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Sequential Monte Carlo Smoothing with
Parameter Estimation

Biao Yang∗, Jonathan R. Stroud†, and Gabriel Huerta‡

Abstract. We propose two new sequential Monte Carlo (SMC) smoothing meth-
ods for general state-space models with unknown parameters. The first is a mod-
ification of the particle learning and smoothing (PLS) algorithm of Carvalho, Jo-
hannes, Lopes, and Polson (2010), with an adjustment in the backward resampling
weights. The second, called Refiltering, is a two-stage method that combines se-
quential parameter learning and particle smoothing algorithms. We illustrate the
methods on three benchmark models using simulated data, and apply them to a
stochastic volatility model for daily S&P 500 index returns during the financial
crisis. We show that both new methods outperform existing SMC approaches, and
that Refiltering is competitive with smoothing approaches based on Markov chain
Monte Carlo (MCMC) and Particle MCMC.

Keywords: Bayesian smoothing, particle filtering, particle learning, particle
smoothing, state-space models, stochastic volatility.

1 Introduction

State-space models are an extremely general class of models for time series. These mod-
els allow for nonlinear and non-Gaussian features that occur in many fields, including
finance, ecology, biology and engineering. Over the past few decades, sequential Monte
Carlo (SMC) methods have become extremely popular for online state and parameter
estimation in state-space models. However, these methods have been largely ignored for
Bayesian smoothing, which involves retrospective estimation of states and parameters.
A paper by Carvalho, Johannes, Lopes, and Polson (2010) has brought renewed atten-
tion to this topic. Here, following on that paper, we propose two new SMC smoothing
algorithms.

SMC methods, also known as particle filters, were developed for online state estima-
tion in state-space models. The idea was introduced by Gordon, Salmond, and Smith
(1993) with the name Bootstrap Filter. Pitt and Shephard (1999) then proposed an
improved approach called the Auxiliary Particle Filter. However, the problem of esti-
mating unknown parameters with SMC methods has generally received less attention.
Kitagawa (1998) proposed augmenting the state vector to include the unknown param-
eters, and applying a particle filter on the augmented state. To avoid over-dispersion
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problems in the estimation of states and parameters, Liu and West (2001) used kernel
density estimation for the static parameters. This algorithm remains the most general
method for sequential Bayesian state and parameter estimation. Storvik (2002) and
Fearnhead (2002) discussed sequential Bayesian inference for parameters in situations
where sufficient statistics for the parameters are available. Lopes and Tsay (2011) and
Kantas, Doucet, Singh, Maciejowski, and Chopin (2015) provide excellent reviews of
existing parameter learning approaches.

There is a large literature on SMC smoothing when parameters are known. Smooth-
ing involves estimation of states conditional on observations up to the final time period.
Kitagawa (1996) introduced the idea of particle smoothing by storing the state vector.
This is a forward-only algorithm where the smoothed state trajectories are generated
recursively by reweighting and resampling the filtered particles within a smoothing
(time) window. But as time evolves and the size of the smoothing window increases,
the smoothed samples at the start of the time series will degenerate to a single path.
Godsill, Doucet, and West (2004) proposed the forward-backward smoother, in which
a backward recursion is included and the forward filter particles are reweighted. Other
smoothing algorithms include the two-filter smoother of Kitagawa (1996), the gener-
alized two-filter smoother of Briers, Doucet, and Maskell (2010), and the O(N2) and
O(N) smoothing algorithms of Fearnhead, Wyncoll, and Tawn (2010). These methods
are collectively known as particle smoothing.

The literature on particle smoothing with unknown parameters is quite limited.
To our knowledge, there are only two existing SMC approaches for smoothing with
parameter estimation. The first is the self-organizing state-space models of Kitagawa
(1998), which uses a fixed-lagged smoother with state augmentation. The second is
the particle learning and smoothing (PLS) algorithm of Carvalho, Johannes, Lopes,
and Polson (2010). PLS is a two-stage algorithm with a particle filtering and learning
step, followed by separate backward reweighting step for each sample of the parameters.
However, the PLS smoothing algorithm does not account for the dependence between
states and parameters. In this paper, we propose an adjusted PLS algorithm that takes
into account this dependence in defining the backwards resampling weights. In addition,
we propose a new smoothing algorithm, in which we apply a forward-backward smoother
on each parameter drawn from the last filter step and get a smoothed sample of the
states, while accounting for parameter uncertainty.

Markov chain Monte Carlo (MCMC) methods have also been used for Bayesian
smoothing. Carlin, Polson, and Stoffer (1992) introduced the first MCMC smoothing al-
gorithms for non-normal and nonlinear state-space models. Carter and Kohn (1994) and
Frühwirth-Schnatter (1994) proposed the forward-filtering, backward-sampling (FFBS)
algorithm and de Jong and Shephard (1995) developed the related simulation smoother
for conditionally Gaussian models. The FFBS is a highly efficient block sampler that
draws the states jointly given the parameters for linear, Gaussian state-space models.
Shephard and Pitt (1997) and Gamerman (1998) provided block sampling algorithms for
dynamic exponential family and generalized linear models, respectively. Other MCMC
smoothers include Scipione and Berliner (1992), Geweke and Tanizaki (2001), Stroud,
Müller, and Polson (2003) and Niemi and West (2010).
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Andrieu, Doucet, and Holenstein (2010) introduced another approach, called Parti-
cle Markov chain Monte Carlo (PMCMC), for off-line state smoothing and parameter
estimation. This method combines MCMC and SMC approaches. A popular PMCMC al-
gorithm is the Particle Marginal Metropolis-Hastings (PMMH) sampler. At each Markov
chain iteration, this method simulates a parameter from a proposal density, and uses
it within a SMC algorithm to create a high-dimensional proposal distribution for the
smoothed states. One uses the approximate likelihood from the SMC and the prior den-
sity for the parameters, to accept or reject the proposed states and parameters. The
advantage of PMMH is that it integrates out the states when updating the parame-
ters and generally reduces autocorrelation in the sampler. The disadvantage is that this
method is computationally intensive, since one must run a new SMC algorithm at each
MCMC iteration.

