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Causal inference is known to be very challenging when only observa-
tional data are available. Randomized experiments are often costly and im-
practical and in instrumental variable regression the number of instruments
has to exceed the number of causal predictors. It was recently shown in Peters,
Bühlmann and Meinshausen (2016) (J. R. Stat. Soc. Ser. B. Stat. Methodol. 78
947–1012) that causal inference for the full model is possible when data from
distinct observational environments are available, exploiting that the condi-
tional distribution of a response variable is invariant under the correct causal
model. Two shortcomings of such an approach are the high computational
effort for large-scale data and the assumed absence of hidden confounders.
Here, we show that these two shortcomings can be addressed if one is will-
ing to make a more restrictive assumption on the type of interventions that
generate different environments. Thereby, we look at a different notion of
invariance, namely inner-product invariance. By avoiding a computationally
cumbersome reverse-engineering approach such as in Peters, Bühlmann and
Meinshausen (2016), it allows for large-scale causal inference in linear struc-
tural equation models. We discuss identifiability conditions for the causal pa-
rameter and derive asymptotic confidence intervals in the low-dimensional
setting. In the case of nonidentifiability, we show that the solution set of
causal Dantzig has predictive guarantees under certain interventions. We de-
rive finite-sample bounds in the high-dimensional setting and investigate its
performance on simulated datasets.

1. Introduction. Using only observational data to infer causal relations is a
challenging task and only possible under certain circumstances and assumptions.
In the context of structural equation models (Bollen (1989), Pearl (2009), Robins,
Hernan and Brumback (2000)), one possibility is to characterize the Markov equiv-
alence class of graphs under the assumption of acyclicity and usually faithful-
ness (Andersson, Madigan and Perlman (1997), Chickering (2003), Hauser and
Bühlmann (2012), Tian and Pearl (2001), Verma and Pearl (1991)). Based on the
Markov equivalence class, some causal effects and often only bounds for them
can be inferred; see, for example, Maathuis, Kalisch and Bühlmann (2009) and
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VanderWeele and Robins (2010). Other approaches exploit non-Gaussianity or
nonlinearities, while making suitable assumptions about the causal model (Hoyer
et al. (2009), Shimizu et al. (2006)).

If both observational and data under interventions are available and the target
and effect of the interventions is perfectly known, the task of inferring causal rela-
tionships becomes easier. Hauser and Bühlmann (2015), for example, modify the
greedy equivalence search of Chickering (2003) to such a scenario. If an instru-
mental variable is available, then different forms of instrumental variable regres-
sion (Angrist, Imbens and Rubin (1996), Bowden and Turkington (1990), Didelez,
Meng and Sheehan (2010), Wright (1928)) can be used to infer the causal effect of
a single variable on a target of interest.

Consider a setting where data are recorded in different environments. The en-
vironments can have an arbitrary and unknown intervention effect on all predictor
variables and the method exploits that the conditional distribution of the target
Y of interest, given its causal parents, is invariant across environments under ar-
bitrary interventions on all variables (excluding, just as in instrumental variable
regression, direct interventions on the response or target Y ). While it was demon-
strated in Peters, Bühlmann and Meinshausen (2016) that the method can infer a
full causal model, there are two major shortcomings:

(i) It is assumed for invariant causal prediction (ICP) (Peters, Bühlmann and
Meinshausen (2016)) that there are no hidden variables that influence Y and its
parents simultaneously.

(ii) ICP scans all potential subsets of variables and tests whether the conditional
distribution of Y given a subset of variables is invariant across all environments.
This makes the method computationally prohibitively expensive as soon as the
number of predictor variables starts to exceed one or two dozens.

We will show that both shortcomings can be addressed if we are willing to make a
more specific assumption about the type of interventions that generate the different
environments.

1.1. Setting and notation. Assume we have a p + 1 variables X1, . . . ,Xp+1
from a linear Structural Equation Model (SEM) (Bollen (1989), Pearl (2009),
Robins, Hernan and Brumback (2000)),

Xk ← ∑
k′ �=k

Ak,k′Xk′ + ηk, k = 1, . . . , p + 1,(1)

where pa(k) := {k′ : Ak,k′ �= 0} ⊆ {1, . . . , p + 1} \ k is the set of parents of vari-
able k. For notational simplicity, we set Ak,k := 0 for all k. Deviating from con-
vention, we allow dependence between the components of the noise contribution
η = (η1, . . . , ηp+1) which is equivalent to allowing for hidden variables as parents
of the observed variables X1, . . . ,Xp+1; see Figure 1 for an example. The vari-
ables form a directed graph G = (V ,E), where the nodes V = {1, . . . , p + 1} are
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FIG. 1. An example for p = 3. The hidden variable H is suppressed notationally and instead the
noise contributions at each variable {X1,X2,X3,X4 = Y } are not assumed to be independent.

given by the variables themselves and there is an edge from variable k to k′ if and
only if k ∈ pa(k′). Furthermore, we allow the underlying graph to be cyclic. The
values (Ak,k′) for k, k′ ∈ {1, . . . , p + 1} form a (p + 1)× (p + 1)-dimensional ma-
trix that we denote by A. We write Idp+1 for the (p + 1) × (p + 1)-dimensional
identity matrix. To make the distribution of X1, . . . ,Xp+1 well defined in the pres-
ence of cycles, we assume that Idp+1 −A is invertible. Note that this is always the
case if G is acyclic.

We consider inferring the structural equation for just one of the variables and
we take variable Xp+1 without loss of generality and denote it by Y . Note that
Y can be in the parental set of some (or all) of the variables X1, . . . ,Xp , that is,
the matrix A is not necessarily lower triangular. With slight abuse of notation, we
define X := (X1, . . . ,Xp), β0 := Ap+1,1:p and ε := ηp+1 such that

(2) Y := Xp+1 =
p∑

k=1

β0
kXk + ε.

Note that the vector β0 has a causal interpretation as it is the coefficient vector
Ap+1,1:p in the structural equation model (2). The goal is to infer β0.

1.2. Relation to other work. We have mentioned already major differences to
invariant causal prediction (Peters, Bühlmann and Meinshausen (2016)) and the
loose relation to the vast literature on instrumental variable regression (Didelez,
Meng and Sheehan (2010)) which will be detailed in Section 3.6. Another method
that relies on shift interventions has been published recently (Rothenhäusler et al.
(2015)). However, the authors exploit a different type of invariance as inner-
product invariance does not hold in this setting. Lewbel (2012) uses heteroscedas-
ticity to infer structural equations. While Lewbel (2012) uses cross-products be-
tween exogeneous variables and error terms to identify structural equations, we
directly exploit the covariance structure of endogeneous variables and the error
terms, resulting in a different method. The comparison in Figure 11 about an ap-
plication has been published in Meinshausen et al. (2016). The concept of inner-
product invariance, the causal Dantzig method and all its corresponding theory
are entirely novel.
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1.3. Overview. In Section 2, we introduce the notion of inner-product invari-
ance and discuss under which assumptions this property is satisfied. In Section 3,
we leverage this property to define the unregularized causal Dantzig and discuss
identifiability, low-dimensional estimation and inference. Furthermore, in the case
of nonidentifiability we show that the solution set of causal Dantzig has predic-
tive guarantees under certain interventions. We conclude with a comparison to in-
strumental variable regression and a discussion of inner-product invariance from
the perspective of potential outcomes. In Section 4, we introduce the regularized
causal Dantzig, examine its performance in high-dimensional estimation and show
how it can achieve consistency under relaxed identifiability assumptions. Practical
considerations for both the regularized and unregularized causal Dantzig can be
found in Section 5. Numerical examples can be found in Section 6.

2. Conditional and inner-product invariance. In analogy to the setting of
Peters, Bühlmann and Meinshausen (2016), we assume that the data are recorded
under different discrete environments or experimental conditions e ∈ E . The ran-
dom variable X in environment e ∈ E is denoted by Xe and the distribution of η

by ηe. We observe i.i.d. samples of (Xe,Y e) from each environment e ∈ E and
for each sample i we observe from which environment ei ∈ E it was drawn. This
variable ei can be deterministic or random.

The distribution of a variable can be different across environments due to spe-
cific or nonspecific interventions. A change in the distribution of Xe, ηe can be
caused by different intervention mechanisms such as do-interventions or noise-
interventions, which can be randomized or not and known or partially known or
unknown.

The type of intervention that generates the environments is arbitrary in Peters,
Bühlmann and Meinshausen (2016) with the exception that interventions on the
target Y itself are not allowed. The same requirement is also necessary for the
instrumental variable approach and we will keep this requirement in the following.
For possible relaxations, see Rothenhäusler et al. (2015). Throughout the paper,
we assume that the distributions (Xe,Y e) are nondegenerate and that the Gram
matrix of (Xe,Y e) is well defined and positive definite for all e ∈ E .

2.1. Conditional invariance. The conditional distribution of the target variable
Y , given its parents pa(Y ) = pa(Xp+1) is denoted by

Y e|Xe
pa(Y ) = x.

