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Selection of Tuning Parameters, Solution Paths
and Standard Errors for Bayesian Lassos

Vivekananda Roy∗ and Sounak Chakraborty†

Abstract. Penalized regression methods such as the lasso and elastic net (EN)
have become popular for simultaneous variable selection and coefficient estimation.
Implementation of these methods require selection of the penalty parameters. We
propose an empirical Bayes (EB) methodology for selecting these tuning parame-
ters as well as computation of the regularization path plots. The EB method does
not suffer from the “double shrinkage problem” of frequentist EN. Also it avoids
the difficulty of constructing an appropriate prior on the penalty parameters. The
EB methodology is implemented by efficient importance sampling method based
on multiple Gibbs sampler chains. Since the Markov chains underlying the Gibbs
sampler are proved to be geometrically ergodic, Markov chain central limit the-
orem can be used to provide asymptotically valid confidence band for profiles of
EN coefficients. The practical effectiveness of our method is illustrated by several
simulation examples and two real life case studies. Although this article considers
lasso and EN for brevity, the proposed EB method is general and can be used to
select shrinkage parameters in other regularization methods.
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1 Introduction

Consider the standard linear model y = μ1n +Xβ + ε, where y ∈ R
n is the vector of

responses, μ ∈ R is the overall mean, 1n is the n×1 vector of 1’s, X = (X1, X2, . . . , Xp)
is the n× p (standardized) covariate matrix, β ∈ R

p is the unknown vector of regression
coefficients, and ε is the n× 1 vector of iid normal errors with mean zero and unknown
variance parameter σ2. The ordinary least square (OLS) method for estimating β and
σ2 is not applicable when p > n, which is very common in the modern data sets arising
in genetics, medical science, and other scientific disciplines. OLS also has problems when
“n is not much larger than p” (James et al., 2013, p. 203). The shrinkage (also known
as regularization) approach, where regression coefficients are shrunken toward zero, can
be used to analyze these types of data sets. For example, ridge regression (Hoerl and
Kennard, 1970) penalizes large values of the coefficients using L2 norm. The result of
the ridge regression, however, is not sparse and all the regression coefficients will remain
nonzero at the end of the analysis. The extremely popular least absolute shrinkage and
selection operator (lasso) (Tibshirani, 1996), which is based on L1 norm regularization,
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can simultaneously perform shrinkage and variable selection as many of the coefficients
can be estimated to be exactly zero. The lasso estimate of β is obtained by solving

min
β

(y − μ1n −Xβ)T (y − μ1n −Xβ) + λ

p∑
j=1

|βj |, (1)

for some shrinkage parameter λ ∈ R. The lasso estimator, although has shown to be
very useful in many situations, does have some shortcomings. Since lasso does convex
optimization, it can not select more variables than the sample size. But, many problems,
for example the micro array experiments, involve much more predictors than the avail-
able sample size. Also lasso performs unsatisfactorily in the situations where predictors
are highly correlated. Finally, if there is some group structure among the variables, the
lasso tends to select only one variable from a group ignoring others. Zou and Hastie
(2005) proposed the Elastic Net (EN) to achieve better performance in the above three
scenarios where lasso has limitations. The EN estimator is obtained by solving

min
β

(y − μ1n −Xβ)T (y − μ1n −Xβ) + λ1

p∑
j=1

|βj |+ λ2

p∑
j=1

|βj |2, (2)

where λ1 and λ2 are tuning parameters. From (2) we see that the elastic net uses both
an L1 penalty as in lasso and an L2 penalty as in the ridge regression. A variety of
other penalty terms have been proposed in the literature for incorporating the grouping
structure among the variables and to overcome other limitations of lasso. For example,
the grouped lasso penalty in Yuan and Lin (2006), the adaptive lasso of Zou (2006),
and the octagonal shrinkage and clustering of Bondell and Reich (2008).

One of the problems that we consider in this paper is the selection of the shrinkage
parameters in the penalized regression methods. The tuning parameters control the im-
pact of the penalty terms. For example, in (2) if λ1 = 0 = λ2 the penalty terms have
no effect and in this case EN produces the OLS estimates. On the other hand, as λ1,
or λ2 → ∞, the impact of the penalty terms increase and the EN estimates approach
zero. Typically cross validation methods are used for selecting the shrinkage parame-
ters. However, there are problems with the use of cross validation methods for selecting
the tuning parameters. For example, in the context of EN, the cross validation method
described in Zou and Hastie (2005) “selects λ1 and λ2 sequentially instead of simulta-
neously and causes the double shrinkage problem” (Li and Lin, 2010, p. 152). In the
Bayesian framework, the shrinkage parameters can be estimated using either an empiri-
cal Bayes (EB) approach or a fully Bayesian analysis with appropriate priors on λ1 and
λ2. There are several problems with the full Bayesian approach, for example, choosing an
appropriate prior may not be easy and as seen in Section 4, the choice of prior can have
influence on subsequent inference. Also, sampling from the full conditional distributions
of λ1 and λ2, which is required in the Markov chain Monte Carlo (MCMC) sampling
for the full Bayesian analysis, is computationally expensive. As shown in Section 2.1,
the full conditional distributions of λ1 and λ2 mentioned in Kyung et al. (2010) are in-
correct. The correct conditionals of λ1 and λ2 are nonstandard, complex distributions.
Thus MCMC sampling for full Bayesian analysis of EN is computationally demanding.
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It has been recently shown by Khare and Hobert (2013) that when λ in (1) is assumed
fixed, the Gibbs sampler Markov chain for Bayesian lasso of Park and Casella (2008) has
a geometric rate of convergence, while no such convergence results is currently known
about the MCMC algorithm for the full Bayesian lasso model. (See Section 2 for the
definition of geometric convergence.) In section 2, we prove that, the Bayesian elastic
net Gibbs sampler that do not update λ1 and λ2 is geometrically ergodic.

Park and Casella (2008) mention that a Monte Carlo EM algorithm can be used for
calculating the maximum marginal likelihood estimate of λ in the Bayesian lasso. Li
and Lin (2010) use the Monte Carlo EM for jointly estimating the tuning parameters
of the EN. In the Monte Carlo EM algorithm, a new fully convergent Markov chain is
to be run in each iteration of the EM algorithm—which is computationally inefficient.
In Section 4, we see that the EM algorithm can be extremely slow. Also, we may want
to obtain the entire marginal likelihood surface instead of just the maximizing value as
available from the Monte Carlo EM algorithm. Park and Casella (2008, p. 683) mention
that an importance sampling method can be used to approximate the ratio of marginal
likelihoods near the maximizer of λ. As we explain in Section 3 this naive importance
sampling method is in general inefficient. In this paper we develop an EB approach with
efficient generalized importance sampling methods based on multiple Markov chains for
estimating the shrinkage parameters in penalized regression methods.

In penalized regression methods such as lasso and EN, a plot of the profiles of the
estimated regression coefficients as a function of the penalty parameter is used to display
the amount of shrinkage corresponding to different tuning parameter values. These plots
are also useful for comparing different shrinkage methods. We show that the proposed
generalized importance sampling method can efficiently compute such regularization
path plots.

