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Mixtures of g-Priors for Analysis of Variance
Models with a Diverging Number of Parameters

Min Wang∗

Abstract. We consider Bayesian approaches for the hypothesis testing problem
in the analysis-of-variance (ANOVA) models. With the aid of the singular value
decomposition of the centered designed matrix, we reparameterize the ANOVA
models with linear constraints for uniqueness into a standard linear regression
model without any constraint. We derive the Bayes factors based on mixtures of
g-priors and study their consistency properties with a growing number of param-
eters. It is shown that two commonly used hyper-priors on g (the Zellner-Siow
prior and the beta-prime prior) yield inconsistent Bayes factors due to the pres-
ence of an inconsistency region around the null model. We propose a new class of
hyper-priors to avoid this inconsistency problem. Simulation studies on the two-
way ANOVA models are conducted to compare the performance of the proposed
procedures with that of some existing ones in the literature.

Keywords: ANOVA models, Bayes factor, consistency, growing number of
parameters, Zellner’s g-prior.

1 Introduction

In the field of applied statistics, analysis-of-variance (ANOVA) is a collection of statisti-
cal models commonly used to test hypotheses about the presence of a group (treatment)
effect. It has been widely recognized as an important tool to formulate evidence favor-
ing certain theoretical positions and disfavoring others in various areas of application,
such as agriculture (VanLeeuwen, 1997), biology (Lazic, 2008), ecology (Qian and Shen,
2007), and psychological studies (Rouder et al., 2012).

We deal with applications of hypothesis testing in the multi-way ANOVA designs,
which have been employed by researchers to assess main effects and their interactions
in experimental designs. Suppose that Y = [y1, · · · , yn]′ is a random sample of size n
drawn from normally distributed with mean vector μμμ = [μ1, · · · , μn]

′ and covariance
matrix σ2In, where μμμ and σ2 are both unknown, and In is an n × n identity matrix.
The corresponding model can be written as

Y ∼ Nn

(
μμμ, σ2In

)
, (1)

where Nn

(
μμμ, ΣΣΣ

)
denotes the multivariate normal distribution of dimension n with

mean vector μμμ and covariance matrix ΣΣΣ. The cell mean μμμ can be further decomposed
as μμμ = 1nα +Xβββ, where 1n is an n × 1 vector of ones, X represents an n × p design
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matrix, βββ is a p-dimensional vector of unknown regression coefficients The model can
be reexpressed as

Y ∼ Nn

(
1nα+Xβββ, σ2In

)
. (2)

The design matrix X is often referred to as factors in the experiment and is populated
by entries of one or zero that describe how effect parameters map onto observations.
The regression coefficient βββ can be viewed as level-specific parameters. Draper and
Smith (1998) developed a dummy coding, denoted by model.matrix (·) in R language
(R Development Core Team, 2011) to construct X. Model (2) may not be identifiable,
because there are a total of p + 1 parameters that determine the p cell means, and
thus some linear constraints are usually imposed for uniqueness. We here consider the
sum-to-zero linear constraints proposed by Fujikoshi (1993). As a result, the intercept
becomes the grand mean and each regression coefficient represents the deviation from
the grand mean. The regression coefficient of the last level is equal to minus the sum of
other regression coefficients. Later on, we will justify that any linear constraint can be
adopted without affecting the main results in this paper.

In the ANOVA models, we are interested in the model selection problem where we
would like to select a model which is compatible with the observable data. This problem
is equivalent to selecting a submodel of (2), whose mean is of the form

μμμ = 1nα+Xγβββγ , (3)

where Xγ is an n × k submatrix of X and βββγ is a k × 1 vector of unknown regression
coefficients. Various procedures have been proposed for the above problem ranging from
frequentist ones such as the p-values and the Akaike information criterion (AIC) to
Bayesian methods. From a frequentist viewpoint, researchers routinely report the p-
values as a measure of evidence for competing positions, even though a number of
critiques of using the p-values have been raised in the literature; see Rouder et al.
(2012) for detailed comments on the topic. Recently, a growing chorus of researchers
advocate the use of the Bayesian procedure as evidence; see, for example, Maruyama
(2012), Rouder et al. (2012), Wetzels et al. (2012), Wang and Sun (2013), among others.
There are many advantages of using Bayesian approaches for making inference over the
frequentist one; see Berger and Pericchi (2001) for a detailed discussion.

For the sake of simplicity, we describe the Bayesian formulation for comparing model
(3) with the null model (μμμ = 1nα) which does not include any of the predictors. This
formulation can be easily adjusted for other model comparison problems. Since the
Bayesian approach for the problems of model selection and hypothesis testing is concep-
tually the same (Guo and Speckman, 2009), we consider the hypothesis testing problem
of the form

M1 : μμμ = 1nα versus Mγ : μμμ = 1nα+Xγβββγ . (4)

Within a Bayesian framework, a natural way for evaluating the plausibility of the two
competing models is to use the Bayes factor (Kass and Raftery, 1995), which is based
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on the posterior model probabilities. The Bayes factor for comparing Mγ to M1 in (4)
can be expressed in terms of the ratio of the two marginal likelihood functions

BF[Mγ : M1] =
mγ(Y)

m1(Y)
, (5)

where the marginal likelihood of Y given Mγ is

mγ(Y) = p(Y | Mγ) =

∫ ∫ ∫
p(Y | α, βββγ , σ

2)πγ(α, βββγ , σ
2) dα dβββγ dσ

2,

and the marginal likelihood of Y given M1 is

m1(Y) = p(Y | M1) =

∫ ∫
p(Y | α, σ2)π1(α, σ

2) dα dσ2,

where πγ(α, βββ, σ
2) and π1(α, σ

2) are the joint prior densities for the unknown parameters
under Mγ and M1, respectively. The Bayes factor for comparing M1 to Mγ , denoted by
BF[M1 : Mγ ], is equal to the reciprocal of BF[Mγ : M1]. Model Mγ (M1) is more likely
to be selected when BF[Mγ : M1] > 1 (< 1). More specifically, Jeffreys (1961) provided
the classification categories of evidential strength for the use of the Bayes factor. For
example, Jeffreys suggested that BF[Mγ : M1] > 10, provides “strong” evidence favoring
Mγ , and BF[Mγ : M1] > 100, provides “decisive” evidence. Note that the logarithm of
the Bayes factor can be interpreted as the weight of evidence provided by the data; see
Kass and Raftery (1995).