It was assumed in Peters, Bühlmann and Meinshausen (2016) that the conditional
distribution is invariant for all x ∈ R

|pa(Y )| where it is defined in the absence of
hidden confounding (where absence of hidden confounding is fulfilled in (1) if all
components of η are independent). It then holds for all environments e, f ∈ E and
all x ∈ R

|pa(Y )| for which the conditional distributions are well defined that

(3) Y e
∣∣Xe

pa(Y ) = x
d= Yf

∣∣Xf
pa(Y ) = x.
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This conditional invariance under the true parental set pa(Y ) is then exploited for
inference by testing for all subsets of {1, . . . , p} whether the invariance of (3) can
be rejected. The intersection of all subsets for which invariance cannot be rejected
is then automatically a subset of the true parental set with controllable probability.

There are two shortcomings of this invariance approach (Peters, Bühlmann and
Meinshausen (2016)) in certain contexts:

(i) The invariance (3) becomes invalid under hidden confounding between Y

and the parents of Y as the conditional invariance of (3) can be violated even for
the true parental set (Peters, Bühlmann and Meinshausen (2016)).

(ii) Testing each subset of {1, . . . , p} restricts the number of variables to some-
where between p ≤ 20 in practice.

Both of these shortcomings can be addressed when using a different type of invari-
ance.

2.2. Inner-product invariance. We show in the following that the invariance of
the conditional distribution (3) can be replaced with an inner-product invariance
under a more specific assumption on the mechanism that generates the different
environments.

DEFINITION 1. Inner-product invariance under β0 ∈ R
p is fulfilled iff

E
[
Xe

k

(
Y e − Xeβ0)] = E

[
X

f
k

(
Yf − Xf β0)]

for all e, f ∈ E and k ∈ {1, . . . , p}.

We will show that inner-product invariance is true for the causal vector β0 under
the assumption of additive interventions made precise in the following. A deriva-
tion of this result from potential outcome assumptions is discussed in Section 3.7.
The concept of inner-product invariance will then later be exploited for computa-
tionally fast causal inference for both low- and high-dimensional data.

2.3. Additive interventions. We assume here that the structural equations (1)
are constant across all environments and that the change in the distribution of Xe

between environments is caused by a shift in the distribution of ηe between differ-
ent environments.

ASSUMPTION 1. Assume that the distributions of (Xe
1, . . . ,X

e
p+1), e ∈ E , are

generated by the linear SEM

Xe
k ← ∑

k′ �=k

Ak,k′Xe
k′ + ηe

k, for k = 1, . . . , p + 1 and e ∈ E .
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Assume that there exist random variables η0, δe ∈ R
p with Cov(η0, δe) = 0 for all

e ∈ E such that ηe can be written as

ηe d= η0 + δe for all e ∈ E .

We assume that δe
p+1 ≡ 0 for all e ∈ E and E[η0] = 0.

Note that the components of η0 and of each vector δe, e ∈ E are allowed to
be dependent to allow for hidden confounding. We call the random variables δe,
e ∈ E , additive interventions as they are additive and specific to the environment
e ∈ E . δe can for example be an additive contribution if E(δe

k) �= 0 for some vari-
able k ∈ {1, . . . , p} or a noise contribution if Var(δe

k) �= 0 or both. If δe
k ≡ 0 for

some e ∈ E and k ∈ {1, . . . , p}, we say that there is no intervention on variable k

in environment e ∈ E . The last part of the assumption ensures that the noise part
δe that is specific to environment e ∈ E does not include an intervention on the
target variable Y itself and is a type of exclusion restriction (Pearl (2009)). Mathe-
matically, the crucial property of Assumption 1 is that the covariance between the
error of covariates and target variable is constant, that is, that Cov(ηe

1:p, ηe
p+1) is

constant across environments e ∈ E . This allows us to obtain the following result.

PROPOSITION 1. Under Assumption 1, we have inner-product invariance un-
der the true causal coefficients β0 = (Ap+1,k)k=1,...,p:

E
[
Xe

k

(
Y e − Xeβ0)] = E

[
X

f
k

(
Yf − Xf β0)]

for all e, f ∈ E and k ∈ {1, . . . , p}.

The proof of this result can be found in the Supplementary Material (see
Rothenhäusler, Bühlmann and Meinshausen (2018)). A derivation of this result
from potential outcome assumptions is discussed in Section 3.7. We will exploit
inner-product invariance to infer the causal effects in linear SEMs in the following.

2.4. Errors-in-variables. In many real-world applications, we cannot directly
observe X1, . . . ,Xp,Y , but make a measurement error ζ when observing it. In
other words, we measure

(4) Ỹ e = Y e + ζ e
y and X̃e

k = Xe
k + ζ e

k , e ∈ E, k = 1, . . . , p,

where ζ e
y , ζ e

k , e ∈ E, k = 1, . . . , p are centered, jointly independent and indepen-
dent of Xe,Y e, e ∈ E with finite variance. Furthermore, we make the assumption
that the distributions of ζ e

k , k = 1, . . . , p are invariant for different settings e ∈ E .
Note that we do not assume that the distribution of ζ e

y is invariant for different
settings e ∈ E . Errors-in-variables exhibit an effect called “regression dilution” or
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“attenuation.” As an example, consider a structural equation model of the follow-
ing form:

latent variables X1 and Y with Y = 2X1 + ε,

observed variables X̃1 and Ỹ with X̃1 = X1 + ζ1,

and Ỹ = Y + ζy.

For now, let us assume that there is no confounding between X1 and Y and X1.
When regressing Ỹ on X̃1, we obtain a smaller regression coefficient than when
regressing Y on X1 due to higher variance of X̃1. The smaller regression coefficient
is by definition the best linear prediction of Ỹ given X̃1. In this sense, attenuation
can be ignored if one wants to make predictions based on X̃1. However, in causal
inference we are interested in knowing what happens when intervening on X1,
and this effect would be underestimated by the regressing Ỹ on X̃1. The following
proposition shows that if inner-product invariance holds for X1, . . . ,Xp,Y then it
also holds for proxy variables X̃1, . . . , X̃p, Ỹ .

PROPOSITION 2. Assume inner-product invariance holds for variables Xe
1,

. . . ,Xe
p,Y e, e ∈ E , under β0. Assume we have an errors-in-variables model as

defined in equation (4). Then inner-product invariance holds for X̃e
1, . . . , X̃

e
p, Ỹ e,

e ∈ E under β0:

E
[
X̃e

k

(
Ỹ e − X̃eβ0)] = E

[
X̃

f
k

(
Ỹ f − X̃f β0)]

for all e, f ∈ E and k ∈ {1, . . . , p}.

The proof of this result can be found in the Supplementary Material (see
Rothenhäusler, Bühlmann and Meinshausen (2018)). As a result, methods based
on inner-product invariance will be robust with respect to errors-in-variables. Note
that the analogous statement is true for instrumental variable regression. Now let
us turn to the definition of the unregularized causal Dantzig.

3. Causal Dantzig without regularization. In this section, we introduce the
unregularized causal Dantzig, discuss its basic properties and an example. We in-
troduce the unregularized causal Dantzig in Section 3.1. Asymptotic confidence
intervals for low-dimensional estimation are discussed in Section 3.3. Section 3.4
provides an example and explains basic usage of the method causalDantzig in
the R-package InvariantCausalPrediction (R Core Team (2017)). Iden-
tifiability and consistency issues are discussed in Section 3.5. We conclude with a
comparison to instrumental variable regression in Section 3.6.
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3.1. The estimator. Assume that we observe i.i.d. samples of (Xe,Y e) in two
environments e ∈ E = {1,2} with n1, n2 samples in each environment. Let X1 and
X2 be the n1 ×p and n2 ×p-dimensional matrices that contain the realized values
of the random variables Xe in environment e = 1 and e = 2, respectively, and let
Y1 ∈ R

n1 and Y2 ∈ R
n2 be the respective measurements of the response variables.

Define the differences between the two environments in inner-product and Gram
matrices, the so-called Gram-shift matrices

Ẑ := 1

n1
(X1)tY1 − 1

n2
(X2)tY2 ∈ R

p

Ĝ := 1

n1
(X1)tX1 − 1

n2
(X2)tX2 ∈ R

p×p.

(5)

Assuming inner-product invariance holds under β0,

E
[
Ẑ − Ĝβ0] = 0.

A simple estimator of β0 is the empirical minimizer of the �∞-norm of the differ-
ences between Ẑ and Ĝβ .

DEFINITION 2 (Unregularized causal Dantzig). The causal Dantzig estimator
β̂ is defined as a solution to the optimization problem

(6) min
β∈Rp

‖Ẑ − Ĝβ‖∞.

The choice of how to center and scale variables deserves some attention. We
will discuss this in Section 5.1. Causal Dantzig is uniquely defined if and only if
Ĝ is invertible and can in this case be written as

(7) β̂ = Ĝ−1Ẑ.

Note that by equation (5) this estimator is closely related to least squares in linear
regression. Recall that for observations Y ∈ R

n and design matrix X ∈ R
n×p , the

least squares estimator is defined as

β̂LS = (
XtX

)−1XtY.