The other issue that we consider in this paper is the standard error estimation of the
EN estimator. In the frequentist analysis, various standard error estimates have been
proposed for the lasso estimator. The problem with the ridge regression approximation
suggested by Tibshirani (1996) or the sandwich estimator of Fan and Li (2001) is that
they produce the standard error estimate to be zero when the regression parameter
estimate is zero. Kyung et al. (2010) have shown that the bootstrap method of standard
error estimation does not “attach valid standard error estimates to the values of the
lasso that are shrunk to zero, in the sense that these estimators are inconsistent” (see
also Knight and Fu, 2000). On the other hand, as mentioned above, Khare and Hobert
(2013) have recently shown that the Bayesian lasso Gibbs sampler is geometrically
ergodic—which allows for calculation of asymptotically valid standard errors of lasso
estimates (see Section 2 for details). Following Khare and Hobert (2013), in this paper
we prove that the Bayesian EN Gibbs sampler is geometrically ergodic. This implies that
there is a central limit theorem (CLT) for posterior EN estimates based on the Gibbs
sampler. Moreover, it also justifies the use of batch means estimator proposed in Roy
et al. (2015) for producing confidence bands for marginal likelihood surface estimates
as well as regularization path estimates.

The rest of the paper is organized as follows. Section 2 presents the Gibbs sam-
plers as well as the statement regarding their convergence rates. Section 3 describes
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an efficient importance sampling method for selecting the shrinkage parameters. It also
provides regularization path estimators. Section 4 contains numerical results involving
simulation studies and real data application. Some concluding remarks appear in Sec-
tion 5. Proofs of results are relegated to the Web based supplementary materials (Roy
and Chakraborty, 2016).

2 Hierarchical models and Gibbs samplers for lasso and
elastic net

2.1 Gibbs samplers for lasso and elastic net

Tibshirani (1996) noted that lasso estimates can be obtained as posterior mode when the
regression parameters have independent and identical Laplace priors. Using a Gaussian
mixture representations (with exponential mixing density) of the Laplace distribution,
Park and Casella (2008) consider a hierarchical Bayesian lasso model as follows

y|μ, β, σ2 ∼ Nn(μ1n +Xβ, σ2In),

π(μ) ∝ 1;β|σ2, τ21 , . . . , τ
2
p ∼ Np(0p, σ

2Dτ ), where Dτ ≡ Diag(τ21 , . . . , τ
2
p )

σ2 ∼ Inverse-Gamma(α, ξ); τ2j |λ
iid∼ Exponential(λ2/2), for j = 1, 2, . . . , p. (3)

The improper prior π(σ2) = 1/σ2 (used in Park and Casella (2008)) is obtained by
replacing α = 0, ξ = 0 in the above model. The connection of the above hierarchical
representation with the lasso penalty in (1) can be seen from the following result of
Andrews and Mallows (1974)

a

2
exp(−a|z|) =

∫ ∞

0

1√
2πs

exp
(
− z2

2s

)a2
2

exp
(
− a2

2
s
)
ds. (4)

From (4) it follows that by integrating out τ21 , . . . , τ
2
p , the conditional density of β|σ2

is
∏p

i=1(λ/2σ) exp(−λ|βi|/σ). Let ỹ = y − ȳ1n. Since the columns of X are centered,
easy calculation shows that

f(ỹ|β, σ2) ≡
∫
R

f(y|μ, β, σ2)π(μ)dμ =
1

(2π)(n−1)/2σn−1
exp
[
− (ỹ −Xβ)T (ỹ −Xβ)

2σ2

]
,

(5)
that is, marginalization over μ does not break the conjugacy offered by the use of con-
jugate priors in the above hierarchical model. In fact, the full conditional distributions
of β, τ2, σ2 are given by

β|σ2, τ2,y ∼ Np((X
TX +D−1

τ )−1XT ỹ, σ2(XTX +D−1
τ )−1)

1

τ2j
|β, σ2,y

ind∼ Inverse-Gaussian
(√λ2σ2

β2
j

, λ2
)
for j = 1, 2, . . . , p

σ2|β, τ2,y ∼ Inverse-Gamma
(n− 1 + p+ 2α

2
,
(ỹ −Xβ)T (ỹ −Xβ) + βTD−1

τ β + 2ξ

2

)
.
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The Bayesian lasso Gibbs sampler is a fixed scan Gibbs sampling algorithm which
updates the parameters (β, τ2, σ2) in each iteration using draws from the above three
conditional distributions sequentially.

Following Park and Casella (2008), Kyung et al. (2010) present hierarchical models
for other generalized lasso methods including the elastic net. We consider the hierarchi-
cal model for the Bayesian elastic net:

y|μ, β, σ2 ∼ Nn(μ1n +Xβ, σ2In),

π(μ) ∝ 1;β|σ2, τ21 , . . . , τ
2
p , λ2 ∼ Np(0p, σ

2D∗
τ ),

where D∗
τ ≡ Diag((τ−2

1 + λ2)
−1, . . . , (τ−2

p + λ2)
−1)

σ2 ∼ Inverse-Gamma(α, ξ)

τ2j |λ1, λ2
iid∼ 1

C(λ1, λ2)
exp
(
−

λ2
1τ

2
j

2

) 1√
1 + λ2τ2j

, for j = 1, 2, . . . , p, (6)

with
C(λ1, λ2) = (1/λ1)

√
(2/λ2) exp[λ

2
1/(2λ2)]Γ(1/2, λ

2
1/{2λ2}),

where Γ(a, x) =
∫∞
x

ta−1 exp(−t)dt is the incomplete Gamma function. Here we also
allow the improper prior, 1/σ2 (corresponds to α = 0, ξ = 0 in (6)) for σ2. The connec-
tion of the above hierarchical representation with (2) can be seen from the conditional
prior density of β|σ2 given by

π(β|σ2) ∝
p∏

i=1

exp
{
− λ1|βi|

σ
− λ2β

2
i

2σ2

}
, (7)

which is obtained using the mixture representation (4). Note that the independent ex-
ponential prior of τ2j used in the Bayesian EN model by Kyung et al. (2010) does not

lead to the prior density β|σ2 in (7). Kyung et al. (2010) assumed independent exponen-
tial (λ2

1/2) priors on τ2j , j = 1, . . . , p. Consequently, with independent Gamma priors on

λ2
1 and λ2, the full conditionals of λ2

1 and λ2 become Gamma distributions. As shown
above, the prior of τ2j depends on both λ1 and λ2, and in this case, the conditional

distributions of λ2
1 and λ2 are complicated. Thus MCMC sampling for the full Bayesian

analysis of EN is computationally expensive (Lee et al., 2015).

As in the Bayesian lasso model, the parameter μ can be analytically integrated out
from the joint posterior distribution corresponding to (6). The full conditional distribu-
tions of β, τ2, σ2 are similar to the Bayesian lasso and are given by

β|σ2, τ2, λ2,y ∼ Np((X
TX +D∗−1

τ )−1XT ỹ, σ2(XTX +D∗−1
τ )−1) (8)

1

τ2j
|β, σ2, λ1,y

ind∼ Inverse-Gaussian
(√λ2

1σ
2

β2
j

, λ2
1

)
for j = 1, 2, . . . , p (9)

σ2|β, τ2, λ2,y

∼ Inverse-Gamma
(n− 1 + p+ 2α

2
,
(ỹ −Xβ)T (ỹ −Xβ) + βTD∗−1

τ β + 2ξ

2

)
. (10)
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In Section 2.2 we analyze the Gibbs sampler which is run by updating (β, τ2, σ2) in
each iteration using draws from the above three conditional distributions.

