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Marginal Pseudo-Likelihood Learning
of Discrete Markov Network Structures

Johan Pensar∗, Henrik Nyman†, Juha Niiranen‡, and Jukka Corander§,¶

Abstract. Markov networks are a popular tool for modeling multivariate distri-
butions over a set of discrete variables. The core of the Markov network representa-
tion is an undirected graph which elegantly captures the dependence structure over
the variables. Traditionally, the Bayesian approach of learning the graph structure
from data has been done under the assumption of chordality since non-chordal
graphs are difficult to evaluate for likelihood-based scores. Recently, there has
been a surge of interest towards the use of regularized pseudo-likelihood methods
as such approaches can avoid the assumption of chordality. Many of the currently
available methods necessitate the use of a tuning parameter to adapt the level of
regularization for a particular dataset. Here we introduce the marginal pseudo-
likelihood which has a built-in regularization through marginalization over the
graph-specific nuisance parameters. We prove consistency of the resulting graph
estimator via comparison with the pseudo-Bayesian information criterion. To iden-
tify high-scoring graph structures in a high-dimensional setting we design a two-
step algorithm that exploits the decomposable structure of the score. Using syn-
thetic and existing benchmark networks, the marginal pseudo-likelihood method
is shown to perform favorably against recent popular structure learning methods.

Keywords: Markov networks, structure learning, pseudo-likelihood, non-chordal
graph, Bayesian inference, regularization.

1 Introduction

Markov networks, also known as undirected graphical models, represent a ubiquitous
modeling framework for multivariate distributions, with applications covering areas such
as statistical physics, computer vision, computational biology and sociology (see Lau-
ritzen, 1996; Koller and Friedman, 2009). In this paper, we consider discrete Markov
networks, adopting the common assumption of positive distributions. To enable model-
ing of high-dimensional distributions, Markov networks exploit structure in the distribu-
tion in form of assumptions of conditional independence among the involved variables.
Markov networks use an undirected graph to compactly capture and represent the de-
pendence structure over variables. Although the ultimate goal of a Markov network is
to efficiently represent a multivariate distribution, the graph alone is also useful for
gaining insight into complex dependency patterns among large collections of variables.
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In this paper, we consider the problem of learning the graph structure from a collec-
tion of independent and identically distributed samples drawn from the distribution of
a Markov network. This task is very challenging due to the extremely vast model space,
for d variables the number of possible graphs is 2d(d−1)/2. Moreover, one needs a sound
approach for efficiently comparing the plausibility of different graphs for a given dataset.
For the related class of Bayesian networks, the Bayesian score (Heckerman et al., 1995)
has become the most popular measure for this purpose. In addition to the solid per-
formance, an important reason behind the popularity of the Bayesian score is that the
marginal likelihood can be efficiently evaluated by a closed-form expression. Unfortu-
nately, likelihood-based techniques are in general intractable for non-chordal Markov
networks due to a normalizing factor known as the partition function. By restricting
the graph space to chordal graphs, it is possible to perform likelihood-based inference
since the distribution of chordal Markov networks can be genuinely factorized according
to the graph. However, since the chordality assumption is restrictive and may seriously
bias learning of dependencies among variables, considerable interest has been targeted
towards making learning of non-chordal networks tractable in high-dimensional settings.

As a computationally more convenient alternative to the likelihood function, Besag
(1975) introduced the pseudo-likelihood function which approximates the likelihood
function by a product of local conditional likelihoods of the random variables involved
in the modeled system. The pseudo-likelihood approach has during the last few decades
paved the way for an array of learning methods applicable on larger systems (Ji and
Seymour, 1996; Csiszár and Talata, 2006; Meinshausen and Bühlmann, 2006; Höfling
and Tibshirani, 2009; Ravikumar et al., 2010; Aurell and Ekeberg, 2012; Ekeberg et al.,
2013; Lowd and Davis, 2014; Barber and Drton, 2015). In particular, Meinshausen and
Bühlmann (2006) introduced the popular regression-based Lasso for Gaussian graphical
models which was later adapted to discrete Ising models (Ravikumar et al., 2010; Barber
and Drton, 2015). In addition to the mentioned learning methods, Heckerman et al.
(2000) introduced a pseudo-likelihood-type model class known as dependency networks.
Again, the main motivation behind the proposed model class was the possibility of
performing efficient model learning.

The main contribution of this work is introducing the marginal pseudo-likelihood
(MPL) as a tractable alternative to the marginal likelihood in the context of learning
the graph structure of a Markov network. We show that the MPL has a built-in regular-
ization of the model complexity as a result of marginalization over some graph-specific
nuisance parameters associated with the pseudo-likelihood. In particular we show that
the resulting score function can be considered a small sample analytical version of the
consistent pseudo-Bayesian information criterion (PIC) by Csiszár and Talata (2006).
The MPL is well-suited for high-dimensional applications since it can be evaluated
in closed form for both chordal and non-chordal Markov networks. Moreover, we show
that the factorization of the MPL makes it particularly convenient for search algorithms
based on single edge changes.

The structure of the remaining article is as follows. In Section 2, the basic properties
of Markov networks are reviewed and the structure learning problem is presented. In
Section 3, we derive the marginal pseudo-likelihood score, examine its asymptotic prop-
erties, and discuss related work. In Section 4 we examine the computational complexity
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of the MPL and explain how the factorization of the MPL can be used to speed up
learning procedures. In addition, we introduce a search algorithm which can be used
to find high-scoring graphs in a high-dimensional setting. Section 5 demonstrates the
favorable performance of our method against other popular recent alternatives in ex-
tensive numerical experiments, and finally Section 6 provides some additional remarks
and conclusions. The supplementary Appendix (Pensar et al., 2016) contains a proof
of the consistency theorem, pseudocode of the search algorithms, and detailed results
from the experiments.

