling distribution of the between-groups sums of squares, s2B,1 =
∑

i(ȳ1i−
ȳ1)

2, where ȳ1i denotes the sample mean of group i and ȳ1 denotes the overall sample
mean, for φ2 = 1, β = 0, n1 = 8, p = 4, and different values of the intraclass correlation
ρ1 ∈ {−.1, 0, .3}.

where Wci = HpXci, and p× p matrix Dc = diag( 1+(p−1)ρc

1−ρc
, 1, . . . , 1), for i = 1, . . . , nc

and c = 1, . . . , C. From Dc it can be seen that only the first transformed observation,
zci1, contains information about the intraclass correlation in that group. This can be
explained by the fact that zci1 depends on the sum of yci, which is a key quantity for
the between-groups variation.

The likelihood function under the marginal model is given by

f(z|W,β,ρ, φ2) = (2π)−
Np
2 (φ2)−

Np
2 (1− ρ1)

−Np
2 (8)

exp

{
−
∑C

c=1

∑nc

i=1

∑p
j=2(zcij −w′

cijβ)
2

2φ2(1− ρ1)

}

C∏
c=1

(
1+(p−1)ρc

1−ρc

)−nc
2

exp

⎧⎨
⎩−

∑nc

i=1(zci1 −w′
ci1β)

2

2φ2(1− ρ1)
(

1+(p−1)ρc

1−ρc

)
⎫⎬
⎭ ,

where z′ = (z′11, z
′
12, . . . , z

′
CnC

), W is a stacked matrix of Wci, w
′
cij is the j-th row of

Wci, and N =
∑C

c=1 nc. Note that because the Helmert transformation is orthonormal,
the likelihood of z given W is equivalent to the likelihood of the untransformed y
given X. Further note that inferences are only invariant of the chosen category of ηc
in φ2 = ηc + σ2 in (5) when placing a noninformative improper prior on φ2. This can
be seen when setting the improper prior πN (φ2) = φ−2 and integrating out φ2 in the
posterior. In that case each ρc will have the same role in the posterior1.

1When πN (φ2) = φ−2, it holds that
∫
f(z|W,β,ρ, φ2)πN (φ2)dφ2 =

π−Np
2 Γ(Np

2
)
∏C

c=1(
1+(p−1)ρc

1−ρc
)−

nc
2 (

∑C
c=1

∑nc
i=1

∑p
j=2(zcij −w′

cijβ)
2 +

∑nc
i=1(zci1−w′

ci1β)2

(1+(p−1)ρc)(1−ρc)−1 )
−Np

2 .
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3 Prior specification

We propose the following class of priors under the marginal model:

π(β,ρ, φ2) = π(β|ρ, φ2)π(φ2)

C∏
c=1

π(ρc), with (9)

π(ρc) = beta(ρc|αc, ζc,− 1
p−1 , 1), for c = 1, . . . , C,

π(β|ρ, φ2) = N
(
β0, g(X

′Σ−1
N X)−1

)
π(φ2) = φ−2,

where the stretched beta distribution with shape parameters αc and ζc in the interval
(− 1

p−1 , 1) is given by,

beta(ρc|αc, ζc,− 1
p−1 , 1) = Q(αc, ζc, p)(1 + (p− 1)ρc)

αc−1(1− ρc)
ζc−1, (10)

with normalizing constant Q(αc, ζc, p) =
Γ(αc+ζc)(p−1)ζc

Γ(αc)Γ(ζc)pαc+ζc−1 , for αc, ζc > 0. To our knowl-

edge this prior is novel in the Bayesian literature. In the case of a single intraclass cor-
relation, Spiegelhalter (2001) proposed a beta prior for ρ in the interval (0, 1) under the
conditional model (2). The stretched beta prior in (10) in the interval (− 1

p−1 , 1) seems
more natural however, because the prior has common factors as the likelihood function
(8). As a result this class of priors is conditionally conjugate for the marginal model
by applying a parameter expansion. This will be shown in the following section. Other
generalizations that have been proposed for the beta distribution include Armagan et al.
(2011).

Further note that the conditional prior for the nuisance parameters β is based on
Zellner’s (1986) g prior with prior guess β0 and ΣN = diag(In1 ⊗ Σ1, . . . , InC

⊗ ΣC)
of dimension Np × Np, with Σc given in (6), and X is the stacked matrix of Xci. An
improper prior is set for the nuisance parameter φ2 (similar as in the g prior). Note
that by setting g = Np one would obtain a unit information prior (see also Kass and
Wasserman, 1995).

If prior information is available about the relative grouping effect in the different
categories, this can be translated to informative stretched beta priors using a method
of moments estimator. First note that the first two moments of a stretched beta prior
equal

E{ρc} =
αcp

(αc + ζc)(p− 1)
− (p− 1)−1,

var(ρc) =
αcζcp

2

(αc + ζc)2(αc + ζc + 1)(p− 1)2
.

These expressions can be derived by transforming a beta(αc, ζc) distribution in the
interval (0, 1) to a stretched beta distribution in the (− 1

p−1 , 1). Subsequently, the prior
hyperparameters αp and ζc can be obtained by setting the prior guess equal to the mean
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Figure 2: Three examples of stretched beta priors when p = 9: the reference prior
with α = ζ = 0 (solid line), the uniform prior with α = ζ = 1 (dashed line), and an
informative prior that is concentrated around .4 with α = 7 and ζ = 8 (dotted line).

and uncertainty about the prior guess equal to the standard deviation2. If all values for
the intraclass correlations are assumed to be equally likely a priori, the hyperparameters
can be set to 1 resulting in uniform priors. Figure 2 displays a uniform prior (dashed
line) and an informative prior with prior guess ρ∗1 = .4 and standard deviation sρ∗

1
= .15

(dotted line) when p = 9.

If prior information is absent or if one prefers to adopt an objective Bayesian pro-
cedure, the hyperparameters can be set to αc = ζc = 0, for c = 1, . . . , C. The resulting
noninformative improper prior is given by

πN (β,ρ, φ2) = φ−2
C∏

c=1

(1 + (p− 1)ρc)
−1(1− ρc)

−1. (11)

This is essentially Haldane’s (1932) prior for ρc in the interval (− 1
p−1 , 1). Note that

(11) corresponds to (10) when defining Q(0, 0, p) = 1. In the case of a single intraclass
correlation, this corresponds to the reference prior where the intraclass correlation is
considered to be the most important parameter (Berger and Bernardo, 1992; Chung
and Dey, 1998). This prior is equivalent to the prior considered by (Box and Tiao, 1973,
p. 251). Figure 2 displays the reference prior when p = 9 (solid line).

In practice, intraclass correlations are generally expected to be positive. Such expec-
tations can be included in the proposed prior by truncating the stretched beta priors
on ρc in the interval (0, 1). Working with this truncated prior essentially comes down
to the marginal model of the random effects model in (3) and (2). Note that this trun-
cated prior differs from a standard beta prior in the interval (0, 1) (except in the case
of uniform priors). For example Chung and Dey (1998) truncated the noninformative

2If ρ∗c denotes the prior guess and sρ∗c its standard deviation, which reflects the uncertainty about

the prior guess, then set αc = ((ρ∗c(p− 1)+1)(ρ∗c
2(1− p)+ρ∗c(p− 2)− s2ρ∗c

(p− 1)+1))(p− 1)−1p−1s−2
ρ∗c

and ζc = ((ρ∗c − 1)(ρ∗c
2(p− 1)− ρ∗c(p− 2) + s2ρ∗c

(p− 1)− 1)p−1s−2
ρ∗c

.
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reference prior in (11) in the interval (0, 1). Throughout this paper we shall mainly focus
on non-truncated priors but we also give some results for the truncated case.

4 Bayesian estimation under the marginal model

A Gibbs sampler is presented for fitting the generalized marginal model using the pro-
posed class of priors in (9). First a parameter transformation is applied to generalized
between-groups variances having shifted F priors, which are novel in the Bayesian lit-
erature. Subsequently a parameter expansion is applied that results in shifted inverse
gamma priors, which are conjugate under the generalized marginal model. Finally a
Gibbs sampler is presented.