Our new approaches have a number of advantages relative to existing methods.
Refiltering provides samples from the correct posterior distribution as the number of
particles goes to infinity. Unlike MCMC methods, our smoothing methods are not iter-
ative and do not require convergence of a Markov chain and can be easily parallelized.
Finally, in contrast to MCMC approaches, our methods provide accurate estimates of
the marginal likelihood, which is used for Bayesian model evaluation and selection.

The paper is organized as follows. In Section 2, we give a short review of particle
filtering and smoothing algorithms. Two new smoothing algorithms are proposed in
Section 3. In Section 4, we compare the two new algorithms to PLS, MCMC and PMMH
on three simulated examples: an autoregressive plus noise model, a nonlinear growth
model, and a chaotic model. In Section 4.4, we compare the algorithms using a stochastic
volatility model for daily S&P 500 returns. Finally, Section 5 concludes.

2 Filtering and Smoothing with SMC

Consider a general state-space model defined at discrete times t = 1, . . . , T ,

Observation : yt ∼ p(yt|xt, θ), (1)

Evolution : xt ∼ p(xt|xt−1, θ), (2)

Initial : x0 ∼ p(x0|θ), (3)

where yt are the observations, xt are the unobserved states, θ are the static parameters,
and p(·|·) denotes a generic conditional distribution. The measurement distribution
(1) relates the states to the observations; the transition distribution (2) describes the
evolution of the states over time; and the initial distribution (3) summarizes beliefs
about the initial state x0. The Bayesian model is completed with a prior distribution
on the unknown parameters, θ ∼ p(θ). The state-space model (1)–(3) is quite general,
making two main assumptions: xt follows a first-order Markov process, and yt’s are
conditionally independent given the states.

Bayesian inference in state-space models requires calculation of the joint posterior
distribution of the states and parameters. This can either be done sequentially or retro-
spectively. Let xs = (x0, . . . , xs) and ys = (y1, . . . , ys) denote the states and observations
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up to time s. There are two main types of inference in state-space models. The filtering
problem involves sequential calculation of p(xt, θ|yt), for t = 1, . . . , T . The smoothing
problem requires calculation of p(xT , θ|yT ), retrospectively. Here, the objective is to solve
the joint smoothing problem, which requires computing the joint posterior distribution
for the states and parameters:

p(xT , θ|yT ) ∝ p(θ)

[
p(x0|θ)

T∏
t=1

p(xt|xt−1, θ)p(yt|xt, θ)

]
.

For most models, this distribution is unavailable in closed form, so Monte Carlo meth-
ods are required to sample from it. In particular, we introduce two novel algorithms
that draw samples from the joint posterior smoothing distribution p(xT , θ|yT ). Further-
more, we compare the performance of these algorithms to the other existing smoothing
methods, such as PLS, MCMC and PMMH, using simulation studies and real data
examples.

Traditionally, SMCmethods assume that θ is known and are designed to approximate
p(xt|yt, θ) with a set of weighted samples or particles. The subsections below give a brief
overview of sampling importance resampling (SIR) particle filters, particle filters with
unknown parameters, and the particle learning and smoothing algorithm.

2.1 Particle Filtering

The particle filter was first introduced by Gordon, Salmond, and Smith (1993) to con-
duct state estimation in nonlinear, non-Gaussian state-space models. Based on impor-

tance sampling, the particles x
(i)
t−1 are propagated forward through the system equation,

the new particles x̃
(i)
t are resampled with weights ω

(i)
t that are proportional to the like-

lihood p(yt|x̃(i)
t ) to get filtered particles at time t: x

(i)
t . The filtering density p(xt|yt) can

then be approximated by a discrete empirical distribution based on these particles,

p(xt|yt) ∝ p(yt|xt)

∫
p(xt|xt−1)p(xt−1|yt−1)dxt−1

≈ p(yt|xt)

N∑
i=1

p(xt|x(i)
t−1)ω

(i)
t .

(4)

The algorithms to implement the SIR particle filter, along with information about
other algorithms, are given in the online supplementary materials (Yang et al., 2017).

2.2 Particle Filtering with Unknown Parameters

To deal with particle filtering with unknown parameters, Kitagawa (1998) introduced
the idea of augmenting the state by the parameters as zt = (xt, θ)

′, then applying a
bootstrap filter to the augmented state vector zt. Kitagawa and Sato (2001) extended
the idea by adding artificial noise to the parameters in the evolution equation to avoid
particle degeneracy (i.e., collapse of samples to a single value) as time progresses.
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Liu and West (2001) proposed an improvement to Kitagawa’s method by drawing
samples of the parameters from a kernel density of the form

p(θt+1|yt) ≈
N∑
j=1

w
(j)
t N (θt+1|m(j)

t , h2Vt),

at each filter step t. Here m
(j)
t = aθ

(j)
t +(1−a)θ̄t, where θ̄t and Vt are the sample mean

and variance-covariance matrix of the posterior samples of θt at time t, and a =
√
1− h2

is a smoothing parameter between 0 and 1. Notice that a = 1 implies the evolution
equation θt+1 = θt, which corresponds to state augmentation with no evolution noise.
For the case of a = 0, each θt+1 becomes an independent draw from a N(θ̄t, Vt). In
practice a typical value for a is from 0.95 to 0.99, which implies a strong persistence in
the evolution of θt.

In situations where p(θ|xt, yt) depends on a low dimensional set of sufficient statistics
st = S(xt, yt) such that p(θ|xt, yt) = p(θ|st) and st can be updated recursively via
st = f(st−1, xt, yt), the method of Storvik (2002) can be applied to draw samples from
the filtering distribution of the parameters. We include the sufficient statistics st in the
state vector and draw samples of θ based on the sufficient statistics at each time t in the
filter. By doing this, the impoverishment problem is mitigated and the exact posterior
p(θ|yt) can be better and gradually approximated through the filtering process. The
approach is based on the decomposition:

p(xt, θ|yt) ∝ p(xt−1|yt−1)p(θ|st−1)p(xt|xt−1, θ)p(yt|xt, θ) (5)

Storvik’s algorithm generates samples from this distribution at each time t = 1, . . . , T ,
using the following steps.