We need to specify priors for the unknown parameters α, βββγ , and σ2. We choose a
‘noninformative’ prior for the common parameters α and σ2 that appear in both models
and place a partially conjugate normal prior on βββγ that appears only in the alternative
model. We consider Zellner’s g-prior because it leads to a simple expression of the
marginal likelihood. The choice of g becomes quite crucial in the revival of Bayesian
inference because it controls the amount of information in Zellner’s g-prior. A nice
review of mixtures of g-priors and different fixed values of g was recently provided by
Liang et al. (2008). In this paper, we follow the suggestion of Ley and Steel (2012) and
adopt a hyper-prior on g to reflect its uncertainty and randomness and to allow for the
data to determine the inference on g. This hyper-prior must be proper, because the null
model does not involve g and the improper prior will yield the Bayes factor with an
undefined normalizing constant.

Since the seminal work of Zellner and Siow (1980), the Zellner-Siow (ZS) prior has
been widely adopted for the unknown parameters in normal linear regression models.
Liang et al. (2008) considered three families of hyper-prior for g (the ZS prior, the hyper-
g prior, and the hyper-g/n prior) and studied Bayes factor consistency associated with
these priors when the model dimension p is fixed. Here, consistency means that the true
model (hypothesis) will be eventually detected if enough data is provided, assuming that
it exists. Later on, Maruyama and George (2011) proposed the beta-prime prior on g,
which yields an analytic Bayes factor without integral representation. They also proved
that consistency holds with this prior under the same scenario. Ley and Steel (2012)
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conducted Monte Carlo simulations to compare the performance of various mixtures of
g-priors in the literature.

Wetzels et al. (2012) recently generalized mixtures of g-priors into the ANOVA
models, whereas they failed to further examine the performance of the Bayes factors
under these priors from both theoretical and practical points of view. Rouder et al.
(2012) developed a set of the Bayes factors based on multivariate generalizations of the
Cauchy prior and also did not establish consistency property of the considered Bayes
factors, even thought they emphasized consistency as a desirable theoretical property
for a proposed procedure. Bayarri et al. (2012) considered consistency as one of the
desired criteria that a model selection prior should satisfy in the context of normal linear
regression models, whereas there is not much discussion about this topic in ANOVA
designs. This paper fills the gap by studying Bayes factors consistency under various
mixtures of g-priors in the ANOVA models.

Linear models with a growing number of parameters have received considerable
attention in the literature. This is often referred to as ‘large p, large n’ regime, in
which there is a sizable number of predictors compared to the sample size. Consistency
under this regime has been studied in linear models; see, for example, Moreno et al.
(2010), Girón et al. (2010), Johnson and Rossell (2012), Wang and Sun (2014), among
others. However, the study is still quite scant in ANOVA settings (for exceptions, see
Maruyama, 2012 and Wang and Sun, 2013). The question we address here is whether
consistency still holds under this regime for the proposed Bayes factors in the ANOVA
models. Equivalently, we consider Bayes factor consistency when the model dimension
increases with the sample size with rate k = O(nb) where 0 ≤ b ≤ 1. As n approaches
infinity, we focus on the following two asymptotic scenarios

Scenario 1: k = O(nb) with 0 ≤ b < 1.

Scenario 2: k growing proportionally to n.

We first consider consistency of the Bayes factors under two commonly used hyper
priors on g: the Zellner-Siow prior (Zellner and Siow, 1980) and the beta-prime prior
(Maruyama and George, 2011). The first prior is often considered as a default choice
for the unknown parameters in the literature; see, for example, Bayarri and Garćıa-
Donato (2007), Wetzels et al. (2012), Rouder et al. (2012). The second one results in a
closed-form Bayes factor, which can thus be calculated as easily as in the case with the
fixed values of g. It deserves mentioning that the proposed results based on the second
prior generalize some existing ones for the one-way/two-way ANOVA models studied
by Maruyama (2012) and Wang and Sun (2013).

We then show that under very general conditions, the Bayes factors under the above
two priors are consistent under the null model and are inconsistent under the alternative
model when k grows proportionally to n. Although we can explicitly characterize the
inconsistency regions in terms of a pseudo-distance between the two competing models,
the inconsistency regions could lead to the rejection of the alternative hypothesis when
it is true. Of particular note is that the inconsistency region under the Zellner-Siow
prior is slightly larger than the one under the beta-prime prior. This finding may justify
that the latter outperforms the former from a theoretical viewpoint.
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To avoid the inconsistency regions mentioned above, we propose a new family of
hyper-priors on g, which is very flexible and requires little or no a priori input. The
Bayes factor based on the proposed prior is not only a closed-form Bayes factor with
the unidimensional integral, but also is consistent whichever the true model is and not
vulnerable to the Jeffreys-Lindley paradox and the information paradox. More impor-
tantly, we demonstrate that the proposed results in the ANOVA models are also valid
for the hypothesis testing problem in linear models with a growing number of param-
eters. The study is of the utmost importance to researchers from both theoretical and
practical viewpoints. From a theoretical perspective, it justifies the asymptotic behavior
of the proposed procedures for choosing the true model when it exists. From a practical
perspective, it provides a guideline to choose appropriate mixtures of g-priors in many
practical applications.

The remainder of the paper is organized as follows. In Section 3, we use the two-way
ANOVA model to illustrate how the singular value decomposition (SVD) can be imple-
mented to convert the ANOVA model with constraints into a linear regression model
without constraint. In Section 3, we specify priors for the unknown parameters and
derive the Bayes factors based on various mixtures of g-priors. In Section 4, we investi-
gate Bayes factor consistency under various mixtures of g-priors when k = O(nb) where
0 ≤ b ≤ 1. In Section 5, simulation studies are conducted to evaluate the performance
of the considered priors. Finally, some concluding remarks are presented in Section 6,
with additional material and proofs given in the Supplementary Material (Wang, 2016).