First the prior in (9) is transformed to the parameters (β,η, σ2).

Lemma 1. Transforming the prior in (9) from (β,ρ, φ2) to (β,η, σ2) via (5) yields

π(β,η, σ2) = π(β|η, σ2)π(σ2)π(η|σ2) (12)

= N
(
β;β0, g(X

′Σ−1
N X)−1

)
σ−2

C∏
c=1

π(ηc|σ2), with (13)

π(ηc|σ2) = shifted-F(ηc; 2αc, 2ζc,
p−1
p σ2,−σ2

p ),

where the density of the shifted F distribution is given by

shifted-F(τ2; ν1, ν2, s
2, μ) =

Γ
(
ν1+ν2

2

)
Γ(ν1

2 )Γ(ν2

2 )(s2)
ν1
2
(τ2 − μ)

ν1
2 −1

(
1 + τ2−μ

s2

)− ν1+ν2

2
, (14)

where ν1 is the first degrees of freedom, ν2 is the second degrees of freedom, s2 is a scale
parameter, and μ is a shift parameter, and ΣN = diag(In1 ⊗Σ1, . . . , InC

⊗ΣC), with
Σc = σ2Ip + ηcJp, for c = 1, . . . , C.

Proof. See Appendix A (Mulder and Fox, 2018).

Second a parameter expansion is applied to model a shifted F distribution as a
gamma mixture of shifted inverse gamma distributions.

Lemma 2. The shifted F distribution in (14) can be obtained by setting a gamma
mixture distribution on the scale parameter of a shifted inverse gamma distribution,

shifted-F(τ2; ν1, ν2, s
2, μ) =

∫
shifted-IG(τ2; ν2

2 , ψ2, μ)G(ψ2; ν1

2 , s−2)dψ2,

where the shifted inverse gamma distribution is given by

shifted-IG(τ2;α, ξ, μ) = ξα

Γ(α) (τ
2 − μ)−α−1 exp

{
− ξ

τ2−μ

}
, (15)

where α is a shape parameter, ξ is a scale parameter, and μ is a shift parameter.
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Proof. See Appendix B (Mulder and Fox, 2018).

By applying Lemma 1 and 2, the joint prior for (β, σ2,η,ψ2) can be written as

π(β, σ2,η,ψ2) = σ−2π(β|σ2,η)

C∏
c=1

p(ηc|ψ2
c , σ

2)p(ψ2
c |σ2), with (16)

π(β|σ2,η) = N
(
β;β0, g(X

′Σ−1
N X)−1

)
,

p(ηc|ψ2
c , σ

2) = shifted-IG(ηc; ζc, ψ2
c ,−σ2

p ),

p(ψ2
c |σ2) = G(ψ2

c ;αc,
p

p−1σ
−2),

where ψ2 is a vector of length C of auxiliary parameters.

Subsequently by parameterizing the likelihood in (8) in terms of the generalized
between-groups variances ηc and within-groups variance σ2, it can be shown that the
conditional posteriors of the parameters have known distributions from which we can
sample in a Gibbs sampler (Appendix C; Mulder and Fox, 2018). This can be achieved by
splitting the parameters in two blocks β and (σ2,η,ψ2). By writing H̃1 =H′

pT
′
1T1Hp,

with T1 = (1, 0, . . . , 0) of dimension 1 × p, H̃2 = H′
pT

′
2T2Hp, with T2 = (0 Ip−1) of

dimension (p−1)×p,Xc = [X′
c1 · · ·X′

cnc
]′ of dimension ncp×k,X = [X′

11X
′
12 · · ·X′

CnC
]′

of dimension Np × k, and y = (y′
11,y

′
12, . . . ,y

′
CnC

)′ of length Np, the blocked Gibbs
sampler can be written as follows

1. Set initial values for (β,η, σ2,ψ2), or for (β,ρ, φ2,ψ2) and apply the transforma-
tion in (5).

2. Draw β given (η, σ2, ψ2) and y using

β|y,η, σ2,ψ2 ∼ N
(
(g + 1)−1(gβ̂ + β0),

g
g+1

(
X′Σ−1

N X
)−1

)
,

where β̂ = (X′Σ−1
N X)−1X′Σ−1

N y, and ΣN = diag(In1 ⊗ Σ1, . . . , InC
⊗ ΣC) of

dimension Np × Np, with compound symmetry covariance matrix Σc = σ2Ip +
ηcJp, for c = 1, . . . , C.

3. Draw (η, σ2,ψ2) given β and Y.

(a) Draw σ2 given β and y using

σ2|β,y ∼ IG
(

N(p−1)
2 , 1

2 (y−Xβ)′(IN ⊗ H̃2)(y−Xβ)
)
.

(b) Draw ψ2
c given σ2, β, and y using

ψ2
c |σ2,β,y ∼ G(αc,

p
p−1σ

−2),

for c = 1, . . . , C.
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(c) Draw ηc given ψ2
c , σ

2, β, and Y using

ηc|ψ2
c , σ

2,β,y ∼ shifted-IG(nc

2 + ζc,

1
2p (yc −Xcβ)

′(Inc ⊗ H̃1)(yc −Xcβ) + ψ2
c ,−σ2

p ),

for c = 1, . . . , C.

(d) Compute the c-th intraclass correlation using ρc =
ηc

ηc+σ2 , for c = 1, . . . , C.

4. Repeat Steps 2 and 3 until enough draws have been obtained, and exclude a burnin
period.

If truncated stretched beta priors would be used for the intraclass correlations in
the interval (0, 1), this would result in shifted F distributions for a generalized between-
groups variances ηc truncated in (0,∞). Applying the same parameter expansion as
above would result in a gamma mixture of truncated shifted inverse gamma priors in
(0,∞). The corresponding conditional posteriors would then also have truncated shifted
inverse gamma distributions. Sampling from these truncated shifted inverse gamma
distributions can be done by sampling from the nontruncated shifted inverse gamma
distribution until a positive value is drawn. This will be fairly efficient because the
posterior probability mass in the negative region is generally quite small.

4.1 Frequentist coverage rates

Frequentist coverage rates are useful to investigate the performance of noninformative
objective priors (e.g. Stein, 1985; Ghosh and Mukerjee, 1992; Berger et al., 2006). A
simulation study was conducted to investigate the coverage rates of the lower 5% and
95% posterior quantiles for ρ1 in the marginal model with C = 1 using the reference
prior (11), which should ideally be close to .05 and .95, respectively. This was done for
population values of τ2 ∈ {0, .1, .5, 1, 10} and σ2 = 1, which correspond to intraclass
correlations of ρ ∈ {0, .09, .33, .5, .91}, and μ1 = 0, and for sample sizes of (n, p) =
(2, 2), (10, 5), and (500, 10). Note that the first sample size condition corresponds to a
minimal balanced design with 2 groups with 2 observations per group. For each condition
50,000 data sets were generated. The coverage rates can be found in Table 1.

As can be seen from Table 1 the coverage rates under the marginal model with the
considered reference prior are very accurate, even in the minimal information case with
(n, p) = (2, 2) and an extreme intraclass correlation of ρ = 0. These rates are better
than previous results using a truncated reference prior under the multilevel model (2)
(Berger and Bernardo, 1992; Ye, 1994; Chung and Dey, 1998, which are also presented in
Table 1). This illustrates that the marginal model is superior over the multilevel model
in terms of coverage rates of interval estimates for the variance components. Hence, the
credible intervals can be used for significance type testing, even when testing ρ = 0. Note
that this would not be possible in a multilevel model because testing ρ = 0 would be
a boundary problem. Generally however we recommend using Bayes factors for testing
intraclass correlations because significance tests, e.g., using interval estimates, tend to
overestimate the evidence against a null hypothesis (Sellke et al., 2001; Pericchi, 2005).
Bayes factor tests are proposed in the following section.
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(n, p)
marginal model CD1998

ρ (2, 2) (10, 5) (500, 10) (10, 5)
0 .050(.951) .050(.950) .050(.950) NA
.09 .051(.951) .049(.950) .050(.951) .04(1.00)
.33 .052(.950) .049(.949) .050(.951) .05(.99)
.5 .049(.950) .051(.951) .050(.949) .04(.98)
.91 .048(.950) .050(.950) .051(.951) .04(.94)

Table 1: Frequentist coverage probabilities of lower posterior quantiles of 5%(95%) for
ρ for the marginal model (7). The results in the last column were taken from Chung
and Dey (1998).