2 Structure learning of Markov networks

We consider a set of d discrete random variables X = {X1, . . . , Xd} where each variable
Xj takes values from a finite set of outcomes Xj . By letting V = {1, . . . , d} denote the
indices of the variables, a subset S ⊆ V of the variables is denoted by XS = {Xj}j∈S .
The corresponding joint outcome space is specified by the Cartesian product XS =
×j∈SXj . The cardinality of an outcome space is denoted by |XS |. We use a lowercase
letter xS to denote that the variables have been assigned a specific joint outcome in XS .
Finally, we let x denote a dataset consisting of n i.i.d. complete joint observations over
the d variables.

2.1 Markov networks

AMarkov network overX is an undirected probabilistic graphical model that compactly
represents a joint distribution over the variables. The dependence structure over the d
variables is specified by an undirected graph G = (V,E) where the nodes V = {1, . . . , d}
correspond to the indices of the variables and the edges E ⊆ {V × V } represent depen-
dencies among the variables. A node i is a neighbor of j (and vice versa) if {i, j} ∈ E.
The set of all neighbors of a node j is called the Markov blanket of node j and is de-
noted by mb(j). A clique in a graph is a subset of nodes, C ⊆ V , for which every pair
of nodes are connected by an edge, that is {i, j} ∈ E if i, j ∈ C. A clique C is said to
be maximal if for any superset of nodes C ′ ⊃ C, C ′ is not a clique. The set of maximal
cliques associated with a graph is denoted by C(G). The complete set of undirected
graphs is denoted by G. As is common in the graphical model literature, the terms node
and variable are occasionally used interchangeably in this article.

The absence of edges in the graph G = (V,E) of a Markov network encodes state-
ments of conditional independence as characterized by the global Markov property. More
specifically, for any three disjoint subsets A,B, S of V , the variables XA and XB are
conditionally independent given XS if S separates A and B. To fully specify a Markov
network, one must in addition to the graph also define a probability distribution that
satisfies the conditional independence restrictions imposed by the graph G. A distri-
bution is said to be faithful to G if it does not satisfy any additional independencies
not conveyed by the graph. We assume that the distribution is positive, meaning that
p(x) > 0 for all x ∈ X . The positivity assumption ensures that the joint distribution of
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a Markov network can be factorized over the maximal cliques in the graph according to

p(x) =
1

Z

∏
C∈C(G)

φ(xC), (1)

where φ(xC) : XC → R+ is a clique factor (or potential) and Z =
∑

x∈X
∏

C∈C(G) φ(xC)
is a normalizing constant known as the partition function. Alternatively, Markov net-
works are often parameterized in terms of a log-linear model (see Whittaker, 1990).

2.2 Structure learning

There are two main tasks associated with fitting graphical models to data; parameter
estimation and structure learning. In this work, we focus entirely on the latter. By
structure learning, we refer to the process of inferring the dependence structure from
a set of data assumed to be generated from an unknown Markov network. In many
applications, the structure is a goal in itself in the sense that one wants merely to
gain a qualitative insight into the dependence structure of an underlying process. If
the distribution needs also to be explicitly estimated, this can be achieved by using
any of several existing parameter estimation methods conditional on the fixed structure
learned by our approach (see e.g. Liu and Ihler, 2012; Mizrahi et al., 2014).

The most fine-grained structure learning methods aim at recovering distinct features
in the log-linear parameterization, this approach is commonly referred to as feature se-
lection (Pietra et al., 1997; Lee et al., 2006; Höfling and Tibshirani, 2009; Ravikumar
et al., 2010; Lowd and Davis, 2014). In contrast to the very specific feature selection
problem, the model space of our approach is formulated in terms of the graph structure
alone. Although a very detailed structure may better emulate the properties of a dis-
tribution without imposing redundant parameters, a drawback is the risk of overfitting
the structure through long specialized features. Since every pair of variables in a feature
results in an edge, sparsity in the number of features does not in general correspond to
sparsity in the number of edges in the graph (see Koller and Friedman, 2009). This can
pose problems for example from the perspective of performing inference in the model,
since inference algorithms are often designed to exploit sparsity in the graph. Addition-
ally, in terms of knowledge discovery, a dense graph may in the worst case hide the
primary layer of the dependency pattern.

Structure learning methods can roughly be divided into two categories; constraint-
based and score-based. Constraint-based approaches aim at inferring the structure
through a series of independence tests (Spirtes et al., 2000; Tsamardinos et al., 2003;
Bromberg et al., 2009; Anandkumar et al., 2012). The score-based approach formulates
structure learning as an optimization problem. This requires a score function by which
the plausibility of the different candidates can be evaluated. Additionally, this requires
an optimization algorithm for finding high-scoring graphs since an exhaustive evalu-
ation is in general infeasible. The local approach of constraint-based methods allows
them to scale up well but it makes them more sensitive to failures in the individual
tests. Score-based methods work on a global level by considering the whole structure
at once making them less sensitive to local failures, however, it has a negative effect on
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their scalability. Although the MPL as such falls in the score-based category, under the
introduced search algorithm, our final method could rather be considered a hybrid by
which we aim to achieve scalability as well as reliable performance.

3 Marginal pseudo-likelihood

The most common criterion for evaluating the model fit with respect to a dataset x is
by maximizing the likelihood function p(x | θG) over the model parameters θG which
specify the distribution for a given graph G. Since the likelihood function attains its
maximum value under the complete graph, the expressiveness of the models must be
constrained (Chow and Liu, 1968) or regulated by adding a sparsity-promoting penalty
function (Akaike, 1974; Schwarz, 1978; Lee et al., 2006).

A well-established alternative to explicitly penalizing the complexity of a model is
given by the Bayesian framework. In the Bayesian approach, a graph is scored by its
posterior probability given the data,

p(G | x) = p(x | G) · p(G)

p(x)
.