2 Model reparameterization

In this section, we discuss the general development of Bayesian analysis on multi-way
ANOVA models. As mentioned in Section 1, we cannot directly implement Zellner’s
g-prior for the regression coefficients, because the design matrix (2) does not have full
column rank. In order to overcome such difficulty, we implement the sum-to-zero con-
straints for uniqueness and then consider the SVD of the centralized design matrix.
Specifically, we reparameterize the ANOVA model with constraints for uniqueness into
a standard linear regression model without any constraint. For the sake of simplicity,
we choose the two-way unbalanced ANOVA model to illustrate the implementation of
the full-rank model reparameterization.

Consider a factorial design with two treatment factors A and B having a and b levels,
respectively, with a total of ab factorial cells. Suppose that yijk is the kth observation
in the (i, j)th cell defined by the ith level of factor A and the jth level of factor B,
satisfying the following model

yijk = μij + εijk, i = 1, · · · , a, j = 1, · · · , b, k = 1, · · · , nij , (6)

where μij ’s represent the cell mean (expected value), and the residual errors εijk’s
are assumed to be independent random variables, each having a normal distribution
with mean zero and unknown variance σ2. The value of nij represents the number of

observations in the (i, j) cell. The total number of observations is n =
∑a

i=1

∑b
j=1 nij .

Model (6) becomes balanced for the case with n11 = · · · = nab = m.
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We decompose the cell mean μij into the form μij = μ+αi+τj+γij for i = 1, · · · , a
and j = 1, · · · , b, where μ is the grand mean, αi and τj represent the ith and jth main
effects of factors A and B, respectively, and γij is their (i, j)th interaction. Model (6)
can be rewritten as

yijk = μ+ αi + τj + γij + εijk, i = 1, · · · , a, j = 1, · · · , b, k = 1, · · · , nij . (7)

The above model is not identifiable because the parameters (μ, αi, τj , γij) cannot be
uniquely defined. Following the work of Fujikoshi (1993), we impose the following linear
constraints

a∑
i=1

ni·αi = 0,

b∑
j=1

n·jτj = 0,

a∑
i=1

b∑
j=1

nijγij = 0, (8)

where ni· =
∑b

j=1 nij and n·j =
∑a

i=1 nij . It is convenient to use matrix notation.

Let Y = [Y′
1,Y

′
2, · · · ,Y′

a]
′ with Yi = [Yi11, Yi12, · · · , Yibnib

]′, ααα = [α1, · · · , αa]
′, τττ =

[τ1, · · · , τb]′, γγγ = [γ11, · · · , γab]′, and βββF = [ααα′, βββ′, γγγ′]′. Model (7) can be rewritten
compactly in a matrix form as follows

Y = μ1n + ZAααα+ ZBτττ + ZCγγγ + εεε, (9)

where εεε = [ε111, · · · , εabnab
]′ follows the multivariate normal distribution with mean

vector 0n and covariance matrix σ2In. We follow the Searle’s notations (Searle et al.,
1992, pp. 212-213) and let ZA, ZB and ZC be matrices of orders n×a, n×b, and n×ab,
respectively. They are given by

ZA =
{
d1ni·

}a

i=1
, ZB =

{
c

{
d1nij

}b

j=1

}a

i=1
, ZC =

{
d

{
d1nij

}b

j=1

}a

i=1
,

where the use of c and d within the braces represents that the corresponding partitioned
matrices are of the column and diagonal types, respectively. By using the following useful
products (Searle et al., 1992)

Z′
A1n =

{
c ni·

}
, Z′

B1n =
{
c n·j

}
, Z′

C1n =
{
c nij

}
,

it can be readily verified that

(
XF − [n1·, · · · , na·, n·1, · · · , n·b, n11, · · · , n1b, n21, · · · , nab]⊗1n/n

)′
1a+b+ab = 0a+b+ab,

where XF = [ZA,ZB ,ZC ] is an n× (a+ b+ ab) matrix and ⊗ stands for the Kronecker
product. We thus treatXF−[n1·, · · · , na·, n·1, · · · , n·b, n11, · · · , n1b, n21, · · · , nab]⊗1n/n
as the centered matrix of XF . We consider the SVD of this centered matrix, namely,

XF − [n1·, · · · , na·, n·1, · · · , n·b, n11, · · · , n1b, n21, · · · , nab]⊗ 1n/n = UΣΣΣV′,

where U and V are n × (ab − 1) and (a + b + ab) × (ab − 1) orthogonal matrices,
respectively, and ΣΣΣ is an (ab − 1) × (ab − 1) diagonal matrix with positive diagonal
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entries. Define βββ∗
F = ΣΣΣV′βββF ∈ Rab−1. Model (9) is equivalent to the standard linear

regression model with unconstraint regression coefficient βββ∗
F given by

Y = μ1n +Uβββ∗
F + εεε.

In the two-way ANOVA model, we are usually concerned about the following five real-
istic models that include main effects and interactions

M1: No effect of factor A and no effect of factor B, i.e., ααα = 0a, τττ = 0b, γγγ = 0ab.

M2: Only effect of factor A, i.e., τττ = 0b, γγγ = 0ab.

M3: Only effect of factor B, i.e., ααα = 0a, γγγ = 0ab.

M4: The additive model (without interaction), i.e., γγγ = 0ab.

M5: The full model (with interaction).

With the help of the above full-rank parametrization, the resulting model Mγ can
be rewritten as a standard linear model given by

Mγ : Y = μ1n +Uβββ∗
γ ,

where U is an n× k orthogonal matrix, βββ∗
γ ∈ Rk for γ = 2, · · · , 5, and

k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a− 1, under M2,

b− 1, under M3,

a+ b− 2, under M4,

ab− 1, under M5.

We here used the two-way unbalanced ANOVA model to illustrate how the SVD can
be implemented to reparameterize the model with constraints into a standard linear
regression model without constraint. In a similar way as done above, we can generalize
the previous developments to the hypothesis testing problem (4) in multi-way ANOVA
models and obtain that

M1 : Y = μ1n versus Mγ : Y = μ1n +Uβββ∗
γ , (10)

where βββ∗
γ is a k-dimensional vector of regression coefficients and U is an n×k orthogonal

matrix such that U′U= Ik. It should be noted that the value of k is determined by the
levels of factors in the alternative model under consideration. One advantage of such
reparameterization is that it avoids the difficulty of directly implementing Zellner’s g-
prior for the alternative model in (4), whose design matrix Xγ does not have full column
rank.