Storvik’s SIR Filter

1. Set s
(i)
0 = s0 and draw θ(i) ∼ p(θ|s(i)0 ) and x

(i)
0 ∼ p(x0|θ(i)) for i = 1, . . . , N .

2. For each time t = 1, . . . , T :

(a) Propagate x
(i)
t ∼ p(xt|x(i)

t−1, θ
(i)) for i = 1, . . . , N .

(b) Compute weights ω
(i)
t ∝ p(yt|x(i)

t , θ(i)) for i = 1, . . . , N .

(c) Update sufficient statistics s
(i)
t = S(x

(i)
t , s

(i)
t−1, yt) for i = 1, . . . , N .

(d) Resample N times from {(x(i)
t , s

(i)
t )}Ni=1 with weights ω

(i)
t , to obtain a sample

from p(xt, st|yt).

(e) Sample θ(i) ∼ p(θ|s(i)t ) for i = 1, . . . , N .

Steps 2(d)–(e) provide samples from the Bayesian filtering density: (x
(i)
t , θ(i)) ∼

p(xt, θ|yt).
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2.3 Particle Learning and Smoothing (PLS)

For particle smoothing with unknown parameters, we are interested in estimating the
states and parameters conditional on the entire dataset yT by drawing samples (xT (i),
θ(i)) from the joint posterior p(xT , θ|yT ), where T is the total number of time steps.

Carvalho et al. (2010) showed that after running the filtering and learning algorithm,
the filtered particles can be resampled to obtain draws from the smoothing distribution.
The procedure is based on Bayes’ rule and the decomposition of the joint posterior
smoothing distribution written as

p(xT , θ|yT ) = p(xT , θ|yT )
T−1∏
t=1

p(xt|xt+1, θ, y
t), (6)

where
p(xt|xt+1, θ, y

t) ∝ p(xt+1|xt, θ)p(xt|θ, yt). (7)

The steps of this algorithm are now presented:

PLS Algorithm

1. (Forward Filter) Run the particle learning algorithm to generate samples {(x(i)
t ,

θ(i))}Ni=1 from p(xt, θ|yt) at each time t = 1, . . . , T .

2. (Backward Smoother) Select a pair (x
(i)
T , θ(i)) from Step 1, and simulate back-

wards: For t = T − 1, . . . , 1, resample the particles {x(j)
t }Nj=1 from Step 1 with

weights proportional to ω
(j)
t = p(x

(i)
t+1|x

(j)
t , θ(i)) to generate x

(i)
t from the smooth-

ing distribution.

Carvalho et al. (2010) claim that PLS is an extension of Godsill, Doucet, and West
(2004) to state-space models with unknown parameters. However, note that in the
backward smoothing step of PLS, a fixed θ(i) is selected first and the resampling weights

are evaluated proportional to p(x
(i)
t+1|x

(j)
t , θ(i)). Thus, we should use samples drawn from

p(xt|θ(i), yt), i.e., the filter samples with respect to this fixed θ(i), but this is not the
case for PLS.

The particles from the forward pass of PLS are from the marginal density p(xt|yt),
not from the conditional density p(xt|θ, yt). Reweighting these particles using the tran-
sition density ignores the dependence between states and parameters. This causes in-
accurate smoothing estimates when such dependency is strong. Figure 1 shows the
dependency between the filtered samples of the states and parameters for the AR(1)
plus noise model that is presented in Section 4. Correlations between xt and θ greater
than 0.5 can be observed at the beginning of the time series. The simulation studies
presented in Section 4 show that PLS gives poor smoothing estimates, particularly at
early time periods of the time series.

In the following section we introduce two new smoothing algorithms. The first algo-
rithm relies on a transformation of (4) and an adjustment of the weights in the back-



B. Yang et al. 1143

Figure 1: Posterior dependence between xt and φ for the AR plus noise model (see
Section 4.1). Top: means and 95% intervals for the absolute correlation between xt and
φ at each time t. Results are based on 500 simulated datasets. Middle and Bottom:
posterior samples of xt and φ at selected time steps for one dataset. The contours
represent the fitted normal densities used in the PLSa algorithm.

ward smoothing pass to refine PLS. The second algorithm involves a separate forward
filtering-backward sampling pass for each sampled parameter.

3 New Smoothing Algorithms

3.1 PLS with Adjustment (PLSa)

The backward reweighting scheme in the PLS algorithm assumes that the filtering
algorithm provides samples from the conditional distribution, p(xt|θ, yt), when in fact
the samples come from the joint distribution, p(xt, θ|yt), and hence, from the marginal
distribution, p(xt|yt). Thus, PLS does not provide samples from the target smoothing
distribution. We consider the following rearrangement of (7):

p(xt|xt+1, θ, y
t)︸ ︷︷ ︸

smoother

∝ p(xt+1|xt, θ)
p(xt|θ, yt)
p(xt|yt)︸ ︷︷ ︸

weights

p(xt|yt)︸ ︷︷ ︸
filter

, (8)

so, ω
(j)
t = p(xt+1|x(j)

t , θ)p(x
(j)
t |θ, yt)/p(x(j)

t |yt) are the resampling weights for the back-
ward smoothing pass. These are the weights for the filtered particles in the smoothing
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algorithm. Note that in general, we cannot compute these resampling weights exactly,
since the joint filtering distribution p(xt, θ|yt) is not available in closed form. Therefore,
we propose to use a multivariate normal approximation for p(xt, θ|yt) based on the fil-

tered particles {(x(i)
t , θ(i))}Ni=1, in combination with appropriate transformations to the

states and/or parameters if necessary.

The particle learning and smoothing algorithm with adjustment (PLSa) proceeds in
the same way as PLS, but uses adjusted weights in the backward pass. Based on the
simulation results in Section 4, we find that the adjustment of the weights matters: the
adjusted version outperformed the original one, especially in the beginning of the time
series, where the PLS usually has problems to recover the true states and/or parameters.

PLSa Algorithm

1. (Forward Filter) Run a filtering and learning algorithm to obtain samples {(x(i)
t ,

θ(i))}Ni=1 from p(xt, θ|yt) for t = 1, . . . , T . Use the filtered samples to construct
a multivariate normal approximation at each time t, where the mean vector and

covariance matrix are approximated with sample moments from {(x(i)
t , θ(i))}Ni=1.

p(xt, θ|yt) ≈ N
((

μx
t

μθ
t

)
,

(
Σx

t Σxθ
t

Σθx
t Σθ

t

))
.