2.2 Geometric convergence of the elastic net Gibbs sampler

Let θ ≡ (β, τ2, σ2), where τ2 ≡ (τ21 , . . . , τ
2
p ). Let {θm}m≥0 be the Markov chain un-

derlying the elastic net Gibbs sampling algorithm discussed in the previous section.
That is, at iteration m given θm ≡ (βm, τ2m, σ2

m), this Markov chain uses three steps
to move to the new value θm+1 ≡ (βm+1, τ

2
m+1, σ

2
m+1): draw σ2

m+1|βm, τ2m from (10)
given (βm, τ2m), then draw τ2m+1|βm, σ2

m+1 from (9) given (βm, σ2
m+1), and finally draw

βm+1|τ2m+1, σ
2
m+1 from (8) given (τ2m+1, σ

2
m+1). (Note that τ2m is used to denote both

mth component of τ2 as well as the value of τ2 at iteration m.) The Markov transition
density (Mtd) of this Gibbs sampler is

k((β, τ2, σ2)|(β0, τ
2
0 , σ

2
0)) = π(β|τ2, σ2,y)π(τ2|β0, σ

2,y)π(σ2|β0, τ
2
0 ,y), (11)

where π(β|τ2, σ2,y), π(τ2|β, σ2,y) and π(σ2|β, τ2,y) are the full conditional densities
corresponding to the joint posterior density

π(β, τ2, σ2|y, λ1, λ2) =
f(ỹ|β, σ2)π(β, σ2, τ2|λ1, λ2)

mλ1,λ2(y)
, (12)

where f(ỹ|β, σ2) is given in (5), π(β, σ2, τ2|λ1, λ2) is the prior density of (β, σ2, τ2)
given in (6), and

mλ1,λ2(y) =

∫
R+

∫
R

p
+

∫
Rp

f(ỹ|β, σ2)π(β, σ2, τ2|λ1, λ2)dβdτ
2dσ2 (13)

is the normalizing constant of the posterior density (12). Standard calculations show
that the posterior density (12) is the invariant density for the EN Gibbs Markov chain
{βm, τ2m, σ2

m}m≥0. Since the Mtd k is strictly positive, the EN Gibbs chain is irreducible
with respect to the Lebesgue measure on R

p × R
p
+ × R+ (Meyn and Tweedie, 1993,

Chapter 4). Then from Asmussen and Glynn (2011) it follows that {βm, τ2m, σ2
m}m≥0

is a positive Harris recurrent Markov chain. Thus, the EN Gibbs chain can be used
to produce strongly consistent estimators (Meyn and Tweedie, 1993, Chapter 17). In
particular, if Eπ|g| < ∞, that is, if g is an integrable function with respect to the

posterior density (12), then ḡm :=
∑m−1

i=0 g(βi, τ
2
i , σ

2
i )/m is strongly consistent for Eπg

no matter what is the initial distribution of (β0, τ
2
0 , σ

2
0). However, this estimator is useful

in practice only if an associated standard error is provided. In fact if there is a CLT for
g, that is, √

m(ḡm − Eπg)
d−→ N(0, ψ2

g), as m → ∞, (14)

and if ψ̂2
g is a consistent estimator of the asymptotic variance ψ2

g , then an asymptotic

standard error for ḡm is ψ̂g/
√
m. Unfortunately, Harris recurrence of a Markov chain

does not guarantee the existence of such a CLT. The only standard method for establish-
ing a Markov chain CLT and obtaining consistent estimates of the asymptotic variance
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is to prove that the underlying Markov chain is geometrically ergodic (see Jones and
Hobert, 2001; Roy and Hobert, 2007; Flegal and Jones, 2010). The EN Gibbs chain
is called geometrically ergodic if there exists a positive real valued function M and a
constant r ∈ (0, 1) such that, for all m,∥∥Km

(
(β, τ2, σ2), ·

)
−Π(·|y)

∥∥
TV

≤ W (β, τ2, σ2)rm , (15)

whereKm((β, τ2, σ2), ·) denotes the probability distribution of the Markov chain started
at (β, τ2, σ2) after m steps, Π(·|y) denotes the probability measure corresponding to
the posterior density (12), and ‖ · ‖TV denotes the total variation norm. Note that the
function W and the constant r may depend on λ1, λ2. It is known that if the EN Gibbs
chain is geometrically ergodic, then there is a CLT (14) for every function g such that
Eπ|g|2+δ < ∞, for some δ > 0 (Roberts and Rosenthal, 1997). We have the following
result.

Proposition 1. The elastic net Gibbs Markov chain is geometrically ergodic for every
n ≥ 4, p,X, λ1 and λ2.

Hence the CLT (14) holds for the EN Gibbs chain and it can be used to construct
asymptotic standard errors for posterior estimates. We establish geometric ergodicity
of the EN Gibbs chain by establishing the so-called drift condition, and an associated
minorization condition, which we now describe. (See Jones and Hobert (2001) for an
introduction to these ideas.)

We begin with a drift condition. Consider the following function

V (β, τ2, σ2) = (ỹ −Xβ)T (ỹ −Xβ) + βTD∗−1
τ β +

p∑
j=1

τ2j .

Let (KV )(β0, τ
2
0 , σ

2
0) denote the expectation of V (·) with respect to the Mtd k in (11),

that is,

(KV )(β0, τ
2
0 , σ

2
0) =

∫
R+

∫
R

p
+

∫
Rp

V (β, τ2, σ2)k((β, τ2, σ2)|(β0, τ
2
0 , σ

2
0))dβdτ

2dσ2 .

We use V (β, τ2, σ2) to establish the following drift condition.

Lemma 1. If n ≥ 4, then there exists constants 0 ≤ γ < 1 and d > 0 such that

(KV )(β0, τ
2
0 , σ

2
0) ≤ γV (β0, τ

2
0 , σ

2
0) + d (16)

for every (β0, τ
2
0 , σ

2
0) ∈ R

p × R
p
+ × R+.

We also establish an associated minorization condition to the geometric drift condi-
tion (16). For every L > 0, let BV,L = {(β, τ2, σ2) ∈ R

p ×R
p
+ ×R+ : V (β, τ2, σ2) ≤ L}.

Below we present the required minorization condition.

Lemma 2. For every (β0, τ
2
0 , σ

2
0) ∈ BV,L, we have

k((β, τ2, σ2)|(β0, τ
2
0 , σ

2
0)) ≥ εu(β, τ2, σ2), (17)

where u(·) is a probability density function on R
p × R

p
+ × R+, and ε ≡ ε(V, L) ∈ (0, 1)

is a constant.
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The drift and minorization conditions in Lemma 1 and Lemma 2 imply that the
EN Gibbs sampler is geometrically ergodic, that is, Proposition 1 holds (Rosenthal,
1995). Moreover, Rosenthal’s (1995) Theorem 12 provides a computable upper bound
on W (β, τ2, σ2)rm in (15) that involves the functions and constants from the drift and
minorization conditions. Since the drift function V (·) depends on λ2 and the constants
γ, d, ε, and the pdf u(·) may depend on λ1, λ2, the upper bound may also depend on
λ1, λ2. The proofs of Lemma 1 and Lemma 2 are given in the Web based supplementary
materials.