In practice it suffices to consider the unnormalized posterior probability

p(G,x) = p(x | G) · p(G), (2)

since p(x) is a normalizing constant that can be ignored when comparing graphs. The
key factor of (2) is p(x | G) which is the marginal likelihood of the data given the net-
work structure (also called the evidence). To evaluate the marginal likelihood, one must
integrate the likelihood function over all parameter values satisfying the restrictions
imposed by the graph according to

p(x | G) =

∫
p(x | θG) · f(θG)dθG,

where f(θG) is a prior distribution that assigns a weight to each possible instantiation
of θG. Since the marginal likelihood accounts for the parameter uncertainty through the
prior, it implicitly regulates the fit to the data against the complexity of the network.

A significant drawback of likelihood-based scores is that they, due to the partition
function, are extremely hard to evaluate for non-chordal Markov networks. In order to
avoid this problem, one can preferably use alternative objective functions that possess
favorable properties from a computational perspective. In particular, our score is based
on the pseudo-likelihood function by Besag (1975).

3.1 Derivation

The pseudo-likelihood function approximates the likelihood function by a product of
conditional likelihood functions according to

p̂(x | θ) =
d∏

j=1

p(xj | xV \j , θ).



1200 Marginal Pseudo-Likelihood

For a fixed graph structure G, each variable in a Markov network is conditionally inde-
pendent of the remaining variables given its Markov blanket. Consequently, the pseudo-
likelihood for a fixed graph is given by

p̂(x | θG) =
d∏

j=1

p(xj | xmb(j), θG). (3)

In terms of maximization, the pseudo-likelihood approximation offers huge computa-
tional savings compared to the true likelihood since the global normalizing constant in
the likelihood function is replaced by d local normalizing constants (see e.g. Koller and
Friedman, 2009, Section 20.6.1). By replacing the likelihood with the pseudo-likelihood,
methods originally based on the maximum likelihood (Schwarz, 1978; Lee et al., 2006)
have been extended to work on larger systems (Ji and Seymour, 1996; Csiszár and Ta-
lata, 2006; Höfling and Tibshirani, 2009; Ravikumar et al., 2010). Moreover, different
pseudo-likelihood-based structure estimators have been shown to be consistent under
the assumption that the data is generated by a distribution in the model class (Ji and
Seymour, 1996; Csiszár and Talata, 2006; Ravikumar et al., 2010).

From a Bayesian perspective, the structural form of (3) offers an interesting possi-
bility. In fact, under certain simplifying assumptions it enables an analytical evaluation
of the integral

p̂(x | G) =

∫
p̂(x | θG) · f(θG)dθG, (4)

which is here referred to as the marginal pseudo-likelihood (MPL).

We parameterize the conditional probabilities associated with the pseudo-likelihood
function of a graph by

θijl = p(Xj = x
(i)
j | Xmb(j) = x

(l)
mb(j)). (5)

The indices i = 1, . . . , rj and l = 1, . . . , qj , where rj = |Xj | and qj = |Xmb(j)| =∏
i∈mb(j) ri, represent the configurations of the variable and its respective Markov blan-

ket. The above set of graph-specific parameters is by no means a compact representation
of a Markov network, however, rather than actual model parameters, they should be
considered temporary nuisance parameters. Similarly as above, we define counts nijl

representing the number of times in the data x that the variable Xj has taken on
value i given that the Markov blanket Xmb(j) has taken on configuration l. The pseudo-
likelihood function can now be expressed in terms of our introduced notation by

p̂(x | θG) =
d∏

j=1

qj∏
l=1

rj∏
i=1

θ
nijl

ijl .

Under the current parameterization it is easy to make out certain structural similarities
between the above pseudo-likelihood function and the likelihood function of a Bayesian
network under a standard conditional parameterization (Heckerman et al., 1995, Equa-
tion (18)). In a Bayesian network the l-index would be associated with configurations
of parent sets instead of configurations of Markov blankets. To carry on the analogy,



J. Pensar, H. Nyman, J. Niiranen, and J. Corander 1201

the parent sets in Bayesian network must satisfy the acyclicity constraint whereas the
Markov blankets must be mutually consistent.

Under certain assumptions listed by Heckerman et al. (1995) the marginal likelihood
of a Bayesian network has a nice analytic expression that factorizes variable-wise making
it attractive for the task of structure learning. We consider the parameters defined in
(5) in terms of the sets

θjl = ∪rj
i=1{θijl}, θj = ∪qj

l=1{θjl}, and θG = ∪d
j=1{θj}.

One of the fundamental assumptions behind the derivation of the marginal likelihood for
Bayesian networks is an assumption regarding global and local parameter independence
(Heckerman et al., 1995, Assumption 2) which ultimately justifies a factorization of the
parameter prior in a similar fashion as the likelihood. Analogously, we need to factorize
the parameter prior in (4) in a similar fashion as the pseudo-likelihood according to

f(θG) =

d∏
j=1

f(θj) =

d∏
j=1

qj∏
l=1

f(θjl), (6)

implying that θj ⊥ θj′ for j �= j′ and θjl ⊥ θjl′ for l �= l′. We note that the above
assumption violates the properties of a Markov network in the sense that the conditional
distributions, represented by our parameters, must satisfy certain algebraic relations for
them to be consistent with a distribution of a Markov network (cf. consistent dependency
networks, Heckerman et al., 2000). The main justification behind the assumption is
computational convenience and it is explicitly or implicitly assumed by most pseudo-
likelihood-based techniques.

Under the parameter independence assumption, the integral in (4) can be reordered
into a product of local integrals:

p̂(x | G) =

∫
p̂(x | θG) · f(θG)dθG =

d∏
j=1

qj∏
l=1

∫ rj∏
i=1

θ
nijl

ijl · f(θjl)dθjl.