Causal Dantzig is strikingly similar, with the Gram matrices replaced by differ-
ences of Gram matrices in different settings. As such, it is straightforward to derive
asymptotic confidence intervals for this estimator. Many properties from linear re-
gression do not carry over. For example, the causal Dantzig is only asymptotically
unbiased.
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3.2. More than two environments. There are two straightforward extensions
to more than two environments |E | > 2. Pooling data from different environments
preserves inner-product invariance. If some of the environments are “observa-
tional” and the others are “interventional,” one option for splitting the data into
two environments E ′ = {1,2} is pooling all observational data (e′ = 1) and pooling
all interventional data (e′ = 2). Instead of splitting the data into two environments
one can change the definition of the estimator to accommodate for more than two
settings, for example, by defining β̂ as a solution to the optimization problem

(8) min
β∈Rp

max
e∈E

∥∥Ẑe − Ĝeβ
∥∥∞,

where

Ẑe := 1

ne

(Xe)tYe − 1

|E | − 1

∑
ẽ �=e

1

nẽ

(
Xẽ)tYẽ ∈ R

p,

Ĝe := 1

ne

(Xe)tXe − 1

|E | − 1

∑
ẽ �=e

1

nẽ

(
Xẽ)tXẽ ∈ R

p×p.

(9)

Note that for two environments, solutions of equation (8) coincide with equa-
tion (6). It depends on the type of interventions and the signal strength which
of the two options mentioned above is better. If the data can be split into two
environments E ′ = {1,2} that are homogeneous, doing so is preferable as the es-
timators of Ge′

and Ze′
, e′ ∈ E ′ have low variance. If the environments E have

different (strong) interventions, solving equation (8) can be preferable as the effect
of several strong interventions might get “washed out” when averaging over many
environments. We will return later to the case of more than two environments. For
the following discussion, we assume that there are two environments E = {1,2}.

3.3. Confidence intervals. In the settings described above, β̂ is in general only
asymptotically unbiased. This bias is unknown as it depends on the unknown
amount of confounding between Xe and Y e. Hence we will only pursue asymp-
totic confidence intervals. We will show that the estimator (7) is under certain
conditions asymptotically normally distributed, that is, for n1, n2 → ∞,

(10)
(

V 1

n1
+ V 2

n2

)− 1
2 (

β̂ − β0)
⇀ Np(0, Idp).

The matrices V 1 and V 2 are positive definite under suitable assumptions and can
be consistently estimated from the data as V̂ 1 and V̂ 2 as we will discuss later. We
can then define asymptotically valid confidence intervals for β0

k as

(11) Ik = [β̂k − q

√
V̂kk, β̂k + q

√
V̂kk],
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where V̂kk is the kth diagonal element of V̂ = V̂ 1/n1 + V̂ 2/n2 and q = 	−1(1 −
α/2). Here, 	 denotes the distribution function of a standard Gaussian random
variable. The interval Ik has asymptotic coverage

P
[
β0

k ∈ Ik

] → 1 − α for n1, n2 → ∞.

The conditions for asymptotic normality (10) are fourth-moment conditions on the
observed random variables as well as conditions that guarantee that V 1 and V 2 are
invertible and that causal Dantzig is unique.

THEOREM 1 (Asymptotic normality). Let (X1, Y 1) and (X2, Y 2) have finite
fourth moments and assume that inner product invariance holds under β0. Assume
that (X1,Y1) and (X2,Y2) are independent. Define G := E[Ĝ] and Z := E[Ẑ] and
let G and the covariance matrix of Xeηe

p+1, e ∈ E be invertible. For n1, n2 → ∞,

(
V 1

n1
+ V 2

n2

)− 1
2 (

β̂ − β0)
⇀ N (0, Idp),

where V e := Cov(G−1(Xe)tηe
p+1), e ∈ {1,2} are invertible. Note that we allow n1

and n2 to have different asymptotic growth rates.

REMARK 1 (Estimation of V 1 and V 2). The empirical covariance matrix of

−Ĝ−1(
X1

i·
)tX1

i·Ĝ−1Ẑ + Ĝ−1(
X1

i·
)tY1

i , i = 1, . . . , n1,

is a consistent estimator of V 1. V 2 can be estimated analogously.

The proof of this result can be found in the Supplementary Material (see
Rothenhäusler, Bühlmann and Meinshausen (2018)). The assumption that G is
invertible will be discussed further in Section 3.5. In Section 4, we will discuss
how the regularized causal Dantzig can be consistent in some situations where
population G is not invertible. Asymptotic efficiency is discussed in Section A.5
in the Supplementary Material (see Rothenhäusler, Bühlmann and Meinshausen
(2018)).

3.4. Implementation and example. We use data generated according to a SEM
with the structure given by Figure 1 as an example. Suppose the data are generated
in two environments {1,2} = E according to

(12)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Xe
2 ← η0+ σeη2

Y e ← Xe
2+ η0+ ηy

Xe
1 ← Y e+ Xe

2+ σeη1

Xe
3 ← Xe

1+ η0+ σeη3

,

where (η0, ηy, η1, η2, η3) is assumed to be drawn from N5(0, Id5) and the noise
variances are σe = 1 for environment e = 1 and σe = 4 for environment e = 2. We
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FIG. 2. The scatterplot of the variables in the graph of Figure 1 and SEM (12) for environment 1
(red, left panel) and environment 2 (blue, right panel). The estimate is based on the difference in the
two Gram matrices.

draw 1000 i.i.d. samples from each environment and the corresponding pairwise
scatterplots are shown in Figure 2. For one realization, we obtain the estimate β̂

via the difference in Gram matrices G and inner products with the target Z as

Ĝ =
⎛
⎝15.9 6.5 16.1

6.5 3.2 6.5
16.1 6.5 19.1

⎞
⎠ , Ẑ =

⎛
⎝6.4

3.2
6.5

⎞
⎠ ⇒ β̂ = Ĝ−1Ẑ =

⎛
⎝−0.04

1.00
0.03

⎞
⎠ ,

where the correct vector of causal coefficients in this problem is

β0 =
⎛
⎝0

1
0

⎞
⎠ .

Asymptotic confidence intervals can be computed via (11).
The procedure is implemented as method causalDantzig in R-package

InvariantCausalPrediction (R Core Team (2017)). The output for the
example above is shown below, where X is the matrix with predictor variables, Y

the outcome of interest and E is an n-dimensional vector with entries 1 for samples
from environment e = 1 and entries 2 for samples from environment e = 2.
> fit <- causalDantzig(X,Y,E,regularization=FALSE)
> print(fit)
Unregularized causal Dantzig
Call:
causalDantzig(X = X, Y = Y, E = E, regularization = FALSE)

Estimate StdErr p.value
X1 -0.042 0.059 0.481
X2 0.999 0.106 <2e-16 ***
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X3 0.035 0.042 0.403
---
Signif. codes:0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Only the direct causal effect of the second variable turns out to be statistically
significant. Note that in this setting, instrumental variables regression would fail.
One problem is that the number of covariates exceeds the number of “instruments.”
Additionally, the expectation of X1 and X2 are equal, implying that there is no
mean shift due to the two environments. We will discuss these issues in more
detail in Section 3.6.

3.5. Identifiability of β0 and practical implications. In the simplest setting,
the number of samples greatly exceeds the number of parameters, and the inter-
ventions δe, e ∈ E are sufficiently different to make the parameter β0 identifiable.
Theorem 2 gives conditions under which this is the case.

THEOREM 2. Consider a SEM that satisfies Assumption 1. Assume that there
exists an “observational” environment, that is, an environment e ∈ E with δe ≡ 0.
Furthermore assume that all interventions δe are full-rank on its support, that is,
that the Gram matrix of δe

Se is positive definite for Se = {k : δe
k �≡ 0}:

1. The causal coefficient is identifiable in the population case if and only if for
each k = 1, . . . , p there exists e ∈ E such that δe

k �≡ 0.
2. If the condition in 1. holds then the solution of causal Dantzig as defined in

equation (8) is unique in the population case and equal to β0.

The proof of this result can be found in the Supplementary Material (see
Rothenhäusler, Bühlmann and Meinshausen (2018)). Usually there are many dif-
ferent SEMs satisfying Assumption 1 that can generate a given observed distribu-
tion of (Xe,Y e), e ∈ E . Theorem 2 gives a condition under which these SEMs all
share the same direct causal effect β0 from X1, . . . ,Xp to Y . If said condition is
satisfied, the causal Dantzig has a unique solution in the population case that is
equal to β0. Furthermore, it tells us that if this condition is not satisfied, there exist
at least two SEMs satisfying Assumption 1 with different direct causal effects from
X1, . . . ,Xp to Y that generate the given distribution. Without further assumptions,
it is then not possible to consistently estimate the direct causal effects, but only a
set of potential causal effects. We will characterize this set later.