5 Bayes factor testing under the marginal model

When testing statistical hypotheses using the Bayes factor, prior specification plays a

more important role than in Bayesian estimation. Instead of having to formulate one

prior, which may be improper in Bayesian estimation, proper priors need to be specified

for all unique intraclass correlations under all Q equality and order constrained hypothe-

ses in (1). Furthermore, unlike Bayesian estimation, the effect of the priors on the Bayes

factor does not fade away as the sample size grows (Jeffreys, 1961; Berger and Pericchi,

2001; Bayarri et al., 2012). Ad hoc or arbitrary prior specification should therefore be

avoided. Also note that (objective) improper priors cannot be used in Bayesian hypoth-

esis testing because the resulting Bayes factors would depend on undefined constants

(e.g. O’Hagan, 1995; Berger and Pericchi, 1996). These facts have severely complicated

the development of (objective) priors in Bayesian hypothesis testing and model selec-

tion.

In this section we propose a Bayes factor testing procedure that can be used when

prior information about the magnitude of the intraclass correlations under the hypothe-

ses is available or when prior information is too limited for adequate prior specification.

When prior information is available this can be translated to proper stretched beta pri-

ors for intraclass correlations in (9), similar as in the estimation problem. When prior

information is absent or when a default Bayesian method is preferred a generalized

fractional Bayesian procedure is proposed. These default Bayes factors are based on

the improper versions of stretched beta priors. Note that more examples can be found

in the literature where the same family of prior distributions is used for estimation as

for hypothesis testing or model selection. For example Cauchy priors with thick tails

are useful for estimation in robust Bayesian analyses (Berger, 1994) and in Bayesian

regularization problems (Griffin and Brown, 2005), and Cauchy priors are also useful for

Bayes factor testing to avoid the information paradox (Zellner and Siow, 1980; Liang

et al., 2008). Furthermore, the (matrix) F prior is useful when estimating variance

components (Gelman, 2006; Pérez et al., 2017) and for testing variances (Mulder and

Pericchi, 2018).
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5.1 Prior specification and marginal likelihoods

Under a constrained hypothesis Hq : RE
q ρ = 0,RI

qρ > 0, let the free intraclass correla-
tions be denoted by the vector ρ̃ of length V (the hypothesis index is omitted to simplify
the notation). The inequality constraints on the free intraclass correlations can then be
written as R̃qρ̃ > 0. For example, when the first two intraclass correlations are assumed
to be equal and larger than the third intraclass correlation, i.e., H1 : ρ1 = ρ2 > ρ3, then
ρ̃1 = ρ1 = ρ2 and ρ̃2 = ρ3, and R̃1 = [1 − 1].

If prior information is available under Hq, this can be translated to informative
truncated stretched beta priors on the free intraclass correlations,

πq(ρ̃|α, ζ) = I(R̃qρ̃ > 0)P (R̃qρ̃ > 0|H∗
q )

−1
V∏

v=1

beta(ρ̃v|αv, ζv,− 1
p−1 , 1), (17)

where H∗
q corresponds to hypothesis Hq with the inequality constraints omitted, i.e.,

H∗
q : RE

q ρ = 0 (see also Pericchi et al., 2008), and the prior probability that the
inequality constraints hold under H∗

q , which serves as a normalizing constant, is given
by

P (R̃qρ̃ > 0|H∗
q ) =

∫
R̃qρ̃>0

V∏
v=1

beta(ρ̃v|αv, ζv,− 1
p−1 , 1)dρ̃.

Subsequently, priors need to be specified for the nuisance parameters β and φ2

under all hypotheses. First note that the Bayes factor is known to be robust to the
choice of the same prior for the common orthogonal nuisance parameters (in the sense
of a block-diagonal expected Fisher information matrix; see Jeffreys, 1961; Kass and
Vaidyanathan, 1992; Ly et al., 2016). This justifies the use of the same improper prior
for the nuisance parameters. First note that the fixed effects β are orthogonal to ρ, and
therefore we can use the improper prior πN

q (β) = 1. Second, φ2 is not orthogonal to ρ3.
When setting a vague inverse-gamma prior for φ2 however, i.e., π(φ2) = IG(ε, ε), with
ε > 0 small, it can be shown that the resulting Bayes factor will be virtually independent
of the exact choice of ε as long as ε is small enough. Due to this robustness property, we
can specify the improper prior πN

q (φ2) = φ−2 = IG(0, 0). Hence, the joint prior under
Hq is given by

πq(β, ρ̃, φ
2|α, ζ) = φ−2πq(ρ̃|α, ζ). (18)

Under each hypothesis Hq, the hyperparameters α, ζ > 0 can be specified in a simi-
lar manner as was discussed in Section 3. Proper uniform priors also fall in this category
which can be specified by setting α = ζ = 1. A uniform prior for the unique intraclass
correlations under hypothesis Hq implies that all possible values for the intraclass cor-
relations that satisfy the constraints of Hq are equally likely a priori. Once the priors
have been specified, the marginal likelihood of the transformed data z under hypothesis
Hq can be computed according to

mq(z) =

∫∫∫
Hq

fq(z|W,β, ρ̃, φ2)πq(β, ρ̃, φ
2|α, ζ)dβdφ2dρ̃, (19)

3Note that the prior of Garćıa-Donato and Sun (2007) is only asymptotically orthogonal as p → ∞.
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where fq is the likelihood under Hq which is a truncation of the unconstrained likelihood
f in (8) in the subspace under Hq. For the above example with H1 : ρ1 = ρ2 > ρ3, the
likelihood would be equal to

f1(z|W,β, ρ̃, ψ2) = f(z|W,β, (ρ̃1, ρ̃1, ρ̃2)
′, φ2)× I(ρ̃1 > ρ̃2).

The computation of the marginal likelihood (19) is discussed in the following section.

Formulating informative priors for the intraclass correlations under all hypotheses
can be a challenging and time-consuming endeavor (Berger, 2006). To avoid this step, a
default Bayesian procedure is proposed. First truncated reference priors will be specified
having truncated stretched beta distributions with hyperparameters of zero, i.e.,

πN
q (ρ̃|α = 0, ζ = 0) = I(R̃qρ̃ > 0)

V∏
v=1

(1− ρ̃v)
−1(1 + (p− 1)ρ̃)−1. (20)

To avoid the dependence of the marginal likelihood on the undefined constants in these
improper priors, a generalized fractional Bayes procedure is considered using different
fractions for different transformed observations. The motivation for using different frac-
tions is that only the first element of the transformed observations zci in (7) contains
information about ρc, and therefore the amount of information in the default prior for
the different parameters cannot be properly controlled using one common fraction for
all observations, as in the standard fractional Bayes factor (O’Hagan, 1995). General-
ized fractional Bayes approaches for normal linear models were for instance considered
by Berger and Pericchi (2001), De Santis and Spezzaferri (2001), Mulder (2014), and
Hoijtink et al. (2018). The likelihood functions of the different group categories in (8)
are raised to different fractions according to (with a slight abuse of notation)

f(z|W,β,ρ, φ2)b ≡
C∏

c=1

nc∏
i=1

f(zci1|Wci,β,ρ, φ
2)bc

p∏
j=2

f(zcij |Wci,β,ρ, φ
2)b0 , (21)

where bc is the fraction of the data of the c-th category used to identify the parameters
that are specific to category c (such as ρc, and possibly a category specific intercept),
and b0 is the fraction of the data used to identify the remaining parameters. Generally
the use of small fractions is recommended (O’Hagan, 1995; Berger and Mortera, 1995).
The choice of the fractions will be motivated in Section 5.3.