It is remarkable that Bayarri and Garćıa-Donato (2007) proposed the Bayes factor
based on the Zellner-Siow prior for testing the general hypotheses in normal linear
models, which do not require the design matrix to be of full rank. The Bayes factor
has a simple expression with the unidimensional integral. They generalized the Bayes
factor to a variety of problems in which the null hypotheses are given by general linear
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restrictions. In the two-way ANOVA models, we observe that the constraints in (8) can
be expressed as a form of CβββF = 0 with

C =

⎡
⎣n1· . . . na· 0 . . . 0 0 . . . 0

0 . . . 0 n·1 . . . n·b 0 . . . 0
0 . . . 0 0 . . . 0 n11 . . . nab

⎤
⎦ . (11)

This observation shows that the model reparameterization based on the SVD in this
paper is equivalent to the full-rank factorization technique described in Proposition 5 of
Bayarri and Garćıa-Donato (2007). Consequently, we may conclude from Theorem 1 of
Bayarri and Garćıa-Donato (2007) that any linear constraint can be adopted for unique-
ness without affecting our Bayes factors and their corresponding theoretical properties
in this paper.

3 Mixtures of g-priors

Bayesian analysis begins with prior specifications for the unknown model parameters.
For our hypothesis testing problem (10), we need to specify priors for the unknown
parameters α, σ2, and βββ∗

γ . We can regard α and σ2 as ‘common’ parameters that
appear in both models M1 and Mγ and thus specify the right-Haar prior

p(α, σ2) ∝ 1

σ2
. (12)

One may refer to Berger and Pericchi (1996) for an asymptotic justification of the
use of the same (even noninformative) prior on the common parameters. A more solid
justification has recently been provided by Bayarri et al. (2012) based on the group
invariance and predictive matching arguments. Since U′U = Ik, we assign Zellner’s
g-prior on βββ∗

γ

p(βββ∗
γ | σ2, g) ∼ N

(
0k, gσ2Ik

)
,

where 0k is a k×1 vector of zeros. The scaling factor g controls the amount of information
of the prior, so its choice is very critical in the revival of Bayesian inference and will be
discussed later. The resulting Bayes factor for comparing Mγ and M1 is given by

BF[Mγ : M1](g) = (1 + g)(n−k−1)/2
(
1 + g(1−R2)

)−(n−1)/2
, (13)

where R2 is the coefficient of determination of Mγ in (10).

There has been a large fraction of the literature dealing with the choice of g, which
can be categorized into two types: a fixed value of g and a hyper-prior on g. George and
Foster (2000) commented that fixed values of g may cause some undesirable behavior:
large values would favor the null model, while small values result in the prior dominating
the likelihood. We thus choose a proper hyper-prior on g, denoted by π(g), which yields
the Bayes factor

BF[Mγ : M1] =

∫ ∞

0

(1 + g)(n−k−1)/2
(
1 + g(1−R2)

)−(n−1)/2
π(g) dg. (14)
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We observe that a number of hyper-priors on g are obtained in the literature by speci-
fying priors on the shrinkage factor g/(1+ g), mainly because their properties are often
evaluated in terms of this shrinkage factor; see Ley and Steel (2012). In the following
section, we consider two commonly used hyper-priors on g and propose a new type of
hyper-priors to avoid the inconsistency issue encountered by the existing procedures.

3.1 The Zellner-Siow prior

Inspired by Jeffreys (1961) comments of using the Cauchy prior for comparing a uni-
variate normal mean, Zellner (1986) proposed the multivariate Cauchy distribution for
the regression coefficients in normal linear models. This prior is equivalent to Zellner’s
g-prior with an inverse gamma distribution on g

πZS(g) =
(n/2)1/2

Γ(1/2)
g−3/2 exp

(
− n

2g

)
,

which corresponds to the following prior for the shrinkage factor ϑ = g/(1 + g)

π(ϑ) =
(n/2)1/2

Γ(1/2)
ϑ−3/2(1− ϑ)−1/2 exp

(
−n(1− ϑ)

2ϑ

)
.

The Zellner-Siow prior is often adopted to derive ‘default’ Bayes factor approaches in
the Bayesian literature; see, for example, Wetzels et al. (2012), Rouder et al. (2012).
The Bayes factor under this prior has a simple expression

BFZS[Mγ : M1] =
(n/2)1/2

Γ(1/2)

∫ ∞

0

(1 + g)(n−k−1)/2
[
1 + g(1−R2)

]−(n−1)/2
g−3/2e−n/(2g) dg,

(15)

which can be easily calculated using unidimensional integration technique. Alternatively,
we may employ Monte Carlo approximation by generating samples from an inverse
gamma distribution (Bayarri and Garćıa-Donato, 2007) or the Laplace approximation
with a change of variables (Liang et al., 2008).

3.2 The beta-prime prior

Maruyama and George (2011) recently assigned the beta-prime prior on g

πBP(g) =
gt(1 + g)−s−t−2

B(s+ 1, t+ 1)
, s > −1, t > −1,

which is obtained by specifying a beta distribution with parameters s + 1 and t + 1
for 1 − ϑ. Later on, Maruyama (2012) derived several expressions of the Bayes factors
based on this prior in the one-way/two-way ANOVA models. In this paper, we propose
a unified expression of these Bayes factors, which can be implemented the multi-way
ANOVA models. Simple algebra shows that the Bayes factor can be unified as

BFBP[Mγ : M1] =
1

B(s+ 1, t+ 1)
2F1

(
n− 1

2
, t+ 1;

k

2
+ s+ t+ 2, R2

)
,
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where 2F1 is the Gaussian hypergeometric function defined as

2F1(α, β; γ, z) =
Γ(γ)

Γ(β)Γ(γ − β)

∫ 1

0

tβ−1(1− t)γ−β−1(1− tz)−α dt (16)

with γ > β > 0. The 2F1 in (16) can be numerically estimated by using subroutines in
the Cephes library (http://www.netlib.org/cephes). With the particular choice of t, we
derive an explicit Bayes factor summarized in the following theorem with its proof in
Appendix A of the Supplementary Material.