Note that Theorem 2 describes a rather strong condition for identifiability. Espe-
cially if p is large it might be unrealistic to have nonzero interventions δe

k on each
of the variables Xk, k = 1, . . . , p. However, making additional assumptions can
help resolve these identifiability issues. If the interventions δe

k only act on a subset
of the variables X1, . . . ,Xp or when the number of covariates exceeds the sample
size p > n, the regularized causal Dantzig can be consistent under the additional
assumption of sparsity. We discuss consistency of the regularized causal Dantzig



1700 D. ROTHENHÄUSLER, P. BÜHLMANN AND N. MEINSHAUSEN

in such scenarios in Section 4.2 and Section 4.3. Alternatively, it can be advisable
to first run LASSO on the pooled dataset to select a subset of the variables. Under
the assumption of faithfulness, it is sufficient to have nonzero interventions on the
selected subset. Some justification for this approach can be found in Section 5.3.

If the assumptions for identifiability of β0 are not fulfilled, it should still be
possible to guarantee predictive performance under certain new environments. The
following theorem makes this intuition more precise. The proof can be found in the
Supplementary Material (see Rothenhäusler, Bühlmann and Meinshausen (2018)).

THEOREM 3. Consider a SEM that satisfies Assumption 1. Assume that there
exists an “observational” environment, that is, an environment e ∈ E with δe ≡ 0.
Furthermore, assume that all interventions δe are full-rank on its support, that is,
that the Gram matrix of δe

Se is positive definite for Se = {k : δe
k �≡ 0}. Let β be a

solution of causal Dantzig as defined in equation (8) in the population case.

1. Then the distribution of the residuals is invariant, that is,

Y e − Xeβ
d= Yf − Xf β for all e, f ∈ E .

2. For a new environment ẽ /∈ E that satisfies Assumption 1 for (Xe,Y e), e ∈
E ∪ {ẽ} with {k : δẽ

k �≡ 0} ⊂ ⋃
e∈E Se, we have

Y e − Xeβ
d= Y ẽ − Xẽβ for all e ∈ E .

In words, solutions of causal Dantzig guarantee that the residuals have the same
distribution across all environments e ∈ E . Perhaps more importantly, solutions of
causal Dantzig are guaranteed to have the same predictive performance on new
environments ẽ /∈ E with arbitrary large additive perturbations δẽ

k as long as these
perturbations act on a subset of the variables

⋃
e∈E Se.

3.6. Comparison with instrumental variables. Consider a setting where the
underlying DAG takes the following form:

Y

H

Xe

We assume that H is not observed and that e takes values in {1,2}. To be able to
use the causal Dantzig, we have to define settings E . It is rather straightforward to
write (X1, Y 1) for the variables (X,Y ) conditioned on e = 1 and (X2, Y 2) for the
variables (X,Y ) conditioned on e = 2. As e is binary, the method of instrumental
variables (IV) coincides with the Wald estimator (Wald (1940)). In the population
case, it can be written as

(13) lim
n→∞ β̂IV = E[Y |e = 1] −E[Y |e = 2]

E[X|e = 1] −E[X|e = 2] = E[Y 1] −E[Y 2]
E[X1] −E[X2] .
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TABLE 1
Consistency of the causal Dantzig and the instrumental variables approach. Consider a model

Y = βX + H + ηy and a structural equation model for X as depicted in the table. The case on the
left is a mean-shift, whereas on the right-hand side the error variance changes between setting

e = 1 and e = 2. We assume α �= 0, and that the random variables e, ηy , ηx , H are independent and
nondegenerate with E[H ] = 0

Consistency X = αe + H + ηx X = H + (1 + αe)ηx

(mean-shift) (change in error distribution)

Instrumental variable regression Yes No
Unregularized causal Dantzig Yes Yes

Causal Dantzig leads to

(14) lim
n→∞ β̂ = E[X1 · Y 1] −E[X2 · Y 2]

E[(X1)2] −E[(X2)2] .

Both the IV approach and the causal Dantzig have different strengths and weak-
nesses in this setting. For example, equation (13) is based on means, whereas equa-
tion (14) is based on covariances. If, say, X = e · ηx + H , Y = βX + H + ηy ,
with centered noise ηx , ηy independent of the centered confounder H , then
E[X|e = 1] = E[X|e = 2]. Hence the IV estimator is not well defined in the pop-
ulation case and one should use the causal Dantzig. If the instrument is weak,
causal Dantzig can exhibit efficiency gains. An example of this can be found in
Section 6.2. A more general comparison can be found in Table 1. It is also pos-
sible to construct examples where equation (14) is not well defined. For this to
happen, the second moments of X1 and X2 have to be equal.

A drawback of the IV approach is that the number of instruments has to equal
or exceed the number of endogenous variables. However, this is not necessary for
the causal Dantzig. Two settings |E | = 2 in our framework correspond to a single
binary exogenous variable. In that case, the number of endogenous variables p

can be arbitrarily large as long as G, the difference of Gram matrices, is invertible.
On the other hand, for p > 2 the number of endogenous variables exceeds the
number of exogenous variables and the IV approach is bound to fail. We compare
the performance of the IV approach and causal Dantzig on simulated datasets in
Section 6.2.

3.7. Inner-product invariance in the potential outcome framework. In this sec-
tion, we will investigate the notion of inner-product invariance under potential
outcome assumptions (Neyman (1923), Rubin (1974)). Note that here, as in the
rest of the paper, we consider a continuous exposure X ∈ R

p . In the following,
we use a slightly different notation compared to the rest of the paper. We write
X(e) ∈ R

p for the potential outcome of a continuous exposure if the environment
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E takes value e ∈ E . Equivalently, we write Y(x, e) ∈ R for the potential outcome
of the response of a unit if the exposure takes level X = x and environment E

takes value e ∈ E . We assume that these quantities are well defined. We make the
following additional assumptions:

A1. Exclusion restriction:

Y(x, e) = Y(x) holds for all x ∈ range(X) and e ∈ E .

A2. Independence: (
X(e),Y (0)

)

|= E for all e ∈ E .

A3. Constant confounding across environments E :

Cov
(
X(e),Y (0)

) = Cov
(
X(f ),Y (0)

)
for all e, f ∈ E .

A4. Treatment effect homogeneity and linearity:

E
[
Y(x) − Y(0)|X = x,E = e

] = E
[
Y(x) − Y(0)

]
= xβ0 for all x ∈ range(X) and e ∈ E .

A5. The variables are normalized:

E[X] = 0 and E[Y ] = 0.

Note that we did not make any cross-world assumptions (Richardson and Robins
(2013)), that is, we made no assumptions on the joint distribution of Y(x),
x ∈ range(X) or on the joint distribution of X(e), e ∈ E . Condition (A2) can be
relaxed to an assumption on the cross-product between X(e) and Y(0). Details
can be found in the Supplementary Material (see Rothenhäusler, Bühlmann and
Meinshausen (2018)) in the proof of Proposition 3. Condition (A3) is crucial: we
allow for confounding (nonzero covariance of X(e) and Y(0)), but we assume that
the covariance is constant across environments. Loosely speaking, this can be seen
as a noninteraction-assumption of environment and confounding. Condition (A4)
ensures that the average treatment effect is the same within strata defined by X and
E and allows the usage of a linear model. For a discussion of similar assumptions
in the context of the IV framework, see Wang and Tchetgen Tchetgen (2018).

If these assumptions are fulfilled, then we have inner-product invariance under
the average treatment effect β0.

PROPOSITION 3. Under assumptions (A1)–(A5), we have inner-product in-
variance under the vector β0 ∈ R

p which satisfies E[Y(x) − Y(0)] = xβ0, that
is,

E
[
Xt (Y − Xβ0)∣∣E = e

] = E
[
Xt (Y − Xβ0)∣∣E = f

]
for all e, f ∈ E .
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The proof of this result can be found in the Supplementary Material (see
Rothenhäusler, Bühlmann and Meinshausen (2018)). Using inner-product invari-
ance for estimating the average treatment effect β0, it is possible to consistently
estimate the average treatment effect in cases in which two-stage least squares
(or the Wald estimand) is degenerate. For example, in settings where the dimen-
sion of exposure variables X exceeds the number of environments |E| or when
E[Y − Xb|E = 1] = E[Y − Xb|E = 0] for E = {0,1}. In the presence of weak
instruments, causal Dantzig can exhibit efficiency gains compared to estimators
based on conditional means of X and Y . This is investigated further in Section 3.6
and Section 6.

4. Causal Dantzig with regularization. In this section, we introduce the reg-
ularized causal Dantzig, and discuss its theoretical properties. The estimator is mo-
tivated and introduced in Section 4.1. Section 4.2 contains finite sample bounds.
The bounds presented in this section involve a quantity that we call the “causal
cone invertibility factor.” The behavior of this quantity is discussed in Section 4.3.