Subsequently the marginal likelihood underHq using the generalized fractional Bayes
approach is defined by

mq(y,b) =
mN

q (y)

mN
q (yb)

, (22)

where

mN
q (yb) =

∫∫∫
Hq

fq(y|W,β, ρ̃, φ2)bπN
q (β, φ2, ρ̃)dβdφ2dρ̃, (23)

symbolizes the marginal likelihood of a fraction b of the information in the complete
dataset y, i.e., yb, using the truncated noninformative improper prior (20). Note that
the numerator in (22) can be obtained by setting b = 1 in (23). Because the same
noninformative improper prior is used for computing both marginal likelihoods in (22),
the undefined constant in this improper prior cancels out (O’Hagan, 1995).



J. Mulder and J.-P. Fox 535

5.2 Computation of the marginal likelihood

In the following lemma a general result is given for the marginal likelihood for a con-
strained hypothesisHq when using proper truncated stretched beta priors for the unique
intraclass correlations or when adopting a generalized fractional Bayes approach.

Lemma 3. Under a constrained hypothesis Hq : RE
q ρ = 0,RI

qρ > 0, the marginal
likelihood in the informative case with α, ζ > 0 and in the noninformative case with
α = ζ = 0 are given by

mq(y) = π
K
2 − 1

2

∑C
c=1 nc+nc(p−1)Γ

(
−K

2 + 1
2

C∑
c=1

nc + nc(p− 1)

)
∫
H∗

q

h(ρ̃,1,α, ζ)dρ̃
Pr(R̃qρ̃ > 0|H∗

q ,y)

Pr(R̃qρ̃ > 0|H∗
q )

, (24)

mN
q (yb) = π

K
2 − 1

2

∑C
c=1 ncbc+nc(p−1)b0Γ

(
−K

2 + 1
2

C∑
c=1

ncbc + nc(p− 1)b0

)
∫
H∗

q

h(ρ̃, b,0,0)dρ̃ Pr(R̃qρ̃ > 0|H∗
q ,y

b), (25)

where h(ρ̃, b,α, ζ) is an analytic function of the unique intraclass correlations under
Ht, the fractions b, and the prior hyperparameters α and ζ.

Proof. Appendix D (Mulder and Fox, 2018).

Note that the first part of the marginal likelihood in (24) is equivalent to the marginal
likelihood of H∗

q without the inequality constraints, while the second ratio of probabil-
ities quantifies the support for the inequality constraints in the data within hypothesis
H∗

q (see also, Pericchi et al., 2008; Consonni and Paroli, 2017; Gu et al., 2017).

In (24) and (25), the posterior probabilities can be computed as the proportion of
draws satisfying the inequality constraints under H∗

q . The Gibbs sampler for obtaining

draws under H∗
q given yb can be found in Appendix E (Mulder and Fox, 2018). The

integrals in (24) and (25) can be computed using the following importance sample
estimate

∫
H∗

q

h(ρ̃,b,α, ζ)dρ̃ =

∫
H∗

q

h(ρ̃,b,α,ζ)
q(ρ̃) q(ρ̃)dρ̃ ≈ S−1

S∑
s=1

h(ρ̃(s),b,α,ζ)
q(ρ̃(s))

,

for t = 1 or 2, where q(ρ̃) is a proposal density under H∗
q , and ρ̃(s) is the s-th

draw from q(ρ̃). The proposal density is a product of stretched beta distributions,
beta(α∗

v, ζ
∗
v ,− 1

p−1 , 1), for v = 1, . . . , V , which is tailored to h(ρ̃,b,α, ζ). First a pos-

terior sample is drawn for ρ̃ under H∗
q (Appendix E in Mulder and Fox, 2018). Then

the shape parameters of the proposal distribution are computed with a method of mo-
ments estimator using the estimated posterior mean and variance as in footnote 2. By
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multiplying the shape parameters of the proposal density with, say, .7, the proposal
density gets heavier tails than the kernel of the posterior h which ensures a stable and
consistent estimate of the integral.

In the special case where Xci is a p× c matrix with ones in column c and zeros else-
where, which implies that fixed intercepts per group category are the only covariates (as
in a standard random intercept model), the marginal likelihood based on the truncated
reference prior (20) has an analytic form. The expression can be found in Appendix F
(Mulder and Fox, 2018). Consequently the generalized fractional Bayes factor has an
analytic solution when testing equality and/or order constraints on multiple intraclass
correlations in the random intercept model.

5.3 Choice of the fractions

In the fractional Bayes factor a fraction of the data is used to implicitly construct a
default prior that is concentrated around the likelihood (e.g. Gilks, 1995). This is also
the case for the generalized fractional Bayes factor as can be seen below

mq(y,b) =

∫∫∫
fq(y|β, ρ̃, φ2)πN

q (β, ρ̃, φ2)dβdρ̃dφ2∫∫∫
fq(y|β, ρ̃, φ2)bπN

q (β, ρ̃, φ2)dβdρ̃dφ2

=

∫∫∫
fq(y|β, ρ̃, φ2)1−bπq(β, ρ̃, φ

2|yb)dβdρ̃dφ2,

where the proper updated prior is defined by

πq(β, ρ̃, φ
2|yb) =

fq(y|β, ρ̃, φ2)bπN
q (β, ρ̃, φ2)∫∫∫

fq(y|β, ρ̃, φ2)bπN
q (β, ρ̃, φ2)dβdρ̃dφ2

. (26)

In the original papers of the fractional Bayes factor, it was argued that the choice
of the fraction should depend on the uncertainty about the employed improper prior:
In the case of much (little) uncertainty, a relatively large (small) fraction should be
used to update the improper prior (O’Hagan, 1995, 1997; Conigliani and O’Hagan,
2000). Because the improper prior seems a reasonable objective choice (Section 4.1)
and because larger fractions for prior specification would result in less information for
hypothesis testing, we focus on minimal fractions in this paper (see also Berger and
Mortera, 1995). A minimal fraction is based on the minimal amount of observations that
are needed to obtain a proper updated prior. In practice each group category often has
its own fixed intercept, which implies that Xci contains a column with only ones. After
the Helmert transformation in (7), this column becomes (

√
p, 0, . . . , 0)′ inWci = HpXci.

Thus, only the intercept and intraclass correlation of each group category are identified
by the first transformed observations, zci1, for c = 1, . . . , C and i = 1, . . . , nc. This
implies that two observations are needed of the first transformed observations in each
group, which corresponds to a minimal fraction of bc = 2

nc
. The remaining K − C

fixed effects (where the groups specific intercept are excluded) and the total variance
parameter φ2 are then identified by the N(p − 1) transformed observations, zcij , for
c = 1, . . . , C, i = 1, . . . , nc, and j = 2, . . . , p, which implies a minimal fraction of
b0 = K−C+1

N(p−1) .
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Figure 3: Estimated posterior densities and default prior densities based on minimal
fractions, bc = 2

nc
and b0 = K−C+1

N(p−1) , and twice the minimal fractions, bc = 4
nc

and

b0 = 2K−2C+2
N(p−1) , for randomly generated data with C = 3 groups, K = 3 fixed intercepts

that are group type specific, intraclass correlations of size ρ = (.1, .6, .8), groups of size
p = 8, φ2 = 1, and n = (20, 25, 30).

To get an idea about the effect of the choice of the fractions on the proper default
prior, Figure 3 displays the estimated marginal posterior densities (solid line) of the
intraclass correlations (ρ1, ρ2, ρ3) (left, middle, and right panel, respectively) and the
estimated marginal updated prior densities based on minimal fractions (dashed line)
and twice the minimal fractions (dotted line), all based on the noninformative improper
prior. These densities were estimated from a randomly generated data set with ρ =
(.1, .6, .8), n = (20, 25, 30), p = 8, and group type specific intercepts β = (0, 0, 0)′.
As can be seen the proper updated prior based on minimal fractions are very similar
to the noninformative reference priors. The updated priors based on twice the minimal
fractions are more concentrated around the likelihood. In the remaining part of the paper
we use minimal fractions so that most information in the data is used for hypothesis
testing.