3 Selection of tuning parameters and computation of
regularization paths using generalized importance
sampling methods

In this section, we propose a method for selecting the penalty parameters of the penal-
ized regression methods and computing the regularization paths. For brevity we describe
the proposed method in the context of Bayesian elastic net model.

3.1 Selection of the tuning parameters

Here we consider an empirical Bayes approach for making inference on the hyperpa-
rameters λ1 and λ2 in the Bayesian elastic net model (6). For notational convenience
we denote (λ1, λ2) by λ. In particular, we estimate λ ≡ (λ1, λ2) by

λ̂ = argmax
λ∈Λ

mλ(y) ,

where mλ(y) ≡ mλ1,λ2(y) is the marginal density defined in (13), and Λ = R+ × R+.
Note that, mλ(y) is not available in closed form and in order to select the value of
λ which maximizes mλ(y), one can estimate mλ(y) for several (large number of) val-

ues of λ and compute λ̂ using these estimated values. Monte Carlo estimation of the
marginal likelihood is extremely difficult, for example, Newton and Raftery’s (1994)
harmonic mean estimator is known to perform poorly (Wolpert and Schmidler, 2012).
It is often much easier to estimate {amλ(y), λ ∈ Λ} than {mλ(y), λ ∈ Λ} for an ap-
propriately chosen constant a. We calculate and subsequently compare the values of
Bλ,λ0 := mλ(y)/mλ0(y), where λ0 is a suitably chosen fixed value of λ. (Here a is
simply 1/mλ0(y).) Note that Bλ,λ0 is the Bayes factor (BF) of the model indexed by

λ versus the model indexed by λ0. Since λ̂ = argmax
λ∈Λ

Bλ,λ0 , we would like to calculate

and compare Bλ,λ0 for a large number of values of λ.

Note that,

mλ(y) =

∫
R+

∫
R

p
+

∫
Rp

f(ỹ|β, σ2)π(β, τ2, σ2|λ)dβdτ2dσ2

= mλ0(y)

∫
R+

∫
R

p
+

∫
Rp

π(β, τ2, σ2|λ)
π(β, τ2, σ2|λ0)

π(β, τ2, σ2|y, λ0)dβdτ2dσ2.
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Let {(βm, τ2m, σ2
m)}m≥1 be the Gibbs Markov chain mentioned in Section 2.2 with

invariant density π(β, τ2, σ2|y, λ0), then by ergodic theorem we have a simple consistent
estimator of Bλ,λ0 ,

1

M

M∑
i=1

π(βm, τ2m, σ2
m|λ)

π(βm, τ2m, σ2
m|λ0)

a.s.→ mλ(y)

mλ0(y)
, (18)

as M → ∞. Note that in (18) a single Markov chain {βm, τ2m, σ2
m}Mm=1 with stationary

density π(β, τ2, σ2|y, λ0) is used to estimate Bλ,λ0 for different values of λ. In general the
naive importance sampling estimator (18) is very unstable; indeed when λ is not close
to λ0 only a few values of the ratios π(βm, τ2m, σ2

m|λ)/π(βm, τ2m, σ2
m|λ0) may dominate

the estimator.

Recently, Doss (2010) describes a method for efficiently computing large families of
BFs (see also Geyer, 1996). The basic idea is to appropriately chose k reference points
λ0, λ1, . . . , λk−1 ∈ Λ and replace π(βm, τ2m, σ2

m|λ0) in (18) with a linear combinations of
the prior densities evaluated at these skeleton points. We now describe this generalized
importance sampling (GIS) method based on multiple Markov chains.

Let {β(j;l), τ2(j;l), σ2(j;l)}Mj

l=1 be a Markov chain with stationary density π(β, τ2, σ2|y,
λj) for j = 0 . . . , k−1. Let M =

∑k−1
j=0 Mj , and Mj/M → αj ∈ (0, 1) for j = 0, . . . , k−1

with
∑k−1

j=0 αj = 1. Define ri = mλi(y)/mλ0(y) for i = 0, 1, . . . , k − 1, with r0 = 1 and

r = (r0, r1, . . . , rk−1). Note that, by the ergodic theorem,

B̂λ,λ0(r) ≡
k−1∑
j=0

Mj∑
l=1

π(β(j;l), τ2(j;l), σ2(j;l)|λ)∑k−1
i=0 Miπ(β(j;l), τ2(j;l), σ2(j;l)|λi)/ri

=
1

mλ0(y)

k−1∑
j=0

1

Mj

Mj∑
l=1

Mj

M π(β(j;l), τ2(j;l), σ2(j;l)|λ)∑k−1
i=0

Mi

M π(β(j;l), τ2(j;l), σ2(j;l)|λi)/mλi(y)

a.s.−→ mλ(y)

mλ0(y)

k−1∑
j=0

∫
R+

∫
R

p
+

∫
Rp

αjπ(β, τ
2, σ2|y, λ)∑k−1

i=0 αiπ(β, τ2, σ2|y, λi)
π(β, τ2, σ2|y, λj)dβdτ2dσ2

(19)

=
mλ(y)

mλ0(y)
= Bλ,λ0 .

Although Bλ,λ0 is consistently estimated by B̂λ,λ0(r), in practice we can not compute

B̂λ,λ0(r) as r is not available in closed form. Following Doss (2010) we consider the
estimator

B̂λ,λ0(r̂) ≡
k−1∑
j=0

Mj∑
l=1

π(β(j;l), τ2(j;l), σ2(j;l)|λ)∑k−1
i=0 Miπ(β(j;l), τ2(j;l), σ2(j;l)|λi)/r̂i

, (20)

where r̂0 = 1 r̂i, i = 1, 2, . . . , k − 1 are consistent estimator of ri’s obtained by the
“reverse logistic regression” method proposed by Geyer (1994). In (20), naive weights
(proportional to sample sizes) are used for the k reference densities, although one could
use more general weights (Roy et al., 2015).
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Note that, (20) can be used to estimate the entire family of BFs {Bλ,λ0 , λ ∈ Λ}.
The function B̂λ,λ0(r̂) can also be optimized to find λ̂ instead of estimating Bλ,λ0

for large number of values of λ. We use a quasi-Newton optimization procedure to
maximize B̂λ,λ0(r̂) and estimate λ. Since the prior density of σ2 does not depend on λ,
the estimator (20) becomes

B̂λ,λ0(r̂)

≡
k−1∑
j=0

Mj∑
l=1

{[
exp

(
−λ2

p∑
s=1

(β(j;l)
s )2/[2σ2(j;l)]

)
exp

(
−λ2

1

p∑
s=1

τ2(j;l)s /2

)
/ [C(λ1, λ2)]

p

]

×
[
k−1∑
i=0

{
Mi exp

(
−λi

2

p∑
s=1

(β(j;l)
s )2/[2σ2(j;l)]

)

