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Variational Hamiltonian Monte Carlo via Score
Matching

Cheng Zhang*, Babak Shahbaba!, and Hongkai Zhao*

Abstract. Traditionally, the field of computational Bayesian statistics has been
divided into two main subfields: variational methods and Markov chain Monte
Carlo (MCMC). In recent years, however, several methods have been proposed
based on combining variational Bayesian inference and MCMC simulation in order
to improve their overall accuracy and computational efficiency. This marriage of
fast evaluation and flexible approximation provides a promising means of design-
ing scalable Bayesian inference methods. In this paper, we explore the possibility
of incorporating variational approximation into a state-of-the-art MCMC method,
Hamiltonian Monte Carlo (HMC), to reduce the required expensive computation
involved in the sampling procedure, which is the bottleneck for many applications
of HMC in big data problems. To this end, we exploit the regularity in parame-
ter space to construct a free-form approximation of the target distribution by a
fast and flexible surrogate function using an optimized additive model of proper
random basis, which can also be viewed as a single-hidden layer feedforward neu-
ral network. The surrogate function provides sufficiently accurate approximation
while allowing for fast computation in the sampling procedure, resulting in an effi-
cient approximate Bayesian inference algorithm. We demonstrate the advantages
of our proposed method using both synthetic and real data problems.

MSC 2010 subject classifications: Primary 65C60; secondary 65C05.

Keywords: Markov Chain Monte Carlo, variational inference, free-form
approximation.

1 Introduction

Bayesian inference has been successful in modern data analysis. Given a probabilistic
model for the underlying mechanism of the observed data, Bayesian methods properly
quantify uncertainty and reveal the landscape or global structure of parameter space.
While conceptually simple, exact posterior inference in many Bayesian models is often
intractable. Therefore, in practice, it is common to use approximation methods among
which Markov chain Monte Carlo (MCMC) and variational Bayes (VB) are the two
most popular choices.

The MCMC approach is based on drawing a series of samples by constructing a
Markov chain with guaranteed convergence to the target distribution. Therefore, MCMC
methods are asymptotically unbiased. Simple methods such as random-walk Metropolis
(Metropolis et al., 1953), however, often suffer from slow mixing (due to their random
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walk nature) when encountering complicated models with strong dependencies among
parameters. Introducing an auxiliary momentum variable, Hamiltonian Monte Carlo
(HMC) (Duane et al., 1987; Neal, 2011) reduces the random walk behavior by propos-
ing states following a Hamiltonian flow which preserves the target distribution. By
incorporating the geometric information of the target distribution, e.g., the gradient,
HMC is able to generate distant proposals with high acceptance probabilities, enabling
more efficient exploration of the parameter space than standard random-walk proposals.

A major bottleneck of HMC, however, is the computation of the gradient of the
potential energy function in order to simulate the Hamiltonian flow. As the datasets
involved in many practical tasks may have millions to billions of observations, such
gradient computations are infeasible since they need full scans of the entire dataset. In
recent years, many attempts have been made to develop scalable MCMC algorithms
that can cope with very large data sets (Welling and Teh, 2011; Ahn et al., 2012; Chen
et al., 2014; Ding et al., 2014). The key idea of these methods stems from stochastic
optimization where noisy estimates of the gradient based on small subsets of the data
are utilized to scale up the algorithms. The noise introduced by subsampling, however,
could lead to non-ignorable loss of accuracy, which in turn hinders the exploration
efficiency of standard MCMC approaches (Betancourt, 2015).

The main alternative to MCMC is variational Bayes (VB) inference (Jordan et al.,
1999; Wainwright and Jordan, 2008). As a deterministic approach, VB transforms
Bayesian inference into an optimization problem where a parametrized distribution is
introduced to approximate the target posterior distribution by minimizing the Kullback—
Leibler (KL) divergence with respect to the variational parameters. Compared to MCMC
methods, VB introduces bias but is usually faster.

A natural question would be: can we combine both methods to mitigate the draw-
backs and get the best of both worlds? The first attempt in this direction was proposed
by de Freitas et al. (2001) where a variational approximation was used as proposal
distribution in a block Metropolis-Hasting (MH) algorithm in order to capture high
probability regions quickly, thus facilitating convergence. Recently, a new synthesis of
variational inference and Markov chain Monte Carlo methods has been explored in
Salimans et al. (2015) where one or more steps of MCMC are integrated into varia-
tional approximation. The extra flexibility from MCMC steps provides a rich class of
distributions to approximated the exact posterior distribution.