6 Numerical performance

A multiple hypothesis test is considered on C = 2 group specific intraclass correlations.
The following hypotheses are being tested:

H1 : ρ1 = 0, ρ2 > 0,

H2 : ρ1 > 0, ρ2 = 0,

H3 : ρ1 = ρ2, (27)

H4 : ρ1 > ρ2,

H5 : ρ1 < ρ2.

Our interest is in the default relative evidence based on the generalized fractional Bayes
factor while varying the (unconstrained) posterior modes of the intraclass correlations
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Figure 4: Graphical representation of the subspaces of the intraclass correlations
(ρ1, ρ2) ∈ (−1

9 , 1)× (−1
9 , 1) under five different hypotheses in (27) and the trajectory of

the estimated intraclass correlations (ρ̄1, ρ̄2) = (0, 0.5), to (0.5, 0) (dashed line).

for different group sizes (n1, n2). As fixed effects only group specific intercepts were
included. Therefore the marginal likelihoods can be computed by simply plugging in
the group specific between groups sums of squares, s2B,c for c = 1 and 2, and the within

groups sums of squares s2W in (8) in Appendix F of Mulder and Fox (2018). The sums
of squares were varied according to s2W = (p − 1)Nσ̄2 and s2B,c = nc(τ̄

2
c + σ̄2/p), for

c = 1, 2, where σ̄2 and τ̄ 2 are the unconstrained posterior modes, which were varied
over τ̄ 2 = (τ̄21 , 1− τ̄21 )

′, for τ̄21 = 0, . . . , 1 and σ̄2 = 1, so that (ρ̄1, ρ̄2) = (0, .5), . . . , (.5, 0).
Thus, when ρ̄1 ≈ (0, .5), (.5, 0), or (.25, .25), it is expected to receive most evidence for
H1, H2, or H3, respectively, and between these regions it is expected to either receive
most evidence for H4 or H5. The subspaces under the hypotheses and the trajectory
of unconstrained estimated intraclass correlations are displayed in Figure 4. The group
size was set to p = 10, and the number of groups in each category was set to n1 = n2 =
30, 300, and 3000.

Figure 5 (left columns) displays the logarithms of generalized fractional Bayes factors
of hypothesis H1 (dashed line), H2 (dash-dotted line), H3 (thick solid line), H4 (dotted
line), and H5 (thin solid line) versus an unconstrained (reference) hypothesis Hu :
(ρ1, ρ2) ∈ (−1

9 , 1)×(−1
9 , 1) as a function of the unconstrained estimates of the intraclass

correlations (ρ̄1, ρ̄2) for n1 = n2 = 30 (upper panels), n1 = n2 = 300 (middle panels),
and n1 = n2 = 3,000 (lower panels). Figure 5 (right columns) displays the corresponding
posterior probabilities of the hypotheses based on equal prior probabilities, which can be
computed as P (Hq|y) =

Bqu∑5
q′=1

Bq′u
, with Bq′u = mq(y,bmin)/mu(y,bmin). The plots

show desirable default behavior of the generalized fractional Bayes factors as a function
of the effects and sample size: The evidence is largest for the hypothesis that is also
most supported by the data and the posterior probability for the true hypothesis goes
to 1 as the number of groups increases, which implies consistency. Also note that the
evidence for a true precise hypothesis with equality constraints (i.e., H1, H2, and H3)
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Figure 5: Logarithms of generalized fractional Bayes factors (left column) of hypothesis
H1 (dashed line), H2 (dash-dotted line), H3 (thick solid line), H4 (dotted line), and
H5 (thin solid line) against an unconstrained hypothesis, and corresponding posterior
probabilities of the hypotheses (right column) as a function of estimated intraclass
correlations (ρ̄1, ρ̄2) which varied from (0, .5) to (.5, 0) for n1 = n2 = 30 (upper panels),
n1 = n2 = 300 (middle panels), and n1 = n2 = 3,000 (lower panels).

accumulates with a slower rate than for the other hypotheses. This is commonly observed

behavior of Bayes factor methodology (e.g., Johnson and Rossell, 2010). The evidence
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would increase with a faster rate when testing interval hypotheses instead of precise
hypotheses (see Appendix G in Mulder and Fox, 2018). Finally note that the lines for
H4 and H5 in Figure 5 are incomplete because, in the case of misfit of the inequality
constraints, the proportion of 10,000 posterior draws that satisfy the constraints that
is used for estimating the posterior probabilities is equal to zero.

7 Testing intraclass correlations in TIMSS

The Trends in International Mathematics and Science Study (TIMSS) measures the
performances of fourth and eight graders in more than 50 participating countries around
the world (http://www.iea.nl/timss). TIMSS is conducted regularly on a 4-year cycle,
where mathematics and science has been assessed in 1995, 1999, 2003, 2007, 2011, and
2015. The fourth grade is a reference to a year in elementary eduction, where in North
America the fourth grade is the fifth school year and in The Netherlands it is called
group 6. The children are usually around 9–10 years old. The assessment data of each
cycle can be found in the TIMSS’s International Database.

When considering the international mathematics achievement of 2015 at the fourth
grade, 21 countries improved their average performance, 15 countries had the same
average achievement, and 5 countries had a lower average achievement compared to the
mathematics achievement of 2011. The average 4th-grade mathematics scores in 2015
were lower for Germany and the Netherlands, scoring 6 and 10 points lower on average,
respectively. To provide a reference point, the TIMSS achievement scale is centered at
500 and the standard deviation is equal to 100 scale score points. The TIMSS data set
has a three-level structure, where students are nested within classrooms/schools, and
the classrooms/schools are nested within countries. Only one classroom is sampled per
school, so it is not possible to model variability among classrooms within schools.

For the TIMSS 2011 and 2015 assessment, the changes in the mathematics achieve-
ment were investigated by examining the grouping of students in schools across coun-
tries. The object was to evaluate whether a specific selection of schools (i.e., particular
subpopulation) performed less in 2015, or whether the drop in performance applied to
the entire population of schools of the considered country. Therefore, changes in the
country-specific intraclass correlation coefficient from 2011 to 2015, representing the
heterogeneity in mathematic achievements within and between schools across years,
were tested. When detecting a decrease in average performance together with an in-
crease of the intraclass correlation, a subset of schools performed worse. For a constant
intraclass correlation across years the drop in performance applied to the entire popula-
tion of schools. For different countries, changes in the intraclass correlation across years
were tested concurrently to examine also differences across countries.

From a sampling perspective, the size of the intraclass correlation is also of specific
interest, since sampling becomes less efficient when the intraclass correlation increases.
Countries with low intraclass correlations have fewer restrictions on the sample design,
where countries with high intraclass correlations require more efficient sample designs,
larger sample sizes, or both. Knowledge about the size of the heterogeneity provide useful

http://www.iea.nl/timss
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information to optimize the development of a suitable sample design and to minimize
the effects of high intraclass correlations.

Four countries were considered, The Netherlands (NL), Croatia (HR), Germany
(DE), and Denmark (DK), where Croatia improved their average achievement and Den-
mark had the same average achievement. The achievement scores of overall mathematics
were considered and the first plausible value was used as a measure of the mathematic
achievements of the population (Olson et al., 2008). A stratified sample was drawn by
country and school to obtain a balanced sample of p = 15 grade-4 students per school
for each of the four countries and two measurement occasions.

The final sample consisted of C=8 group categories, by crossing the four countries
with the two measurement occasions, which are referred to as group category c = 1
(NL, 11), c = 2 (NL, 15),. . . , c = 8 (DK, 15). The data was retrieved from schools from
The Netherlands (nNL,11 = 93, nNL,15 = 112), Croatia (nHR,11 = 139,nHR,15 = 106),
Germany (nDE,11 = 179, nDE,15 = 170), and Denmark (nDK,11 = 166,nDK,15 = 153)
with the sampled number of n schools in brackets for 2011 and 2015, respectively.
Although often unconditional intraclass correlations are the object of study to explore
variations (Hedges and Hedberg, 2007), differences in intraclass correlations were tested
conditional on several student variables (e.g., gender, student sampling weight variable).
The marginal model represented in (6) was fitted to obtain the parameter estimates,
where 10,000 iterations were made and a burnin period of 1,000 iterations was used.