× exp

(
−[λi

1]
2

p∑
s=1

τ2(j;l)s /2

)
/
(
r̂i[C(λi

1, λ
i
2)]

p
)}]−1}

. (21)

We use the two stage procedure mentioned in Doss (2010) for computing {B̂λ,λ0(r̂),

λ ∈ Λ}. In stage I, we draw large MCMC samples {β(j;l), τ2(j;l), σ2(j;l)}Mj

l=1 from π(β, τ2,
σ2|y, λj) for each j = 0 . . . , k − 1. Since the EN Gibbs sampler does not involve any
computationally demanding calculations, these MCMC samples can be obtained quickly.
We estimate r̂ by Geyer’s (1994) reverse logistic regression method using these samples.
Independently of stage I, in stage II, we get new MCMC samples from π(β, τ2, σ2|y, λj)
for each j = 0 . . . , k − 1 and use these stage II samples for estimating Bλ,λ0 using

B̂λ,λ0(r̂) given in (20). The reason for using this two stage procedure is that the amount

of computation required to calculate B̂λ,λ0(r̂) is linear in M and this rules out large
M in stage II (Doss, 2010). On the other hand, it is desirable to use large Mj in stage
I to estimate r accurately. Roy et al. (2016) use this two-stage method for selecting
correlation parameters and link function parameters in spatial generalized linear mixed
models (See also Roy, 2014, for another application.). They use Roy et al.’s (2015)
standard error estimates of B̂λ,λ0(r̂) for choosing good values of k, and the skeleton
points λ0, . . . , λk−1 (see also Buta and Doss, 2011, p. 2671). In order to use Roy et al.’s
(2016) method for choosing the skeleton points, it is required to establish a CLT result
for the estimator B̂λ,λ0(r̂) defined in (20). A CLT for B̂λ,λ0(r̂) is also required for
constructing (point wise) confidence interval for the BFs Bλ,λ0 . Buta and Doss’s (2011)

Theorem 1 presents the conditions under which B̂λ,λ0(r̂) has a CLT. The Markov chains

{β(j;l), τ2(j;l), σ2(j;l)}Mj

l=1 need to be geometrically ergodic—which we have shown in
Section 2.2. Define

Z(θ) ≡ exp(−λ2

∑p
s=1 β

2
s/[2σ

2]) exp(−λ2
1

∑p
s=1 τ

2
s /2)/[C(λ1, λ2)]

p∑k−1
i=0 {αi exp(−λi

2

∑p
s=1 β

2
s/[2σ

2]) exp(−[λi
1]

2
∑p

s=1 τ
2
s /2)/(r

i[C(λi
1, λ

i
2)]

p)}
.

(22)
Let EλZ denote the posterior mean of the function Z with respect to the density (12).
Another condition of Buta and Doss’s (2011) Theorem 1 is that there exists ε > 0 such

that Eλl

(Z2+ε) < ∞ for l = 0, 1, . . . , k − 1. The following lemma provides a condition
under which Z(·) is a bounded function, in particular, it has moments of all orders.
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Lemma 3. If there exists at least one i′ ∈ {0, 1, . . . , k − 1} such that λi′

1 < λ1 and
λi′

2 < λ2, then Z(θ) is a bounded function of (β, τ2, σ2).

Proof of Lemma 3 is given in the Web based supplementary materials.

Note that for the original lasso model (3), since the prior distributions of β and σ2

do not depend on the penalty parameter λ, the estimator (21) for lasso becomes

k−1∑
j=0

Mj∑
l=1

λ2p exp(−λ2
∑p

s=1 τ
2(j;l)
s /2)∑k−1

i=0 Mi(λi)2p exp(−(λi)2
∑p

s=1 τ
2(j;l)
s /2)/ˆ̃ri

,

where ˆ̃ri’s are the reverse logistic regression estimates for lasso model. For lasso a similar
result as in Lemma 3 holds if there exists at least one i′ ∈ {0, 1, . . . , k − 1} such that
λi′ < λ.

3.2 Computing regularization paths

In penalized regression methods, a plot of the estimated regression coefficients (β̂ or

rather β̂λ) as a function of the penalty parameter λ is useful for displaying the amount
of shrinkage. In this section, we show that the proposed GIS method can be used to
produce regularization path plots of Bayesian EN. Doing similar calculations as in (19)
we have

k−1∑
j=0

Mj∑
l=1

g(β(j;l), τ2(j;l), σ2(j;l))π(β(j;l), τ2(j;l), σ2(j;l)|λ)∑k−1
i=0 Miπ(β(j;l), τ2(j;l), σ2(j;l)|λi)/ri

a.s.−→ Bλ,λ0

∫
R+

∫
R

p
+

∫
Rp

g(β, τ2, σ2)π(β, τ2, σ2|y, λ)dβdτ2dσ2 = Bλ,λ0Eλg. (23)

Hence from (19) and (23) we have

η̂[g] =

∑k−1
j=0

∑Mj

l=1
g(β(j;l),τ2(j;l),σ2(j;l))π(β(j;l),τ2(j;l),σ2(j;l)|λ)∑k−1

i=0 Miπ(β(j;l),τ2(j;l),σ2(j;l)|λi)/r̂i∑k−1
j=0

∑Mj

l=1
π(β(j;l),τ2(j;l),σ2(j;l)|λ)∑k−1

i=0 Miπ(β(j;l),τ2(j;l),σ2(j;l)|λi)/r̂i

a.s.−→ Eλg. (24)

Since the EN Gibbs sampler is geometrically ergodic, Roy et al.’s (2015) Theorem 3 can
be used to compute standard errors of η̂[g]. To use this theorem, we need to show that

there exists ε > 0 such that Eλl

(|gZ|2+ε) < ∞ for l = 0, 1, . . . , k− 1, where Z is defined
in (22). The following corollary follows from Lemma 3.

Corollary 1. If there exists at least one i′ ∈ {0, 1, . . . , k − 1} such that λi′

1 < λ1 and

λi′

2 < λ2, and Eλl |g|2+ε < ∞ then Eλl |gZ|2+ε < ∞.

We use the GIS estimator η̂[g] to efficiently compute the profile plot of Eλβ, the pos-
terior mean of the regression coefficients for Bayesian lasso and EN. Also Roy et al.’s
(2015) Theorem 3 is used to produce asymptotically valid confidence band (point wise)
for these regularization path estimates. A step-by-step summary of the proposed infer-
ential procedure is given in the Web based supplementary materials.
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4 Applications

In this section we perform simulations to compare our empirical Bayes Lasso and em-
pirical Bayes Elastic-Net models fitted using GIS with other competing models. We also
apply these models to two real data sets.

4.1 Simulation study

We compare the performance of our two models against several frequentist and Bayesian
versions of lasso and elastic-net. They are as follows i) lasso (Tibshirani, 1996), ii) elastic-
net (EN) (Zou and Hastie, 2005), iii) full hierarchical Bayes lasso (FB-lasso) (Park and
Casella, 2008), iv) full hierarchical Bayes elastic-net (FB-EN) (Kyung et al., 2010), v)
empirical Bayes lasso fitted using Monte Carlo EM (EM-lasso) (Park and Casella, 2008),
and vi) empirical Bayes elastic-net fitted using Monte Carlo EM (EM-EN) (Li and Lin,
2010). For each simulation scenario, we generate a training set and a test set separately.
We fit GIS-lasso, GIS-EN and all other competing models (i–vi) using the training data
and obtain the parameter estimates. Then we use the fitted models from the training
set to calculate the prediction accuracy in the test set. The five simulation setups we
choose to use are very similar to those in the original EN paper (Zou and Hastie, 2005)
and in the OSCAR paper (Bondell and Reich, 2008).