In this work, we explore the possibility of utilizing variational approximation to speed
up HMC for problems with large scale datasets. The key idea is to integrate fast vari-
ational approximations into the sampling procedure so that the overall computational
complexity can be reduced. The main contributions are summarized as follows:

1. We train a fast neural network surrogate using extreme learning machine (ELM) to
approximate the log-posterior (potential energy function). Neural networks with
randomly-mapped features (with almost any nonlinear activation functions) have
been proved to approximate a rich class of functions arbitrarily well (Huang et al.,
2006a). After the fast training of a reasonably accurate neural network surrogate,
we use its gradient to simulate the surrogate induced Hamiltonian flow in order to
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generate proposals. The learning and training of the surrogate function provides
an effective and flexible way to explore both regularity of the parameter space and
redundancy in the data collectively. This can be viewed as an implicit subsampling.
However, unlike the popular subsampling-based methods where the leapfrog step-
size needs to be annealed or remains small enough to compensate for the resulting
bias, the leapfrog stepsize in our approach can remain close to that of the standard
HMC algorithm while keeping a comparable acceptance probability. As such, we
can maintain the efficiency of HMC while reducing the computational cost.

2. A new training procedure is proposed for an efficient and general surrogate method.
The neural network surrogate is trained by minimizing the squared distance be-
tween the gradient of the surrogate and the gradient of the target (log-posterior),
a procedure that resembles the score matching approach (Hyvérinen, 2005).
The training data are collected while the “modified” HMC sampler (based on the
surrogate induced Hamiltonian flow) explores the parameter space. In Hyvérinen
(2005), the training data are assumed to be sampled from the target distribution.
In our method, by including the gradient of the target distribution in the learning
process, the information from the target distribution is explicitly included in the
surrogate function. Therefore, the restriction on the training data is relaxed.

3. To further improve speed, we also use the computationally fast surrogate in the
Metropolis-Hastings correction step. As a result, the modified HMC sampler will
no longer converge to the exact target distribution. Instead, it will converge to
the best approximation from an exponential family with pre-specified random
sufficient statistics (which we refer to as free-form variational approximation).
This variational perspective distinguishes our approach from the existing surrogate
methods on accelerating HMC. Moreover, compared to traditional fixed-form vari-
ational approximations, the free-form variational approximation is usually more
flexible and can provide a better fit to more general target distributions.

Our paper is organized as follows. In Section 2, we introduce the two ingredi-
ents of our method: Hamiltonian Monte Carlo and fixed-form variational Bayes. Sec-
tion 3 presents our method, termed Variational Hamiltonian Monte Carlo (VHMC).
We demonstrate the efficiency of VHMC using a number of experiments in Section 4
and conclude in Section 5.

2 Background

2.1 Hamiltonian Monte Carlo

Consider a set of independent and identically distributed observations Y = {y1,...,yn}.
We denote their underlying distribution as p(y|0) with unknown parameter 6. Assuming
a prior distribution, p(6), the posterior distribution is obtained by Bayes rule as follows:

N
p(B]Y) = 7%};“’) x T] p(unl6) - p(6).
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To construct the Hamiltonian dynamical system commonly used in HMC (Duane et al.,
1987; Neal, 2011), the position-dependent potential energy function is defined as the
negative log of unnormalized posterior density

N
U0) =—>_ logp(yn|0) —logp(0), (1)

and the kinetic energy function is defined as a quadratic function of an auxiliary mo-
mentum variable r

1
K(r)= irTMflr,
where M is a mass matrix, which is often set to the identity matrix, I. The fictitious
Hamiltonian, therefore, is defined as the total energy function of the system

HO,r)=U9)+ K(r).

HMC suppresses random walk behavior by simulating the Hamiltonian dynamical sys-
tem to propose distant states with high acceptance probabilities. To this end, in order
to sample from the posterior distribution p(6]Y), it augments the parameter space and
generates samples from the joint distribution of (6, r)

(0, 7) x exp(—=U(0) — K(r)). (2)

Notice that 6 and r are separated in (2), so that we can simply drop the momentum
samples r and the 6 samples follow the marginal distribution which is exactly the target
posterior distribution.

To generate proposals, HMC simulates the Hamiltonian flow governed by the fol-
lowing differential equations

o OH

T —1

i M~ r, (3)
dr 0H

a= a0~ VU @

Over a period t, also called the trajectory length, (3) and (4) together define a map
o¢ : (0p,r0) — (6*,7*) in the augmented parameter space, from the starting state to
the end state. As implied by a Hamiltonian flow, ¢; is reversible, volume-preserving,
and also preserves the Hamiltonian H(6p,rq) = H(0*,r*). These properties allow us
to construct w-invariant Markov chains whose proposals will always be accepted. In
practice, however, (3) and (4) are not analytically solvable and we need to resort to
numerical integrators. As a symplectic integrator, the leapfrog scheme (see Algorithm 1)
maintains reversibility and volume preservation and hence is a common practice in the
HMC literature. Although discretization introduces bias which needs to be corrected
in an Metropolis-Hasting (MH) step, we can control the stepsizes to maintain high
acceptance probabilities even for distant proposals.

