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Bayesian Analysis of Dynamic Linear Topic
Models*

Chris Glynnf, Surya T. Tokdar?, Brian Howard®, and David L. Banks¥

Abstract. Discovering temporal evolution of themes from a time-stamped collec-
tion of text poses a challenging statistical learning problem. Dynamic topic models
offer a probabilistic modeling framework to decompose a corpus of text documents
into “topics”, i.e., probability distributions over vocabulary terms, while simulta-
neously learning the temporal dynamics of the relative prevalence of these topics.
We extend the dynamic topic model of Blei and Lafferty (2006) by fusing its
multinomial factor model on topics with dynamic linear models that account for
time trends and seasonality in topic prevalence. A Markov chain Monte Carlo
(MCMC) algorithm that utilizes Pélya-Gamma data augmentation is developed
for posterior sampling. Conditional independencies in the model and sampling are
made explicit, and our MCMC algorithm is parallelized where possible to allow
for inference in large corpora. Our model and inference algorithm are validated
with multiple synthetic examples, and we consider the applied problem of model-
ing trends in real estate listings from the housing website Zillow. We demonstrate
in synthetic examples that sharing information across documents is critical for
accurately estimating document-specific topic proportions. Analysis of the Zillow
corpus demonstrates that the method is able to learn seasonal patterns and locally
linear trends in topic prevalence.

Keywords: topic model, dynamic linear model, Pélya-Gamma, MCMC.

1 Dynamic text analysis

Text data is ubiquitous. Newspapers, blogs, emails, tweets, and countless other ex-
pressions of written language are central to daily communication, as well as formal
correspondence. In many cases, the time at which a document is created is an impor-
tant piece of metadata. When analyzing a corpus of time-stamped documents spanning
a considerable amount of time, it is natural to ask whether we can detect and quantify
the temporal evolution of its thematic composition. Time-varying detection and quan-
tification of themes may generate hypotheses and lead to insightful answers in social
science research.

Thematic analysis of documents is often carried out with probabilistic models where
text is summarized as a bag of words. A popular approach is to use topic models (Blei
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et al., 2003), which are probabilistic descriptions of word frequencies in documents
based on a multinomial model with latent factors. Each latent factor, identified as a
topic, is an unknown probability vector over the vocabulary. The three primary tasks in
a topic model analysis are to (i) learn the topics themselves; (ii) learn the proportional
contribution of each topic to each document; and (iii) learn the proportional contribution
of each topic to the corpus as a whole.

We develop a novel class of topic models for time indexed corpora by combining
the multinomial latent factor model of Blei et al. (2003) with the extremely versatile
dynamic linear models (West and Harrison, 1997) widely used in the time series litera-
ture. Our dynamic linear topic model (DLTM) greatly expands the dynamic topic model
(DTM) of Blei and Lafferty (2006) by allowing the marginal probability of topics to ex-
hibit a rich set of temporal behavior including seasonal patterns and polynomial trends.

The ability of DLTM to model complex dynamics is demonstrated with an analysis
of real estate listings from Zillow, spanning 2007-2017. The Zillow corpus calls for a
composite dynamic model that allows the marginal probability of topics to generally
trend upward (or downward) over time and periodically rise and fall with different
seasons of the calendar year. Seasonality in the corpus arises as home descriptions
emphasize the features most attractive to buyers at the time of year the home is listed for
sale. The analysis demonstrates that real estate listings can yield fundamental insights
into dynamic housing market behavior.

We adopt a fully Bayesian implementation of DLTM and make equal contributions
to: (i) setting up the model and prior for sharp topic identification; and (ii) designing effi-
cient Markov chain Monte Carlo algorithms for reproducible parameter estimation. Our
approach helps demystify the often black-box-like appearance of topic models, and it
offers a Bayesian modeling platform that can entertain a range of prior beliefs on easy to
understand quantities pertaining to the thematic composition of a corpus, such as topic
and document overlap. Further, we investigate the implications of these prior choices on
the concentration of posterior mass on dynamic topics that minimally overlap in their
themes. One particularly important consideration is the interplay between the prior
variances of parameters associated with topics and document-specific topic proportions.

The fully Bayesian model platform requires a novel estimation strategy, and we de-
velop an MCMC inferential algorithm for DLTM that seamlessly combines topic models
with dynamic linear models. MCMC sampling from the full posterior provides reliable
uncertainty quantification on both topic forms and prevalence, and it also enables com-
putation of the widely applicable information criterion (WAIC, Watanabe (2013)), which
is practically useful in model selection. These are significant advantages over the vari-
ational strategy utilized by Blei and Lafferty (2006) to fit the DTM. We demonstrate
that the posterior probability of a topic’s prevalence, WAIC, and MCMC reproducibil-
ity analyses can be combined to effectively select the number of topics in a corpus
(Sections 6.3 and 7), an important open problem in the literature.

Our MCMC algorithm utilizes Pélya-Gamma data augmentation (Polson et al., 2013;
Windle et al., 2013) to fuse a multinomial sampling model with Gaussian dynamic linear
models. One challenge with Pdlya-Gamma data augmentation is that sampling these
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random variates can be slow for parameter values pertinent to text analysis, making the
MCMC algorithm prohibitively slow even for moderately large corpora. An important
contribution of the paper is the derivation of a theoretically sound Gaussian approxi-
mation to the Pdlya-Gamma distribution that allows rapid Pélya-Gamma sampling.

In Section 2, we describe the model; Section 3 constructs and examines the implica-
tions of prior distributions for topics and topic proportions; Section 4 details the Markov
chain Monte Carlo algorithm for posterior sampling; Section 5 develops an approximate
Pélya-Gamma sampler that scales well for text analysis; Section 6 examines the perfor-
mance of our computational algorithm on a synthetic data set; Section 7 presents a case
study with Zillow listings where we demonstrate a dynamic model composition strategy
to infer a combination of seasonal patterns and locally linear trends; Section 8 concludes.

2 Model

DLTM is built on a user specified number of topics in the corpus, denoted K. The choice
of K, an important open problem in topic models, is discussed in Sections 6.3 and 7. We
also require a user specified vocabulary of length V' that neither expands nor contracts
with time. Each element of the vocabulary is a term, indexed by v € {1,...,V}. In
situations where the vocabulary may be expected to evolve with time, one can take V'
to be the union of vocabularies used across time.

At each time point, ¢ € {1,...,T}, the corpus contains D; documents with d €
{1,..., D¢} indexing the documents. A document itself, Wy, is a vector where each
entry in Wy corresponds to a word in the document. The entries of document W ; are
denoted by wy, 4+, which corresponds to the nt" word in the d*" document at time ¢.
Each document has its own length of Ng; words, and the words within document Wy ;
are exchangeable (i.e. the index set n € {1,..., N4} can be permuted freely).

Each document is observed at a single time point. Documents themselves do not
evolve over time. Only topics and the global topic proportions evolve in time. Despite the
static nature of a document, we index documents with ¢ to make clear the membership
of each document in a specific time-slice.