The five simulation scenarios are as follows:

1. Scenario 1: y = Xβ + ε, ε ∼ N(0, σ2I), where we set β = (3, 1.5, 0, 0, 2, 0, 0, 0),

σ = 3, and Xk
iid∼ MVN(0,Σ) for k = 1, 2, . . . , p. The covariance matrix is set as

Σ = (σij) = 0.5|i−j|. We take training set sample size = 20, and test set sample
size = 200.

2. Scenario 2: y = Xβ + ε, ε ∼ N(0, σ2I), where we set β = (3, 0, 0, 1.5, 0, 0, 0, 2),

σ = 3, and Xk
iid∼ MVN(0,Σ) for k = 1, 2, . . . , p. The covariance matrix is set as

Σ = (σij) = 0.7|i−j|. Training set sample size = 20; Test set sample size = 200.

3. Scenario 3: Same as Simulation 1, except β = (0.85, . . . , 0.85︸ ︷︷ ︸
8

).

4. Scenario 4: y = Xβ + ε, ε ∼ N(0, σ2I), where we set β = (0, . . . , 0︸ ︷︷ ︸
10

, 2, . . . , 2︸ ︷︷ ︸
10

,

0, . . . , 0︸ ︷︷ ︸
10

, 2, . . . , 2︸ ︷︷ ︸
10

), σ = 15, and Xk
iid∼ MVN(0,Σ) for k = 1, 2, . . . , p. The covari-

ance matrix is set such that all variances are one and pairwise correlation is 0.5.
Training set sample size = 100; Test set sample size = 400.

5. Scenario 5: y = Xβ + ε, ε ∼ N(0, σ2I), where we set β = (3, . . . , 3︸ ︷︷ ︸
15

, 0, . . . , 0︸ ︷︷ ︸
25

) and

σ = 15. Letting εi
iid∼ N(0, 0.16) for i = 1, . . . , 15, the predictors are generated
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from ⎧⎪⎪⎨
⎪⎪⎩

Xi = Z1 + εi, Z1 ∼ N(0, 1), i = 1, . . . , 5
Xi = Z2 + εi, Z2 ∼ N(0, 1), i = 6, . . . , 10
Xi = Z3 + εi, Z3 ∼ N(0, 1), i = 11, . . . , 15

Xi
iid∼ N(0, 1), i = 16, . . . , 40.

Training set sample size = 100; Test set sample size = 400.

For each of the five above simulation scenarios, we generate 100 training data sets
and 100 test data sets from the respective models.

The tuning parameters for frequentist lasso and elastic-net are selected using five
fold cross-validation on the training set. We use the glmnet() package in R to fit the
frequentist lasso and elastic-net models. In FB-lasso and FB-EN the prior distributions
for the tuning parameters for λ, λ1, λ2 are selected following the recommendations
provided in Park and Casella (2008) and Kyung et al. (2010). To study if there is
any effect of different choices of the prior distribution for the tuning parameters we
have fitted the Bayesian lasso and Bayesian elastic-net under several choices of the
priors for λ, λ1 and λ2. In FB-lasso we assign the priors (a) λ2 ∼ Gamma(1, .01),
(b) λ2 ∼ Gamma(1, .1), and (c) λ2 ∼ Gamma(1, 1). In FB-EN we assign the priors
(a) λ2

1 ∼ Gamma(1, .01) and λ2 ∼ Gamma(1, .01), (b) λ2
1 ∼ Gamma(1, .1) and λ2 ∼

Gamma(1, .1), and (c) λ2
1 ∼ Gamma(1, 1) and λ2 ∼ Gamma(1, 1). All these choices

provide us near diffuse priors for the tuning parameters (Kyung et al., 2010) and thus
to some extent can ensure the objectivity of the analysis. For EM-lasso and EM-EN the
tuning parameters are estimated through maximizing the marginal likelihood, which is
implemented with the EM-Gibbs algorithm proposed by Kyung et al. (2010). The FB-
lasso, FB-EN, EM-lasso, and EM-EN are all fitted using the computer codes obtained
from Prof. Minjung Kyung (of Kyung et al., 2010). The convergence of the MCMC
chains are checked via trace plots.

Our GIS-lasso and GIS-EN do not require any prior distribution assignment for the
tuning parameters. The improper prior 1/σ2 is chosen for σ2. Due to the use of this
improper prior, mλ(y) is not uniquely defined. Nevertheless, the Bayes factor among
any two models, say mλ(y)/mλ0(y), is well-defined because the same improper prior
is assigned to the shared parameters of the two models (see e.g. Kass and Raftery
(1995, Section 5) and Liang et al. (2008, Section 2)). We need to specify the skeleton
points needed to calculate the marginal likelihood. In all five simulation studies we
have around 10 to 20 skeleton points and they produce highly satisfactory results.
We choose the skeleton points using the method described in Roy et al. (2016). The
two-stage procedure described in Section 3.1 is used to estimate the entire profile of the
marginal likelihood of the tuning parameters. Then the marginal likelihood is maximized
to find the estimates of the tuning parameters. In the first stage of generating parameter
samples for selected skeleton points we ran MCMC chain of length 10000 with first 5000
as burn-in. In the second stage we ran MCMC chains of length 1000 iteration with the
first 500 as burn in. In all our simulation settings and the two real data analysis these
choices of MCMC chain lengths produced fast and accurate estimates. Finally, MCMC
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Simulation lasso FB-lasso EM-lasso GIS-lasso
(1,.01) (1,.1) (1,1)

1 Ave root-MSE 3.76 3.63 3.60 3.67 3.58 3.49
SD 0.52 0.37 0.34 0.36 0.37 0.36

Ave λ̂ 0.48 3.99 2.75 1.43 2.69 2.65

Range of λ̂ [.002,2.89] [.96,8.03]
[.80,3.74]
[.69,1.63]

[.54,5.74] [.55,5.58]

2 Ave root-MSE 3.75 3.59 3.63 3.59 3.57 3.56
SD .53 .36 .33 .37 .35 .36

Ave λ̂ .36 3.73 2.69 1.36 2.57 2.46

Range of λ̂ [.002,2.18] [1.06,8.80]
[1.07,3.90]
[.84,1.62]

[.78,9.12] [.71,7.98]

3 Ave root-MSE 3.90 3.47 3.47 3.61 3.45 3.44
SD .73 .29 .30 .45 .32 .30

Ave λ̂ .29 4.16 2.89 1.45 2.90 2.88

Range of λ̂ [.005,1.81] [1.89, 8.99]
[1.70,4.04]
[1.11,1.69]

[1.31,8.23] [1.32,6.47]

4 Ave root-MSE 16.66 16.33 17.41 18.77 15.91 15.83
SD .75 .68 .70 .81 .68 .67

Ave λ̂ 1.41 8.89 6.77 3.12 8.73 8.85

Range of λ̂ [.43,2.90] [6.67,11.08]
[5.27,7.12]
[2.81,3.31]

[6.35,11,64] [6.30,14.23]

5 Ave root-MSE 17.43 16.33 17.41 18.77 15.85 15.87
SD 4.74 1.34 2.66 4.01 .79 .83

Ave λ̂ 3.23 15.41 7.93 3.44 29.46 25.70

Range of λ̂ [1.05,5.03] [11.29,19.46]
[7.11,8.80]
[3.23,3.63]

[12.16,139.46] [7.88,44.46]

Table 1: lasso: Test MSEs of the simulation studies. The results are based on 100 repli-
cated data sets.

samples from π(β, τ2, σ2|y, λ̂), the posterior density corresponding to estimated tuning
parameters are used to estimate other parameters (β, τ2, σ2) and predict y at new
covariate vector x.