In recent years, many variants of HMC have been developed to make the algorithm
more flexible and generally applicable in a variety of settings. For example, methods pro-
posed in Hoffman and Gelman (2014) and Wang et al. (2013) enable automatic tuning
of hyper-parameters such as the stepsize € and the number of leapfrog steps. Rieman-
nian manifold HMC (Girolami and Calderhead, 2011) further improves standard HMC’s
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Algorithm 1 Hamiltonian Monte Carlo

Input: Starting position (1) and step size €
fort=1,2,...,T do
Resample momentum r
r® ~ N(0, M)
(6o, 70) = (M), (1))
Simulate discretization of Hamiltonian dynamics:
for [ =1to L do
ri—1 -1 — 5VeU(01-1)
0, < 0,1+ EM717”171
< T — %V@U(Gl)
end for
(0%,r*) = (0r,71)
Metropolis-Hasting correction:
u ~ Uniform[0, 1]
p=exp[H (0", r) — H(0",r*)]
if u < min(1,p) then

gUt+1) — g+
else
pt+1) — ()
end if
end for

efficiency by automatically adapting to local structure using the Riemanian geometry
of the parameter space. These adaptive techniques could be potentially combined with
our proposed method which focuses on reducing the computational complexity.

2.2 Fixed-Form Variational Bayes

An alternative to running a Markov chain is to approximate the intractable posterior
distribution with a more convenient and tractable distribution. A popular approach for
obtaining such an approximation is fixed-form variational Bayes (Honkela et al., 2010;
Saul and Jordan, 1996; Salimans and Knowles, 2013) where a parametrized distribution
¢v(0) is proposed to approximate the target posterior p(8|Y) by minimizing the KL
divergence

—10g(o) + [ a,(6)10g (=0 ) o Q

Because log(p(Y)) is a constant (used extensively in model selection), it suffices to
minimize the second term in (5). Usually, ¢, () is chosen from the exponential family
of distributions with the following canonical form:

qv(0) = exp[T(0)v — A(v)]v(0), (6)
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where T'(f) is a row vector of sufficient statistics, A(v) is for normalization, and v(6)
is a base measure. The column vector v is often called the natural parameter of the
exponential family distribution ¢, (). Taking this approach and substituting into (5),
we will have a parametric optimization problem in v:

¥ = argminEy 5)[log g, (0) — logp(6,Y)]. (7)

The above optimization problem can be solved using gradient-based optimization or
fix-point algorithms if the expectation and its derivatives with respect to v can be eval-
uated analytically. Without assuming posterior independence and requiring conjugate
exponential models, posterior approximations of this type are usually much more ac-
curate than a factorized approximation following the mean-field assumptions. However,
the requirement for analytical evaluation of the expectation and its derivatives is also
very restrictive. To address this issue, some recent works have focused on evaluating
these quantities based on stochastic approximation of Monte Carlo integration (Paisley
et al., 2012; Ranganath et al., 2014; Kingma and Welling, 2013). As an alternative,
Salimans and Knowles (2013) proposed a new optimization algorithm which relates (7)
to stochastic linear regression. Compared to classic stochastic approximations, the ran-
domness in the stochastic linear regression approach tends to cancel out and therefore
improves the efficiency of the algorithm. Furthermore, their method can be easily ex-
tended to flexible mixture and hierarchical approximations through exploiting existing
conditional independence structures in the model.

In the next section, we will discuss how the variational Bayes approach can be actu-
ally utilized to accelerate HMC. For this, we construct a fast and accurate approximation
for the computationally expensive potential energy function. The approximation is pro-
vided by variational Bayes and is incorporated in the simulation of Hamiltonian flow.
The variational approximation is obtained similarly to the stochastic linear regression
approach, but is based on a new “score matching” distance and allows for a rich family
of flexible free-form approximate distributions.

3 Variational Hamiltonian Monte Carlo

Besides subsampling, an alternative approach that can save computation cost is to con-
struct fast and accurate surrogate functions for the expensive potential energy functions
(Liu, 2001; Neal, 2011). As one of the commonly used models for emulating expensive-
to-evaluate functions, Gaussian processes (GP) are used in Rasmussen (2003) to approx-
imate the potential energy and its derivatives based on true values of these quantities
(training set) collected during an initial exploratory phase. However, a major drawback
of GP-based surrogate methods is that inference time typically grows cubically in the
size of training set due to the necessity of inverting a dense covariance matrix. This is
especially crucial in high dimensional spaces, where large training sets are often needed
before a reasonable level of approximation accuracy is achieved. Our goal, therefore, is
to develop a method that can scale to large training sets while still maintaining a de-
sired level of flexibility. For this purpose, we propose to use neural networks along with
efficient training algorithms to construct surrogate functions. A typical single-hidden
layer feedforward neural network (SLFN) with scalar output is defined as
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z(0) = vaw;%‘)a (8)

where 7; and v; are the node parameter and output weight for the ith hidden neuron,
o is a nonlinear activation function. Given a training dataset, the estimates of those
parameters can be obtained by minimizing the mean square error (MSE) cost function.
To save training time, randomly assigned node parameters {v;};_, are suggested in
Ferrari and Stengel (2005) and Huang et al. (2006b) where the optimization is reduced to
a linear regression problem with randomly mapped features, which in turn can be solved
efficiently using algebraic approaches. This approach can also be viewed as using an
additive model based on random (adaptive) basis to approximate the target distribution.
Despite its simple form, the random network architecture in (8) has been proven to
approximate a rich class of functions arbitrarily well (Rahimi and Recht, 2008). As a
result, using randomized (as opposed to optimized) networks can provide comparable
approximation accuracy while dramatically reducing the required computational effort.
Unlike a standard Gaussian process, the above neural network surrogate scales linearly
in the size of training data, and cubically in the number of hidden neurons. This allows us
to explicitly balance evaluation time and model capacity. Taking all into consideration,
we use random networks in our surrogate construction.