This implies that the marginal and conditional distributions are also normal:

p(xt|yt) ≈ N (μx
t ,Σ

x
t ), and p(xt|θ, yt) ≈ N (μ

x|θ
t ,Σ

x|θ
t ), where the conditional mean

and covariance are given by the well-known formulas for normal distributions.

2. (Backward Smoother) Select a pair (x
(i)
T , θ(i)) from Step 1, and simulate backwards:

For t = T −1, . . . , 1, resample the {x(j)
t }Nj=1 from Step 1 with weights proportional

to

ω
(j)
t = p(x

(i)
t+1|x

(j)
t , θ(i))

(
p(x

(j)
t |θ(i), yt)

p(x
(j)
t |yt)

)

≈ p(x
(i)
t+1|x

(j)
t , θ(i))

(
N (x

(j)
t |μx|θ(i)

t ,Σ
x|θ
t )

N (x
(j)
t |μx

t ,Σ
xx
t )

)

to generate x
(i)
t .

There are two points to note here. First, although our description above does not
explicitly mention it, when Storvik’s algorithm or Particle Learning is used, then the
sufficient statistics st are stored and sampled at each time in the forward filter (Step 1).
However, the PLSa algorithm is actually more general, and can be used for other sequen-
tial filtering and learning algorithms that do not involve sufficient statistics, such as Liu
and West (2001). Second, although we have chosen to approximate the joint posterior
using a normal distribution, other density estimators could also be used, for example,
a kernel density estimator as in Silverman (1986). The main point here is that we need
some analytical approximation to compute the additional density ratio in the weights.
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3.2 Refiltering Smoothing Algorithm

In addition to the PLSa modification, we propose the following new smoothing al-
gorithm. The idea behind this algorithm is the following decomposition of the joint
posterior distribution:

p(xT , θ|yT ) = p(xT |yT , θ) p(θ|yT ). (9)

Therefore, Storvik’s forward filter, particle learning, or a more general filtering method
such as Liu and West (2001) can be implemented to get samples of the parameters at
the last time step, i.e. θ(i) ∼ p(θ|yT ). Then for each sample, θ(i), a forward-backward
smoothing algorithm is applied as in Godsill et al. (2004) to get one state trajectory
xT (i) from p(xT |yT , θ(i)). Repeating this process for each θ(i) produces samples of the
states from the marginal smoothing density p(xT |yT ).

Since the run time for the forward filter is negligible compared to the backward
smoother, (O(N) vs O(N2), respectively), in simulation studies, we found that this
algorithm almost has the same speed as PLS, but with differences in the accuracy of
the state estimates. The algorithm is presented below:

Refiltering Algorithm

1. (Forward Filter) Use Storvik, Particle Learning or Liu & West to run a forward
filter and learning algorithm and generate θ(i) ∼ p(θ|yT ).

2. (Forward-Backward Smoother) For each θ(i), i=1, . . . , N0, run a forward-backward
smoothing algorithm to get a sample xT (i) ∼ p(xT |yT , θ(i)).

Note that this algorithm has a complexity of O(N2), the same as PLS, but it can
be made an O(N) algorithm in two ways. The first way is to choose a small number of
states n0 � N for the forward-backward smoother in step 2. The second idea is to use
a small number of parameter draws of size N0 in step 2. Our simulation studies show
that both ideas provide a substantial speed up with only a minor loss of accuracy.

In cases where the state-space model is linear and the errors are Gaussian, i.e.,
xt|xt−1 ∼ N (Gtxt−1,W ), yt|xt ∼ N (F ′

txt, V ), Step 2 of the refiltering algorithm can be
implemented using a forward filtering, backward sampling (FFBS) algorithm (Carter
and Kohn, 1994; Frühwirth-Schnatter, 1994). A Kalman filter forward pass is first run
and then a sample, backwards in time, is generated. Note that p(xt|yt−1) ∼ N (at, Rt)
is the prior and p(xt|yt) ∼ N (mt, Ct) is the posterior of the state at each time point t,
which depends on the parameters θ = (Ft, Gt, V,W ).

Refiltering with FFBS

1. (Forward Filter) Use Storvik, Particle Learning, or Liu & West to run a forward
filter and learning algorithm and generate samples θ(i) ∼ p(θ|yT ), i = 1, . . . , N .

2. (FFBS) For each θ(i), i = 1, . . . , N0, run an FFBS algorithm to generate samples
xT (i) ∼ p(xT |yT , θ(i)). This requires two steps. (a) Run a Kalman filter and store
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the forecast and filtered moments at, Rt,mt, Ct for t = 1, . . . , T . (b) Sample x
(i)
T ∼

N (mT , CT ). For t = T − 1 to 1, sample x
(i)
t ∼ p(xt|x(i)

t+1, θ
(i), yt) = N (ht, HT ), in

which ht = mt +Bt(x
(i)
t+1 − at+1), Ht = Ct −BtRt+1B

′
t and Bt = CtG

′
t+1R

−1
t+1.

We note that similar simplifications in Step 2 can be made for other models where
p(xT |θ, yT ) is available in closed form and can be simulated directly, for example, for
hidden Markov models using forward-backward samplers (e.g., Scott, 2002).

The refiltering algorithm consists of a filtering and smoothing step to generate from
θ ∼ pN (θ|y) and x ∼ pN (x|θ, y), respectively. The combined algorithm provides samples
from pN (θ, x|y) = pN (θ|y)pN (x|θ, y). As N → ∞, the cumulative distribution function
(CDF) of pN (θ|y) converges to the CDF associated with p(θ|y). In addition the CDF of
pN (x|θ, y) converges to the CDF of p(x|θ, y) thus implying that the joint CDF pN (θ, x|y)
converges to the joint CDF of p(θ, x|y). The refiltering algorithm can be used with any
filtering and smoothing algorithm, and its asymptotic properties depend on the choice
of algorithms. In this paper, we consider only filtering algorithms based on sufficient
statistics (Storvik, 2002; Carvalho et al., 2010). These methods provide asymptotic
draws from the marginal posterior p(θ|y) (see discussion in Lopes et al., 2011). For the
smoothing step, we use either the FFBS algorithm or the forward-backward smoother
of Godsill et al. (2004). FFBS provides exact draws from p(x|θ, y) and the Monte Carlo
smoother provides asymptotic draws from it (see proof in Godsill et al., 2004). Thus,
we view the refiltering algorithm as asymptotically exact for the examples considered
in the paper.