2.1 A dynamic latent factor model for documents

One interpretation of DLTM is that it’s a dynamic latent factor model for documents.
Similar to latent Dirichlet allocation (LDA), DLTM decomposes documents into con-
tributions from latent topics (factors) with document-specific topic proportions (factor
loadings). The generative model for a corpus of time indexed documents is described
below.

The latent topic associated with the n!* word in the d** document at time ¢ is

denoted by z,4:. Conditional on the latent topic variable z, 4, the word wy, 4 is
sampled from a multinomial distribution over the vocabulary,
eﬂk,v,t
P’I”(’u)n’dﬂg = U|Zn,d,t = k’) = 1%

- (1)
ijl eBk,j,t
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where v € {1,...,V}. The B, parameter is the natural parameter associated with
the v*" vocabulary term under the k** topic. Formally, this k' topic is a probability
distribution over the V' terms in the vocabulary at time ¢. For the purpose of identifia-
bility, we fix Bk v, = 0 for each topic k and time ¢. Following Blei and Lafferty (2006),
the evolution in time of the natural parameter Sj ,; is modeled with a random walk:

Bkt = Br,t—1 + Vk,..t, Vit ~ Ny (0,0°1), (2)
51{:,-,0 ~ Nv(mk)o,O']%)OI>. (3)

The error terms vy, . , are mutually independent: vy, . ;L vy . ¢ for t # ¢/, and vy .y Ll vgr . 4
for k # k’. Throughout the paper, when an index is omitted and replaced with -, this
notation signifies the collection of all elements of the omitted index. As an example,

Bt = Brity s Brvie)

The word-specific latent topic variable, 2, 4., is sampled from its own multinomial
distribution conditional on the set of natural parameters 14, +,

p k- end,k,t 4
r(z = )= ———
(2n,d,t = k[na,.¢) SK e (4)

For the purpose of identifiability, we fix 74,x+ = 0. Thus far, the model described
is identical to that of Blei and Lafferty (2006). Where our model deviates from the
DTM is in how we model 7g . For each k € {1,..., K}, we model the vector 7. 5, =
{M.ktsM2kits - sMDy ety With a dynamic linear model (DLM) (West and Harrison,
1997). It is with this DLM that we incorporate periodic and polynomial behavior, co-
variates, and more broadly, an extensive set of features for temporal dependence in topic
proportions:

Nkt = Fk,tak,t + €k t, €kt ™~ NDt (Oﬂ G’QIDt)v (5)
ot = Grrogp -1+ €kt Epyt ~ Np(0762lp)a (6)
Q.o ~ N(m;ﬁo, Ck70). (7)

The error terms are mutually independent: ey, Il € ¢ for k # k' and € ¢ |l g ¢ for ¢ # t'.
This independence statement implies the K distinct DLMs are mutually independent
as well. The integer constant p is the dimension of the underlying state-vector, oy +;
Fro=(Fl g Fp, x4) 18 a known Dy x p time-varying design-matrix of document
covariates and model component terms corresponding to seasonality, trend, etc; and
G+ is a known p X p system matrix. Observe that the DTM is a special case of DLTM.
The DTM can be recovered by fixing p =1 and Fj+ = G+ = 1.

As previously noted, DLTM is a dynamic latent factor model for documents. As with
all factor models, identifiability is a challenge. It is possible to find equivalent decompo-
sitions of a document by rotating topics (factors) and adjusting the document-specific
topic proportions (loadings). We weakly identify the topics and proportional contri-
butions by eliciting prior distributions that favor more distinct topics and documents.
These priors will be discussed more in Section 3.
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2.2 Likelihood

The likelihood of an entire corpus is computed in (8)—(10) by taking advantage of
conditional independencies, which are encoded in the graphical representation of DLTM
in Section 1 of the supplement (Glynn et al., 2019). For succinct notation, we let W. ; =
{Wl,t7 W27t, ey WDt,t} and W,I:T = {VV.J7 ey W$T}.

T
p(W.rr|Z 1rs 1o, Beir) = HP(W,t|Z-,t,Oé~,t75-,~,t) (8)
=1
T D T D; Nag:
HH WarlZag on,B..0) = [T T T] plwn.atlonas cr. 8..0) (9)
1=1de1 t=1d=1n=1
T D, N
x H H

u,':]

d,t 52" gt Twy, q,0=13 eﬁzn,di‘ Lfw, g.=V}
ﬁzn,d,b]*t ZV ean,d.t‘jvt’ ( )
.7_1 7j=1

It is useful to examine the likelihood contribution from a specific topic. The objective
is to demonstrate that the multinomial likelihood can be reparameterized to one that is
proportional to a binomial likelihood if we condition on a specific topic. Proportionality
to the binomial likelihood is of interest from a computational perspective, as it makes
MCMC simulation with Pélya-Gamma data augmentation (Polson et al., 2013) possible.

If we condition on z, 4+ = k, the conditional likelihood is proportional to

Yk,1,t Yk, vt
s — k) o [ v (1)
kitlZdnt = SV Pk A\ eBra ’

where yy 1 = ZdDz‘l Zﬁ’d{ Lfwn g=v} {2 a=k}- 0 (11), Yg ¢ is the number of times
the vocabulary term v is assigned to topic k across all documents at time ¢. We repa-
rameterize the likelihood following the strategy of Holmes and Held (2006).

eVk,v,t Yk,v,t 1 nz,t*yk,u,t
wnizi-0x (o) () 1)

1 + e')’k,v,t 1 + e’Yk,’u,t

In (12), Yk,vt = Br,u,c — log Z#U ePrit and nz’t = Z;;l Yk.,j,¢ 1S the total number of
words assigned to topic k at time t.

Note that the form of the conditional likelihood in (12) is now proportional to the
binomial likelihood. This allows us to proceed with a Gibbs sampling algorithm us-
ing Pdlya-Gamma data augmentation as outlined in Section 4. For a full derivation of
the likelihood conditioning and reparameterization strategy, refer to Section 3 of the
supplement.

3 Prior distributions

3.1 Identifiability challenges

Topic models like LDA, the dynamic topic model, and DLTM are not identifiable sta-
tistical models. It is possible that multiple different sets of topics and corresponding
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document-topic proportions result in identical marginal likelihoods for a corpus. Be-
cause the DLTM is not identifiable and the likelihood function over topics and topic
proportions is multimodal, it is necessary to consider the role that prior choices for
Brwt, 0t and ng ¢ play in guiding posterior inference toward modes that are most
interpretable and useful to the modeler.