3.1 Free-Form Variational Bayes

The correspondence between distributions and their potential energy functions builds
a bridge between distribution approximation and function approximation. Viewed this
way, each random neural network in (8) corresponds to a distribution in the exponential
family

4u(6) o< exp(—=2(0)) = expl— > vio(0;7) — ()], (9)

i=1
where v = (v;, ¢ = 1,2,...,s) is called the vector of canonical parameters, and the
collection of randomly-mapped features ¥ = (U;, i = 1,2,...,s), where ¥, = —c(6;~;)
and 1 =1,2,...,s, is known as a sufficient statistic. The quantity ®, known as the log

partition function, is defined by the following integral:

O(v) = log/exp(v - U (0)) db.

Note that ¢, (0) is properly normalized if and only if the integral is finite. Therefore, the
canonical parameters v of interest belong to the set

Q= {v e R°|®(v) < +o0}. (10)
We call ¢, (0) the induced distribution of neural network surrogate z(6) if v € Q.

As our neural network surrogates approximate the true potential energy function
U(6), the underlying distribution ¢,(#) approximates the target posterior distribution
p(0]Y). Because both the surrogate induced distribution, ¢, (), and the target posterior
distribution, p(6|Y’), are known up to a constant, we introduce the following expected
squared distance between unnormalized densities
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Dass p01Y)06)) = 5 [ 0, (8)Va2(6) ~ VoV O)|F b, (1)

which is similar to the well known score matching squared distance (Hyvérinen, 2005)
(see Section 3.3 for a more detailed explanation). By minimizing the expected squared
distance Dgys, we arrive at a variational inference algorithm

b = argmin Dsn (p(01Y)|lgu(0)). (12)

The surrogate induced approximation (9) enriches our choices for variational approx-
imation from fixed-form tractable distributions (e.g., Gaussian or mixture of Gaussians)
to fast and flexible intractable distributions. The integral in (11) is usually hard to eval-
uate in practice but can be approximated using samples from the surrogate induced
distribution g,(#) by the law of large numbers. Unlike the fixed-form approximation,
the surrogate induced distribution generally does not allow for drawing samples directly.
However, we can use MCMC methods to generate samples from this distribution.

Due to the random nature in approximation (9), we refer to (12) as free-form varia-
tional Bayes. By choosing a proper number of hidden neurons s, the free-form variational
Bayes provides an implicit subsampling procedure that can effectively remove redun-
dancy and noise in the data while striking a good balance between computation cost
and approximation accuracy of the underlying distribution.

Remark. From an approximation point of view, each o(6;+) is a basis with a random
configuration of «, which specifies the orientation and scaling properties, within a profile
of the activation function o. In particular we choose the softplus function o(0;w,d) =
log (1 + exp(w - 0 + d)) to approximate the potential function, e.g., the Hamiltonian
corresponding to the posterior distribution, for our free-form variational Bayes method.
Note that as shown in Zhang et al. (2016), different bases can be used in our free-form
variational Bayes formulation. In particular, if an exponential squared kernel is used
as radial basis functions (RBF) centered at given data, the GP method is recovered.
However, by using kernel functions centered at very data point, GP methods do not
effectively exploit redundancy in the data or regularity in parameter space and hence
may result in expensive computation cost as well as instability for large data sets.
Using the exponential squared kernel at a smaller set of properly induced points leads
to a more computationally tractable GP model known as “sparse GP” (Snelson and
Ghahramani, 2006; Quinonero-Candela and Rasmussen, 2005). As shown in Zhang et al.
(2016), compared to kernel functions which are usually local, a random basis based on
the softplus function provides a more compact and better approximation of potential
functions with a good balance between local features and global behaviors. Also the
parameter s (i.e., the number of basis functions) can be tuned to improve flexibility and
accuracy while avoiding overfitting.

3.2 Surrogate Induced Hamiltonian Flow

To sample from the surrogate induced distribution ¢, (6), we generate proposals by sim-
ulating the corresponding surrogate induced Hamiltonian flow governed by the following
equations
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d9 oH

a_ ot 50

dt or M, (13)
dr oH

i _W = —ng(G), (14)

where the modified Hamiltonian is
H(0,7) = 2(0) + K(r).

In practice, we can use the leapfrog scheme to solve (13) and (14) numerically. The end-
point (6*,7*) of the trajectory starting at (6o, o) is accepted with probability

Qyhme = min[L eXp(f{(907 TO) - FI(Q*) T*))] (15)

Similar to the true Hamiltonian flow, we have the following theorem

Theorem 1. If we construct a Markov chain by simulating surrogate induced Hamil-
tonian flow (13) and (14) using leapfrog steps and Metropolis-Hastings correction with
the acceptance probability according to (15), the equilibrium distribution of the chain is

7(0,r) x exp(—z(0) — K(r)).