4 Numerical Illustrations

4.1 AR(1) Plus Noise Model

We first consider the AR(1) plus noise model:

yt = xt + vt, vt ∼ N (0, V ),

xt = φxt−1 + wt, wt ∼ N (0,W ).

This is a common benchmark model for testing state-space algorithms (Storvik, 2002;
Polson, Stroud, and Müller, 2008). For this model, FFBS can be implemented and a
long MCMC chain with 150,000 iterations is used as a standard for comparisons with
other smoothing algorithms. The simulation study under this model is based on T = 100
observations with parameter values V = 1, W = 1, φ = 0.75 and x0 = 0.

The model includes three unknown parameters θ = (φ,W, V ). We assume con-
jugate priors, with φ|W ∼ N (b0, B

−1
0 W ), W ∼ IG(n0, d0), V ∼ IG(ν0, δ0), where

IG(a, b) denotes the inverse-gamma distribution with shape and rate parameters a and
b, respectively. We choose hyperparameter values n0 = 2, ν0 = 2, d0 = 2, δ0 = 2,
b0 = 0.5 and B0 = 1, implying fairly diffuse prior distributions. The conjugate priors
for the parameters allow us to apply Storvik’s algorithm based on the sufficient statistics
st = (bt, Bt, nt, dt, νt, δt), and the following updating recursions:
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Figure 2: State and parameter estimation for the AR(1) plus noise model (see Section
4.1). Top row: smoothed means and 95% intervals for the states using the refiltering
algorithm (solid lines) and long MCMC (dashed lines). Middle row: filtered means and
95% intervals for the parameters using Storvik (2002)’s algorithm. Bottom row: pos-
terior distributions for the parameters at the last time step for the Storvik algorithm
(histograms) and the long MCMC (density curves). True parameter values are indicated
by horizontal lines in Row 2 and vertical lines in Row 3.

Bt = Bt−1 + x2
t−1, bt = B−1

t (Bt−1bt−1 + xt−1xt),

nt = nt−1 + 1/2, dt = dt−1 + (b2t−1Bt−1 + x2
t − b2tBt)/2,

νt = νt−1 + 1/2, δt = δt−1 + (yt − xt)
2/2.

Figure 2 shows the parameter learning plots and the posterior distribution at the last
time period T = 100, corresponding to Storvik’s filtering algorithm with 50,000 particles
and MCMC with 150,000 iterations, respectively. From the figure, we notice the true
parameters values are learned properly and the samples of the parameters at the last
time step are well concentrated around the true parameter values. Also, the samples
from Storvik’s filter agree well with samples from a long MCMC. State smoothing by
refiltering and the result of a long MCMC are also presented in Figure 2. We notice
that the mean, 2.5th and 97.5th quantiles of the smoothing samples almost coincide for
the two methods at each time step t.

To show that PLSa outperforms PLS based on the same computation time, we
ran 500 simulations for each of these two methods and compared the standardized
absolute errors over time, i.e., ê∗t = |x̂t − x̂true

t |/σ(xt|yT ) for t = 1, . . . , T , where x̂true
t

and σ(xt|yT ) are the smoothed mean and standard deviation for xt computed from
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Figure 3: AR(1) Plus Noise Model. Standardized absolute errors over time for three
smoothing algorithms compared to a long MCMC. The results are based on 500 sim-
ulations. The long MCMC is treated as the truth. The solid lines are the means of
standardized absolute errors at time t among 500 simulations, while the dashed lines
represent the 95th quantile.

the long MCMC with 150,000 iterations, and x̂t is the smoothed mean from the other
algorithms. The results are shown in Figure 3. From this plot, we can see the main
difference between the two smoothing algorithms appears at the beginning of the series,
in which the dependence of states and parameters is strong, so the adjustment matters.
As time progresses, the dependency of states and parameters decreases, and the results
from the PLSa coincide with PLS. In addition, the results from the refiltering smoothing
algorithm are also shown in this figure. For this AR(1) model, refiltering substantially
outperforms the other two methods, and its accuracy in terms of absolute standardized
errors is fairly constant over time. Note that the number of particles for the three
smoothing algorithms was adjusted to assure similar computation time for all methods.

To compare the performance of all of the smoothing algorithms, we implemented long
and short MCMC runs, pseudo-marginal Metropolis-Hastings (PMMH), PLS, PLSa,
refiltering, O(N) refiltering, and refiltering with FFBS using 500 simulated datasets. To
allow PMMH to provide the best possible results, we consider the following. The last
draw and the standard deviations of the parameter samples from a very long MCMC
are given as the initial parameter values in PMMH and used to choose the covariance
of the random walk proposal respectively. For each iteration, a SMC algorithm is run
with 500 particles. All SMC based smoothing algorithms are run in parallel on 16 cores
on a single node. Based on a similar run time, the mean standardized absolute errors
over time (MAE* =

∑T
t=1 |ê∗t |/T ) are listed in Table 1.

From the table, we notice that the MAE* values for PLSa are about half as large
as for PLS. For the refiltering algorithms, the MAE* magnitude is only about one
fifth of that for PLS. Hence, both of the new smoothing algorithms outperform the
PLS smoothing algorithm of Carvalho et al. (2010). If RF is compared with MCMC
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and PMMH in state estimation, RF-FFBS gives almost the same results as MCMC.
Both Refiltering and MCMC dominate PMMH in state estimation. The column labeled
MAE* represents the mean standardized absolute error between the posterior mean
of the parameters at the last time step for a long MCMC in relation to the other
algorithms. From the table, we notice that both Refiltering and MCMC provide a much
better parameter estimation than PMMH.