The following hypotheses were considered in the analyses. Hypothesis H1 represents
a common positive (invariant) intraclass correlation across countries and years. Positive
country-specific and time-invariant intraclass correlations are represented by hypoth-
esis H2. Variation in intraclass correlation across years (i.e., a time-variant intraclass
correlation) is represented by Hypothesis H3, while assuming a common (invariant) pos-
itive intraclass correlation across countries per year. Finally, hypothesis H4 represents
the complement of H1, H2, and H3 with unique (variant) intraclass correlations across
countries and years.

Next to the assumed heterogeneity in country-specific intraclass correlations of H2,
an ordering in the correlations can also be hypothesized. The variance of the mean
from a balanced clustered sample each of size p is larger than the variance of the mean
of a simple random sample by a factor 1 + (p − 1)ρ (Kish, 1965, p. 162–163), which
is known as the design effect. So, the intraclass correlation modifies the variance of
the mean, given the number of schools and students per school. In the Netherlands,
the variance of the average mathematic achievements of fourth graders is known to be
relatively low. This can be inferred from the reported standard errors of the Nether-
land’s average mathematics achievement during the cycles from 2003 to 2015, which
were usually one of the lowest and ranged from 1.7 to 2.1. The standard errors for
Denmark were much higher and ranged from 2.4 to 2.7. For Germany they ranged from
2.0 to 2.3. For the cycles in 2011 and 2015, Croatia had a standard error of 1.8 to
1.9, where the Netherlands had a standard error of 1.7 (Mullis et al., 2011, Exhibit 1.5)
(http://timssandpirls.bc.edu/timss2015/international-results/timss-2015/
mathematics/student-achievement). It can be expected that the variation in scores

http://timssandpirls.bc.edu/timss2015/international-results/timss-2015/mathematics/student-achievement
http://timssandpirls.bc.edu/timss2015/international-results/timss-2015/mathematics/student-achievement
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across schools was higher for countries with higher reported standard errors of the aver-
age mathematics achievement. This implies an ordering of the country-specific intraclass
correlations (from high to low) of Denmark, Germany, Croatia, and The Netherlands.
Furthermore, the reported country-specific mathematics achievement distribution also
revealed this ordering in the spread of student scores across countries.

To summarize, the following hypotheses were tested to examine differences in intr-
aclass correlations:

H1 : 0 < ρNL,11 = ρNL,15 = ρHR,11 = ρHR,15 = ρDE,11 = ρDE,15 = ρDK,11 = ρDK,15

(invariant positive intraclass correlations)

H2 : 0 < ρNL,11 = ρNL,15 < ρHR,11 = ρHR,15 < ρDE,11 = ρDE,15 < ρDK,11 = ρDK,15

(time-invariant, country-ordered and -variant positive intraclass correlations)

H3 : 0 < ρNL,11 = ρDE,11 = ρHR,11 = ρDK,11,

0 < ρNL,15 = ρDE,15 = ρHR,15 = ρDK,15

(time-variant, country-invariant positive intraclass correlations)

H4 : not H1, H2, H3

(time- and country-variant intraclass correlations).

The unconstrained posterior distributions of the intraclass correlations for each coun-
try and occasion are given in Figure 6. It can be seen that the posterior distribution of
the intraclass correlations show an ordering, where the Netherlands show the lowest level
of clustering and Denmark the highest level of clustering. This ordering in intraclass
correlations appears to be similar in 2011 and 2015. For the Netherlands, the posterior
means of the intraclass correlations are around ρNL,11 = .089 and ρNL,15 = .082,
for Croatia, ρHR,11 = .118 and ρHR,15 = .117, for Germany, ρDE,11 = .153 and
ρDE,15 = .150, and for Denmark ρDK,11 = .189 and ρDK,15 = .222, for 2011 and 2015,
respectively, where the estimated posterior standard deviation is around .02. From Fig-
ure 6 and the estimated intraclass correlations it follow that the change in heterogeneity
across years is rather small, where only Denmark’s estimated posterior distribution of
the intraclass correlation for 2011 and 2015 show some differences. In the Netherlands,
in 2011 and 2015, around 8–9% of variation in student achievements is explained by
differences across schools, and in Germany around 15%, which shows that the decrease
in average performance cannot be identified by a poorer performance of a particular
subset of schools. In Denmark, the increase in performance was associated with an in-
crease of the intraclass correlation of around 14.9%, indicating that a subset of schools
performed much better in 2015.

The different hypotheses were formally tested using the Bayes factor with a uniform
prior and the generalized fractional Bayes factor with an improper prior. In Table 2 the
results of the Bayes factor based on uniform priors, referred to as BF, and the gener-
alized fractional Bayes factor, referred to as FBF, are reported, including the posterior
probability of each hypothesis. First, the invariant positive intraclass hypothesis was
evaluated against the variant intraclass hypothesis. For the BF, it was concluded that
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Figure 6: Posterior distribution of the intraclass correlation of 4th-graders nested in
schools for four countries assessed by TIMSS 2011 and 2015.

logB14 logB24 logB34 P (H1 | y) P (H2 | y) P (H3 | y) P (H4 | y)
BF 2.24 13.55 -0.95 .00 1.00 .00 .00
FBF 0.55 13.42 -1.86 .00 1.00 .00 .00

Table 2: Results of the tests on intraclass correlations for the four countries (Netherlands,
Croatia, Germany, and Denmark) in TIMSS 2011 and 2015.

there was positive evidence for the H1 (B14 > 3) representing invariant positive intra-
class correlations across years and countries, when comparing it to H4. For the FBF,
there was less evidence in favour of H0, although both the BF and the FBF indicated
support for the invariant hypothesis. Second, for the BF and the FBF, the (positive)
time-invariant and country-ordered-variant hypothesis H2 was very strongly preferred
over the variant hypothesis. Finally, the (positive) time-variant country-invariant hy-
pothesis H3 was not preferred over H4, where the FBF showed positive evidence for
H4 and the BF showed some evidence in favour of H4. When also including the results
from the posterior probabilities of the hypotheses, it was concluded that the positive
intraclass correlations differed across countries, and that an order in intraclass correla-
tions was identified. Within each country, the intraclass correlations did not appear to
differ across years.

The present analysis showed that having accurate information about the stratifi-
cation can be beneficial across years, since changes in the intra-correlation coefficient
were invariant over time. The intraclass correlations differed across countries, although
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the estimated correlations did not differ that much and varied from .08 to .22. Nev-
ertheless, efficient sampling strategies are needed in countries with positive intraclass
correlations, where countries with higher intraclass correlations will benefit more from
efficient stratification strategies. Hedges and Hedberg (2007) also reported intraclass
correlations for different large-scale surveys to provide information for employing ran-
domized experiments in eduction, where schools are assigned to treatments. However,
only pairs of intraclass correlations were compared using a Bonferroni adjustment, and
the estimated intraclass correlations were assumed to be approximately normally dis-
tributed to evaluate the significance of a difference in correlations. These limitations do
not apply to the developed generalized fraction Bayes factor and Bayes factor test for
intraclass correlations.