See Supplementary Materials (Zhang et al., 2017) for a proof.

Theorem 1 implies that the marginal distribution of 6 is exactly the surrogate in-
duced distribution g, (). Therefore, we can run the Markov chain and collect the values
of interest (e.g., the potential energy function and its derivatives) as additional train-
ing data to improve the surrogate approximation (solving (12)) on the fly. This way,
our algorithm can be viewed as a generalized version of the stochastic approximation
algorithm proposed in Salimans and Knowles (2013) for free-form variational Bayes.

3.3 Score Matching

A well-known strategy to estimate unnormalized models is score matching (Hyvérinen,
2005). Assuming that data come from a distribution with unknown density pp(.), we
want to find an approximation with a parametric unnormalized density model g,(.),
where v is an s-dimensional vector of parameters. Score matching estimates the model
by minimizing the expected squared distance between the model score function %, (§) =
Ve log g, (€) and the data score function ¢p () = Velogpp(€)

10 =5 [ p0(O0&) - vl de. (16)

A simple trick was suggested in Hyvérinen (2005) to avoid the expensive estimation
of the data score function tp(€). A similar idea can be applied here to train our neu-
ral network surrogate. Note, however, the data in this case are samples collected from
the parameter space (i.e., £ = 6) for which the density of the posterior distribution
is known up to some constant. The data score function then can be evaluated exactly
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Yp(0) = —VoU(0). This allows us to estimate our density model g, (#) without requiring
samples from the posterior distribution. Since sampling from the posterior distribution
is computationally costly, we sample from the simpler and cheaper surrogate induced
distribution (our variational model) instead. The corresponding expected squared dis-

tance is )

3w =5 [ a.O).(6) - wol6)|F as. (1)
Note that the model score function is ¢, (6) = —Vgz(0), and J(v) is exactly the expected
squared distance Dgjy; we introduced in Section 3.1. In the case that our density model
is not degenerate, we have local consistency similar to Hyvarinen (2005) as shown by
the following theorem.

Theorem 2. Assume that the data density pp(.) follows the model: pp(.) = q,(.) for
some v*. Further, assume that no other parameter value gives a probability density that
is equal to qu+(.), and that ¢,(0) > 0 for all v,0. Then

Jw)=0sv=10"

As such, minimizing the expected squared distance Dgy; would be sufficient to
estimate the model. For a proof, see Supplementary Materials.

Remark. Note that the data score function is

N
¥p(0) =Y Vologp(yn|0) + Vo log p(6).

n=1

We may choose our surrogate function as

N
2(0) = > logp(yn|0) +log p(6). (18)

n=1

Then the data density pp follows the model exactly. In order to reduce computational
cost, our model is usually much simpler than (18) (s < N). This allows us to explore
and exploit the redundancy in the data from a function approximation perspective.

In practice, samples from the surrogate induced distribution can be collected as
observations and our surrogate can be trained by minimizing the empirical version of

J(v). A regularization term could be included to improve numerical stability.

Now suppose that we have collected training data of size ¢ from the Markov chain
history
T = {(0,, VU (0,))},_, € R x RY, (19)

where 6,, is the n-th sample. The estimator of the output weight vector (variational
parameter) can be obtained by minimizing the empirical square distance between the
gradient of the surrogate and the gradient of the potential (i.e., score function) plus an
additional regularization term:

A 1y A
0= argmin 5 Y [ Voz(6n) = VoU (6 |* + 5 [10]1% (20)

n=1
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which has an online updating formula summarized in the following Proposition 1. (See
Supplementary Materials for a detailed proof.) For simplicity, we use the additive nodes
a(0;7:) = o(w; -0+ d;)* .

Proposition 1. Suppose our current estimator of the output weight vector is v*) based
on the current training dataset T = {(0,, VoU(0,))}, 1 € R x R? using s hidden
neurons. Given a new training data point (0141, VeU (0141)), the updating formula for
the estimator is given by

oD — () + W(t+1)(v9U(9t+1) _ At+1'U(t))a (21)
where
-1
WD = c® 4] [Id + A CWAL, |,
At+1 = (A1(9t+1), ceey As(9t+1))7

with  Aj(0i41) = o' (w; - 11 + di)w;, and CW can be updated by the Sherman-
Morrison- Woodbury formula:

oD — c® Wty 00, (22)

The estimator and inverse matrix can be initialized at v(®) = 0, C(©) = %IS. The
online learning can be achieved by storing the inverse matrix C and performing the above
updating formulas, which cost O(d® +ds?) computation and O(s?) storage independent
of t.