Theorem 1. Under the beta-prime prior with t = (n − k − 1)/2 − s − 2, the Bayes
factor (14) for comparing Mγ and M1 in (10) is given by

BFBP[Mγ : M1] =
Γ
(
k/2 + s+ 1

)
Γ
(
(n− k − 1)/2

)
Γ
(
s+ 1

)
Γ
(
(n− 1)/2

) (
1−R2

)−(n−k−3)/2+s
. (17)

Such a closed-form expression is unavailable for other choices of t. By following
the suggestions by Maruyama and George (2011), we recommend the choice of s ∈
(−1,−1/2] for practical applications. Of particulate note is that when the number of
parameters under Mγ is bounded, they are asymptotically equivalent to the Bayesian
information criterion (BIC) summarized in the following theorem.

Theorem 2. When k is fixed and n is sufficiently large, the Bayes factors in (15) and
(17) can be approximated by

BFZS[Mγ : M1] ≈ BFBP[Mγ : M1] ≈
(
n

2

)−k/2(
1−R2

)−(n−k)/2
. (18)

Proof. The proof directly follows Stirling’s formula for the gamma function (in the
Supplementary Material) and some algebraic manipulations.

Remark 1. In the context of linear regression models, Moreno et al. (2015) also showed
that the intrinsic Bayes factor is asymptotically equivalent to the BIC, illustrating that
the three Bayes factors have the same asymptotic behavior with the BIC when k is
bounded and n is sufficiently large.

3.3 The proposed prior

In the g-prior framework, Ley and Steel (2012) commented that as the sample size n
increases, we should account for the fact that the information accrues with the sample
size and that the inverse of the information matrix is of order 1/n. They suggested the
choice of prior distribution on g/n, instead of g. Equivalently, we should choose the
beta distribution on the shrinkage factor υ = g/(n+ g), This suggestion results in the
hyper-g/n prior given by

πHGn(g) =
a− 2

2n

(
1 +

g

n

)−a/2

, a > 2, (19)

http://www.netlib.org/cephes
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which can be viewed as a modification of the hyper-g prior (πHG(g) = (a−2)/2(1+g)a/2);
see Liang et al. (2008) in detail about the use of the hyper-g/n prior.

When the model dimension k grows with n, it seems natural to take the accrual of
the information with both n and k into consideration. A possible way is to specify prior
distributions on g/r rather than g or g/n, where r = n/k. This motivates us to choose
a beta distribution with parameters α + 1 and β + 1 for the modified shrinkage factor
ϕ = g/(r + g), instead of υ = g/(n+ g). The prior is given by

π(ϕ) =
ϕβ(1− ϕ)α

B(α+ 1, β + 1)
, α > −1, β > −1,

which leads to the following hyper-prior on g

π(g) =
1

rB(α+ 1, β + 1)

(
g

r

)β(
1 +

g

r

)−α−β−2

, (20)

The prior in (20) is the Pearson type VI distribution (Pearson, 1895) with shape pa-
rameters α > −1, β > −1, and scale parameter r > 0. This prior has a density whose
right tail behaves like (g/r)−(α+2), thus providing very fat tails for small values of α.
We suggest the choice of α ∈ (−1,−1/2]. The Bayes factor under this prior has a sim-
ple expression with the unidimensional integral and can thus be easily computed by
numerical integration techniques. Alternatively, we can use the Monte Carlo method
by generating t1 · · · , tN observations from the Pearson type VI distribution with the
parameters α, β, and r. The Bayes factor can be approximated by

1

N

N∑
i=1

(1 + ti)
(n−k−1)/2

(
1 + ti(1−R2)

)−(n−1)/2
.

Note that the Pearson type VI random variables can be easily generated by using
rpearsonVI(·) in the R-package of PearsonDS; see Becker and Klößner (2013).

We consider several choices of the hyperparameters to illustrate the flexibility of the
proposed prior in (20) . We start from the hyper-g/r prior with α = a/2− 2 > −1 (i.e.,
a > 2) and β = 0

πHGr1(g) =
a− 2

2r

(
1 +

g

r

)−a/2

, (21)

which is similar to the hyper-g/n prior in (19) proposed by Liang et al. (2008). The main
difference between the two priors is that the prior in (21) depends on k only through r.
This is a key feature to study the asymptotic behavior of the Bayes factors under the
scenario in which k = O(nb) with 0 ≤ b ≤ 1.

The proposed prior in (20) corresponds to the horseshoe prior (Carvalho et al., 2010)
developed in a different setting if we choose α = β = −1/2. It is therefore of interest
to study the effects of the shrinkage factor ϕ if we have the U-shape prior with its
spike around 0, which provides very strong shrinkage and thus induces zero regression
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coefficients in the shrinkage-prior framework. We thus consider the proposed prior with
α = β = −1/2

πHGr2(g) =
1

2
√
rg

(
1 +

g

r

)−3/2

. (22)

The proposed prior in (20) is also related to a natural ‘generic’ prior distribution for
the shrinkage factor ϕ, which specifies a uniform prior on the interval [0, 1] if we choose
α = β = 0. The prior is given by

πHGr3(g) =
1

r

(
1 +

g

r

)−2

. (23)

The choice of the uniform prior on ϕ is often treated as reference purposes of Bayesian
analysis in the literature. Finally, we propose a general family of hyper-priors on g given
by

πHGr(g) =
1

2
√
rg

fr

(√
g√
r

)
, (24)

where fr(·) is a function satisfying
∫∞
0

fr(t) dt = 1. The Bayes factor under the prior in
(24) is given by

BFHGr[Mγ : M1] =

∫ ∞

0

(1 + rt2)(n−k−1)/2
[
1 + rt2(1−R2)

]−(n−1)/2
fr(t) dt. (25)

It should be noted that the Bayes factor under the prior in (20) is just a special case of
the one in (25) if we choose fr(t) as

fr(t) =
2t2β+1(1 + t2)−α−β−2

B(α+ 1, β + 1)
.

We have considered three different types of hyper-priors on g in the ANOVA models:
the Zellner-Siow prior, the beta-prime prior, and the new proposed prior. It is therefore
of interest to compare the performance of the Bayes factors under these priors from
both theoretical and practical points of view.

4 Bayes factor consistency

In this section, we consider the asymptotic behavior of the Bayes factors under various
mixtures of g-priors. We focus on the information paradox in Section 4.1, and the model
selection consistency in Section 4.2.