A growing body of literature outlines the identifiability challenge in topic models
(see, e.g., Anandkumar et al. (2013); Huang et al. (2016)), proposing various conditions
and constraints on document-term and topic-term matrices that guarantee a unique
solution to the fundamental non-negative matrix factorization problem. One approach
is to “anchor” each topic with a key word that can only occur in that topic and may
not appear in any other, leading to a separable non-negative matrix factorization model
(Donoho and Stodden, 2004). As noted in Huang et al. (2016), estimation in anchored
topic models is performed with either linear programming (Recht et al., 2012; Gillis,
2013) or greedy pursuit algorithms (Gillis, 2014; Gillis and Vavasis, 2014; Kumar et al.,
2013; Arora et al., 2013). When the anchor word assumption is not appropriate, it is pos-
sible to show that inferences are identifiable if moment conditions of the corpus itself are
satisfied (Liu et al., 2012; Anandkumar et al., 2012, 2013; Huang et al., 2016). Without
anchor words or moment conditions on the corpus, identifiability is not guaranteed. In
the presence of multiple corpus decompositions that result in the same likelihood, prior
distributions that favor distinct topics are important. We show in Section 3.2 that the
overlap between a pair of topics can be quantified by total variation distance and that
the induced prior distribution for pairwise topic overlap is a function of the variance
hyperparameter of 5, ..

3.2 Priors for topics

We define a metric to examine the overlap between two topics to guide elicitation of
topic priors. The overlap metric is the complement of the total variation (TV) distance
between topic k at time s and topic j at time ¢:

v

1
Overlap, ™ (s,t) =1 — - E —
I ZV / ZV /
2 o1 =1 eﬂk,v ,8 vi=1 eﬂj,v ,t

Overlap between two topics is defined on the interval [0,1]. When the overlap between
two topics is zero, the topics are completely different. When overlap is one, the topics are
ePkv,s

\% Bl o
Zv’:l e kvls

Bk,v,s Bj,v,t
(& e (13)

exactly the same. In (13), is the marginal prior probability of vocabulary

term v in topic k at time s. The variance of B v.0, Ul%,u,o in (3), is the primary driver
of expected overlap of topics at time zero. Figure 1(a) illustrates that for two topics, k
and j, both at time 0, the expected topic overlap E[Overlapff? (0,0)] decreases as the

variance O']% .0 1NCTEAsESs.

We recommend that topic modelers specify U,% ».0 Dy setting an expected level of
overlap appropriate for the corpus under study. In the Zillow corpus, we expect that
topics will be composed of common terms (e.g., home, bedroom, bathroom) and terms
unique to each topic (e.g., fireplace, deck, stainless steel). As a result, we specify the
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expected overlap between any two topics to be = %, which implies that Uzyv’o ~ 1
(see Figure 1(a)). Our prior for the natural parameter associated with term v in topic
k is then Bg,0 ~ N(0,1). By centering the (4,0 prior at zero, we do not favor any
particular vocabulary term as being a keyword in the topic. We allow the data to inform
which words are keywords, resulting in topics that load on distinct sets of terms. This
feature of the prior is demonstrated in Figure 1(b), where the posterior distributions
for pairwise overlap between topics concentrate on less overlap than expected under the
prior. The prior is sufficiently diffuse — resulting in unique topics — and the data are
able to inform the amount of overlap between these well-separated topics.

As a sensitivity check to our choice of U,%MO = 1, we increased the prior variance to
cr,% ».0 = D and re-ran our analysis of the Zillow corpus. The posterior topics, document
prf)f)ortions, and dynamic patterns were nearly identical. We advise modelers to begin
their analyses by choosing a value for oi’v’o that is consistent with their application-
specific prior expectation for topic overlap. As a follow-on, it is important for the modeler
to verify that the prior is not too concentrated and that the corpus has informed the
amount of posterior overlap between topics. Robust results to sensitivity analyses with
larger values for U,%,uo and demonstrated Bayesian learning in topic overlap will help
the modeler determine the most appropriate value of a%m,o.

80000~
20-

‘‘‘‘‘‘‘‘‘‘‘‘

2.0 01 02 03 04 05 0.00

00 05 10 15 0.02 0.04
sigma2_kv0 Overlap Probability
(a) E [Overlapi‘jﬁ.’ (0,0)] (b) Posterior overlap (c) Term prob.

Figure 1: Left: Prior for expected topic overlap between two topics at the same time,
E[OverlapZ‘?(O, 0)], as a function of hyperparameter o}, , , when V' = 100, 1000, 10000.
Middle: Prior distribution of overlap between two topics at ¢ = 1 when o}, = 1
and posterior distributions of pairwise topic overlap in the Zillow analysis of Section 7
for topics 1 and 2, 1 and 3, 1 and 10, and all pairwise combinations at ¢ = 1. Right:
Marginal prior probability of an arbitrary vocabulary term appearing in a document,
P(wp,a1 = v|zn,q1 = k).

In addition to specifying the time-zero variance hyperparameter, we must also specify
the topic innovation variance in (2). We want the expected change in a single topic from ¢
to t+ 1 to be small so that time-varying marginal probabilities of topics (4) are inferred
sharply. To specify the innovation variance of the S, process, o2, we examine the
expected overlap of topic k at ¢t and ¢t + 1. To model slowly evolving topic forms from
t — t+ 1, we choose 02 = 0.01. It is important to note that small month-over-month
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changes in topic form accumulate so that the overlap in topic k at t = 1 and t = T is
modest. When o2 = 0.01 and the topics evolve for 112 months, the expected overlap
between topic k at ¢ = 1 and ¢t = 112 is = 0.6, allowing the topic to evolve while still
preserving elements of its original identity.

Beyond the prior on topic overlap, it is useful to examine the role of 8 .+ in the
marginal prior probability of observing individual vocabulary terms. To fully assess

the uncertainty in the prior distribution for the prevalence of the v" term at time ¢,
ePk,v,t

Z"/zl Pt
te;ms. Figure 1(c) presents a histogram of samples from the marginal prior distribution
for the prevalence of any given vocabulary term v when there are V' = 1000 terms in the
vocabulary (see (1)). Observe that significant prior mass is distributed on the interval
(0,.01], which is quite diffuse considering that the uniform distribution of mass over
each term in the topic implies a naive term probability of % = 0.001.

it is necessary to consider the prior uncertainty for the remaining V' —1

3.3 Priors for document topic proportions

We fix our attention in this subsection to the special case when DTM and DLTM
are equivalent (i.e., F, = G, = 1 in (5) and (6)) to focus the discussion of priors
for document-specific topic proportions. As in Section 3.2, we construct a metric for
the similarity of documents to guide our choice of hyperparameters a?> and 62 in the
DLM model of n-, k, t. Document overlap is defined as the complement of total variation
distance between the vector of topic proportions for two documents d and d’ at time ¢,

K

doc 1
Overlapy’y =1 — = E —
d,d’ K ) K .
2 et E i1 end,j,t E =1 eld’ .t

When documents d and d’ receive the same proportional contributions from each topic,
Overlapgf’;, = 1. Figure 2(a) illustrates that [Overlapg?j,] depends on a?, the variance
term in (5), and the number of topics, K. Our strategy is to choose a? based on the level
of document overlap we expect in the corpus. In the Zillow listings data, we expect that
approximately two-thirds of each document will focus on common elements of a home
such as descriptions of the kitchen, bedrooms, and bathrooms. We believe one third of
each listing will focus on unique features of the home. To achieve an expected overlap
of ~ % when K = 10, we fix a® = 0.25.

eMld,k,t elld’ k.t

(14)

In order to choose §2, the variance of the DLM state innovations in (6), we utilize
the signal-to-noise ratio (SNR). The SNR may be interpreted as the degree to which
the thematic composition of any single document is representative of the corpus as a
whole. An important consequence of low SNR is that the proportional contribution of
topic k to a document is modeled as a noisy reflection of topic k’s prevalence globally
in the corpus. In our analysis, we assume that the SNR is 1—10. In the DLM context, the

SNR implies that 2—2 = %. Note that lower SNR implies less document overlap. In the
synthetic experiments of Section 6, we let §2 = 0.025.