3.4 Variational HMC in Practice

The neural network based surrogate is capable of approximating the potential energy
function well when there is enough training data. However, the approximation could be
poor when only few training data are available which is true in the early stage of
the Markov chain simulations. To alleviate this issue, we propose to add an auxiliary
regularizer which provides enough information for the sampler at the beginning and
gradually diminishes as the surrogate becomes increasingly accurate. While, we use the
Laplace’s approximation to the potential energy function, any other fast approximation
could be used in practice. The regularized surrogate approximation then takes the form

Vi(0) = uz(0) + 51— ) (0 — 0 V3U(04)(0 — o),

where 6 is the maximum a posteriori (MAP) estimate and y; € [0,1] is a smooth
monotone function monitoring the transition from the Laplace’s approximation to the
surrogate approximation. Refining the surrogate approximation by acquiring training
data from simulating the regularized surrogate induced Hamiltonian flow, we arrive

INote that our method works for a general class of nonlinear nodes, including the radial basis
functions (RBF)
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Algorithm 2 Variational Hamiltonian Monte Carlo

Input: Regularization coefficient A, transition function p;, number of hidden neurons
s, starting position #) and HMC parameters
Find the Mazimum A Posterior 0¥ and compute the Hessian matriz ViU (L)
Randomly assign the node parameters: {v;}5_,
fort=1,2,...,7 do

Propose (0*,r*) with reqularized surrogate induced Hamiltonian flow, using Vo V¢(6)

Perform Metropolis-Hasting step according to the underlying distribution m ~
exp(=Vi(6) — K (r))
if New state is accepted & t < tp then
Acquire new training data point (0441, VoU (0141))
Update the output weight estimate v**+1) « (21) and the inverse matriz C*H+1
(22)
else
p+D) = ) o) = o®)
end if
end for

at an efficient approximate inference method: Variational Hamiltonian Monte Carlo
(VHMC; Algorithm 2).

In practice, the surrogate approximation may achieve a sufficient level of accuracy so
by early stopping we could avoid unnecessary updating of the output weights. In fact, the
stopping time t( serves as a knob to control the desired approximation quality. Before
stopping, VHMC acts as a free-form variational Bayes method that keeps improving
itself by collecting training data from the Markov chain. After stopping, VHMC performs
as a standard HMC algorithm which samples from the surrogate induced distribution.
VHMC successfully combines the advantages of both variational Bayes and Hamiltonian
Monte Carlo, resulting in higher computational efficiency compared to HMC and better
approximation compared to VB.

4 Experiments

In this section, four experiments are conducted to verify the effectiveness and efficiency
of the proposed Variational HMC framework. In the first two examples, we demonstrate
the performance of VHMC from a pure approximation perspective and compare it to
state-of-the-art fixed-form variational Bayes methods. We then test the efficiency of
VHMC on two machine learning problems with large datasets and compare its perfor-
mance to that of SGLD (Welling and Teh, 2011), which is one of the state-of-the-art
stochastic gradient MCMC methods. Note that compared to standard HMC, our pro-
posed method introduces some additional tuning parameters, such as the number of
random bases s and the transition monitor u;. As a general guideline, we want our
method to be as efficient as possible while maintaining good approximation. Therefore,
we keep s small as long as a reasonable level of accuracy can be achieved; we also keep
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¢ relatively small to ensure enough data are collected for the training procedure. In our
experiments, we found that u; = 1 — exp(—t/ns) is a reasonable schedule where n; can
be adjusted to accommodate different transition speeds according to the complexity of
the model. In practice, we can find the right setting by monitoring the acceptance rate
using an initial run as in Zhang et al. (2016).

4.1 A Beta-Binomial Model for Overdispersion

We first demonstrate the performance of our variational Hamiltonian Monte Carlo
method on a simple example, which considers the problem of estimating the rates of
death from stomach cancer for the largest cities in Missouri (Albert, 2009). The data
consist of 20 pairs (n;,y;), where n; records the number of individuals that were at risk
for cancer in city j, and y; is the number of cancer deaths that occurred in that city.
The counts y; are overdispersed compared to what would be expected under a binomial
model with a constant probability; therefore, Albert (2009) assumes a beta-binomial
model with mean m and precision K:

n; B(Km—l—yj7K(1 —m) +’I’Lj _yj)
Yj B(Km,K(1—m)) ’

plaglon. ) =

and assume the following improper prior:

1 1
m(l—m) (1+ K)?

p(m, K) «

The resulting posterior is extremely skewed (as shown in the bottom right corner in
Figure 1); hence, the following reparameterization:

x1 = logit(m), xo = logit(K),
is used to ameliorate this issue.

We choose iy = 1 — exp(—t/200) as our transition schedule and set up the tuning
parameters of HMC to achieve around 85% acceptance rate. We run the variational
Hamiltonian Monte Carlo long enough so that we can estimate the full approximation
quality of our surrogate. To demonstrate the approximation performance in terms of the
number of hidden neurons, we train the neural network surrogate using different values
of s and examine the resulting KL-divergence and score matching squared distance to the
true posterior density. As we can see from Figures 1 and 2, the neural network surrogate
model indeed offers a high quality approximation and becomes more accurate as s
increases. The surrogate induced Hamiltonian flow effectively explores the parameter
space and transfers information from the posterior to the surrogate.