Time Iterations Particles MAE* MAE*
Method (s) M N States Params
Long MCMC 290 150000 – – –
MCMC 15 7035 – 0.016 0.034
PMMH 15 170 500 0.287 0.407
PLS 16 – 1200 0.138 0.048
PLSa 16 – 500 0.076 0.048
Refiltering 15 – 10000/150 0.024 0.048
RF-FFBS 16 – 14000 0.017 0.048

Table 1: Comparison of smoothing algorithms for the AR(1) plus noise model (see
Section 4.1). MAE* denotes the standardized mean absolute error. Results are based
on 500 simulated datasets.

4.2 Non-stationary Growth Model

We next consider the non-stationary growth model:

yt =
x2
t

20
+ vt,

xt = αxt−1 + β
xt−1

1 + x2
t−1

+ γ cos(1.2(t− 1)) + wt,

where wt ∼ N (0,W ) and vt ∼ N (0, V ). This benchmark nonlinear time series model
has been used by Carlin et al. (1992) to test MCMC smoothing, by Gordon et al. (1993)
to test the bootstrap filter, and by Briers et al. (2010) to test the forward-backward
smoothing with known parameters. The new smoothing methods are tested on this
model where the parameters θ = (α, β, γ,W, V ) are treated as unknown.

We generated T = 100 observations using parameter values α = 0.5, β = 25, γ = 8,
V = 5 and W = 1. Conjugate priors for the parameters are adopted and are similar to
those given in Carlin et al. (1992), i.e. (α, β, γ)′|W ∼ N (b0,B

−1
0 W ), W ∼ IG(n0, d0)

and V ∼ IG(ν0, δ0), where b0 = (0.5, 25, 8)′, B−1
0 = diag(0.252, 102, 42), and n0 = 2,

d0 = 2, ν0 = 2, δ0 = 2. The conjugate priors allow use of Storvik’s algorithm for
filtering and parameter learning. The sufficient statistics for the parameters are st =
(Bt,bt, nt, dt, νt, δt) and the updating recursions are

Bt = Bt−1 + FtF
′
t, bt = B−1

t (Bt−1bt−1 + Ftxt),

nt = nt−1 + 1/2, dt = dt−1 + (b′
t−1Bt−1bt−1 + x2

t − b′
tBtbt)/2,

νt = νt−1 + 1/2, δt = δt−1 + (yt − x2
t/20)

2/2,
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Figure 4: State and parameter estimation for the nonstationary growth model (see
Section 4.2). Top row: smoothed means and 95% intervals for the states using the
refiltering algorithm (solid lines) and long MCMC (dashed lines). Middle row: filtered
means and 95% intervals for the parameters using Storvik (2002)’s algorithm. Bottom
row: posterior distributions for the parameters at the last time step, T = 100, for
the Storvik algorithm (histograms) and the long MCMC (density curves). The true
parameter values are indicated by horizontal and vertical red lines in rows 2 and 3,
respectively.

where Ft = (xt−1, xt−1/(1+x2
t−1), cos(1.2(t− 1))′. The parameter learning process and

the posterior histograms of the parameters at time T = 100 are plotted in Figure 4.
Notice from the figure that the 95% confidence bands for the parameters narrow quickly
as time increases. From the histograms, we observe that the samples concentrate around
the true parameter values. N = 50000 particles were used for Storvik’s algorithm.

Furthermore, comparisons for the refiltering smoothing algorithm were made with
N0 = 10, 000 and n0 = 1, 000, with a long MCMC using N = 150, 000 iterations.
The smoothing plot is also presented in Figure 4. The results from the two smoothing
algorithms closely agree with each other.

Using 200 simulated datasets, Table 2 gives a summary of the overall performance
of the three smoothing algorithms compared to a long MCMC. A significant decrease in
the mean absolute error for the new smoothing methods relative to PLS is detected. The
plot of the standardized absolute errors over time of the three smoothing algorithms (not
shown) illustrates the same patterns as for the AR(1) model: the main improvement
of the two new smoothing algorithms over PLS is evident at the beginning of the time
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Time Iterations Particles MAE* MAE*
Method (s) M N States Params
Long MCMC 897 150000 – – –
MCMC 123 18796 – 0.174 0.412
PMMH 123 1246 500 0.146 0.178
PLS 123 – 5000 0.362 0.166
PLSa 127 – 2500 0.197 0.166
Refiltering 123 – 10000/1000 0.104 0.166

Table 2: Comparison of smoothing algorithms for the nonlinear growth model (see Sec-
tion 4.2). Results are based on 200 simulated datasets.

series. By comparing the results from Refiltering, PMMH, and short MCMC, we notice
that Refiltering dominates the latter two for both state and parameter estimation.

Note that for this model, the posterior distribution of the states is often multimodal,
and it is difficult to distinguish between the positive and negative sign of the states based
on the data. Thus, it is difficult to assign initial values for the states for the MCMC
algorithm based only on the observations. With bad starting values for the states, the
MCMC chain takes much longer to converge. In contrast, the SMC smoothing algorithms
are not based on Markov chains and thus avoid issues with starting values.

4.3 Chaotic Model

The third example is the nonlinear Ricker model (Fasiolo, Pya, and Wood, 2016):

yt ∼ Pois(φNt),

Nt = rNt−1e
−Nt−1+zt , zt ∼ N (0, σ2).

This model is used in ecology, where Nt stands for the population density at time t,
r is the growth rate, and yt is the observed population size at time t. This model is
characterized by its sensitivity to parameter variations: small increments in r will lead
to significant oscillations in the likelihood function. As a result, the likelihood function
can be intractable in certain areas of the parameter space and parameter estimation via
maximum likelihood methods is challenging. Fasiolo, Pya, and Wood (2016) described
the pathological likelihood function for this model and compared various maximum
likelihood estimation and Bayesian parameter estimation approaches. A time series of
100 observations is generated from this model with true parameter values r = e3.8,
σ2 = 0.3 and φ = 10.

To estimate this model within our framework, we first make the transformations
xt = log(Nt) and μ = log(r). The observation and evolution equations then become

yt ∼ Pois(φext),

xt = μ+ xt−1 − ext−1 + zt.