Each simulation scenario is repeated for 100 times and each time a separate training
set and a test set are generated. In Tables 1 and 2 we report the average test set mean
squared error of prediction (MSEP) along with their corresponding standard deviations
for our two models and all other competing lasso and elastic-net models. The ranges of
estimates of the tuning parameters are also included in Tables 1 and 2. We can clearly
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Simulation EN FB-EN EM-EN GIS-EN
λ1 priors (1,.01) (1,.1) (1,1)
λ2 priors (1,.01) (1,.1) (1,1)
1 Ave root-MSE 3.52 3.43 3.45 3.51 3.38 3.37

SD 0.42 0.31 0.34 0.35 0.33 0.34

Ave λ̂1 0.33 2.79 1.57 1.13 2.16 2.21

Range of λ̂1 [.003,2.67] [.91,6.53] [.86,3.45] [.56,1.99] [.68,5.07] [.72,5.29]

Ave λ̂2 0.88 3.77 2.79 2.43 3.16 3.30

Range of λ̂2 [.008,3.45] [.87,10.42] [.97,6.55] [.78,3.22] [.57,6.07] [.57,6.42]
2 Ave root-MSE 3.47 3.49 3.56 3.59 3.42 3.36

SD .51 .38 .37 .34 .38 .32

Ave λ̂1 .39 2.73 1.99 1.06 2.34 2.30

Range of λ̂1 [.002,2.23] [1.05,6.95] [1.07,3.97] [.74,1.82] [.70,4.62] [.75,4.87]

Ave λ̂2 .72 3.93 2.98 1.86 2.69 2.81

Range of λ̂2 [.004,2.83] [1.05,7.60] [1.09,3.40] [.79,2.92] [.79,7.03] [.86,6.80]
3 Ave root-MSE 3.10 2.97 3.09 3.33 2.88 2.76

SD .75 .23 .32 .41 .29 .29

Ave λ̂1 .32 2.26 1.77 1.04 2.35 2.53

Range of λ̂1 [.004,1.65] [1.55, 8.23] [1.60,4.99] [.95,1.48] [1.76,8.44] [1.80,7.39]

Ave λ̂2 0.92 4.51 2.98 2.54 3.19 3.23

Range of λ̂2 [.005,2.01] [1.60, 9.41] [1.98,5.14] [1.87,3.09] [1.95,10.88] [1.96,9.94]
4 Ave root-MSE 14.89 12.87 12.33 12.92 12.83 12.78

SD .71 .63 .72 .87 .65 .65

Ave λ̂1 1.90 6.42 4.37 3.02 6.75 6.76

Range of λ̂1 [.39,3.90] [4.60,14.18] [4.70,6.33] [2.11,3.89] [3.59,15.99] [3.64,15.91]

Ave λ̂2 3.62 10.92 8.45 6.01 11.45 11.67

Range of λ̂2 [2.45,5.92] [7.52,16.81] [4.79,10.55] [4.53,8.30] [8.34,14.99] [8.68,14.44]
5 Ave root-MSE 14.90 15.13 15.67 15.40 14.53 14.46

SD 4.17 1.49 2.87 4.23 .89 .85

Ave λ̂1 2.97 10.22 8.48 4.16 14.32 14.18

Range of λ̂1 [1.11,5.52] [7.76,18.32] [6.44,13.15] [3.49,8.65] [9.09,30.22] [10.47,34.19]

Ave λ̂2 5.60 15.23 10.27 6.08 19.10 18.79

Range of λ̂2 [3.14,9.31] [10.29,23.60] [8.67,14.51]
[4.75,9.10]

[12.98,39.20] [12.42,37.10]

Table 2: Elastic-net: Test MSEs of the simulation studies. The results are based on 100
replicated data sets.

see from the table that our method GIS-lasso and GIS-EN are highly competitive under
all five simulation scenarios. Under all five simulation scenarios both GIS-lasso and
GIS-EN have significantly lower MSEP than the competing methods. Moreover, we can
see that the tuning parameter estimates of full hierarchical Bayes lasso and elastic-
net are quite sensitive to the choice of prior parameters. (Here we report posterior
mean estimates of the tuning parameters for FB-lasso and FB-EN.) This points out the
fact that although the recommended priors on the tuning parameters are supposed to
provide objective analysis but in reality there is a noticeable difference in the estimates
of the tuning parameters depending on the chosen prior. This makes the problem of
choosing appropriate prior distribution for the tuning parameters extremely difficult.
On the other hand EM-lasso and EM-EN tries to circumvent the problem of choosing
the appropriate priors for the tuning parameters by maximizing marginal maximum
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likelihood through Monte Carlo EM algorithm. EM-lasso and EM-EN are painstakingly
slow due to the nature of the Monte Carlo EM algorithm and the solution obtained by
it is highly unstable and suboptimal. Our GIS-lasso and GIS-EN are considerably faster
than their counterparts EM-lasso and EM-EN. Thus our GIS-lasso and GIS-EN give us
three distinct advantages. Firstly it does not require any prior distribution specifications
on the tuning parameters, secondly it estimates the full profile of the marginal likelihood
of the tuning parameters and thirdly, it provides the whole solution path plots along
with (point wise) confidence bands. Estimation of the tuning parameter and solution
path are important because the choice of tuning parameter leads to the appropriate level
of sparsity. In Figures 1–4 we have provided the full profile of the marginal likelihood
and solution paths for the two real data examples.

4.2 Real data sets

In this section, we apply our GIS-lasso and GIS-EN models on two real data sets,
namely diabetes data (Efron et al., 2004) and soil data (Bondell and Reich, 2008). We
also fit all other competing models as discussed in the simulation study section. The
tuning parameters for frequentist models are all selected by a 5 fold cross validation like
before. The FB-lasso is fitted by adopting the prior choice λ2 ∼ Gamma(1, .01). The
FB-EN is fitted with the prior choice λ2

1 ∼ Gamma(1, .01) and λ2 ∼ Gamma(1, .01). As
in the simulation examples, we use posterior mean estimates of λ (λ1, λ2) for FB-lasso
(FB-EN).