By finally assuming that each parameter set follows a Dirichlet distribution,

θjl ∼ Dirichlet(α1jl, . . . , αrjjl),

the MPL is easily solved by standard Bayesian calculations giving the closed-form ex-
pression

p̂(x | G) =

d∏
j=1

qj∏
l=1

Γ(αjl)

Γ(njl + αjl)

rj∏
i=1

Γ(nijl + αijl)

Γ(αijl)
,

where njl =
∑rj

i=1 nijl and αjl =
∑rj

i=1 αijl. We specify the hyperparameters by setting
αijl = 1/2 which results in Jeffreys’ prior for the multinomial distribution. Note that the
MPL under the current assumptions factorizes into variable-wise marginal conditional
likelihoods or, since we for computational reasons use the log-version, a sum of variable-
wise scores:

log p̂(x | G) =

d∑
j=1

log p(xj | xmb(j)). (7)
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We refer to the score of a single variable as the local MPL of that specific variable.

In addition to the MPL, the final score also contains a graph prior p(G) through
which it is possible to incorporate any prior beliefs regarding, for example, degree of
sparsity. Ideally, the prior should be defined in terms of mutually independent prior
beliefs on the individual Markov blankets. This way the convenient decomposition of
the MPL (7) is maintained in the final score function and can be exploited to speed up
the search procedure. Since our main interest lies in the high-dimensional setting, we
take inspiration from the extended Bayesian information criterion (see e.g. Barber and
Drton, 2015) and define our graph prior in terms of the number of edges |E| according
to

log p(G) = |E| log(d)− C,

where C is a normalizing constant that can be ignored when comparing graphs. The
prior further penalizes the inclusion of an edge by a constant term determined by the
number of nodes d. The effect of the prior will be strongest in situations when the
number of nodes d is large compared to the sample size n. On the other hand, the effect
of the prior vanishes as the sample size increases. Note that the proposed prior can be
reformulated in terms of the size of the individual Markov blankets |mb(j)| according
to

log p(G) =
d∑

j=1

log p(mb(j)) =
d∑

j=1

[ |mb(j)|
2

log(d)
]
− C,

such that the decomposition of the final score function is maintained.

3.2 Asymptotic behavior

Consistency is an important asymptotic property preferably satisfied by a scoring func-
tion. By consistency we mean that, under the assumption that the generating distribu-
tion is faithful to a Markov network structure, the score will favor the true graph when
the sample size tends to infinity. The following theorem establishes that the MPL-based
graph estimator is indeed consistent.

Theorem 1. Let G∗ ∈ G be the true graph structure of a Markov network, over d
variables, which has a positive and faithful distribution. Let x be a sample of size n
generated from the model. The local MPL estimator

m̂b(j) = argmax
mb(j)⊆V \j

p(xj | xmb(j))

is consistent in the sense that m̂b(j) = mb∗(j) eventually almost surely as n → ∞ for
j = 1, . . . , d. Consequently, the global MPL estimator

Ĝ = argmax
G∈G

p̂(x | G)

is consistent in the sense that Ĝ = G∗ eventually almost surely as n → ∞.
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Proof. See Section S1 in the Appendix.

Consistency is a reassuring property validating the concept of MPL theoretically,
however, it is also important to investigate how well a score function performs in practice
for limited sample sizes. In Section 5 we do a series of large-scale numerical simulations
to investigate how well our MPL method performs in comparison with other methods.

3.3 Related work

The concept of using pseudo-likelihood for Markov network learning is closely related
to a class of models known as dependency networks (Heckerman et al., 2000). Similar
to the pseudo-likelihood, the distribution of a dependency network is represented by
variable-wise conditional distributions. The main advantage of dependency networks
is that they are very convenient from a learning perspective, which is also the main
motivation behind the pseudo-likelihood. However, in contrast to a Markov network, a
dependency network is in general not consistent with a single joint distribution, that is,
there is no joint distribution from which the conditional distributions can be obtained
through inference.

Regression-based techniques (Meinshausen and Bühlmann, 2006; Ravikumar et al.,
2010; Lowd and Davis, 2014; Barber and Drton, 2015) can be viewed as learning the
structure of a general dependency network, which is then transformed into a Markov
network structure. Analogously, our method can be viewed as finding a bi-directional
dependency network structure, which is then converted into an undirected graph with
the same structural adjacencies. In fact, the MPL of a Markov network is essentially
equivalent to what would be the marginal likelihood of a (non-consistent) bi-directional
dependency network under a complete parameterization. Bi-directionality corresponds
to structural consistency in that i ∈ mb(j) iff j ∈ mb(i). Note that bi-directionality is a
prerequisite for a dependency network to be consistent with the joint distribution of a
Markov network (Heckerman et al., 2000, Theorem 4).

4 Optimizing the marginal pseudo-likelihood

4.1 Computational complexity

We begin this section by examining the computational complexity of the MPL. The
(log-)MPL is calculated by the sum

d∑
j=1

[ qj∑
l=1

[
log Γ(αjl)− log Γ(njl + αjl) +

rj∑
i=1

[log Γ(nijl + αijl)− log Γ(αijl)]
]]
,

which consists of
∑d

j=1 qj(2+2rj) terms. Since rj = |Xj | does not depend on the graph,
the number of terms, associated with a node j, is mainly determined by the number
of Markov blanket configurations, qj , which grows exponentially with the size of the
Markov blanket. Still, it is important to note that the partial sum associated with a
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specific combination of j and l does not contribute to the MPL if njl = 0, that is, if
the corresponding Markov blanket configuration is not represented in the data. Con-
sequently, the maximum number of terms evaluated by a non-naive implementation is∑d

j=1 min(qj , n)(2 + 2rj) where n is the number of observations in the dataset. Fur-
thermore, for a large Markov blanket, the number of distinct configurations present in
a dataset is, in practice, usually far less than min(qj , n).

If we look at the MPL from an optimization perspective, it is easy to see that its
variable-wise decomposition (7) makes it a convenient candidate for search algorithms
based on local changes. To compare the plausibility of two graphs, G1 = (V,E1) and
G2 = (V,E2), we can calculate the log-ratio of their MPLs,

logK(G1, G2) = log p̂(x | G1)− log p̂(x | G2), (8)

which is basically a pseudo-version of log-Bayes factor. Assume there is a single edge
difference,

{E1 ∪ E2} \ {E1 ∩ E2} = {i, j},

between the graphs. This implies that mb(i) and mb(j) are the only Markov blankets
that differ in the two graphs. Consequently, log-Bayes pseudo-factor is simply evaluated
by

logK(G1, G2) = log p(xi | xmb1(i)) + log p(xj | xmb1(j))

− log p(xi | xmb2(i))− log p(xj | xmb2(j))
(9)

since the rest of the terms cancel each other out.