4.1 Information paradox of mixtures of g-priors

Suppose, for the hypothesis testing problem in (10), model Mγ accounts for an over-
whelming amount of the variability of data compared to model M1. In this setting,
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with both n and k fixed, R2 should approach 1 (or equivalently, the usual F -statistic
approaches infinity). We anticipate that the Bayes factor in (13) goes to infinity as the
information against M1 accumulates, whereas it converges to a constant (1+g)(n−k−1)/2

for a fixed choice of g. This phenomenon is often called the information paradox; see,
for example, Jeffreys (1961), Wang and Sun (2013), among others.

Theorem 3. With both n and k fixed satisfying n > k + 1, and R2 → 1, the Bayes
factor in (15) avoids the information paradox, and the Bayes factor in (17) also avoids
the information paradox when −1 < s < (n− k − 3)/2.

Proof. The proof of the result for the Bayes factor in (15) follows directly from Theorem
2 of Liang et al. (2008) and is thus omitted for simplicity. When R2 → 1, the Bayes
factor in (17) approaches infinity for −(n − k − 3)/2 + s < 0, indicating that it avoids
the information paradox given that −1 < s < (n− k − 3)/2.

We here present a general condition under which the proposed prior in (24) resolves
the information paradox.

Theorem 4. With both n and k fixed satisfying n > k+1, and R2 → 1, the Bayes factor
in (25) avoids the information paradox whenever

∫∞
0

(1 + rt2)(n−k−1)/2fr(t) dt = ∞.

Proof. The integrand of the Bayes factor in (25) is a monotonic increasing function of
R2. By using the monotonic convergence theorem, the Bayes factor tends to

∫∞
0

(1 +

rt2)(n−k−1)/2fr(t) dt as R
2 → 1. Thus, the nonintegrability of (1+ rt2)(n−k−1)/2fr(t) is

a necessary and sufficient condition for resolving the information paradox.

It deserves mentioning that the above three different mixtures of g-priors may fail
to resolve the information paradox with a minimal sample size. For instance, the infor-
mation paradox exists in the one-way ANOVA model with a fixed-effect having 2 levels
with 1 observation in each level.

4.2 On consistency of mixtures of g-priors

We study Bayes factor consistency associated with various mixtures of g-priors when
k = O(nb) for 0 ≤ b ≤ 1. Consistency means that the true hypothesis will be selected
if enough data is provided, assuming that one of the hypotheses is true. According to
Fernández et al. (2001), the Bayes factor is said to be consistent if

plim
n→∞

BF[Mγ : M1] = ∞,

if Mγ is the true model, whereas

plim
n→∞

BF[Mγ : M1] = 0,
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if M1 is the true model, where ‘plim’ stands for convergence in probability. As n → ∞,
the asymptotic behavior of the Bayes factor depends on the pseudo-distance between
the two competing models. We define the pseudo-distance from Mγ to M1 in (10) as

δn =
βββ∗
γ
′
βββ∗
γ

nσ2
=

βββγ
′VΣΣΣΣΣΣV′βββγ

nσ2
,

where βββ∗
γ is the regression coefficients of the alternative model. For simplicity of nota-

tion, we assume that under the alternative model, the limit of the distance exists and
is denoted by δ = limn→∞ δn.

Theorem 5. We consider the Bayes factors BFBP in (17) and BFZS in (15) for the
hypothesis testing problem given by (4) in the ANOVA models.

(a) Under Scenario 1: k = O(nb) with 0 ≤ b < 1, they are consistent whichever the true
model is.

(b) Under Scenario 2: k growing proportionally to n, they are consistent under M1.
However, BFBP is consistent under Mγ when δ > ξ(r), where

ξ(r) = r1/(r−1) − 1. (26)

BFZS is consistent under Mγ when δ > Q
(
r, 1/r−1/r2

)
where Q(x, τ) with positive

τ is the (unique) positive solution of

(1 + x)r

re(1− 1/r)r−1
− (1 + x)− τ > 0. (27)

Proof. See Appendix B of the Supplementary Material.

Part (a) of Theorem 5 shows that under Scenario 1, the two Bayes factors asymp-
totically choose the true model whichever the true model is. However, Part (b) indicates
that under Scenario 2, they fail to be consistent under Mγ due to the presence of a small
inconsistency region around M1 and that we can characterize the inconsistency region
with the pseudo-distance between the two models. Figure 1 shows that as r increases,
the two regions approach each other and will eventually disappear when r tends to
infinity. In other words, equations (26) and (27) are both decreasing convex functions
of r, satisfying limr→∞ ξ(r) = 0 and limr→∞ Q(r, τ) = 0 with τ being the solution
of equation (27). We observe from Figure 1 that the inconsistency region of BFBP is
narrower than the one of BFZS. We may thus conclude that BFBP outperforms BFZS

from a theoretical point of view.

In the context of the one-way ANOVAmodel, Theorem 5 seems to be in contradiction
with Theorem 3.2 of Berger et al. (2003), which states that under Scenario 2 with known
σ2, the Bayes factor under the general form of the prior (Equation 14 of Berger et al.,
2003) is always consistent under the alternative model if δ > 0. Under the same scenario,
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Figure 1: The inconsistency region (an area between the curve and x-axis) for the Bayes
factor under Scenario 2 when sampling from Mγ .

Girón et al. (2010) also observed a similar contradictory result for the Bayes factor based
on the intrinsic prior, whose inconsistency region is given by δ > κ(r), where

κ(r) =
r − 1

(r + 1)(r−1)/r − 1
− 1, (28)

which is a deceasing function of r satisfying limn→∞ κ(r) = 0. The main reason of
this contradiction is that the prior of the general form studied by Berger et al. (2003)
incorporates the prior with its variance tending to 0, indicating that the mass of the prior
is getting less and less to any neighborhood of the null model. Thus, the inconsistency
region around the null model will disappear as the variance of the prior approaches 0.
We observe that the asymptotic behavior of BFZS is quite similar to the intrinsic Bayes
factor, because the intrinsic prior can be represented as a scaled mixture of g-priors
with a beta mixing distribution; see Lemma 1 of Womack et al. (2014). We here refer
the interested reader to Section 4 of Girón et al. (2010) for a further discussion about
the inconsistency region of the intrinsic Bayes factor.