4.1. The estimator. Weak interventions on some of the variables (i.e., E[(δe
k)

2]
small) may lead to coefficient estimates with high variance in equation (7). Fur-
thermore, if the number of predictors p exceeds the total sample size n, the ma-
trix Ĝ is not invertible and the solution to equation (6) is not unique. In such
settings, regularization and shrinkage is desirable and can outperform unpenal-
ized estimation procedures; see, for example, Bühlmann and van de Geer (2011).
In particular, �1-penalized estimation procedures have attracted much interest in
high-dimensional models. For linear models, Candes and Tao (2007) proposed an
�1-minimization method called the Dantzig selector. Consider Y = Xβ∗ + ε with
X ∈ R

n×p , Y ∈ R
n, β∗ ∈ R

p . For a tuning parameter λ ≥ 0, the Dantzig selector is
defined as a solution to the regularization problem

min‖β‖1 subject to ‖Z̃ − G̃β‖∞ ≤ λ,

where Z̃ = XtY/n and G̃ = XtX/n.
(15)

The geometry of the Dantzig selector is depicted in Figure 3. The �1-minimization
favors sparse solutions, that is, vectors in which many coefficients are exactly zero.
This facilitates interpretation. Furthermore, if λ gets larger, the Dantzig selector
shrinks toward the zero vector. Choosing λ is a trade off: small values will gen-
erally result in larger variance of the estimator, but smaller bias. We propose the
regularized causal Dantzig β̂λ, which in analogy to equation (6) is defined as a
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FIG. 3. A visualization of the Dantzig selector. The red region is the feasible set
{β : ‖Z̃ − G̃β)‖∞ ≤ λ} for λ = √

1.25. The two green regions are the level sets {β : ‖β‖1 ≤ 1}
and {β : ‖β‖1 ≤ 2}. The Dantzig selector for λ = √

1.25 is at the intersection of the light green and
the red region.

solution to

min‖β‖1 subject to ‖Ẑ − Ĝβ‖∞ ≤ λ

where Ẑ = (X1)tY1

n1
− (X2)tY2

n2
,

and Ĝ = (X1)tX1

n1
− (X2)tX2

n2
.

(16)

On a superficial level, the difference to the Dantzig selector is merely that
XtY/n is replaced by (X1)tY1/n1 − (X2)tY2/n2 and XtX/n is replaced by
(X1)tX1/n1 − (X2)tX2/n2. Hence the geometry of the optimization problem is
akin to the Dantzig selector and the causal Dantzig inherits its variable selection,
shrinkage and regularization properties. Furthermore, the causal Dantzig can be
cast as a linear program for fixed λ. Details can be found in the Supplementary
Material, Section A.3.6 (see Rothenhäusler, Bühlmann and Meinshausen (2018)).

4.2. Finite-sample bound. The regularized causal Dantzig is related to the
Dantzig selector and enjoys similar properties. Notably, it attains the same rates of
convergence under comparable regularity conditions. To this end, we introduce the
quantity “causal cone invertibility factor,” similar to the “cone invertibility factor”
for the Dantzig selector as defined in Ye and Zhang (2010). For ease of exposition,
we will first treat the case E = {1,2}. The treatment of the general case is sketched
in Remark 2.
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4.2.1. Causal cone invertibility factor. Let �̂ denote the empirical covariance
matrix of X and consider a set S ⊂ {1, . . . , p}. Later we will mainly be interested in
the case where S is the active set of β0. Ye and Zhang (2010) proved bounds for the
Dantzig selector that involve the so-called cone invertibility factor (CIF). For the
upper bound, the relevant quantity in Ye and Zhang (2010) is CIFq(S). Roughly
speaking, the cone invertibility factor is a lower bound on the �∞-norm of �̂u,
given that u lies in the cone {u : ‖uSc‖1 ≤ ‖uS‖1} and has unit norm ‖u‖q = 1.
To make the quantity comparable across different norms, it is scaled by a factor
|S|1/q . To be more precise,

CIFq(S) = inf
u

{ |S|1/q‖�̂u‖∞
‖u‖q

: ‖uSc‖1 ≤ ‖uS‖1

}
.

Now we are ready to define the causal cone invertibility factor CCIFq(S, Ĝ):

(17) CCIFq(S, Ĝ) := inf
u

{ |S|1/q‖Ĝu‖∞
‖u‖q

: ‖uSc‖1 ≤ ‖uS‖1

}
.

Analogously define CCIFq(S,G) for G := E[Ĝ]. Here and in the following, no-
tationally we do not treat the case q = ∞ separately. Instead, with small abuse
of notation we set |S|1/q := 1 for q = ∞. In the new definition, the positive semi-
definite matrix �̂ is replaced by the symmetric matrix Ĝ. As �̂, the matrix Ĝ is not
positive definite in high-dimensional settings and even indefinite in general. How-
ever, it can be shown that the CCIF behaves similarly to the CIF in several ways.
This is further discussed in Section 4.3. For now, let us turn to the finite-sample
bound of the causal Dantzig.

4.2.2. Finite sample bound. The finite-sample results of the causal Dantzig
are analogous to the Dantzig selector while the issue of identifiability is now ad-
dressed by the causal cone invertibility factor CCIFq(S, Ĝ). Similarly, as in Ye and
Zhang (2010), define z∗ := ‖Ẑ − Ĝβ0‖∞ and let S denote the active set of β0. The
first result is purely algebraic and follows from the definitions of CCIFq(S, Ĝ) and
the causal Dantzig.

LEMMA 1. On the event z∗ ≤ λ, we have

(18)
∥∥β̂λ − β0∥∥

q ≤ |S|1/q(λ + z∗)
CCIFq(S, Ĝ)

≤ 2|S|1/qλ

CCIFq(S, Ĝ)
for all q ≥ 1.

The proof can be found in the Supplementary Material (see Rothenhäusler,
Bühlmann and Meinshausen (2018)). There are two terms on the right-hand side in
equation (18) that deserve further attention. First, CCIFq(S, Ĝ) is bounded away
from zero under certain assumptions, as discussed in Section 4.3. Second, it is
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crucial to understand the behavior of z∗ := ‖Ẑ − Ĝβ0‖∞. Using a union bound
over the p entries, it can be shown that with high probability, z∗ is of the order
maxe∈E max(log(p)/ne,

√
log(p)/ne).

LEMMA 2. Assume that inner-product invariance holds for (Xe,Y e), e ∈
{1,2} under β0. Assume X1, X2, η1

p+1, η2
p+1 are centered and multivariate Gaus-

sian. Let t ≥ 0. Then, with probability exceeding 1 − 4 exp(−t),

z∗ ≤ σε

∑
e∈{1,2}

σe
max

(√
4t + 4 log(p)

ne

+ 4t + 4 log(p)

ne

)
,

where

σε :=
√

Var
(
ηe

p+1

)
and σe

max := max
k

√
Var

(
Xe

k

)
.

The proof can be found in the Supplementary Material (see Rothenhäusler,
Bühlmann and Meinshausen (2018)). This result can be extended to situations
where (X1, η1

p+1) and (X2, η2
p+1) have sub-Gaussian tails; see, for example, ex-

ercise 14.3 in Bühlmann and van de Geer (2011). By combining Lemma 1 and
Lemma 2 we obtain the following theorem. The proof can be found in the Supple-
mentary Material (see Rothenhäusler, Bühlmann and Meinshausen (2018)).

THEOREM 4. Let λ � 5C
√

log(p)/mine∈{1,2} ne → 0 for a constant C > 0
that satisfies σε · σe

max ≤ C < ∞ for e ∈ {1,2}. Under the assumptions mentioned
in Lemma 2,

∥∥β̂λ − β0∥∥
q ≤ 10C

CCIFq(S, Ĝ)
|S|1/q

√
log(p)

mine∈{1,2} ne

with P → 1 for n1, n2, p → ∞.

Another consequence of these two lemmata is the screening property of the
causal Dantzig under a so-called betamin-condition. The short proof can be found
in the Supplementary Material (see Rothenhäusler, Bühlmann and Meinshausen
(2018)).

PROPOSITION 4. Let Ŝ denote the active set of β̂λ. Using the notation of The-
orem 4, assume that

min
k∈S

∣∣β0
k

∣∣ >
10C

CCIF∞(S, Ĝ)

√
log(p)

mine∈{1,2} ne

.

Then under the assumptions mentioned in Theorem 4 for q = ∞, we have

P[Ŝ ⊇ S] → 1 for n1, n2, p → ∞.
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Note that the convergence rate in Theorem 4 coincides with the usual rate of
convergence in high-dimensional linear regression (Ye and Zhang (2010)) under
comparable assumptions. For consistency in the �2 norm in the regression setting,
it is required that |S| log(p)/n → 0, that λ � C

√
log(p)/n for constant C > 0

large enough and that the population quantity CIF2(S) is bounded away from zero.
In our framework, if n1 � n2, the assumptions on the asymptotic behavior of n =
n1 + n2,p, |S| and λ stay essentially the same, but CCIF2(S, Ĝ) plays the role of
CIF2(S). The next section aims to shed some light on the behavior of this quantity.

REMARK 2. The results of this section can be extended to more than two set-
tings |E | > 2. To be more precise, in the general case one can define the regularized
causal Dantzig as a solution to

min
β∈Rp

‖β‖1 subject to max
e∈E

∥∥Ẑe − Ĝeβ
∥∥∞ ≤ λ,

where Ẑe, Ĝe, e ∈ E are defined as in equation (9). The causal cone invertibility
factor is then defined as

CCIFq

(
S,

{
Ĝe, e ∈ E

}) := inf
u

max
e∈E

{ |S|1/q‖Ĝeu‖∞
‖u‖q

: ‖uSc‖1 ≤ ‖uS‖1

}
.