The DLM model specification of (5)—(7) is completed with the time-zero prior for
o, 0. The oy, 4 state variables govern the expected topic proportion of topic k at time ¢.
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Figure 2: Left: Prior for expected document overlap as a function of variance term a?.

Right: Prior distribution for the proportional contribution of an arbitrary topic to the
corpus as a whole when K =3 and t = 1.

As in LDA, the expectation of our prior distribution is that documents are an equal mix-
ture of K topics; however, we want our prior to include significant uncertainty regarding
global topic proportions. To ensure that a wide range of global topic proportions receive
prior support, we assume that ayo ~ N(0,0.1). Again, simply considering the uncer-
tainty in 7q 1 is insufficient for examining the uncertainty on the simplex of document
topic proportions. It is necessary to consider the uncertainty in the remaining K —1 nat-
ural parameters, 1g,—,1. When K = 3, our prior supports document topic proportions
ranging from near zero to those exceeding 0.8, as shown in Figure 2(b). The histogram

%, the proportional contribution that
j=1¢"7"

an arbitrary topic k makes to an arbitrary document d when K = 3. The important
takeaway is that this prior specification supports a wide range of document topic propor-
tions. Fixing hyperparameters in the manner outlined above facilitates robust learning
of latent topics and their dynamic proportional representation in the corpus while still
eliciting diffuse prior distributions on those same factors and loadings.

illustrates the marginal distribution of

3.4 Interplay between variance components

Whenever specifying the number of topics (K) and vocabulary size (V') in a topic model,
we advise analyzing the uncertainty on the probability simplices being modeled before
attempting to make inference on topics or document proportions. There is a subtle
but important interplay in the variance hyperparameters due to their importance in
controlling topic and document overlap. If topic overlap induced by the prior for By , ¢
is too high (i.e, if U,%,uo is too small), the posterior topic overlap will also be quite high.
If K nearly identical topics are estimated, the corresponding estimates of document-
specific topic proportions are not meaningful. On the other hand, if document overlap is
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too high — specifically if a2 is too small — and documents are modeled as almost certain
identical mixtures of K topics, the induced prior belief is that at each time point the
corpus contains D; nearly identical copies of the same document. The result is that the
inference procedure learns a single repeated topic — corresponding to the single repeated
document — in the corpus. Again, nothing has been learned. The variance components
J,% v.0 and a? can be thought of as having a similar role to the concentration parameters
in the Dirichlet distributions in LDA. As noted in Wallach et al. (2009), priors have an
important effect on the ability of topic models to learn latent structure in documents.

Although we have focused here on the case where DLTM and DTM are equivalent, a
similar process for eliciting priors in DLTM with polynomial or seasonal patterns should
be followed. One point of consideration is the relationship between the different vari-
ance components and the choice of model components. Similar marginal distributions
for na k¢ can be achieved with different pairs of model components and choices for §2. As
an example, the random walk model and the locally linear state space model for 7g j
can imply similar marginal distributions if the choice of §2 is increased in the random
walk specification. While these different models may imply similar marginal distribu-
tions, their predictive distributions will be quite different. As we show in Section 6.4,
explicitly modeling polynomial components improves prediction of document-specific
topic proportions when trends do exist. It is for this reason that simply specifying a
random walk state space model with high variance 42 is not advisable.

4 Markov chain Monte Carlo

The target posterior distribution is
plo 1,01, B | W) = /p(a‘,lzT;7]~,~,1:T’ﬂ~,‘,1:T7Z~,1:T‘W,1:T)dZ~,1:T~ (15)

Note that we are not interested in inferring z, 4., and the topic assignment of each
word in each document is marginalized out of (15).

The machine learning literature typically utilizes variational methods to fit various
forms of topic models (Blei et al., 2003; Blei and Lafferty, 2006; Teh et al., 2007; Hoff-
man et al., 2010). The appeal of variational procedures is that they scale to meet the
demands of massive corpora. Despite their scalability, these methods must be used with
caution when fitting dynamic models. In time series analysis, variational methods suffer
from a critical shortcoming: parameter uncertainty tends to decrease when the qual-
ity of the approximation degrades (Turner and Sahani, 2011). As a result, variational
approximations often understate posterior uncertainty. Section 6.3 discusses a common
situation in topic modeling when mean-field variational methods are inadequate.

We find that a hierarchical model of document topic proportions yields valuable
information about the number of topics necessary to model a corpus. When hierarchical
model structure and accurate quantification of parameter uncertainty are imperative,
MCMC algorithms are an important part of the topic modelers computational tool-
box. MCMC algorithms have been successfully deployed to fit both LDA (Griffiths and
Steyvers, 2004) and static logistic Normal topic models (Chen et al., 2013). In this
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section, we develop an MCMC algorithm for DLTM with Pélya-Gamma data augmen-
tation.

4.1 Forward filtering and backward sampling via data augmentation

Pélya-Gamma data augmentation allows a seamless combination of topic models and
dynamic linear models. To make inference on the dynamic processes that govern topics
and document topic proportions, we utilize forward filtering and backward sampling
(FFBS). FFBS is the predominant MCMC technique for dynamic models (Carter and
Kohn, 1994; Frithwirth-Schnatter, 1994). As argued by Chib (1996), forward-backward
algorithms are necessary to sample from complex dynamic state-space models. Because
Pélya-Gamma data augmentation supports an FFBS algorithm, we favor this data
augmentation scheme over alternative MCMC choices such as the adaptive rejection
Gibbs sampler of Gilks and Wild (1992).

4.2 Poélya-Gamma Gibbs sampler

We construct a Gibbs sampler by iteratively sampling from the full conditionals derived
in Section 6 of the supplement. In order to sample from these full conditionals, we utilize
Pélya-Gamma data augmentation (Polson et al., 2013). Chen et al. (2013) introduced
the idea of a Pdélya-Gamma Gibbs sampler for a static logistic-Normal topic model.
We extend this idea to the dynamic setting. In order to make inference for each Sy . ¢,
it is necessary to introduce an auxiliary (g, ~ PG(nZ,t,O). Additionally, in order
to make inference on 7g 1, it is necessary to introduce the auxiliary random variable
wq it ~ PG(Ngy,0). Note that our target posterior (15) does not include the auxiliary
variables. To marginalize out the auxiliary ¢ and w from the posterior, we simply discard
them and only store a. 1.7,7... 1.7, and B.. 1.7. A single MCMC sample from the target
posterior is constructed as follows:

1. Sample the natural parameter associated with the v** vocabulary term in the k"
topic jointly for all times, Bk v.1.7 |Bk,—v,1:17, W11, Z. 1.7 Cow,1:7- This step can
be performed independently across topics. The order in which the £y , 1.7 are
updated is randomly permuted in the index {1,...,V} at each MCMC iteration.