Theorem 6. We consider the Bayes factor BFHGr in (25) for the hypothesis testing
problem given by (4) in the ANOVA models. Consider a sequence of the proper priors
in (24) satisfying two conditions (i) limr→∞ fr(t) exists and (ii)

∫∞
0

fr(t) dt = 1.

(a) Under Scenario 1: k = O(nb) with 0 ≤ b < 1, BFHGr is consistent whichever
model is true.

(b) Under Scenario 2: k growing proportionally to n, BFHGr is consistent whichever
model is true.

Proof. See Appendix C of the Supplementary Material.
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This theorem shows that the Bayes factor under the proposed prior in (24) is always
consistent whichever the true model is when k = O(nb) with 0 ≤ b ≤ 1. As an illustra-
tion, we compare the performance of the two Bayes factors under the various mixtures of
g-priors in the one-way ANOVA model. To mimic the asymptotic scenario, let n = 1, 000
and the levels of the treatment factor be 100, indicating that the average number of
observations per level is r = 10. Suppose in particular that we take δ = {0.2, 0.3, 0.35}.
Numerical results are presented in Table 1. As one would expect, the alternative model
Mγ is more favorable than the null model M1 with the large sample size. When δ = 0.2,

BFBP and BFZS are both in favor of M1. When δ = 0.3, BFBP provides strong evidence
against M1, whereas BF

ZS is still in favor of M1 because δ = 0.3 < 0.3086. These results
are quite reasonable because the two values of δ fall in the corresponding inconsistency
regions. As expected, when δ = 0.35, they both correctly support Mγ . This simple

example confirms the results of Theorem 5 and shows that BFBP has a smaller inconsis-
tency region than BFZS when the model dimension grows proportionally to the sample
size n. In addition, this simple example further confirmed the results of Theorem 6.

Bayes Factor consistency region δ = 0.2 δ = 0.3 δ = 0.35
BFBP[Mγ : M1] δ > 0.2915 −32.80207 2.917074 19.76572
BFZS[Mγ : M1] δ > 0.3086 −37.56758 −1.809035 15.23796
BFHGr1[Mγ : M1] δ > 0 33.59134 59.00707 71.88346
BFHGr2[Mγ : M1] δ > 0 32.78827 58.40660 71.35980
BFHGr3[Mγ : M1] δ > 0 33.38731 58.96554 71.89989

Table 1: Comparisons of the logarithms of the Bayes factors with the various mixtures
of g-priors when Mγ is favorable.

In summary, these Bayes factors are always consistent when sampling from the null
model M1. Table 2 provides a brief summary of comparisons among these Bayes factors
when sampling from the alternative model Mγ . The Bayes factors based on the ZS
prior and the BP prior behave similarly, both having an inconsistency region around
the null model under Scenario 2, whereas the Bayes factor based on the proposed family
of hyper-priors avoids this inconsistency region.

BFBP[Mγ : M1] BFZS[Mγ : M1] BFHGr[Mγ : M1]
Scenario 1 consistent consistent consistent

Scenario 2 Mγ : δ > ξ(r) Mγ : δ > Q
(
r, 1/r − 1/r2

)
consistent

Table 2: Comparison among the Bayes factors under the various hyper-priors on g when
sampling from Mγ under the two asymptotic scenarios.

Remark 2. For the problem of variable selection in normal linear models, Liang et al.
(2008) adopted a particular form of Zellner’s g-prior, which results in the Bayes factor
for comparing any non-null model Mγ to the null model M1

BFL[Mγ : M1] =

∫ ∞

0

(1 + g)(n−pγ−1)/2
(
1 + g(1−R2

γ)
)−(n−1)/2

π(g) dg, (29)
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where pγ is the number of non-zero regression coefficients and R2
γ is the ordinary coeffi-

cient of determination of modelMγ . By replacing k and R2 with pγ and R2
γ , respectively,

the Bayes factor in (14) in the ANOVA models is the same as the one proposed by Liang
et al. (2008) in linear models. This connection shows that the proposed Bayes factors
and their attractive properties (Theorems 5 and 6) remain valid in the context of linear
regression models under the same asymptotic scenarios if we assume the existence of
the pseudo-distance from Mγ to M1 given by

δn =
βββγ

′X′
γXγβββγ

nσ2
,

where βββγ is the regression coefficients of model Mγ . Equivalently, when the sample size
and the number of parameters approach infinity, the limit of this distance exists and is
given by δ = limn→∞ δn > 0 when sampling from Mγ .

5 Simulation study

In this section, we conduct simulation studies to compare the performance of the Bayes
factors under the various mixtures of g-priors in the two-way ANOVA models. We
consider the three special choices of the proposed prior: the HGr1 prior in (21), the
HGr2 prior in (22) with a = 3, and the HGr3 prior in (23). Along with these priors, we
also consider two commonly used mixtures of g-priors: the Zellner-Siow (ZS) prior and
the beta-prime (BP) prior with s = −1/2.

As an illustration, we mainly focus on the model comparison between M5 and M1

described in Section 2. The results from other model comparisons are similar and are
thus omitted for simplicity. Without loss of generality, let μ = 0, and σ2 = 1; see Min and
Sun (2015). We simulate the data from the sampling models as follows. For the two-way
ANOVAmodel (9) in Section 2, ααα is generated fromN(0a, gσ

2Ia), τττ fromN(0b, gσ
2Ib),

γγγ from N(0ab, gσ
2Iab), and εεε from N(0n, σ

2In), where g = {0, 0.05, 0.2}. When g = 0,
the data are from the null model M1; when g > 0, the data are from the full model M5.
To mimic the two asymptotic scenarios in the Introduction, we consider two different
choices of {m, a, b} in model (6): {a = 2, b = 3,m = 400} and {a = 30, b = 30,m = 6}.
It is important to remember that k = ab− 1 and r = abm/k when comparing M5 and
M1. For each case, we replicate our simulation 1,000 times. The decision criterion is to
select M5 if log(BF) > 0, and M1 otherwise.