4.2 A search algorithm

The straightforward MPL-based optimization problem is formulated by

argmax
G∈G

[
log p̂(x | G) + log p(G)

]
,

or given that our prior factorizes,

argmax
{mb(j)⊆V \j}j∈V

d∑
j=1

[
log p(xj | xmb(j)) + log p(mb(j))

]

subject to i ∈ mb(j) ⇒ j ∈ mb(i) for all i, j ∈ V.

(10)

We refer to the above problem as global MPL optimization.

Due to the vast discrete optimization space, the above problem is clearly intractable
for large systems. Hence, we need to construct an algorithm for finding approximate so-
lutions of satisfactory quality in a reasonable time. To ensure applicability in a genuinely
high-dimensional setting, the algorithm is designed to exploit the structural decompo-
sition of the MPL by breaking down the problem into two phases.
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In the first phase, the structural consistency constraint, corresponding to the re-
striction in problem (10), is omitted resulting in a relaxed problem consisting of d
independent Markov blanket discovery problems:

argmax
mb(j)⊆V \j

[
log p(xj | xmb(j)) + log p(mb(j))

]
for j = 1, . . . , d. (11)

The first phase of the algorithm is thus similar in spirit to regression-based techniques
meaning that the independent subproblems can be solved in parallel considerably im-
proving real time efficiency. We refer to this as local MPL optimization since each node
is optimized locally and independently of the other nodes.

By solving the relaxed problem, we obtain a collection of Markov blankets which
usually are inconsistent with an undirected graph. The go-to approach among regression-
based methods is simply to post-process the solution using either an AND-criterion (∧),

E∧ = {{i, j} ∈ {V × V } : i ∈ mb(j) ∧ j ∈ mb(i)},

or an OR-criterion (∨),

E∨ = {{i, j} ∈ {V × V } : i ∈ mb(j) ∨ j ∈ mb(i)}.

From an MPL optimization perspective, neither of the above solutions is satisfactory. We
therefore apply a second optimization phase whose goal is to combine the inconsistent
Markov blankets from the first phase into a coherent structure which is MPL-optimal
on a reduced model space determined by the relaxed solution. More specifically, the
edge set given by E∨ is considered to be the result of a prescan that identifies eligible
edges. We then construct a reduced model space from E∨ according to

G∨ = {G ∈ G : E ⊆ E∨}. (12)

The aim of the second phase is to solve the original problem with respect to the reduced
model space:

argmax
G∈G∨

[
log p̂(x | G) + log p(G)

]
. (13)

The reduced model space G∨ is in general considerably smaller than G.
To summarize, instead of tackling the original problem (10), we propose the following

approach:

1. Phase 1: Solve the relaxed problem (11).

2. Intermediate step: Form the reduced model space (12).

3. Phase 2: Solve the original problem on the reduced model space (13).

Under the proposed search algorithm, true edges can obviously be discarded during
the first phase of the search. However, since the first phase attempts to maximize the
MPL on a local level, the idea is that an edge that is not included from either direction
in the first phase is less likely to be included in the second phase when attempting to
maximize the MPL on a global level. Next we look at two simple approximate algorithms
for solving the local and global problem in Phase 1 and Phase 2, respectively.
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Phase 1 – An algorithm for local MPL optimization

To solve the relaxed problem, we basically need a Markov blanket discovery algorithm
whose goal is to optimize the local MPL for each node independently of the solutions of
the other nodes. For this we use an approximate deterministic hill climbing procedure
similar to the interIAMB algorithm by Tsamardinos et al. (2003).

Pseudocode of the algorithm is presented in Algorithm 1 in Section S2 (Appendix)
and the general idea is as follows. The algorithm is based on the two basic operations
by which members are added to or deleted from the Markov blanket. The method is
initiated with the empty Markov blanket and all other nodes are considered potential
Markov blanket members. At each iteration, the method adds to the Markov blanket
the node that induces the greatest improvement to the local MPL and updates the set of
potential members accordingly. The algorithm interleaves each successful addition-step
with a deletion phase. In the deletion phase, the algorithm removes the node that induces
the largest improvement to score. The deletion-step is repeated until removal of a node
no longer increases the score. When the addition-phase is iterated through without a
successful addition, a local maximum has been reached, the algorithm terminates and
returns the identified Markov blanket.

Phase 2 – An algorithm for global MPL optimization

As mentioned earlier, the variable-wise factorization of the MPL makes it particularly
well-suited for search algorithms based on local edge changes. We therefore propose an
algorithm that moves between neighboring graph structures. The set of neighbors of a
graph G in a graph space G is denoted by NG(G) and defined as all graphs in G that
can be reached from G by adding or removing a single edge.

Pseudocode of the algorithm is presented in Algorithm 2 in Section S2 (Appendix)
and the general idea is as follows. The empty graph is set as the initial graph. At each
iteration, all neighbors of the current graph in the considered graph space (in our case
G∨) are evaluated. At the end of the iteration, we choose the highest scoring graph from
the neighbors, assuming that it has a higher score than the current graph, and repeat
the procedure. If no candidate among the neighbors has a higher score than the current
graph, a local maximum has been reached, the algorithm terminates and returns the
identified graph.