2. Sample the auxiliary Pélya-Gamma variable independently for each topic &, vo-
cabulary term v, and time ¢, Cx vt Vo0t

3. Sample the natural parameter for the proportional contribution of topic k in
document d at time ¢, gkt |2+, Md,—kt, Wd, k.t Ok, This step can be performed
independently across documents d and time t. The order in which the n4 . are
updated is randomly permuted in the index {1,..., K} at each MCMC iteration.

4. Sample the auxiliary Pdlya-Gamma variable independently for each document d,
topic k, and time ¢, wq i ¢|74,.+-

5. Sample the latent state variables for each topic k independently, ag 1.7|7. k1.7
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6. Sample the topic assignment for each word n, document d, and time ¢, indepen-
dently Zn,d,t ‘wn,d,tv Nd,-t» 5-,»7t-

Several steps in this sampling procedure are easily parallelized. Intuition behind the
parallel sampling structure is derived from the graphical model of DLTM in Section
1 of the supplement. In particular, Steps 1 and 5 can be parallelized across topics.
Step 3 can be parallelized across documents and time. Step 2 can be parallelized across
vocabulary terms, topics, and time. Step 4 can be parallelized across documents, top-
ics, and time. Step 6 can be parallelized across words in a document, documents, and
time. Our implementation of this algorithm performs all sampling steps in C++ using
the R-C++ interface, Rcpp. It also parallelizes these steps where possible using the
mclapply function from the R-package parallel. The code is available at the website
http://github.com/G-Lynn/DLTM. Although not implemented in the current version
of the code, GPU and distributed computing architectures can be used for faster com-
putation and inference in large corpora.

5 Scalable Pélya-Gamma sampling

A primary computational bottleneck is sampling from the Pélya-Gamma distribution.
Each MCMC sample requires drawing K (VT + 23:1 D;) Pélya-Gamma random vari-
ables (Steps 2 and 4 in Section 4.2). In the Zillow listings corpus, with more than 11,000
documents spanning 112 months, 912 vocabulary terms, and K = 10 topics, each MCMC
iteration requires sampling from the Pélya-Gamma distribution 1.1 x 10° times.

The practical challenge is to rapidly sample from the Pélya-Gamma distribution for a
wide range of parameter values. Polson et al. (2013) develop a sampling method based on
the work of Devroye (2009), and the BayesLogit R package provides an implementation
of this exact sampling algorithm. While the Devroye method works extremely well
for Pélya-Gamma sampling when count values are moderate, the practicality of this
approach diminishes when counts are high. For the Pdlya-Gamma random variates in
text analysis, the b parameter is very large.

Section 4.4 of Polson et al. (2013) notes that sampling w ~ PG(b,¢) when b € N
is equivalent to the construction w = Z?:l @;, where @; ~ PG(1,¢). Because we are
focused on counts, the parameter b will always be a natural number. For the Devroye
method, the computation time increases with b, as sampling from PG(b,c) requires
sampling the b underlying PG(1,c¢) variables to construct each draw. This additive
sampling process imposes a significant limitation on the computational speed.

Several approximate methods for sampling from the Pdlya-Gamma distribution ex-
ist. To approximately sample from the distribution PG (b, ¢) when b is large, Chen et al.
(2013) propose to sample z ~ PG(m,c) where m << b and then linearly transform z
to match the moments of PG(b, c). As discussed in Windle et al. (2014), a saddlepoint
approximation is another method for approximate sampling from PG(b,¢) when b is
large. The saddplepoint approximation constructs a piecewise linear envelope around
the true density to approximately sample from PG(b, c).
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Another possible approximation suggested by Windle et al. (2014), though not ex-
plored in the technical report, is based on the Central Limit Theorem. To approximate
the sampling of a PG(b,c) draw when b € N, we rely on the additive construction
of a PG(b,c) random variable from w; ~ PG(1,c) variates. The Central Limit The-

orem provides that v/b((} 2?21 @) — El@)) 4 N(0,Var(@;)), which suggests that
d

w= Zli):l w; = N(bE[@;],bVar(w;)) for large values of b. The mean and variance of the
approximating Normal distribution are the appropriately scaled mean and variance of
L:}i ~ PG(l, C).

The advantage of the approximation developed here is that sampling from a Pdlya-
Gamma distribution is not necessary at all. Rather than sampling the b underlying
PG(1,¢) distributions, it is possible to generate an approximate draw from a PG(b, ¢)
distribution with a single draw from an approximating Gaussian. This removes the
problem of additivity altogether for sufficiently large values of b. The remainder of this
section examines the reliability of the Gaussian approximation for different choices of
b and c. To consider the quality of the approximation for different parameter choices,
we estimate the total variation distance between the Gaussian approximation and the
kernel density estimate from a large sample of Pélya-Gamma draws. Section 2 of the
supplement presents density overlays of the Gaussian approximation and the Pdlya-
Gamma distribution for several instances.

30000~

0.15 20000-

Relative

10000~

0 2500 50‘go 7500 10000
(a) TV distance (b) Sampling time

Figure 3: Left: TV distance between true distribution and approximation over a grid of
different choices for b and c. Right: Relative sampling time for the Devroye sampling
method in BayesLogit compared to the Gaussian approximation for 1000 draws at dif-
ferent b values. For each value of b, ¢; ~ N(0,1) for ¢ = 1,...,1000. Red line is the
linear relationship 2.75 x b.

Figure 3(a) presents the TV distance between the approximation and the Pdlya-
Gamma distribution as b and ¢ vary jointly. Observe that for low values of b, the ap-
proximation is unreliable. Also note that for sufficiently large values of b, the profile of
the TV distance is uniform across c. Figure 3(a) provides evidence that the Gaussian
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approximation works well for a wide range of choices for both b and ¢. In our MCMC
simulation, if b < 20, we utilize exact Pdlya-Gamma sampling techniques to minimize
approximation error. This approach balances the tradeoff between computational speed
and accuracy of the approximation.

To examine the scalability of the approximate sampling algorithm, the relative sam-
pling times for the Gaussian approximation and Devroye method are compared as a func-
tion of increasing b using the benchmark function in R. Figure 3(b) demonstrates that
relative sampling time increases linearly with b. The relative computation time from the
approximate sampling algorithms of Chen et al. (2013) and Windle et al. (2013) are on
the same order of magnitude as the Gaussian approximation. The advantage of the Gaus-
sian approximation is that it has theoretical guarantees from the Central Limit Theorem.