The five number summary of log(BF) and the relative frequency (RF) of selecting
the correct model under each prior are presented in Tables 3 and 4. Rather than pro-
viding exhaustive interpretations from these simulations, we merely highlight the most
important findings as follows. (i) When {a = 2, b = 3,m = 400}, the performance of
the proposed Bayes factors are comparable with the ones under the two commonly used
mixtures, because they all provide the desirable results whichever the sampling model
is. (ii) When {a = 30, b = 30,m = 6} and g = 0.05, Table 4 shows that the logarithms
of BFZS and BFBP are all negative and thus fail to provide evidence supporting the
true model. However, the proposed Bayes factors are always positive and are in favor of
the correct model. (iii) When {a = 30, b = 30,m = 6} and g = 0.20, BFBP outperforms
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g prior Min Q1 Median Q3 Max RF(%)
0 ZS −16.6781 −14.2927 −12.9632 −11.3475 −2.5686 1.000

BP −16.6712 −14.2705 −12.9452 −11.3242 −2.5804 1.000
HGr1 −7.0235 −5.5701 −4.6782 −3.4896 3.9196 0.980
HGr2 −3.7598 −2.9445 −2.3261 −1.3899 5.4418 0.915
HGr3 −6.2534 −4.8622 −3.9865 −2.8122 4.6209 0.962

0.05 ZS −12.4218 46.5266 84.9298 138.3743 472.8710 0.982
BP −12.4045 46.5412 84.9377 138.3800 472.8728 0.982

HGr1 −4.3019 50.7902 88.4743 141.2488 474.0180 0.997
HGr2 −2.0405 51.5953 89.0583 141.6796 474.0419 0.999
HGr3 −3.5681 51.4259 89.0556 141.8120 474.4255 0.998

0.20 ZS −4.8304 211.8973 337.9223 499.187 707.5502 0.999
BP −4.8135 211.8972 337.9383 499.199 709.6526 0.999

HGr1 1.9462 214.1657 339.5490 500.279 708.1978 1.000
HGr2 3.5341 214.4562 339.6827 500.289 708.1055 1.000
HGr3 2.6515 214.6885 340.0109 500.670 708.5138 1.000

Table 3: Five number summary and the RF of choosing the correct model under log(BF)
associated with each prior when {a = 2, b = 3,m = 400}.

g prior Min Q1 Median Q3 Max RF(%)
0 ZS −Inf −Inf −Inf −Inf −Inf 1.000

BP −Inf −Inf −Inf −Inf -720.8974 1.000
HGr1 −6.1992 −4.3584 −3.3993 −2.1222 4.0161 0.937
HGr2 −3.4643 −2.2161 −1.5290 −0.5166 5.2688 0.820
HGr3 −5.7210 −3.6464 −2.7296 −1.4632 4.6139 0.895

0.05 ZS −Inf −Inf −Inf −Inf −Inf 0.000
BP -611.9589 -499.1527 -466.2511 -437.5138 -297.2645 0.000

HGr1 34.0548 80.6616 96.5540 111.0798 190.0442 1.000
HGr2 34.8696 81.2014 97.0909 111.6091 190.4298 1.000
HGr3 34.6502 81.2911 97.1527 111.6971 190.6146 1.000

0.20 ZS −Inf −Inf −Inf −Inf -355.8564 0.000
BP -58.6632 179.7255 259.7000 337.8486 609.0160 0.993

HGr1 346.8938 522.8598 585.0017 646.9002 Inf 1.000
HGr2 347.1775 522.9843 584.9892 646.8955 Inf 1.000
HGr3 347.6076 523.3627 585.4013 647.3217 Inf 1.000

Table 4: Five number summary and the RF of choosing the correct model under log(BF)
associated with each prior when {a = 30, b = 30,m = 6}. The symbol ‘Inf’ means that
the Bayes factor is less than the machine epsilon in R.

BFZS in terms of the RF of the correct model. These findings exactly match the claims
in Theorems 5 and 6. Even when both k and r are large (not shown here), BFZS and
BFBP could still be negative occasionally and support the null model for g = 0.05 (i.e.,
the sampling model is Mγ). This undesirable situation occurs, mainly because the two
Bayes factors put much evidence in supporting the null model.
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Numerical results in the two tables also show that BFZS and BFBP have a similar
behavior and both are strongly biased toward the null model (g = 0), leading to a
smaller Type I error than the proposed Bayes factors. Consequently, they perform more
poorly than the proposed Bayes factors when sampling from the alternative model.
This is the price that they have to pay for their smaller Type I error behavior. We
observe that the proposed Bayes factors display a more balanced Type I and II error
probabilities than the ones based on the ZS prior and the BP prior. We have also
conducted simulation studies with other choices of (a, b,m) for the hypothesis testing
problem in other ANOVA settings. Numerical findings are in good agreement with the
findings mentioned above and are thus not shown here for simplicity.

6 Concluding remarks

We have studied Bayes factor consistency under the various mixtures of g-priors for the
hypothesis testing problem in the multi-way ANOVA models with a diverging number of
parameters. It has been shown that the Bayes factors based on the ZS prior and the BP
prior are not always consistent due to the presence of an inconsistency region around the
null model when k grows proportionally to n. The Bayes factor based on the proposed
family of hyper-priors avoids this undesirable inconsistency problem. Simulation results
show that the proposed Bayes factors perform well and yield satisfactory results in terms
of balancing Type I and II error probabilities under different simulation situations.
Among the three special choices of the proposed prior, we have a preference for the
HGr1 because its overall performance is superior than the other two when sampling
from the null model and they all behave similarly when sampling from the alternative
model. In ongoing work, we are further studying the performance of the Bayes factors
with other choices of fr(t) given by (24).

The robust prior (Bayarri et al., 2012) has recently received much attention in con-
text of normal linear regression models, because it was originally developed based on a
number of theoretical augments. It includes the hyper-g prior and the hyper-g/n prior
(Liang et al., 2008) as particular cases and is also closely connected with the ZS prior
studied in this paper. These observations motivate us to study Bayes factor consistency
under the robust prior in the ANOVA models with a growing number of parameters,
which is currently under investigation and will be reported elsewhere.

Supplementary Material

Supplementary material for “Mixtures of g-priors for analysis of variance models with
a diverging number of parameters” (DOI: 10.1214/16-BA1011SUPP; .pdf).
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