By implementing smart caching, the efficiency of the algorithm can be improved
considerably. First of all, by storing the log-scores of each node of the current graph,
the only log-scores that need to calculated when evaluating a neighbor are those of
the two nodes whose Markov blankets differ with respect to the current graph, that
is, the two first terms in (9), given that G2 is the current graph, along with the two
corresponding prior terms. Moreover, most of the log-ratios (8) between the current
graph and its neighbors will be preserved for the next graph and its corresponding
neighbors. By storing the log-ratio of each neighbor from the previous iteration, only
a small fraction of the neighbor set needs to be re-evaluated at each iteration. For
example, for the complete graph space G over d nodes, only 2(d − 1) of the

(
d
2

)
− 1

neighbors need to be re-evaluated.
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5 Experimental results

The purpose of this section is to empirically investigate the performance of the MPL
using the optimization algorithm described in the previous section. We evaluate our
approach by comparing it to other state-of-the-art methods on synthetic models as well
as known real-world networks. Since the graph structures of the generating models are
known, it allows for a controlled and systematical comparison of the methods.

We assess the quality of an identified network structure by the Hamming distance
which is the number of occurrences where an actual edge is missing or a non-edge is
present. Consequently, a low value on the Hamming distance corresponds to structural
resemblance to the true network structure and the minimum value of zero is obtained
for the correct graph. In addition to structural resemblance, we monitor the execution
times for the different methods. The methods in the experiments were implemented and
run in MATLAB R© (R2014a). For a more detailed overview of the results, see Section S3
in the Appendix.

5.1 Synthetic Markov networks

In the first experiment, we used synthetic models to generate datasets of different sizes.
For simplicity, we restricted the models to binary variables. The synthetic graphs were
formed by combining disconnected 16-node components representing various structural
characteristics (see Figure 1). Initially, one replica of each graph component was com-
bined to form a graph over 64 nodes. This procedure was then repeated with 2, 4, and
8 replicas to form graphs over 128, 256, and 512 nodes, respectively. Each final graph
thereby contained all the structural characteristics present in the graph components.
The disconnected nature of the final network facilitates the sampling procedure sub-
stantially since each disconnected component can be sampled independently of the rest
of the network directly from its joint distribution. In practice, a distribution was gener-
ated by randomly sampling the maximal clique factors in (1). Each factor value φ(xC)
was drawn, independently of the other values, from a uniform distribution over (0, 1).
Consequently, the strength of the dependencies entailed by the edges may have varied
considerably. To increase the stability of our results, for each sample and graph size, we
generated 100 distributions and corresponding samples over which the final results were
averaged. The experiments were performed for sample sizes ranging from 250 to 8000.

We compared the MPL against the following structure learning methods which are
also applicable in high dimensions:

• PIC: The PIC criterion by Csiszár and Talata (2006) was applied using the exact
same search technique as was introduced for the MPL method. From the proof
of Theorem 1, we know that MPL and PIC result in asymptotically equivalent
estimators, but here we examine how they perform in practice for limited sample
sizes.

• PCskeleton: We applied the PC algorithm (Spirtes et al., 2000) which was devel-
oped for the purpose of identifying a partially directed acyclic graph (PDAG). Al-
though the PC algorithm was originally intended for structure learning of Bayesian
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Figure 1: Four different 16-node graph components used to form the synthetic network
structures.

networks, its initial phase is also directly applicable to Markov networks. Starting
from a complete graph, the first phase of the method performs a series of indepen-
dence tests to discover a so-called skeleton which captures all direct dependencies
in form of an undirected graph. If the underlying model is a Markov network with a
faithful distribution, the skeleton corresponds to the structure of the Markov net-
work. To test for conditional independence we used a Bayesian score test which has
been shown to perform better than a traditional χ2-test in this context (Abellán
et al., 2006). We set the hyperparameters to 0.5 and restricted the fan-in of the
PC algorithm to 5, meaning that the maximum number of conditioning variables
in a test was restricted to 5. The PC algorithm was performed using the Bayes
net toolbox for MATLAB (Murphy, 2001).

• L1LR-BICγ: We applied the �1-regularized logistic regression (L1LR) approach
by Barber and Drton (2015) which is directly applicable to our models since we
have restricted the experiments to binary variables. The method is based on the
approach by Ravikumar et al. (2010) and uses an extended Bayesian information
criterion (BICγ) to select a Markov blanket among a set of candidates obtained
from the regularization path. We set the value of the γ-parameter to 0.5. Since
the collection of Markov blankets may contain inconsistencies, the final graph was
formed using both the ∧- and the ∨-criterion. The �1-regularized logistic regression
was performed using the L1General package for MATLAB (Schmidt, 2010).

In Table 1 the average Hamming distances are listed for the different methods and
model sizes. For details regarding true and false positives, see Table 1 in Section S3.
Throughout the experiment, the MPL method obtained significantly lower Hamming
distances than the other methods, which were overall quite equal. The PIC method
was the most conservative of the methods resulting in an improved performance as the
model size grew. The PC method, on the other hand, required a large sample size to
keep down the number of false positives, especially when the model size was large. For
the L1LR method, the ∨-version was slightly better than the ∧-version as long as the
sample size was large in relation to the model size, otherwise the ∧-version was more
stable. In terms of speed (see Table 2 in Section S3), the PC method was the fastest,
however, the MPL- and PIC-based methods also performed at a comparable level. The
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d n/1000 MPL PIC PCskeleton
L1LR-BIC0.5

∧ ∨

64

.25 50.0± 5.8 56.7± 3.5 56.8± 6.2 54.3± 4.5 53.4± 5.7
.5 37.7± 6.1 48.9± 3.4 44.1± 5.6 44.6± 4.9 43.5± 5.0
1 25.7± 4.7 39.1± 4.7 34.1± 5.2 35.3± 5.6 33.3± 5.8
2 19.8± 3.9 30.4± 4.3 27.4± 4.1 28.2± 5.0 26.5± 4.9
4 15.8± 3.5 23.3± 3.6 22.5± 3.9 21.9± 4.8 20.9± 4.7
8 11.8± 2.7 18.4± 3.1 17.1± 2.9 15.5± 3.6 15.3± 4.2