The reliability of the approximation and the reduction in computation time signif-
icantly increase with b. The Gaussian approximation is scalable and safe when counts
are large, which they are in most corpora. Further, the approximation method makes
Pélya-Gamma data augmentation a practical simulation tool in text analysis, where it
was previously infeasible.

6 Simulation study

We conducted a simulation study to validate and examine the reproducibility of our
MCMC algorithm. We constructed a synthetic data set with K = 3 topics and a vocab-
ulary with V' = 1000 terms. The objective of the simulation study is to benchmark the
computational method in recovering a known truth as compared to existing variational
strategies for inference in the DTM (Gerrish and Blei, 2011). In Sections 6.1-6.3, the
differences between DLTM and DTM are due to the differences in computational strate-
gies, as we focus on the special case when DLTM and DTM are equivalent (discussed
at the end of Section 2.1). In Section 6.4, the underlying dynamic models are different
(e.g., random walk for DTM and dynamic linear model for DLTM), but MCMC is used
to fit all models.

6.1 Synthetic data

The synthetic data set was constructed by sampling a random number of documents at
T = 5 different time points. The number of documents at each time point was sampled
from a Poisson distribution with mean of 1000. Each document was endowed with a
random number of words, which was sampled from a Poisson distribution with mean 150.

The proportional contribution of the three topics to each document was generated by
sampling from the DTM data generating model for document proportions with my o = 0,
Cr.o = 0.025, 62 = 0.001, and a® = 0.5. Setting 42 = 0.001 makes it likely that there is no
overall trend in topic proportions. Setting a? = 0.5 ensures heterogeneity in documents.

The three topics were constructed so that three disjoint subsets of vocabulary terms
would occur with high probability in each topic. This is visually demonstrated by the
black lines in Figures 4(a)—4(c). The first topic places high probability on vocabulary
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Figure 4: Posterior means for probabilities of v term for each topic. The blue dots
represent the posterior mean of the topic probability for each vocabulary term, as esti-
mated by the MCMC algorithm. The light blue verticals associated with each blue dot
represent the 95% posterior credible interval for the probability. The orange dots rep-
resent the mean estimate from the variational Kalman filter of Gerrish and Blei (2011),
which is publicly available at the Blei Lab GitHub repository.

terms 1 through 333. The second topic places high probability on terms 334-667. The
third topic places high probability on terms 668-1000. The true topics were allowed to
evolve after t = 1 with an innovation variance of o2 = .01.

Both the MCMC algorithm and variational Kalman filter of Blei and Lafferty (2006)
learn the simulated topics in the corpus. Figure 4 demonstrates that the posterior means
for the probability of the v** term in each topic correspond well to the true probability
for both the MCMC and variational methods. Our MCMC computation of the full
posterior distribution for each topic is emphasized with the light blue vertical lines in
the figure. Importantly, the 95% posterior credible intervals from the MCMC simulation
always include the true term probability. Further comparison of the computational
methods is conducted in Section 4 of the supplement.

6.2 Reproducibility and MCMC convergence

The second objective of the simulation study is to examine the reproducibility and con-
vergence of our MCMC algorithm. We ran five different MCMC simulations where the
parameters in each run were initialized by sampling from the data generating model with
high variance, providing overly disperse starting points. Each MCMC simulation was
run for 600,000 iterations, and the chain was thinned by recording every 100*" sample,
resulting in 6,000 MCMC samples. After thinning, we discarded 2,000 of the remaining
samples as a burn-in period. On an 8 core workstation, this took approximately one
day.

Topic inference is reproducible, as Figure 5(a) shows that the maximum TV distance
between topics learned across the five simulations is small. The figure was constructed
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Figure 5: Left: Maximum TV distance between posterior means of topics from chains 2-5
and chain 1 for each topic. Right: Boxplot of maximum TV distances between posterior
means of document topic proportions from chains 2—5 and chain 1 for all documents.

by computing TV distances between the posterior mean topics from chains two through
five and chain one and then taking the maximum. The takeaway is that we learn the
same topics across different MCMC simulations with very different starting points.

We also learn the same document topic proportions across the different simulations.
The boxplot in 5 shows that the maximum TV distance between document-specific
topic proportions learned across different simulations is small for all documents. For
each document, we compute the TV distance between the posterior means for topic
proportions from chains two through five and the posterior mean for topic proportions
from chain one. We then take the maximum TV distance for each document. When
taken together, Figures 5(a) and 5(b) confirm reproducible inference across MCMC
runs.

While inferences across simulations are nearly identical, the question remains: have
the chains converged? To investigate convergence, we explore (i) the TV distance be-
tween MCMC samples of topic k£ in chain one and topic k in chains two through five;
and (ii) the TV distance between the ¢ MCMC sample of topic k and the r*» MCMC
sample of topic k in the same chain. Across and within chain comparison of topics pro-
vides insight into how efficiently the simulations are exploring the posterior. Essentially,
we adapt MCMC convergence ideas from Gelman and Rubin (1992) for topic modeling.
Rather than consider across chain and within chain variance, we consider across chain
and within chain TV distance between topics.

Figure 6(a) illustrates that topic reproducibility across simulations is not caused by
the chains simply mirroring each other as they move through parameter space. The TV
distance between MCMC samples for topic one across the simulations is at least 0.15,
approximately ten times larger than the max TV distance computed from the topic
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Figure 6: Left: Across Chain TV Distance to initialization 1 for topic 1. Right: Within
Chain TV for each topic in initialization 1. The TV distances are between 1000 randomly
selected pairs of post-burn-in posterior samples of topics.

means (Figure 5(a)). At each MCMC iteration, chains two through five are in different
places than chain one.

The Markov chain is also efficiently exploring the posterior. Figure 6(b) illustrates
that the TV distance between different MCMC samples of the same topic in the same
chain is between 0.15-0.2, again considerably larger than the values in Figure 5(a). The
takeaway is that topic reproducibility across simulations (Figure 5(a)) is due to the
convergence of the chains to the stationary distribution and not a fluke artifact of the
MCMC simulations.

6.3 Misspecification of K

One of the critical questions for topic modeling is how to specify the number of topics
in a corpus. Rarely is a true number of topics known to the researcher. For this rea-
son, behavior of the model and computational algorithm when the number of topics is
misspecified is of practical importance. In this section, we let K = 6 and repeat the
analysis of our synthetic data.

Figure 7 presents the posterior means for Topics 1-3 and 4-6, respectively. Topics
1, 2 and 3 correspond to the three topics that generated the synthetic corpus. Topics 4,
5, and 6 are extraneous. The extremely wide uncertainty intervals for each vocabulary
term in topics 4-6 suggest that there is no meaningful thematic differentiation among
these topics. The uncertainty intervals are valuable for identifying that a topic lacks a
distinct theme.