The model includes three unknown parameters, θ = (φ, μ, σ2). We assume conjugate
priors, with φ ∼ Gamma(a0, b0), μ|σ2 ∼ N (m0, c

−1
0 σ2) and σ2 ∼ IG(n0, d0), with
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Figure 5: State and parameter estimation for the chaotic model (see Section 4.3). Top
row: smoothed means and 95% intervals for the states using the refiltering algorithm
(solid lines) and long MCMC (dashed lines). Middle row: filtered means and 95% inter-
vals for the parameters using Storvik (2002)’s algorithm. Bottom row: posterior distri-
butions for the parameters at the last time step for the Storvik algorithm (histograms)
and the long MCMC (density curves). True parameter values are shown as horizontal
lines in row 2.

a0 = 15, b0 = 1,m0 = 5, c0 = 0.1, n0 = 2, d0 = 2. The sufficient statistics are st =
(at, bt,mt, ct, nt, dt) and the updating recursions are

at = at−1 + yt, bt = bt−1 + ext ,

ct = ct−1 + 1, mt = c−1
t (ct−1mt−1 + xt − xt−1 + ext−1),

nt = nt−1 + 1/2, dt = dt−1 + [ct−1m
2
t−1 + (xt − xt−1 + ext−1)2 − ctm

2
t ]/2.

The smoothed states, parameter learning bands and posterior distributions at time
T = 100 are summarized in Figure 5. A total of N = 100, 000 particles were used for
the filtering. For the simulation, the true parameter values were learned quickly and
the posterior distribution of the parameter converges to the true values. Figure 5 also
provides a comparison of refiltering with N0 = 10, 000 and n0 = 1, 000 to a long MCMC
with 150,000 iterations for smoothing. The smoothing results from the two methods
shown in the figure are almost identical.

To make a comparison of the three SMC smoothing methods, 200 different simula-
tions were performed. Plots of the MAE* values over time (not shown) were examined
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Time Iterations Particles MAE* MAE*
Method (s) M N States Params
Long MCMC 504 150000 – – –
MCMC 69 18804 – 0.055 0.097
PMMH 69 633 500 0.132 0.197
PLS 64 – 4600 0.112 0.141
PLSa 69 – 2700 0.072 0.141
Refiltering 69 – 10000/1000 0.048 0.141

Table 3: Smoothing comparison for the chaotic model (see Section 4.3). Results are
based on 200 simulated datasets.

and Table 3 presents numerical summaries based on the simulations. From the MAE*
plot, similar patterns can be found for this case compared to the previous two examples:
PLSa and refiltering dominate PLS early in the time series (up to about time t = 80),
and the three methods coincide afterwards. From Table 3, a significant decrease in
MAE* can be noticed for the two new methods compared to PLS.

When comparing Refiltering, MCMC and PMMH, we find that Refiltering dominates
the other two methods in terms of state estimation. To summarize, the simulation results
of the three models studied in this section show that Refiltering is as accurate or more
accurate than MCMC and PMMH methods for both state and parameter estimation.

4.4 Marginal Likelihood Selection

As noted by Carvalho et al. (2010), the marginal likelihood can be computed triv-
ially from the output of SMC-based Bayesian filtering and learning algorithms (e.g.,
Storvik, 2002; Carvalho et al., 2010). Define ωj

t = p(yt|xj
t , θ

j ,M), where (xj
t , θ

j) ∼
p(xt, θ|yt−1,M) for a given model M. Then, the log marginal likelihood for model M
is estimated by

log(f(y|M)) ≈
T∑

t=1

log

⎛
⎝ N∑

j=1

ωj
t

⎞
⎠− T log(N).

By comparison, many different MCMC-based estimates of the marginal likelihood have
been proposed. One of the most commonly used and straightforward methods is the
harmonic mean estimator (Newton and Raftery, 1994), which can be computed based
on the joint distribution of the data:

log(f(y|M)) ≈ log

(
1

1
N

∑N
j=1

1
p(y|ψj ,M)

)
,

where y = (y1, . . . , yT ) are the observations, N is the total number of MCMC iterations,
and ψj = (xj , θj), j = 1, . . . , N are the posterior draws of the states and parameters.

An important advantage of SMC over MCMC is that the estimation of the marginal
likelihood from SMC output is numerically stable. As shown in Table 4, in our simula-
tion studies of Section 4, we found that the SMC-based marginal likelihood estimator
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AR(1) + Noise Nonlinear Growth Chaotic Model

N Storvik MCMC Storvik MCMC Storvik MCMC

1,000 -176.44 -164.40 -212.91 -253.27 -286.34 -193.37

5,000 -176.71 -171.74 -212.51 -169.92 -284.88 -200.35

10,000 -176.71 -169.88 -211.66 -170.42 -284.96 -195.64

50,000 -176.87 -169.86 -212.45 -170.91 -285.16 -199.54

100,000 -176.91 -170.84 -212.10 -162.56 -284.98 -196.61

500,000 -176.88 -173.56 -212.30 -164.06 -285.10 -197.99

Table 4: For each of the models considered in Sections 4.1–4.3, this table provides
comparisons of the log marginal likelihood computed using Storvik (2002) and MCMC
for different Monte Carlo sizes (N). The results for each model are based on one dataset.

converges quickly as N increases, while for MCMC, the harmonic mean estimator is
unstable even for N as large as 500,000 in all three models.

4.5 Stochastic Volatility Model for S&P 500 Returns

To illustrate the proposed methods on real data, we analyze daily returns on Standard
& Poor’s (S&P 500) index from January 2008–March 2009, during the financial crisis.
We consider the following stochastic volatility model:

yt = μ+ exp(xt/2)εt, εt ∼ N (0, 1),

xt = α+ βxt−1 + ηt, ηt ∼ N (0,W ),

where yt = log(Pt/Pt−1) are the daily returns and Pt are the daily prices on the S&P
500 index, μ is the expected return, and xt is the unobserved log-variance state vari-
able, which follows an AR(1) process with constant term α. The coefficient β measures
the autocorrelation in the logged squared returns, and W is the so-called volatility of
volatility. This model has been widely used to analyze financial time series with volatility
clustering (for example, Jacquier, Polson, and Rossi, 1994; Kim, Shephard, and Chib,
1998). Here, we compare smoothing and parameter estimation results from the PLS,
PLSa, Refiltering and MCMC algorithms.