128

.25 104.6± 8.4 114.0± 5.3 124.3± 9.8 111.3± 6.4 112.5± 8.4
.5 75.6± 8.0 97.0± 5.4 93.4± 7.7 90.8± 6.8 89.0± 7.6
1 55.1± 6.7 79.4± 5.9 73.9± 7.0 74.8± 7.1 72.3± 7.9
2 39.5± 4.9 59.8± 5.6 56.2± 5.7 56.8± 6.3 55.0± 6.2
4 31.8± 5.1 46.3± 5.2 45.1± 5.8 44.6± 7.5 42.3± 7.4
8 24.7± 4.7 36.4± 4.5 35.1± 5.1 33.6± 6.3 32.8± 6.7

256

.25 218.8± 11.8 230.2± 7.5 278.4± 12.6 228.4± 8.5 240.4± 10.5
.5 164.1± 12.3 196.6± 8.7 207.2± 13.5 191.6± 9.6 195.1± 11.5
1 113.2± 9.9 159.1± 8.3 155.5± 9.9 152.3± 9.2 152.5± 10.0
2 82.8± 7.9 119.6± 8.3 119.1± 9.6 120.6± 9.6 118.2± 11.3
4 63.5± 6.7 91.1± 6.9 91.9± 7.7 91.5± 9.9 89.8± 9.6
8 50.1± 6.0 73.1± 5.4 72.1± 7.1 69.5± 8.3 69.0± 11.2

512

.25 464.4± 17.7 475.1± 13.1 632.2± 22.5 473.6± 13.6 519.2± 16.3
.5 342.5± 18.7 396.8± 10.7 460.3± 18.4 395.5± 12.6 416.6± 18.2
1 236.7± 13.8 318.2± 11.1 335.1± 15.6 317.5± 12.6 326.6± 16.2
2 170.0± 11.9 240.9± 12.7 251.2± 14.4 249.8± 15.4 253.5± 16.5
4 130.9± 9.7 184.0± 9.4 193.1± 12.3 192.2± 15.4 194.0± 15.5
8 103.0± 8.7 149.1± 8.8 149.9± 9.7 145.5± 12.7 146.7± 13.8

Table 1: Hamming distances (mean ± standard deviation) in the synthetic network
experiments (d = number of nodes, n = sample size). The shade of the cell colors
represents the ranking of the methods for each row such that the lightest color marks the
lowest Hamming distance and the darkest color marks the highest Hamming distance.

L1LR method was the slowest and most negatively affected by an increased model size.
Note, however, that both the L1LR optimization and the first phase of the MPL/PIC
search (which is the most time-consuming) can be executed in a completely parallel
fashion.

5.2 Real-world Bayesian networks

In the second experiment, we performed experiments on well-known real-world models,
from the related class of Bayesian networks, in a similar fashion as Bromberg et al.
(2009). The considered models are commonly used as benchmarks in research and are
available from a number of sources. The networks used in this work were obtained
from the Bayesian network repository at http://www.bnlearn.com/bnrepository/

and sampled using the R package by Scutari (2010).

http://www.bnlearn.com/bnrepository/
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Network Alarm Andes Barley Hailfinder Insurance Win95pts
Number of nodes 37 223 48 56 27 76
Number of edges
(moral graph)

65 626 126 99 70 225

Number of parameters 509 1157 114005 2656 984 574
Markov blanket size 1–8 0–23 2–13 1–17 1–10 1–29
Variable cardinality 2–4 2 2–67 2–11 2–5 2

Table 2: Properties of the real-world Bayesian networks.

To transform the directed acyclic graph of a Bayesian network into a corresponding
undirected graph of a Markov network, a two-step procedure known as moralization
is used (see Lauritzen, 1996; Koller and Friedman, 2009). In the first step, all parents
of a common child are connected by an undirected edge if not already connected. In
the second step the graph is made undirected by removing the direction of all directed
edges. Although the local Markov property remains valid in the transformed network,
some conditional independencies are lost in the moralization process due to the added
edges. Consequently, the associated distribution is no longer faithful to the undirected
graph making the graph identification more challenging.

We selected six networks which are listed along with some of their properties in Ta-
ble 2. Compared to the relatively simple and balanced synthetic networks in Section 5.1,
these models are more challenging due to their higher edge density and larger Markov
blankets. In addition, there are now also non-binary variables. As before, we sampled
each network for sample sizes ranging from 250 to 8000. For each network and sample
size, we generated 100 samples over which the final results were averaged. We applied
the same methods as in the previous section under some modifications. Since the true
model is now a Bayesian network, for which the PC algorithm is designed, we now also
apply the second phase which directs some of the edges resulting in a PDAG. The final
undirected graph was obtained by moralizing the PDAG. Furthermore, since the L1LR
under the current implementation is restricted to binary variables, we only applied it
to the two networks which consisted solely of binary variables; Andes and Win95pts.

In Table 3 the average Hamming distances from the moralized graph are listed for
the different methods and networks. For details regarding true and false positives, see
Table 3 in Section S3. Again, the MPL performed very well and almost consistently
achieved lower distances than the other methods. The PIC method was again very
conservative with few false positives. The PC algorithm performed quite well under
this setup, which could be expected considering that the true models were Bayesian
networks. An interesting observation regarding the L1LR method is that number of
false positives increased as the sample size was increased. A possible reason for this
is that the current L1LR method only includes pairwise interactions, by which it at-
tempts to approximate all higher-order interactions. In contrast to the synthetic models,
which mainly contained pairwise interactions and for which the number of false positives
steadily decreased, the Bayesian networks contained a lot of interactions of higher order
than two. In terms of speed (see Table 4 in Section S3), the results followed the same
pattern as in the previous experiment.
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Network n/1000 MPL PIC PCmoral
L1LR-BIC0.5

∧ ∨

Alarm

.25 31.7± 2.6 49.2± 1.4 34.3± 3.1 − −
.5 24.7± 1.6 47.2± 1.0 29.4± 3.0 − −
1 20.0± 1.5 41.5± 1.3 25.1± 2.8 − −
2 16.8± 0.7 34.5± 1.7 21.0± 2.6 − −
4 15.4± 0.8 31.1± 0.8 18.7± 1.9 − −
8 14.0± 0.5 26.3± 1.2 17.6± 1.8 − −