8 Discussion

Currently there are two well-known approaches to model grouped data. In the
population-average approach the correlation is treated as a nuisance and the marginal
expectation of the outcome is modeled as a function of explanatory variables (Liang
and Zeger, 1986). In the conditional or group-specific approach, the variability be-
tween groups is explicitly modeled using random effects, which measure directly the
heterogeneity between groups. The marginal modeling approach outlined in this paper
introduces a third approach. The random effects are integrated out in the conditional
model, and the marginal mean and implied covariance structure are directly modeled
to make inferences about the correlation structure. Under the integrated likelihood, a
prior class is presented which can be used when prior information is available or absent.
The new shifted F prior can be seen as an extension of popular priors for variance
components (Gelman, 2006; Polson and Scott, 2012; Pérez et al., 2017; Mulder and
Pericchi, 2018). The prior can be used when prior information is available or absent.
In the latter case an improper prior is considered which results in frequentist matching
credible intervals. Furthermore, posterior sampling is efficient using a Gibbs sampler via
a parameter expansion. It is also straightforward to compute the probability of whether
a between-groups variance parameter is less than (or greater than) zero under the pro-
posed marginal approach. Support for a negative between-groups variance can indicate
that a random effects model is not appropriate for the data or that the sample size is
too small. Unlike the methodology of Kinney and Dunson (2007), no proper prior has to
be specified to obtain such posterior probabilities. Finally the numerical performances
of the proposed Bayes factor and generalized fractional Bayes factor showed accurate
and consistent results.

Although other methods have been proposed for testing intraclass correlations, no
general method has been proposed for the testing problem in (1). The classical sig-
nificance tests proposed by Donner and Zou (2002) and Konishi and Gupta (1989)
are limited to testing a null hypothesis of equal intraclass correlations against an un-
constrained alternative. Note that significance tests in general are not designed for
testing multiple hypotheses simultaneously or for testing nonnested hypotheses with
order constraints on the parameters of interest (Silvapulle and Sen, 2004). Further-
more, the Bayesian information criterion (BIC; Schwarz, 1978; Raftery, 1995) is also
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not suitable for this testing problem because (i) the Gaussian approximation of the
posterior of the intraclass correlations, ρ, would be inaccurate for small to moderate
samples, (ii) the normally distributed unit-information prior may not be suitable for the
bounded interval of intraclass correlations, and (iii) the number of free parameters is
ill-defined for hypotheses with order constraints on the parameters (Mulder et al., 2009).
Furthermore Bayes factors have been proposed for testing whether a single intraclass
correlation equals zero (Garćıa-Donato and Sun, 2007; Pauler et al., 1999; Westfall and
Gönen, 1996). The Bayes factor test of Mulder and Fox (2013) assumes uniform priors
for the intraclass correlations which are not suitable for general use. Pauler et al. (1999)
proposed a tailor-made prior, based on the unit of information, to use MCMC for cal-
culating Bayes factors while dealing with the boundary null-hypothesis. However, this
truncated-normal prior is not appropriate for order-constrained hypotheses, since the
number of groups and the number of within-group observations can vary across different
types of groups. This complicates the specification of a noninformative prior to evaluate
inequality constrained hypotheses. Furthermore, these authors considered Bayes factors
from a multilevel modeling framework. The integration of the joint posterior with re-
spect to the random effect parameters however is computationally challenging and also
requires specification of priors for the (random effect) nuisance parameters whose choice
might be ambiguous (Berger et al., 1999). Therefore, a more general Bayesian testing
framework was presented to make inferences when testing multiple hypotheses with
equality constraints and/or order constraints on the intraclass correlations when prior
information about the intraclass correlations is available, weak or completely unavail-
able. Thereby the paper contributes to the increasing literature on Bayes factor tests of
equality and order constrained hypotheses (e.g. Hoijtink, 2011; Gu et al., 2014; Braeken
et al., 2015; Mulder, 2016; Böing-Messing et al., 2017, and the references therein), which
are becoming increasingly popular in the social and behavioral sciences.

The Bayes factor tests have been developed for continuous data. Future research will
focus on extending the tests to categorical and count data by using an appropriate data
augmentation scheme (Albert and Chib, 1993; Fox, 2010). Fox et al. (2017) proposed
Bayes factor tests for the covariance parameter in a multivariate probit model, with
a compound-symmetry covariance structure using data augmentation. For categorical
data, the intraclass correlation is often used to determine, for instance, the test relia-
bility of a scoring system, where the object is to obtain compatible results in different
statistical trials. When the measurement error remains stationary, the intraclass cor-
relation increases in line with increasing subject variability, which demonstrates that
subjects can be better distinguished from each other.

In the psychometric application, the Bayes factor was used as a confirmatory tool to
determine which hypothesis of a set of four hypotheses with competing constraints on
the intraclass correlations receives most evidence from the data. The proposed Bayes
factors can also be used for a more exploratory analysis to find the best fitting hypothesis
of all possible equality/order constrained hypotheses, similar as in a variable selection
problem. In such an exploratory approach it would be recommended to correct for
multiple testing, e.g., using the work of Scott and Berger (2006). How to do this in the
case of equality and order constrained models on intraclass correlations is an open topic
for further research.
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For unbalanced designs the number of observations can vary across groups. The
distribution of the between-groups variance is then a mixture of shifted inverse-gamma
distributions where the shift parameter depends on the group size. The closed-form
distributions from the balanced case can be used to generate proposals for a Metropolis-
Hastings algorithm. Furthermore, they can also serve as importance sampling functions
to compute Bayes factors concerning hypothesis of the intraclass correlation for the
unbalanced situation. More research is needed to examine the numerical performances
and appropriate priors for making inferences about the intraclass correlation in an
unbalanced design.

Supplementary Material

The supplementary material for “Bayes Factor Testing of Multiple Intraclass Correla-
tions” (DOI: 10.1214/18-BA1115SUPP; .pdf). The supplementary material for “Bayes
factor testing of multiple intraclass correlations” contains the proof of Lemma 1, the
proof of Lemma 2, the conditional posterior distributions for the Gibbs sampler, the
proof of Lemma 3, the Gibbs sampler under a constrained model, the analytic expression
of the marginal likelihood (with derivation) for a standard random intercept model using
fractional Bayes methodology, and a simulation study when testing interval hypotheses.
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Garćıa-Donato, G. and Sun, D. (2007). “Objective priors for hypothesis testing in
one-way random effects models.” Canadian Journal of Statistics, 35: 302–320.
MR2393611. doi: https://doi.org/10.1002/cjs.5550350207. 533, 545

Gelman, A. (2006). “Prior distributions for variance parameters in hierarchical mod-
els (comment on article by Browne and Draper).” Bayesian Analysis, 1: 515–534.
MR2221284. doi: https://doi.org/10.1214/06-BA117A. 523, 532, 544

Ghosh, J. K. and Mukerjee, R. (1992). Non-informative priors, 195–210. Oxford Uni-
versity Press. MR1380277. 531

Gilks, W. R. (1995). “Discussion to fractional Bayes factors for model comparison
(by O’Hagan).” Journal of the Royal Statistical Society Series B , 56: 118–120.
MR1325379. 536

Griffin, J. and Brown, P. (2005). “Alternative prior distributions for variable selection
with very many more variables than observations.” Technical report, University of
Warwick. 532

Gu, X., Mulder, J., and Hoijtink, H. (2014). “Bayesian evaluation of inequality con-
strained hypotheses.” Psychological Methods, 9(4): 511-527. doi: https://doi.org/
10.1037/met0000017. 545

Gu, X., Mulder, J., Decov́ıc, M., and Hoijtink, H. (2017). “Approximated adjusted frac-
tional Bayes factors: A general method for testing informative hypotheses.” British
Journal of Mathematical and Statistical Psychology . 535

Haldane, J. B. S. (1932). “A note on inverse probability.” Mathematical Proceedings of
the Cambridge Philosophical Society , 28: 55–61. 528

Harris, J. A. (1913). “On the calculation of intra-class and inter-class coefficients of
correlation from class moments when the number of possible combinations is large.”
Biometrika, 9: 446–472. 522

Hedges, L. V. and Hedberg, E. C. (2007). “Intraclass Correlation Values for Planning
Group-Randomized Trials in Education.” Educational Evaluation and Policy Analy-
sis, 29(1): 60–87. URL http://www.jstor.org/stable/30128045 521, 541, 544

Hoijtink, H. (2011). Informative Hypotheses: Theory and Practice for Behavioral and
Social Scientists. New York: Chapman & Hall/CRC. 545

http://www.ams.org/mathscinet-getitem?mr=1920764
https://doi.org/10.1111/1467-9884.00324
http://www.ams.org/mathscinet-getitem?mr=2657265
https://doi.org/10.1007/978-1-4419-0742-4
http://www.ams.org/mathscinet-getitem?mr=3736338
https://doi.org/10.1007/s11336-017-9577-6
https://doi.org/10.1007/s11336-017-9577-6
http://www.ams.org/mathscinet-getitem?mr=2393611
https://doi.org/10.1002/cjs.5550350207
http://www.ams.org/mathscinet-getitem?mr=2221284
https://doi.org/10.1214/06-BA117A
http://www.ams.org/mathscinet-getitem?mr=1380277
http://www.ams.org/mathscinet-getitem?mr=1325379
https://doi.org/10.1037/met0000017
https://doi.org/10.1037/met0000017
http://www.jstor.org/stable/30128045


J. Mulder and J.-P. Fox 549

Hoijtink, H., Gu, X., and Mulder, J. (2018). “Bayesian evaluation of informative hy-

potheses for multiple populations.” British Journal of Mathematical and Statistical

Psychology . 523, 534

Jeffreys, H. (1961). Theory of Probability-3rd ed . New York: Oxford University Press.