4.2 Bayesian Probit Regression

Next, we demonstrate the approximation performance of our Variational HMC algo-
rithm relative to existing variational approaches on a simple Bayesian classification
problem using binary probit regression. Given N observed data pairs,
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Figure 1: Approximate posteriors for a varying number of hidden neurons. Exact pos-
terior at bottom right.

KL divergence and SM squared distance

I v
~4-SM

16f |
141 *
1.2 ’

1t ,
0.8} ¢ y
0.6 L.
04l S ‘.

o -

02p -9

o .— P = )

6 9 12 15 18 20 24 27

number of hidden neurons

Figure 2: KL-divergence and score matching squared distance between the surrogate
approximation and the exact posterior density using an increasing number of hidden
neurons.
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we assume a probit likelihood function P(y, = 1|0) = ®(07x,) and a Gaussian prior
N(0,100) on regression parameters; here, ® is the standard Gaussian cdf. A full co-
variance multivariate normal approximation is used for all variational approaches. The
synthetic data we use are simulated from the model, with N = 10000 and d = 5. We com-
pare our algorithm to Variational Bayesian Expectation Maximization (VBEM) (Beal
and Ghahramani, 2002; Ormerod and Wand, 2010), and the best fixed-form variational
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Figure 3: RMSE approximate posterior mean as a function of the number of likelihood
evaluations for difference variational Bayesian approaches and our Variational HMC
algorithm.

approximation of Salimans and Knowles (2013) that uses Hessian and subsampling (FF-
Minibatch). VBEM and FF-Minibatch are both implemented using the code provided
in Salimans and Knowles (2013) with the same learning rate and minibatch size. For all
variational approaches, we initialize the posterior approximation to the prior. For our
Variational HMC algorithm, we choose s = 100 random hidden units for the surrogate
and set the starting point to be the origin. The number of hidden units is chosen so that
the surrogate is flexible enough to fit the target well and remain fast in computation.
The HMC parameters are set to make the acceptance probability around 70%. The
target density is almost Gaussian, and a fast transition u; = 1 — exp(—t/5) is enough
to stabilize our algorithm. Since this experiment is based on synthetic data, we follow
Salimans and Knowles (2013) to assess the approximation performance in terms of the
root mean squared error (RMSE) between the estimate (variational mean for VB and
sample mean for VHMC) and the true parameter that is used to generate the dataset.

Figure 3 shows the performance averaged over 50 runs for the three methods. As
we can see from the graph, VHMC and the subsampling based fixed-form variational
approach (FF-minibatch) achieve lower RMSE than the VBEM algorithm. This is due
to the extra factorization assumptions made by VBEM when introducing the auxiliary
variables (Ormerod and Wand, 2010). Even though Gaussian approximation is already
sufficiently accurate on this simple example, VHMC can still arrive at a lower RMSE
due to the extra flexibility provided by the free-form neural network surrogate function.

4.3 Bayesian Logistic Regression

Next, we test the efficiency of our Variational HMC method as a scalable sampling
method by applying VHMC to a Bayesian logistic regression model. Given the i-th
input vector z;, the corresponding output (label) y; = {0,1} is assumed to follow the
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probability p(y; = 1|z;,8) = 1/(1 + exp(—273)) and a Gaussian prior A'(0,100) is
used for the model parameters 5. We test our proposed algorithm on the a9a dataset
(Lin et al., 2008). The original dataset, which is compiled from the UCI adult dataset,
has 32561 observations and 123 features. We reduce the dimension to 50 by random
projection of the original features. We choose s = 2000 hidden units for the surrogate
and set a transition schedule u; = 1 — exp(—t/500) for our VHMC algorithm. We then
compare the algorithm to HMC (Duane et al., 1987; Neal, 2011) and to stochastic
gradient Langevin dynamics (SGLD) (Welling and Teh, 2011). For HMC and VHMC,
we set the leapfrog stepsize such that the acceptance rate is around 70%. For SGLD we
choose batch size of 500 and use a range of fixed stepsizes.

To illustrate the sampling efficiency of all methods, we follow Ahn et al. (2012) to
investigate the time normalized effective sample size (ESS)? averaged over the 51 param-
eters and compare this with the relative error after a fixed amount of computation time.
The relative error of mean (REM) and relative error of covariance (REC) is defined as

REM, — 2=il% — 55’\7 REC, — > i 105 — ij|’
221871 25 1G5

where A7 = 1370, By, Ct = L1370 _ (By — Be)(By — By)" are the sample mean and
sample covariance up to time ¢, and the ground truth 5° and C° are obtained using a

long run (T = 500K samples) of HMC algorithm.

(23)

Figure 4 shows the relative error at time T = 300, T = 3000 as a function of the time
normalized mean ESS, which is a measure of the mixing rate. The results for the mean
are shown on the top, and those for the covariance are on the bottom. We run each
algorithm with a different setting of parameters that control the mixing rate: number
of leapfrog steps L = [50,40, 30, 20, 10,5, 1] for HMC and L = [50, 40, 30, 20, 10, 5] for
VHMC, and stepsizes € = [2e-3, 1e-3, 5e-4, 1e-4, 5e-5, 1e-5] for SGLD.