Andes

.25 412.0± 7.3 488.6± 4.4 491.2± 15.4 494.9± 6.5 482.3± 8.9
.5 362.5± 5.7 451.8± 3.4 419.5± 10.8 445.1± 5.3 437.6± 7.6
1 327.8± 5.3 422.9± 3.3 363.9± 10.1 402.7± 4.8 397.2± 9.6
2 295.9± 4.7 390.7± 2.9 319.3± 8.3 363.2± 5.7 360.1± 10.5
4 258.5± 6.3 357.8± 2.6 271.3± 7.0 329.0± 4.1 324.9± 9.1
8 216.7± 4.6 331.4± 4.1 233.4± 7.9 311.0± 3.8 297.3± 6.5

Barley

.25 105.0± 1.1 115.0± 2.2 113.8± 2.9 − −
.5 100.6± 1.4 108.3± 1.0 112.6± 2.1 − −
1 95.8± 1.3 104.2± 0.9 108.7± 2.0 − −
2 93.8± 1.8 100.2± 0.4 102.7± 2.4 − −
4 88.3± 1.0 98.4± 0.5 94.2± 2.3 − −
8 86.7± 0.9 94.4± 1.1 91.1± 2.0 − −

Hailfinder

.25 69.8± 1.6 81.1± 1.4 76.9± 3.5 − −
.5 67.0± 1.3 76.6± 1.3 73.6± 3.3 − −
1 64.3± 1.6 70.3± 1.1 73.8± 3.6 − −
2 59.3± 3.0 67.2± 1.4 72.9± 3.0 − −
4 55.9± 1.8 64.5± 2.4 74.0± 3.3 − −
8 50.6± 2.9 59.3± 0.8 72.3± 3.8 − −

Insurance

.25 50.2± 2.2 56.3± 1.4 48.9± 2.7 − −
.5 45.0± 1.7 54.5± 1.3 45.2± 2.9 − −
1 40.2± 1.6 50.8± 1.8 40.2± 1.9 − −
2 37.5± 1.0 49.1± 0.9 38.3± 1.8 − −
4 34.9± 1.4 45.0± 0.9 36.1± 2.7 − −
8 31.8± 1.1 42.2± 1.0 33.6± 1.0 − −

Win95pts

.25 172.0± 5.6 192.3± 2.4 193.5± 7.1 196.2± 3.3 180.7± 5.5
.5 147.3± 6.0 183.9± 2.6 180.4± 6.6 187.1± 3.6 168.2± 6.2
1 118.6± 5.5 173.8± 2.5 163.1± 7.4 176.4± 3.6 152.6± 6.4
2 99.8± 3.0 157.3± 2.1 143.9± 6.5 162.8± 3.9 141.6± 6.3
4 89.5± 2.6 144.2± 1.5 126.9± 6.0 149.0± 3.5 135.1± 7.0
8 80.1± 2.2 132.5± 1.6 109.9± 6.4 136.6± 3.6 132.3± 7.2

Table 3: Hamming distances (mean ± standard deviation) in the Bayesian network
experiments (n = sample size). The shade of the cell colors represents the ranking
of the methods for each row such that the lightest color marks the lowest Hamming
distance and the darkest color marks the highest Hamming distance.
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6 Conclusions

In this work we have introduced a novel approach for learning the graph structure of
a Markov network without imposing the restriction of chordality. Our MPL score is
proven to be consistent and can be considered a small sample analytical version of
the information theoretic PIC criterion (Csiszár and Talata, 2006). Furthermore, we
have discussed the connection between the MPL for Markov networks and what would
be the marginal likelihood of bi-directional dependency networks under a complete
parameterization.

Since the MPL-based optimization problem is intractable, we designed an efficient
search algorithm that exploits the decomposable structure of the MPL. Under the pro-
posed optimization strategy, our MPL method is similar in spirit to the max–min hill
climbing algorithm for learning Bayesian networks (Tsamardinos et al., 2006). The main
difference is that both phases of our algorithm are derived from the notion of maximizing
a single underlying score.

In our experiments on both synthetic and real-world networks, our MPL method
outperformed its competitors in terms of Hamming distance between the identified
and true graph. In addition, the execution times demonstrate the applicability of our
method on high-dimensional systems, in particular, when considering the possibility of
parallelizing the first phase of the search method.

There has been a lot of research in finding Bayesian networks that maximize the
Bayesian score. In particular, there has recently been a growing interest of using com-
putational logic for structure learning (Bartlett and Cussens, 2013; Corander et al.,
2013; Berg et al., 2014; Parviainen et al., 2014). In the future it would be interesting to
develop a comparable approach for exact global optimization of the MPL score under
meaningful restrictions to retain computational scalability.

The main drawback of the MPL is that it, as a result of the parameter independence
assumption (6), in a sense over-specifies the node-wise conditional distributions. This
has a negative effect on the data-efficiency of the MPL, especially for hub nodes, since
the conditional distributions are specified in terms of complete Markov blankets even
if only a subset of a Markov blanket is sufficient for shielding a node from a particular
part of the network. Taking this observation into account in future research, we will look
into improving the data-efficiency of the MPL. Additional directions for future research
are extending the scope of the MPL by considering continuous variables as well as
combining the MPL with the models of Nyman et al. (2014) and Pensar et al. (2015)
in order to enable efficient learning of non-chordal context-specific Markov network
structures.

Supplementary Material

Supplementary Appendix to “Marginal Pseudo-Likelihood Learning of Discrete Markov
Network Structures” (DOI: 10.1214/16-BA1032SUPP; .pdf). The appendix contains a
proof of the consistency theorem, pseudocode of the search algorithms, and detailed
results from the numerical experiments.

http://dx.doi.org/10.1214/16-BA1032SUPP
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