The variational DTM also recovers the three original topics. The advantage of DLTM
is in estimating the document-specific topic proportions. By sharing information across
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Figure 7: Posterior mean for v*" term in Topics 1-6.

documents with a hierarchical model for document topic proportions, DLTM infers
which topics are unnecessary to model the corpus as a whole. This is evidenced by the
inferred global proportions of topics 4, 5, and 6 in Figure 8(a), which concentrate on
low probabilities. The lack of thematic differentiation and the low marginal probabilities
indicate that topics 4, 5, and 6 are extraneous. Taken together, Figures 7 and 8 demon-
strate that even if the researcher misspecifies the number of topics to be larger than the
true number, DLTM will still identify the three topics actually present in the data.

The MCMC algorithm significantly outperforms the variational approximation when
estimating document topic proportions (Figure 8(b)), an advantage of identifying that
topics four through six are globally unnecessary. Because the variational algorithm ap-
proximates each document topic proportion with an independent Dirichlet distribution,
the hierarchical structure between documents is not adequately preserved and extra-
neous topics in the corpus as a whole cannot be identified. The MCMC algorithm is
able to more effectively share information across documents and identify extraneous
topics, a form of shrinkage that improves estimation of document topic proportions in
the corpus. The mean (median) TV distance between the estimated document-specific
topic proportions and the truth is 0.20 (0.20) for the MCMC method of estimation. For
the variational method of estimation, the mean (median) TV distance between the esti-
mated document-specific topic proportions and the truth is 0.46 (0.44). The important
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Figure 8: Left: Marginal probability of topics over time. Right: TV distances between
estimated document-specific topic proportions and true topic proportions for all docu-
ments at time t = 5.

point is that borrowing information across documents is essential when the number of
topics is misspecified.

6.4 Linear, quadratic, and harmonic trends

In this section, we report simulation examples with linear, quadratic, and harmonic
trends. We maintain the same topics as in previous examples but allow their marginal
probabilities in the corpus to exhibit more complex dynamic behavior. In the linear case,

10
Fiex = l ;

i0
by maintaining the Fj, ; matrix as in the linear case and replacing the system matrix

. The system matrix is Gy, = [§ 1]. The harmonic case can be simulated

with Gy, = [_Ccs’lsr(l‘zg) Z)I;Ei)) |. We let w = Z in our example. To simulate quadratic trends,

Fp,= 1|1 @ and Gr:= 10 1 1
100 001

The topics recovered from these analyses and comparison with their variational
counterparts are presented in Section 5 of the supplement. DLTM clearly recovers linear,
quadratic, and seasonal patterns in the proportional contribution of each topic to the
corpus (see Figure 9). Inference on such dynamics represents a significant advance over
existing dynamic topic models.

Explicitly incorporating trend components is important for prediction as well as in-
ference. Figure 10 presents the one-step-ahead predictions for topic proportions from
DLTM models with structured dynamic components as compared to the baseline ran-
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Figure 10: First row: One-step-ahead predictions for a DLTM with trend (thick solid
line) and a random walk baseline (thin solid line) compared with the truth (thick dashed
line). Light dashed lines are the 95% posterior credible intervals for the DLTM estimate.
Second row: prediction errors for the DLTM with trend and random walk baseline,

labeled DTM.

dom walk case. The one-step-ahead predictions are generated in the forward filtering
step of the MCMC. Predictions from models with linear and quadratic components
outperform their random walk counterpart as trends become more established. This
outperformance is significant by the final time point. The outperformance of predic-

tions from a harmonic model is significant throughout.
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7 Zillow listings

We analyzed real estate listings from the housing website Zillow to demonstrate the
utility of DLTM in a practical application. The Zillow corpus contains more than 11,000
home listings in Seattle, WA from 2007-2017. The vocabulary contains 912 distinct
terms. An important aspect of real estate listings is that they emphasize features of a
home that are most appealing to potential buyers at the time of listing (e.g., fireplaces
in winter months, outdoor spaces in summer months).

We model seasonality and potential local linear trends in topics with a composite
dynamic model for each 7, ;. Specifically, for each topic k, we define

1010 L1 0 0
e 101 0 0
Fro= |0 1 and - G = 0 0 cos(w) sin(w)
1 010 0 0 —sin(w) cos(w)

The frequency of the seasonal patterns is set to be annual and w = 21—g Though we fix
the periodicity of seasonal patterns, the months at which topics peak (i.e. the phase
shift) and the magnitude of the seasonal swings (amplitude) are learned from the data.
The composite dynamic model for 7 1.7 allows each inferred topic to exhibit a unique
combination of locally linear and seasonal dynamics. DLTM shrinks the effect of some
features toward zero when they are not needed. This is evidenced by the posterior means
of global proportions for K = 10 topics presented in Figure 11(a). Topics one through
three illustrate elements of both locally linear growth and seasonal patterns at different
epochs. Topics four and five are characterized primarily by their seasonal patterns, which
peak at different months. Topics six and seven exhibit little dynamic behavior at all,
while topics eight through ten decay towards zero posterior probability. There are two
important takeaways from Figures 11(a)-11(c). First, DLTM is able to learn complicated
seasonal patterns and locally linear growth / decay in global topic proportions. Second,
the data inform which components of the composite DLTM are needed.
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Figure 11: Inferred dynamics of topic prevalence in the Zillow corpus with K = 10
topics.
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As observed in Section 6.3, the near zero posterior probability of topics nine and
ten raises the question of whether these are extraneous topics not necessary to model
the corpus. Running the MCMC simulation multiple times provides evidence that the
ninth topic is genuinely needed, whereas the tenth is unnecessary. Figure 12(a) presents
boxplots of TV distance between the same topics inferred from 8 different MCMC runs.
The width of each boxplot is proportional to the February 2017 posterior proportion of
the topic in the corpus as a whole. The first topic, which is the most prevalent in the
corpus and has the widest boxplot, is nearly identical across the 8 different runs. The TV
distances slightly increase as the topics become less prevalent. Notice that, although the
ninth topic has low posterior probability, MCMC simulations repeatedly identify that
same topic in the data. The inferred tenth topic, on the other hand, is quite different
from one MCMC run to the next. Although both topics nine and ten have quite low
posterior probability (see Figure 11(a)), our MCMC simulations are able to robustly
infer topic nine but not ten. This suggests that the inability to replicate topic ten is not
due to the low posterior probability but is rather a function of its superfluous nature.

We computed the WAIC measure of Watanabe (2013) to quantify model fit as a
function of K to further examine the number of topics required. Figure 12(b) illustrates
that when computed for K = 3,5,10,15, and 25, the minimum WAIC is realized at
K = 10. We believe that Figures 11(a), 12(a), and 12(b) illustrate a practical model
selection strategy for the number of topics in a corpus.
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Figure 12: Left: Boxplot of TV distance across multiple MCMC simulations for each
topic in February 2017. Right: WAIC of models with different numbers of K topics.

Keywords of inferred topics provide important context to the dynamics of topic pro-
portions in Figure 11(a). The ten vocabulary terms in each topic with highest posterior
mean probability in February 2017 are presented in Table 1. The topics correspond to
those presented in Figure 11(a) so that the first topic is the most prevalent in the corpus
and the ninth topic is next to last in terms of prevalence.