As we decrease the stepsize, SGLD becomes less biased in the gradient approxima-
tion, resulting in smaller relative error. However, the exploration efficiency drops at the
same time and sampling variance gradually dominates the relative error. In contrast,
HMC uses a fixed leapfrog stepsize and therefore maintains high exploration efficiency
in parameter space. The downside is the expensive computation of the full gradient
and the possible turning back of the trajectories when the number of leapfrog steps
is unnecessarily large. Adopting a flexible neural network surrogate, VHMC balances
the computation cost and approximation quality much better than subsampling and
achieves lower relative error with high mixing rates.

4.4 Independent Component Analysis

Finally, we apply our method to sample from the posterior distribution of the unmixing
matrix in Independent Component Analysis (ICA) (Hyvérinen and Oja, 2000). Given

N d-dimensional observations X = {x,, € R})_,  we model the data as

2Given B samples, ESS = B[1+2 Zszl ~(k)]~1, where (k) is the sample autocorrelation at lag k
(Geyer, 1992)
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Figure 4: Final error of logistic regression at time T versus mixing rate for the mean
(top) and covariance (bottom) estimates after 300 (left) and 3000 (right) seconds of
computation. Each algorithm is run using different setting of parameters.

d
p(x|W) = | det(W)| H pi(w!'z), (24)

where w; is the i-th row of W and p; is used to capture the true density of the i-th
independent component. Following Welling and Teh (2011), we use a Gaussian prior
over the unmixing matrix p(w;;) = N'(0,0) and assume p;(y;) = [4 cosh(3y;)] ™! with
Yi = ijx We evaluate our method using the MEG dataset (Vigario et al., 1997),
which has 122 channels and 17730 observations. We extract the first 5 channels for our
experiment which leads to samples with 25 dimensions. We then compare our algorithm
to standard HMC and SGLD (Welling and Teh, 2011). For SGLD, we use a natural
gradient (Amari et al., 1996) which has been found to improve the efficiency of gradient
descent significantly. We set ¢ = 100 for the Gaussian prior. For HMC and Variational
HMC, we set the leapfrog stepsize such that the acceptance ratio remains around 70%
and set L = 40 to allow an efficient exploration of the parameter space. For SGLD,
we choose batch size of 500 and use stepsizes from a polynomial annealing schedule
a(b+1t)7%, with a =5 x 1072,b = 10~* and § = 0.5. (This setting reduces the stepsize
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Figure 5: Convergence of Amari distance on the MEG data for HMC, SGLD and our
Variational HMC algorithm.

from 5x107° to 1 x 10~ during le+7 iterations.) For VHMC, we choose s = 1000 hidden
units and set the transition schedule p; = 1 — exp(—/2000). Note that the likelihood
(24) is row-permutation invariant. To measure the convergence of all samplers on this
ICA problem, we therefore use the Amari distance (Amari et al., 1996) d(W, W),
where W is the sample average and W, is the true unmixing matrix estimated using a
long run (T = 100K samples) of standard HMC algorithm.

In Figure 5, the Amari distance as a function of runtime is shown for each method.
From the graph, we can see that SGLD converges faster than standard HMC. The noise
introduced by subsampling is compensated by the fast exploration of the parameter
space; this allows for an early arrival at the high probability domain for SGLD. However,
when the variance dominates the bias, the convergence speed slows down since SGLD
requires annealing (or small) stepsize that inevitably leads to low exploration efficiency.
By maintaining efficient parameter exploration (same stepsize as HMC) while reducing
the computation in simulating the Hamiltonian flow, VHMC outperforms SGLD by
arriving at a lower Amari distance much more rapidly.

5 Conclusion

We have presented a novel approach, Variational Hamiltonian Monte Carlo, for approx-
imate Bayesian inference. Our approach builds on the framework of HMC, but uses a
flexible and efficient neural network surrogate function to approximate expensive gra-
dient evaluations. The surrogate keeps refining its approximation by collecting training
data while the sampler is exploring the parameter space. This way, our algorithm can be
viewed as a free-form variational approach. Unlike subsampling-based MCMC methods,
VHMC maintains the relatively high exploration efficiency of its MCMC counterparts
while reducing the computation cost. Compared to fixed-form variational approxima-
tion, VHMC is more flexible and thus can approximate posterior distributions better.
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As the complexity of the model increases (e.g., high dimensional models), the com-
putational cost of our random network surrogate method would increase since more
random bases might be needed for better approximation. In many cases, however, the
free-style surrogate construction in VHMC can be adjusted to reduce the computation
cost. To this end, we could exploit the underlying structure of a model to construct a
more effective surrogate model. For example, if the structure results in conditional in-
dependence, we could use the corresponding graphical model to build a more structured
surrogate function. Alternatively, we could train the full neural network with sparsity
constraints imposed on the input weights.

Supplementary Material

Variational Hamiltonian Monte Carlo via Score Matching — Supplementary Materials
(DOTI: 10.1214/17-BA1060SUPP; .pdf).
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