With this notation, it is straightforward to obtain analogous results to Lemma 1–3,
Theorem 4 and Proposition 4.

4.3. Behavior of the causal cone invertibility factor. In the preceding section,
we showed that the causal cone invertibility factor CCIFq(S, Ĝ) is a crucial quan-
tity to understand the behavior of the regularized causal Dantzig. How do we guar-
antee that this quantity is bounded away from zero? There are two issues that
we will treat separately. First, for p > n = n1 + n2, Ĝ is not invertible. Second,
the environments might not be sufficiently different to make population version
G invertible. In Section 4.3.1, we will discuss how to relate the empirical causal
cone invertibility factor to the population causal cone invertibility factor. In Sec-
tion 4.3.2, we consider the case where the environments are sufficiently different
to make the population version G invertible. In Section 4.3.3, we examine a set-
ting where the environments are not sufficiently different, that is, where G is not
invertible.

4.3.1. General properties. In this section, we discuss how to relate the em-
pirical causal cone invertibility factor CCIFq(S, Ĝ) to the population quantity
CCIFq(S,G). The following lemma gives a deterministic bound for these quan-
tities. The proof can be found in the Supplementary Material (see Rothenhäusler,
Bühlmann and Meinshausen (2018)).
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LEMMA 3. Let q ≥ 1. Then
∣∣CCIFq(S, Ĝ) − CCIFq(S,G)

∣∣ ≤ 2|S|‖Ĝ − G‖∞,

where ‖A‖∞ := maxi,j |Ai,j | denotes the matrix max norm.

Hence the problem is reduced to understanding the behavior of ‖Ĝ − G‖∞. Let
the rows of Xe consist of i.i.d. centered multivariate Gaussian random variables
for e ∈ {1,2}. It can be shown that with probability at least 1 − 4 exp(−t),

(19) ‖Ĝ − G‖∞ ≤ ∑
e∈{1,2}

(
σe

max
)2

(√
4t + 8 log(p)

ne

+ 4t + 8 log(p)

ne

)
.

This result can be extended to situations where X1 and X2 have sub-Gaussian
tails; see, for example, exercise 14.3 in Bühlmann and van de Geer (2011). Hence
by Lemma 3, even if Ĝ is not invertible, the quantity in equation (17) is well be-
haved for

√
min(n1, n2) � |S|√log(p), in the sense that it is strictly bounded away

from zero if the same is true for the population quantity. The latter assumption is
nontrivial and depends on the distribution of the interventions δe, e ∈ {1,2}.

4.3.2. Population G invertible. Under the assumptions discussed in Sec-
tion 4.3.1, CCIFq(S, Ĝ) is bounded away from zero if CCIFq(S,G) is bounded
away from zero. Hence, the problem is reduced to understanding the population
quantity CCIFq(S,G). If G is invertible, then

CCIFq(S,G) ≥ min
u

|S|1/q‖Gu‖∞
‖u‖q

= min
‖u‖q=|S|1/q

‖Gu‖∞ > 0.

(20)

As

G = E
[(

X1
1:p

)t
X1

1:p − (
X2

1:p
)t

X2
1:p

]
= (

(Id−A)−1)
1:p,1:pE

[(
δ1

1:p
)t

δ1
1:p − (

δ2
1:p

)t
δ2

1:p
](

(Id−A)−t )
1:p,1:p,

this is a measure of the difference in the intervention strength δe between the two
settings e = 1 and e = 2. In this sense, this bound is similar to the discussion in
Section 4.3.3. However, the bound fails to capture appropriately what happens if
the interventions only act on a subset of the variables Xi, i = 1, . . . , p. In that case,
the bound in equation (20) is not useful as G is not invertible. The next section
shows that in some of these settings it is still true that CCIFq(S,G) > 0.
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4.3.3. Population G not invertible. The setting of Section 4.3.2 and the bound
in equation (20) are rather restrictive. Consider a situation with a block structure
in the Gram matrix, that is, where E[Xe

kX
e
k′ ] = 0 for all k ≤ k0 < k′ and e ∈ E . In

this case, there might be no interventions on the variables {Xk′, k′ > k0}, that is,
δe
k′ ≡ 0 for all k′ > k0. As a result, G might not be invertible. However, if G1:k0,1:k0

is invertible and S ⊂ {1, . . . , k0}, then

CCIFq(S,G) ≥ inf
{ |S|1/q‖G1:k0,1:k0u1:k0‖∞

‖u‖q

: ‖uSc‖1 ≤ ‖uS‖1

}

≥ inf
{ |S|1/q‖G1:k0,1:k0u1:k0‖∞

2‖u1:k0‖q

}
> 0.

Hence, under the assumptions discussed in Section 4.2.2, the causal Dantzig is a
consistent estimator for β0. Generally speaking, the causal Dantzig tends to screen
out variables that have not been affected by the intervention. In this light it is
crucial that the interventions act on the variables in the active set of β0 directly or
indirectly.

5. Practical considerations. In this section, we discuss practical considera-
tions for the causal Dantzig. Recommendations are given for centering and scaling
of the variables, choice of the regularization parameter λ and a procedure for pre-
selection.

5.1. Centering and scaling. Centering and scaling in the causal Dantzig set-
ting is a bit more intricate than in a regression setting. Let μ̂e ∈ R

p+1 denote the
empirical mean of (Xe,Ye). For centering, we recommend subtracting 1

|E|
∑

e∈E μ̂e

from each sample. By mean-centering globally (and not with an environment-
specific intercept), the estimator is able to leverage changes in mean between en-
vironments. For scaling, define

(21)

ck,e = E[(Xe
k)

2]
ne

+ 1

(|E | − 1)2

∑
e′ �=e

E[(Xe′
k )2]

ne′
for e ∈ E and k = 1, . . . , p.

We recommend to scale the kth row of Ẑe and Ĝe by approximately 1/
√

ck,e for
all k = 1, . . . , p and e ∈ E . What is the motivation behind this scaling? In the
following, we will discuss the special case E = {1,2}. In absence of noise in equa-
tion (16), ‖Z − Gβ0‖∞ = 0. By allowing for ‖Ẑ − Ĝβ0‖∞ ≤ λ, we account for
the variance of Ẑ − Ĝβ0. Since we work with a supremum bound and the same
λ for all components, we want all scaled components to have roughly the same
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variance. To be more precise, we want

(22) Var
(

(Ẑ − Ĝβ0)k√
ck,1

)
= Var

(
(Ẑ − Ĝβ0)l√

cl,1

)
for all k, l = 1, . . . , p.

It can be challenging to scale according to equation (22) as the correlation between
Xe

k and ηe
p+1 = Y e −Xeβ0 is unknown and changes for different k. In the absence

of confounding however and if Xk and Xl are not descendants of Y in the graph
G, ε = ηe

p+1 is independent of Xe
k and Xe

l and the scaling of equation (21) implies

Var
(

(Ẑ − Ĝβ0)k√
ck,1

)
= σ 2

ε = Var
(

(Ẑ − Ĝβ0)l√
cl,1

)
,

where σε denotes the standard deviation of ε = ηe
p+1. The scaling of equation (21)

still has some theoretical justification in more general cases. In the presence of
confounding and for general k, l it depends on the joint distribution of Xe

k , Xe
l and

ε = ηe
p+1 whether Var( (Ẑ−Ĝβ0)k√

ck,1
) and Var( (Ẑ−Ĝβ0)l√

cl,1
) are of the same order. No-

tably, if equation (21) holds with equality and if the variables Xe
k, k = 1, . . . , p and

ε = ηe
p+1, e ∈ {1,2} are centered multivariate Gaussian, using moment inequali-

ties,

E
[(

Xe
k

)2]
σ 2

ε ≤ Var
(
Xe

kη
e
p+1

) ≤ 2E
[(

Xe
k

)2]
σ 2

ε

for e ∈ {1,2}, k ∈ {1, . . . , p}. Using independence of samples from different envi-
ronments e ∈ {1,2},

∑
e∈{1,2}

E[(Xe
k)

2]
ne

σ 2
ε ≤ Var

((
Ẑ − Ĝβ0)

k

) ≤ 2
∑

e∈{1,2}

E[(Xe
k)

2]
ne

σ 2
ε

for all k = 1, . . . , p. Using equation (21),

σ 2
ε ≤ Var

(
(Ẑ − Ĝβ0)l√

cl,1

)
≤ 2σ 2

ε for all k = 1, . . . , p.

Hence Var( (Ẑ−Ĝβ0)l√
cl,1

) and Var( (Ẑ−Ĝβ0)k√
ck,1

) are of the same order for all k, l =
1, . . . , p.