MR0187257. 532, 533

Johnson, V. E. and Rossell, D. (2010). “On the use of non-local prior densities in

Bayesian hypothesis tests.” Journal of the Royal Statistical Society Series B , 72: 143–

170. MR2830762. doi: https://doi.org/10.1111/j.1467-9868.2009.00730.x.

539

Kass, R. E. and Vaidyanathan, S. K. (1992). “Approximate Bayes Factors and Orthogo-

nal Parameters, with Application to Testing Equality of Two Binomial Proportions.”

Journal of the Royal Statistical Society, Series B , 54: 129–144. MR1157716. 533

Kass, R. E. and Wasserman, L. (1995). “A Reference Bayesian Test for Nested Hy-

potheses and Its Relationship to the Schwarz Criterion.” Journal of the American

Statistical Association, 90: 928–934. MR1354008. 527

Kinney, S. and Dunson, D. B. (2007). “Fixed and Random Effects Selection in Linear

and Logistic Models.” Biometrics, 63: 690–698. MR2395705. doi: https://doi.org/

10.1111/j.1541-0420.2007.00771.x. 544

Kish, L. (1965). Survey sampling . Chichester: Wiley. 541

Konishi, S. and Gupta, K. A. (1989). “Testing the equality of several intraclass cor-

relation coefficients.” Journal of Statistical Planning and Inference, (1): 93–105.

MR0995594. doi: https://doi.org/10.1016/0378-3758(89)90022-0. 544

Lancaster, H. O. (1965). “The Helmert matrices.” The American Mathematical Monthly ,

72: 4–12. MR0170899. doi: https://doi.org/10.2307/2312989. 522, 525

Liang, F., Paulo, R., Molina, G., Clyde, M. A., and Berger, J. O. (2008). “Mix-

tures of g priors for Bayesian variable selection.” Journal of American Statisti-

cal Association, 103(481): 410–423. MR2420243. doi: https://doi.org/10.1198/

016214507000001337. 532

Liang, K.-Y. and Zeger, S. L. (1986). “Longitudinal data analysis using generalized

linear models.” Biometrika, 73(1): 13. MR0836430. doi: https://doi.org/10.1093/

biomet/73.1.13. 522, 544

Ly, A., Verhagen, J., and Wagenmakers, E.-J. (2016). “An evaluation of alternative

methods for testing hypotheses, from the perspective of Harold Jeffreys.” Journal of

Mathematical Psychology , 72: 43–55. MR3506025. doi: https://doi.org/10.1016/

j.jmp.2016.01.003. 533

Mulder, J. (2014). “Prior adjusted default Bayes factors for testing (in)equality con-

strained hypotheses.” Computational Statistics and Data Analysis, 71: 448–463.

MR3131982. doi: https://doi.org/10.1016/j.csda.2013.07.017. 534

http://www.ams.org/mathscinet-getitem?mr=0187257
http://www.ams.org/mathscinet-getitem?mr=2830762
https://doi.org/10.1111/j.1467-9868.2009.00730.x
http://www.ams.org/mathscinet-getitem?mr=1157716
http://www.ams.org/mathscinet-getitem?mr=1354008
http://www.ams.org/mathscinet-getitem?mr=2395705
https://doi.org/10.1111/j.1541-0420.2007.00771.x
https://doi.org/10.1111/j.1541-0420.2007.00771.x
http://www.ams.org/mathscinet-getitem?mr=0995594
https://doi.org/10.1016/0378-3758(89)90022-0
http://www.ams.org/mathscinet-getitem?mr=0170899
https://doi.org/10.2307/2312989
http://www.ams.org/mathscinet-getitem?mr=2420243
https://doi.org/10.1198/016214507000001337
https://doi.org/10.1198/016214507000001337
http://www.ams.org/mathscinet-getitem?mr=0836430
https://doi.org/10.1093/biomet/73.1.13
https://doi.org/10.1093/biomet/73.1.13
http://www.ams.org/mathscinet-getitem?mr=3506025
https://doi.org/10.1016/j.jmp.2016.01.003
https://doi.org/10.1016/j.jmp.2016.01.003
http://www.ams.org/mathscinet-getitem?mr=3131982
https://doi.org/10.1016/j.csda.2013.07.017


550 Bayes Factor Testing of Multiple Intraclass Correlations

Mulder, J. (2016). “Bayes factors for testing order-constrained hypotheses on corre-
lations.” Journal of Mathematical Psychology , 72: 104–115. doi: https://doi.org/
10.1016/j.jmp.2014.09.004. 545

Mulder, J. and Fox, J.-P. (2013). “Bayesian tests on components of the compound
symmetry covariance matrix.” Statistics and Computing , 23: 109–122. MR3018353.
doi: https://doi.org/10.1007/s11222-011-9295-3. 522, 545

Mulder, J. and Fox, J.-P. (2018). “Supplemetary material for “Bayes factor test-
ing of multiple intraclass correlations”.” Bayesian Analysis. doi: https://doi.org/
10.1214/18-BA1115SUPP. 529, 530, 535, 536, 538, 540

Mulder, J., Klugkist, I., van de Schoot, A., Meeus, W., Selfhout, M., and Hoi-
jtink, H. (2009). “Bayesian Model Selection of Informative Hypotheses for Repeated
Measurements.” Journal of Mathematical Psychology , 53: 530–546. MR2574692.
doi: https://doi.org/10.1016/j.jmp.2009.09.003. 545

Mulder, J. and Pericchi, L. R. (2018). “The matrix-F prior for estimating and testing
covariance matrices.” Bayesian Analysis. 523, 532, 544

Mullis, I., Martin, M. O., Foy, P., and Arora, A. (2011). TIMSS 2011 International
Results in Mathematics. TIMSS & PIRLS International Study Center, Lynch School
of Education, Boston College Chestnut Hill, MA, USA and International Association
for the Evaluation of Educational Achievement (IEA) IEA Secretariat, Amsterdam,
the Netherlands, first edition. 541

O’Hagan, A. (1995). “Fractional Bayes Factors for Model Comparison (with discus-
sion).” Journal of the Royal Statistical Society Series B , 57: 99–138. MR1325379.
523, 532, 534, 536

O’Hagan, A. (1997). “Properties of intrinsic and fractional Bayes factors.” Test , 6: 101–
118. MR1466435. doi: https://doi.org/10.1007/BF02564428. 536

Olson, J. F., Martin, M. O., and Mullis, I. V. S. (2008). TIMSS 2007 Technical Report .
Chestnut Hill, MA: TIMSS and PIRLS International Study Center, Boston College,
first edition. 541

Pauler, D. K., Wakefield, J. C., and Kass, R. E. (1999). “Bayes Factors and Ap-
proximations for Variance Component Models.” Journal of the American Statisti-
cal Association, 94(448): 1242–1253. MR1731486. doi: https://doi.org/10.2307/
2669938. 545
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