Diabetes data

This data set arises from the study of 442 diabetes patients (Efron et al., 2004). The pre-
dictor or baseline variables are age, sex, body mass index (bmi), average blood pressure,
and six blood serum measurements. The response variable is a quantitative measure of
disease progression in one year after measuring the baseline variables. The main goal
here is to give a good prediction of the disease progression along with detecting im-
portant baseline variables. We randomly split the data with 300 observations in the
training set and the remaining 142 observations in the test set. From the results re-
ported in Table 3, we see that due to the presence of moderate correlation among the

Method Test Set MSE Tuning Parameter Estimates
lasso 0.586 λ = 0.77
FB-lasso 0.563 λ = 2.17
EM-lasso 0.517 λ = 2.42
GIS-lasso 0.512 λ = 2.46
EN 0.529 λ1 = 0.31, λ1 = 1.09
FB-EN 0.543 λ1 = 3.01, λ2 = 16.23
EM-EN 0.488 λ1 = 4.61, λ2 = 12.32
GIS-EN 0.423 λ1 = 4.67, λ2 = 12.65

Table 3: Diabetes Data.
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Figure 1: Diabetes Data.
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covariate all of the lasso type models produced much higher MSE than the elastic-net
based models. Our GIS-EN can effectively reduce the out of sample MSE by at least
7% than all other competing models. The GIS-lasso solution path in Figure 1(a) selects
bmi, lamotrigine (ltg), mean arterial pressure (map), sex, total cholesterol (tc), and
high density lipoprotein (hdl) to be important predictors. Whereas the solution path
of GIS-EN Figure 1(b) identifies only ltg, bmi, map, hdl, and tch (thyroid stimulating
hormone) to be important. We also include the full profile of the BFs in GIS-Lasso
along with a 95% confidence band in Figure 1 subplot (c). In the case of GIS-EN
since we have two tuning parameters (λ1 and λ2) we have included the contour plot
of the BF and the corresponding estimate of the standard error (SE) relative to the
Bayes Factor in subplots Figure 1(d) and Figure 1(e) respectively. For better illus-
tration, in Figure 2 and Figure 3 we include the 95% confidence bands for GIS-lasso
and GIS-EN solution paths for each individual coefficients. These plots illustrate the
ability of our method to quantify the uncertainty over the full solution path of the
coefficients.

In our GIS-Lasso and GIS-EN we can obtain the full profile of the BF and its cor-
responding SEs (Figure 1(c)–(e)) which give us a clear idea about the role of optimal
choice of the tuning parameters. Moreover the plots (Figure 1(c)–(e)) can be used to
provide us a guideline for selection of the skeleton points (see e.g. Roy et al., 2015).
It is suggested that we select more skeleton points from the region of the tuning pa-
rameters whose corresponding SE relative to the Bayes Factor is relatively large than
others.

Soil data

This data set comes from a study of the association between soil characteristics and
forest diversity in the Appalachian mountains of North Carolina (Bondell and Reich,
2008). The response of interest is the number of different plant species found in a plot.
The covariates are 15 soil characteristics as follows: (1) % base saturation, (2) sum
cations, (3) CEC, (4) calcium, (5) magnesium, (6) potassium, (7) sodium, (8) phospho-
rous, (9) copper, (10) zinc, (11) manganese, (12) humic matter, (13) density, (14) soil
pH, and (15) exchangeable acidity. A more detailed description can be obtained from
(Bondell and Reich, 2008). In this study, we have only 20 samples. In this data set
several predictors are very highly correlated (absolute correlation > 0.90). For exam-
ple, we see predictor variables 1 to 5 are all very strongly correlated. The correlation
between sodium and phosphorous is also very high and there is a strong negative cor-
relation between soil PH and exchangeable acidity. Due to strong correlation structure
among the covariates, it would be very useful to group together the variables that are
strongly correlated. Therefore lasso and all Bayesian counter parts of lasso which cannot
take into account the underlying correlation structure will give sub-optimal result. In
Table 4 we report leave one out cross-validation MSE. Under the presence of strong
correlation among the predictor variables our GIS-EN resulted in lowest MSE among
all. Comparing with all lassos our GIS-EN lowered the CV-error by more than 10%.
On the other hand in comparison to the existing elastic-net and EM-EN our GIS-EN
improved the accuracy by around 4%. It is important to mention here that although in
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Figure 2: Diabetes Data: 95% Confidence Interval for GIS-lasso Path.
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Figure 3: Diabetes Data: 95% Confidence Interval for GIS-EN Path (λ2 = 12.65).
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comparison GIS-EN and EM-EN both seems to be equally performing well, but EM-EN
is extremely slow to implement and thus its unusable in any practical application. On
the other hand our GIS-EN is producing the same accurate result 15 times faster. In
Figure 4 we list the solution paths for our GIS-lasso and GIS-EN. From the solution
paths (Figures 4(a) and (b)) we can identify that GIS-lasso picked up 9 variables as
important where as GIS-EN has selected only 6 as important. The 9 selected variables
by our GIS-lasso are soil pH, copper, exchangeable acidity, potassium, density, humic
Matter, calcium, zinc, and phosphorous. On the other hand the 6 selected variables by
our GIS-EN are soil pH, copper, exchangeable acidity, potassium, density and humic
Matter.

Method Test Set MSE Tuning Parameter Estimates
lasso 0.39 λ = 0.31
FB-lasso 0.41 λ = 3.77
EM-lasso 0.46 λ = 3.14
GIS-lasso 0.43 λ = 3.72
EN 0.31 λ1 = 0.42, λ1 = 1.77
FB-EN 0.32 λ1 = 2.11, λ2 = 19.56
EM-EN 0.27 λ1 = 3.32, λ2 = 17.99
GIS-EN 0.27 λ1 = 3.41, λ2 = 18.40

Table 4: Soil Data.

5 Discussions

Variable selection plays a fundamental role in modern statistical modeling. Classical ap-
proaches to deal with the variable selection problems are through regularization meth-
ods. These methods minimize the residual sum of squares subject to an imposed penalty.
These methods are closely related to Bayesian methods as often the estimate given by a
regularization method is indeed the posterior mode of a Bayesian model. The estimation
of penalty parameters, although it is very important, can be tricky. In this article, an
empirical Bayes methodology based on efficient importance sampling schemes is used for
estimating the penalty parameters as well as the full solution paths for Bayesian lasso
and EN. The Gibbs sampler for Bayesian EN is proved to be geometrically ergodic,
which allows users to calculate asymptotically valid standard errors for the posterior
estimates.

In many applications, interaction exists among the variables. In recent years, a vari-
ety of models is proposed in the literature to deal with the presence of highly correlated
predictors (see e.g. Bondell and Reich, 2008; Liu et al., 2014). As a possible avenue for
future work, it would be interesting to apply our proposed methods for estimating the
penalty parameters and solution paths of these other grouped lasso methods. The GIS
method can also be applied while using other shrinkage priors such as global local priors
(Polson and Scott, 2010) (e.g. the horseshoe prior (Carvalho et al., 2010)) and non local
priors (Johnson and Rossell, 2012).
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Figure 4: Soil Data.
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Supplementary Material

Supplementary Material for “Selection of Tuning Parameters, Solution Paths and Stan-
dard Errors for Bayesian Lassos” (DOI: 10.1214/16-BA1025SUPP; .pdf). The online
supplementary materials contain the proofs of lemmas. Also a summary of the steps
involved in the estimation of the tuning parameters and the solution paths is given in
the supplementary materials.
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