5.2. Choosing λ. Large segments of the regularization path of the causal
Dantzig are usually poor estimates of β0. Hence it is crucial to use an appro-
priate value of the regularization parameter λ. From a theoretical perspective, one
would choose λ as in Theorem 4. However, σε and σe

max are usually unknown in
real-world datasets. Hence, in practice we propose to choose λ by k-fold cross-
validation. Concretely, in each environment e ∈ E the samples are split into k

groups of approximately equal size. Denote β̂λ,−i the causal Dantzig estimator
that is calculated on all samples except the samples from group i. Let Ẑi and Ĝi
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FIG. 4. Two typical regularization paths for the causal Dantzig. The black vertical line specifies
the solution chosen by 10-fold cross-validation. On the left-hand side p = 100, n = 200. On the
right-hand side p = 200, n = 60. In both cases the standard deviation of the interventions is 2.5 and
the variance of the errors is 1. One component of β0 is equal to one (upper green line), all others
are zero.

be defined as in equation (5), using the samples from group i. Then we can choose
λ̂cv as a solution to

λ̂cv = arg min
λ

1

k

k∑
i=1

∥∥Ẑi − Ĝi β̂λ,−i
∥∥∞.

We define the cross-validated causal Dantzig as β̂cv := β̂λ̂cv
. Two exemplary reg-

ularization paths and the solution chosen by cross-validation are depicted in Fig-
ure 4.

5.3. Preselection with hidden variables. An alternative of running the causal
Dantzig directly on a high-dimensional dataset is doing preselection. In the first
stage, we recommend to run Lasso on observational data, if available. If obser-
vational data is not available, one could run Lasso on the pooled dataset. In the
second stage, one would run the causal Dantzig with or without regularization on
the active set of the first stage. Ideally, the first stage would screen out as many
variables as possible, except for the parental set of the target variable Y . Quite
often this will result in a set that contains a superset of the parental set imply-
ing a very useful dimensionality reduction. The following lemma provides some
justification for this approach.

LEMMA 4. Assume that the distribution X1, . . . ,Xp , Y is generated by a lin-
ear acyclic Gaussian structural equation model with directed acyclic graph Dtotal
that consists of both the observed variables X1, . . . ,Xp,Y and (potentially) hid-
den confounders H1, . . . ,Hq . Assume that the joint distribution of the variables
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X1, . . . ,Xp , Y , H1, . . . ,Hq is faithful (Pearl (2009)) to Dtotal. Let S denote the
active set of regressing Y on X1, . . . ,Xp in the population case. Then

{k : Xk is a parent or a child of Y in Dtotal} ⊂ S.

The proof can be found in the Supplementary Material (see Rothenhäusler,
Bühlmann and Meinshausen (2018)). We test this two-step procedure on real world
data in Section 6.4. However, note that for valid p-values (with the unregularized
causal Dantzig) we would have a post-selection problem due to the screening step.

6. Numerical examples. Section 6.1 explores actual coverage and length of
the asymptotic confidence intervals as defined in Section 3.3. In Section 6.2, we
compare the causal Dantzig to instrumental variable regression for p = 1 under
different types of interventions. In Section 6.3, we evaluate the performance of
parameter selection by cross-validation as defined in Section 5.2. Finally, in Sec-
tion 6.4 we discuss an application to real-world data that has been published in
Meinshausen et al. (2016).

6.1. Causal Dantzig in low dimensions: Confidence intervals. In this section,
we explore the actual coverage and average length of the asymptotic confidence
intervals constructed according to Theorem 1.

We simulate data from two linear SEMs shown in Figure 5. Specifically, the
data are generated according to the equations

(A) :
⎧⎨
⎩

X2 ← η2
Y ← X2+ ηy

X1 ← Y− X2+ η1

,

(B) :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

X3 ← η3
X2 ← X3+ η2
Y ← −X3+ X2+ ηy

X1 ← −X2+ Y+ η1
X4 ← −Y+ X1+ η4

,

(23)

FIG. 5. The graphs (A) and (B) used in the simulations. The noise distributions at all variables
follow a factor model which allows for hidden confounding.
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TABLE 2
The first two rows contain actual coverage and average length of confidence intervals of causal

Dantzig for the first variable in SEM (A) of equation (23). The last row contains the actual coverage
of ICP in these settings. The nominal coverage is 0.95 for causal Dantzig and at least 0.95 for ICP.
For small sample sizes, the variance is relatively large. As discussed in Section 4, regularization can

be helpful in these settings

n = 50 100 500 1000

Coverage 0.93 ± 0.01 0.95 ± 0.01 0.96 ± 0.01 0.96 ± 0.01
Average length 65.79 ± 2918.53 4.11 ± 602.53 0.27 ± 0.62 0.18 ± 0.01
Coverage ICP 0.92 ± 0.01 0.84 ± 0.01 0.42 ± 0.02 0.3 ± 0.03

where the noise distributions of (η1, η2, ηy) and (η1, η2, η3, η4, ηy), respectively,
depend on the environment. Specifically, for SEM (A), we assume a factor model
for the noise

(η1, η2, ηy)
t = AH + σj (ε1, ε2, εy)

t ,

where (ε1, ε2, εy)
t ∼ N (0,13), and the entries in both the factor loading matrix

A ∈ R
3×5 and the factor values H ∈ R

5 are chosen i.i.d. standard normal. The 5-
dimensional variable H act as hidden confounders between the observed variables.
The noise contribution σj is chosen as 1 in environment e = 1 and as 1 + κ in
environment e = 2. We call κ = σ1 − σ2 the intervention strength as it measures
the variance of the additional noise input in environment e = 1 over environment
e = 2. In our simulations, it is chosen as 8. For SEM (B), we generate the data
analogously with the dimension of the hidden variable H being five.

We draw n ∈ {50,100,500,1000} samples in total (across both environments)
and compute the confidence intervals for the causal coefficients β0 of Y with the
unregularized causal Dantzig. For SEM (A), the true causal coefficients for Y are
given by β0 = (0,1) and the actual coverage and average length of the constructed
intervals at confidence level 0.05 with the unregularized causal Dantzig is shown in
the two upper rows of Table 2 for variable X1. The bottom row show the coverage
of the confidence intervals for invariant causal prediction (ICP). For large n, ICP
often (rightfully) rejects all models and outputs neither coefficient estimates nor
confidence intervals. These cases were ignored in the table. ICP is not consistent,
and hence has incorrect coverage for growing sample size, as clearly visible in the
table.

The causal Dantzig has approximately correct coverage for all sample sizes
in this example. For small sample sizes, the variance of the causal Dantzig is
large and consequently the average length of the confidence intervals of the causal
Dantzig is large, too. In such regimes, regularization is recommended, as discussed
in Section 4. For larger sample sizes, the confidence intervals are shrinking con-
siderably with the

√
n-rate. For SEM (A), this effect is depicted in Table 2. Table 3
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TABLE 3
Actual coverage and average length of confidence intervals for first variable in SEM (B) of

equation (23) with causal Dantzig. The nominal coverage is 0.95

n = 50 100 500 1000

Coverage 0.95 ± 0.01 0.95 ± 0.01 0.96 ± 0.01 0.96 ± 0.01
Average length 11,354.75 ± 2776.95 57.27 ± 28,842.69 0.69 ± 7.28 0.39 ± 3.73

shows these effects for SEM (B). Note that also in this case the actual coverage of
the causal Dantzig is approximately correct.

6.2. Causal Dantzig and the instrumental variable approach. To compare the
causal Dantzig to instrumental variables, consider a binary instrument e ∈ {0,1}.
To be more precise, we consider the model

H,ε1, ε2 ∼N (0,1), e ∈ {0,1},
X = H + 2e + ε1,

Y = 2X + H + 2ε2.

(24)

The corresponding DAG is depicted in Figure 6. In words, X is a direct cause of Y ,
there is a hidden confounder H that causes both X and Y , and e is an instrument for
X, meaning that e is a root node and a direct cause of X, but not of H or Y . Note
that the conditional mean differs between settings, that is, E[X|e = 1] �= E[X|e =
0]. Hence the IV approach is consistent for the true causal effect from X to Y , as
discussed in Section 3.6.

For each environment e ∈ {0,1}, we generate n samples and estimate the direct
causal effect via causal Dantzig and instrumental variables regression using the
function ivreg in the R-package AER. Table 4 shows the mean square error for
both methods. For few observations, the causal Dantzig is relatively unstable. For
larger values of n, this is not the case and the mean square error shrinks at the

√
n-

rate for both estimators. The instrumental variables (IV) approach outperforms the
causal Dantzig in this example. This is due to the fact that IV is a fraction of condi-
tional means, whereas the causal Dantzig is a fraction of conditional covariances.
Estimating conditional means is statistically easier, but it comes at a certain price
as we will see below.

FIG. 6. The DAG corresponding to the model of equation (24).
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TABLE 4
Mean square error for varying n. Instrument is not weak

n = 20 50 100

causal Dantzig 0.46 ± 0.41 0.03 ± 0.01 0.01 ± 0
ivreg 0.07 ± 0.01 0.02 ± 0 0.01 ± 0

For the second model, we change the edge function between e and X. Notably,

H,ε1, ε2, ε3 ∼ N (0,1), e ∈ {0,1},
X = H + 2e · (0.25 + ε3) + ε1,

Y = 2X + H + 2ε2.