The first topic describes the basic common elements of a home, including bedrooms,
dining rooms, kitchens, and living rooms. It makes sense that this is the most prevalent
topic in the corpus. Fireplace, the 11** most likely term, and garage, the 12t"  help
describe some of the seasonal patterns in the data.
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Topic 1  Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8  Topic 9
room parks home master new views basement  ceilings garden
bedroom home maintained  kitchen newer lake charm doors trees
bath located entertaining  tiled updated deck finishes original  newer
floors seattle spaces floors windows sound craftsman  details ravenna
living shops open suite roof home updated windows uw
large close design bath painted beach green leaded village
kitchen lot light walk gas mountains  porch built trail
level neighborhood modern appliances hardwoods rainier ballard french gilman
main  access floors counter floors washington  heart wood mature
dining light living remodeled  kitchen olympic block glass burke

Table 1: The 10 vocabulary terms with the highest posterior mean probability in topics one through nine (February 2017).
Each column is its own topic, and the words are ordered so that the first word has the highest posterior mean probability.

Gl
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The second topic gets at the location of a home and nearby amenities such as parks,
shops, and neighborhoods. Though not presented in the table, the terms downtown (11"
most likely), restaurant (12) and school (13) are also clearly identified with a home’s
location. Terms light (10) and rail (18) combine to form the name of Seattle’s public
transit system, the light rail. Observe in Figure 11(a) that the second topic peaks in
September of 2008. The posterior probability rapidly falls thereafter, bottoming out in
May 2010, and then steadily climbs through 2017. September 2008 marks the beginning
of the global financial crisis, and we believe the dynamics of topic two, which identifies
with a home’s location and downtown Seattle, track the boom, bust, and recovery of
the Seattle housing market from 2007-2017.

Topic three focuses on modern design elements of a home and outdoor spaces. Ob-
serve in Figure 11(b) that the prevalence of this topic has increased in recent years. Key
words include spaces (term 4), open (5), design (6), light (7), and modern (8). Garden
(12), outdoor (13), deck (16), patio (17), and landscaping (19) round out the top 20.
Figure 11(b) also illustrates the seasonal nature of the topic’s prevalence, which peaks
in June or July and is at its lowest probability in December and January. As expected,
outdoor spaces of a home are most prominently featured in summer listings. Composite
seasonal and linear dynamics are evident in both topics two and three. The takeaway
is that DLTM is able to learn complicated dynamics in the themes of a corpus.

Recall that topics four and five exhibit seasonal fluctuations that peak at different
months and have different amplitudes. Topic four loads on luxury items such as master
suite and master bath. Stainless (term 12) describes appliances (8). Granite (13) de-
scribes counter (9). Topic five identifies with remodeled homes, renovations, and home
maintenance.

Topic six describes a home’s view, referencing Seattle-specific attractions such as
Lake (term 2) Washington (9) and Puget (14) Sound (4), the Olympic (10) Mountains
(6), and Mt. Rainier (8). Figure 11(a) illustrates that the global proportion of topic six
is near constant over time. It makes sense that a home’s view is always included in a
listing.

Topic 9, which decays in prevalence after February 2009, describes the area of Seattle
near the University of Washington (UW). This area includes the neighborhood Ravenna,
University Village mall, and the Burke Gilman Trail, a biking and walking trail that
runs along UW and extends through Ravenna. Topic ten was deemed extraneous.

8 Discussion

In this paper, we advance the topic model literature by fusing multinomial models for
text documents with the power of dynamic linear models. DLTM offers a mathemat-
ically principled framework for modeling complex dynamic behavior in corpora. The
applied analysis of Zillow listings demonstrates that (i) real corpora exhibit rich tem-
poral structure; (ii) DLTM is practically useful in modeling a wide range of dynamic
features; and (iii) the themes extracted from the corpus can yield meaningful insights
into dynamic patterns in real estate markets.
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Perhaps the biggest open question for topic modeling is choosing the number of
latent topics. A scalable model-based approach to inferring the number of topics remains
elusive. While the hierarchical Dirichlet process of Teh et al. (2006) allows the data to
inform the number of latent topics in the corpus, the DTM, LDA, and DLTM all require
the modeler to specify K. We demonstrated in the Zillow case study that the posterior
probability of a topic, WAIC, and a reproducibility analysis can be effectively utilized
to select the number of topics.

A significant contribution of our work is a procedure for specifying a diverse set of
prior beliefs on interpretable model features. These prior beliefs have important impli-
cations for Bayesian learning from a corpus. Learning well-separated topics and distinct
document proportions requires careful prior consideration of the interplay between topic
overlap and document similarity.

The DLTM model class requires intensive computation for inference and prediction.
We demonstrate that Pélya-Gamma data augmentation is a method that allows for
fully Bayesian posterior inference in the DLTM. While our Gibbs sampling algorithm
is an admittedly slower method of inference than the variational Kalman filter of Blei
and Lafferty (2006), our primary goal was not to compete with existing methods on
speed and scalability. Rather, our aim was to develop an inference algorithm for an
extended model class that allows inference of complicated temporal structure in text.
The DLTM, combined with the Pélya-Gamma MCMC strategy, is a significant advance
in this regard.

Although inference of complicated dynamics in massive corpora isn’t directly ad-
dressed by the present work, we developed our computational algorithm with an eye
toward scalability. Since our Gaussian approximation to the Pdlya-Gamma random
variable does not slow down as the length and number of documents increases, our
data-augmentation and MCMC scheme will continue to work as more documents are
added to the corpus. Parallel computation offers a promising path for scaling most
steps in the current computational algorithm to handle corpora with a huge number of
documents.

One step in the sampling procedure that does not scale particularly well with in-
creasingly large corpora is sampling the 8 ,; natural parameter (step 1 in Section 4.2).
As the size of the vocabulary significantly increases, the effective size of the MCMC
sample decreases. Although a vocabulary of one-thousand terms is not a hard upper
limit on the algorithm, computation with much larger vocabularies requires far more
MCMC iterations for sufficient mixing. We find in synthetic data experiments that in-
creasing the vocabulary from one-thousand to ten-thousand terms reduces the effective
sample size by approximately 70%.

We note that the Pélya-Gamma stick-breaking method of Linderman et al. (2015)
can offer further computational speed up by facilitating joint updates of the 8 .+ pa-
rameters associated with topics as opposed to the sequential updates performed in our
computing. However, stick-breaking constructions of a probability vector naturally favor
a stochastic ordering of the vector elements, while the multinomial logistic construction
adopted here maintains exchangeability. The latter is indeed desirable from a model-
ing perspective when no pre-specified ordering of the vocabulary terms is available. A
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stick-breaking construction that maintains exchangeability and also offers tight control
on prior variance appears to present significant mathematical difficulties that have not
been considered in the present work.

Supplementary Material

Supplement to “Bayesian  Analysis of Dynamic Linear Topic Models”
(DOI: 10.1214/18-BA1100SUPP; .pdf).
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