Conjugate priors are assumed for the unknown parameters θ = (μ, α, β,W ). Specif-
ically, we assume μ ∼ N (μ0, σ

2
0), (α, β)

′|W ∼ N (b0,B
−1
0 W ), and W ∼ IG(n0, d0).

The hyperparameters are μ0 = 0, σ2
0 = 1, b0 = (0, 0.9)′, B0 = diag(1, 1), n0 = 2,

d0 = 2. The refiltering algorithm is run with N = 10, 000 and N0 = 1000. The param-
eter learning and state smoothing estimates are compared to the single-state updating
MCMC scheme of Jacquier et al. (1994) and PMMH algorithms. Table 5 provides com-
parisons of the smoothing results for the S&P 500 returns for PLS, PLSa, Refiltering
and PMMH. The first two columns give values of the number of iterations and number
of particles respectively and for each method. We notice that in terms of the MAE for
state estimation, Refiltering provides the lowest value. On the other hand, the MAE
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Time Iterations Particles MAE* MAE*
Method (s) M N States Params
Long MCMC 70 1000000 – – –
MCMC 8 100000 – 0.035 0.021
PMMH-1000 269 1200 1000 0.066 0.258
PMMH-500 267 3300 500 0.055 0.133
PMMH-250 273 8000 250 0.056 0.192
PLS 270 – 1000 0.471 0.354
PLSa 267 – 500 0.282 0.354
Refiltering 256 – 5000/1000 0.030 0.354

Table 5: Smoothing results for the stochastic volatility model for daily S&P 500 returns
(see Section 4.4). While parallelization was not used for the PLS, PLSa and Refiltering
algorithms, it could be used to reduce run times as in the previous examples.

for the parameter estimates is the lowest for PMMH with 500 particles. The run times
were set as near as possible for PMMH, PLS, PLSa and Refiltering.

The sequential learning plots in Figure 6 show an abrupt change in the parameters,
particularly α and β, in September 2008. The timing corresponds to the days following
the collapse of Lehman Brothers, when stock prices dropped and volatility increased
sharply (i.e., the start of the financial crisis). Figure 7 shows the filtered and smoothed
volatilities for each algorithm. These plots show clear evidence that PLS and MCMC
do not match especially from September-November 2008, when the volatility changes
abruptly. PLSa more closely follows the MCMC results and among Refiltering, PLS and
PLSa, Refiltering is by far the most accurate relative to long MCMC. The smoothed
posterior state estimates of stochastic volatility obtained with the PMMH smoother
closely matches the estimates obtained with long MCMC.

Figures 8–10 in the Supplemental Material show results for a situation where T =
3000. The refiltering algorithm is the method that provides estimates of the log-volatility
state that most closely resembles the ones obtained from a long MCMC.

5 Conclusions

In this paper, we have proposed two new particle smoothing algorithms that simulta-
neously deal with state and parameter learning in general state-space models. The first
is a modification of the PLS algorithm of Carvalho et al. (2010), which includes an
adjustment term to their backward resampling weights. The second, called Refiltering,
is a two-step algorithm that includes a parameter learning step followed by a forward-
backward algorithm for smoothing. The Refiltering algorithm is well suited for parallel
implementation, since the smoothing step requires essentially no communication be-
tween processors.

We implemented the new methods on four examples: a benchmark autoregressive
plus noise model, a nonlinear growth model, a chaotic model, and a stochastic volatil-
ity model from finance. We compared estimates for states and parameters with the
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Figure 6: Parameter estimation for the stochastic volatility model for daily S&P 500
returns (see Section 4.4). Top row: Daily prices and returns on the S&P 500 index
from January 2008 to March 2009. Middle and bottom rows: filtered medians and 95%
intervals for the parameters μ, α, β andW . Results are based on Storvik’s SIR algorithm
with 50,000 particles.

widely-used PLS algorithm, Particle MCMC, and a full MCMC implementation. For all
examples, the new smoothing methods showed significant improvement over PLS, and
the Refiltering algorithm is shown to be highly competitive with smoothing algorithms
based on MCMC and Particle MCMC methods. Overall, our proposed methods are
quite general and apply to a wide class of nonlinear, non-Gaussian state-space models
for retrospective state and parameter estimation.
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Figure 7: State estimation for the stochastic volatility model for daily S&P 500 returns,
January 2008 – March 2009 (see Section 4.4). Panel (a) shows the filtered range, median
and 95% intervals for xt from Storvik’s algorithm. Panels (b)–(f) show the smoothed
mean and 95% intervals for xt for the PLS, PLSa, Refiltering, PMMH, MCMC algo-
rithms versus the long MCMC algorithm. Gray bands in (a)–(c) are the filtered range
from Storvik’s algorithm.

Finally, we note that all of the examples considered in this paper are low-dimensional,

with state and observation that are one-dimensional. It is well known that particle fil-

ters (or sequential Monte Carlo methods based on importance sampling) fail with high-

dimensional states and observations, leading to unbalanced weights and particle degen-
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eracy (see Snyder, Bengtsson, Bickel, and Anderson, 2008). Similar degeneracy prob-
lems are likely to occur for high-dimensional parameters. An important area of current
research is designing state and parameter estimation algorithms for high-dimensional
models. We believe that “exact” methods based on importance sampling will fail, and
suggest that approximate methods such as the ensemble Kalman filter (EnKF, Evensen,
1994; Katzfuss, Stroud, and Wikle, 2016) will provide more accurate and stable results.
These methods are already widely used in geophysics, and EnKF state and parameter
estimation methods have proved to be successful in many high-dimensional examples
(e.g., Stroud and Bengtsson, 2007; Stroud, Stein, Lesht, Schwab, and Beletsky, 2010;
Stroud, Katzfuss, and Wikle, 2017).

Supplementary Material

Supplementary Material of the Sequential Monte Carlo Smoothing with Parameter Es-
timation (DOI: 10.1214/17-BA1088SUPP; .pdf). Supplementary material A provides
summaries of the algorithms (MCMC, Particle Filter and PMMH) referenced in the
paper. Supplementary material B provides graphical summaries for different estimation
methods for the stochastic volatility model with T = 3000.
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