(25)

Both the conditional variance Var(X|e = •),• ∈ {0,1} and the conditional mean
E[X|e = •],• ∈ {0,1} change between the environments. However, the conditional
mean changes only slightly, imposing difficulties for the IV approach. Again, for
each environment e ∈ {0,1} we generate n samples and estimate the direct causal
effect via causal Dantzig and ivreg. As seen in Table 5, for very few observa-
tions, both ivreg and causal Dantzig are comparatively far from the target quan-
tity. For larger values of n, the causal Dantzig converges with the

√
n-rate. The

instrumental variables approach is consistent but unstable for these small sample
sizes as the instrument is weak. It exhibits large MSE as it does not use the chang-
ing variance for inference.

6.3. Causal Dantzig in high dimensions. We consider a structural equation
model, where the observed variables X1, . . . ,Xp,Y form a chain and the distri-
bution of the unobserved confounder η changes between the environments. The
corresponding directed acylic graph is depicted in Figure 7. To be more precise,
the distribution of the observed variables e, X and Y is generated according to the

TABLE 5
Mean square error for varying n. The instrument is weak, but causal Dantzig can leverage changes

in variance

n = 20 50 100

causal Dantzig 24.05 ± 90.75 0.03 ± 0 0.01 ± 0
ivreg 36,634.21 ± 161,096.94 4244.29 ± 15,557.82 1862.7 ± 8171.14
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FIG. 7. The directed acylic graph corresponding to SEM (C).

following structural equation model:

(C) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X1 ← η1
X2 ← X1 + η2

Xp+1 = Y ← X2 + ηy

X3 ← Y + η3
X4 ← X3 + η4

...
...

...

Xp ← Xp−1 + ηp

with

ηk = η0
k + δe

k,

δe
k =

⎧⎪⎪⎨
⎪⎪⎩

0, e = 0 or

k = p + 1,

zk, e = 1,

zk ∼ N (0, σ 2) i.i.d.,

η0
k ∼ N (0,1) i.i.d.,

e ∈ {0,1},

(26)

We assume that zk and ηk are jointly independent. The regularization parameter
λ is chosen by 10-fold cross-validation. Figure 8 shows the regularization path
for two different values of p. Figure 9 shows the regularization path for varying
intervention strength σ . Finally, in Figure 10 the number of samples collected from
each environment n := n0 = n1 is varied. In a nutshell, cross-validation seems to
select a reasonable regularization parameter in most cases, estimation performance
deteriorates with increasing p, but improves with increasing n and drastically so
with increasing intervention strength σ .

6.4. Gene knockout experiments. We outline here an application which has
appeared in Meinshausen et al. (2016). The authors consider gene expression
in yeast (Saccharomyces cerevisiae) under deletion of single genes (Kemmeren
et al. (2014)): 160 samples are wild-type (observational); and 1, 479 samples are
measured under the deletion of a single gene (intervention). For each of those
observations, genome-wide mRNA expression levels were measured. We denote
these measurements by X1, . . . ,Xp+1, where p + 1 = 6170. The goal is to predict
whether mRNA expression level Y = Xp+1 changes significantly under a new and
unobserved gene-deletion Xj , j �= p + 1. Knocking out a gene is not always suc-
cessful, and the measured activity of a gene is not constant (or zero) after knocking
it out, that is, the intervention is “noisy.” Overall, knockouts decrease the activity,
which can be interpreted as a negative shift in the measured log-activity of a gene.

The data is split into training and validation data. To this end, the 1, 479 inter-
ventional samples are divided into five sets B1, . . . ,B5. For some v ∈ {1, . . . ,5},
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FIG. 8. Two regularization paths for the causal Dantzig with n = 30 and σ = 2.5. The black ver-
tical line specifies the solution chosen by 10-fold cross-validation. On the left p = 20, on the right
p = 200. The true underlying coefficient is equal to one for one variable (upper green line), and
equal to zero for all other variables. Though not flawless, cross-validation chooses a reasonable
regularization parameter in both cases.

the training data consists of the four sets {Bi}i∈{1,2,3,4,5}\{v} and the 160 observa-
tional samples. The samples in Bv are held out for validation. The interventional
effects on the validation set Bv were predicted using only training data. This pro-
cedure is carried out for all sets Bv, v = 1, . . . ,5, that is, each gene perturbation is
excluded from the training set once.

Preselection with the LASSO was used on the pooled data to screen for a su-
perset of the parental set of variable Xp+1. For some justification of this approach,
see Section 5.3. Then the causal Dantzig without regularization was used, with

FIG. 9. Two regularization paths for the causal Dantzig with p = 30 and n = 30. The black vertical
line specifies the solution chosen by 10-fold cross-validation. On the left, the intervention strength is
σ = 2.5, on the right it is σ = 3.5. The true underlying coefficient is equal to one for one variable
(upper green line), and equal to zero for all other variables. Clearly, strong interventions improve
estimation performance.
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FIG. 10. Two regularization paths for the causal Dantzig with p = 100 and σ = 3.5. The black
vertical line specifies the solution chosen by 10-fold cross-validation. On the left, the sample size is
n = 30, on the right it is n = 60. The true underlying coefficient is equal to one for one variable
(upper green line), and equal to zero for all other variables. Estimation performance is clearly better
on the right.

setting e = 1 for observational data and e = 2 for interventional training data. Us-
ing causal Dantzig without screening step is computationally prohibitive due to
the large number of variables and as the procedure is repeated for each possi-
ble target variable X1, . . . ,Xp+1. The s most often selected intervention predic-
tions were compared to so-called “strong intervention effects” (SIEs) as defined
in Meinshausen et al. (2016). SIEs are computed on the held-out data Bv and are
a measure for the total causal effect. The results are depicted in Figure 11. As an
example, for causal Dantzig the four most often selected intervention predictions
correspond to SIEs.

Screening for causal effects is a very challenging problem in this setting,
mainly due to the high-dimensionality of the dataset and the presence of hid-
den confounders. The ground truth is not perfectly known but good proxies
(strong intervention effects) can be computed on hold-out interventional data.
The strongest discoveries of InvariantCausalPrediction (ICP) and
causalDantzig correspond very well to the benchmark. Assuming hidden con-
founding and shift interventions (causalDantzig) leads to a different ranking
of genes compared to assuming the absence of confounding and allowing for arbi-
trary interventions (ICP). Interestingly, while both methods miss some important
variables, making “wrong” assumptions such as linearity or absence of latent con-
founding do not seem to lead to false positives for the first few variables in the
ranking. This form of validation and the comparison to other methods are further
discussed in Meinshausen et al. (2016).

7. Discussion. Causal discovery is challenging, particularly in the presence of
hidden confounders and feedback loops. However, hidden confounders can rarely
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FIG. 11. The results of the gene knockout experiments on the Kemmeren dataset (Kemmeren et al.
(2014)). This figure has been published in Meinshausen et al. (2016). The method HIDDEN-IN-
VARIANT is an unpublished early version of causalDantzig.

be excluded and feedback loops are to be expected in many real-world applications
(e.g., in biological systems). We introduced the notion of inner-product invariance
and showed that inference in linear structural equation models under inner-product
invariance is possible, both for low- and high-dimensional data.

The proposed methods have interesting parallels to widely-used statistical meth-
ods. For example, the functional form of the causal Dantzig estimator is similar to
linear regression. The regularized causal Dantzig is similar to the Dantzig selec-
tor. For two environments (|E | = 2), the causal Dantzig estimator can be compared
with instrumental variable regression and is consistent in certain settings in which
instrumental variable regression fails. Hence, we believe that the causal Dantzig
will push the boundaries in the analysis of certain types of datasets, in particular
in the analysis of datasets where potentially unknown interventions (or “perturba-
tions”) change both the mean and the variance of the observed error distribution.
Empirical results show state-of-the-art performance of our proposed estimator on
a real-world dataset.

We investigated the identifiability of direct causal effects under the proposed
model class. Furthermore, we showed that the regularized causal Dantzig can be
consistent in the high-dimensional case even if not all covariates have been inter-
vened on. The estimator can be obtained by solving a linear program and as such
is feasible for large-scale causal inference. We derived asymptotic confidence in-
tervals for the unregularized causal Dantzig, as well as guarantees for statistical
accuracy for the regularized causal Dantzig.
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The notion of inner-product invariance pushes the boundaries for the types of
datasets we can leverage for causal discovery. We expect it to be useful for prac-
titioners, in particular as a simple and fast tool for screening for potential direct
causal effects. From a theoretical perspective, the regularized and unregularized
causal Dantzig provide new perspectives on invariant causal prediction, on the
instrumental variable approach and on classical theory for high-dimensional esti-
mation.
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SUPPLEMENTARY MATERIAL

Supplement to “Causal Dantzig: Fast inference in linear structural equa-
tion models with hidden variables under additive interventions”. (DOI:
10.1214/18-AOS1732SUPP; .pdf). The Supplementary Material contains detailed
technical proofs.
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