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Given an n-sample of random vectors (Xi,Yi)1≤i≤n whose joint law
is unknown, the long-standing problem of supervised classification aims to
optimally predict the label Y of a given new observation X. In this context,
the k-nearest neighbor rule is a popular flexible and intuitive method in non-
parametric situations. Even if this algorithm is commonly used in the machine
learning and statistics communities, less is known about its prediction abil-
ity in general finite dimensional spaces, especially when the support of the
density of the observations is R

d . This paper is devoted to the study of the
statistical properties of the k-nearest neighbor rule in various situations. In
particular, attention is paid to the marginal law of X, as well as the smooth-
ness and margin properties of the regression function η(X) = E[Y |X]. We
identify two necessary and sufficient conditions to obtain uniform consistency
rates of classification and derive sharp estimates in the case of the k-nearest
neighbor rule. Some numerical experiments are proposed at the end of the
paper to help illustrate the discussion.

1. Introduction. The supervised classification model has been at the core of
numerous contributions to statistical literature in recent years. It continues to pro-
vide interesting theoretical and practical problems. Supervised classification aims
to predict a feature Y ∈ M when a variable of interest X ∈ R

d is observed, the
set M being finite (M = {0,1} for a binary classification). In order to provide a
prediction of the label Y of X, it is assumed that a training set Sn = (Xi, Yi)1≤i≤n

is at our disposal and makes it possible to provide a prediction via an inference
on the joint law (X,Y ). Many methods have been proposed over the years and we
refer to [5] for an extended introduction. These methods can be divided in (at least)
three families:

• Pure entropy considerations and Empirical Risk Minimization (ERM). It selects
a classifier that yields the ERM among a family of candidates (see, e.g., [2, 25]
and [24] for an detailed description). In an almost similar context, aggregation
schemes (see, e.g., [14] and [21]) have been shown to be adaptive to margin and
complexity.
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• Geometric interpretation or information theory. The SVM (see [29, 32] among
others) aims to maximize the margin of the classification rule. CART is another
intuitive standard method, improved by a bagging procedure in [1] and [6], re-
ferred to as Random Forest.

• Plug-in rules. The main idea is to mimic the Bayes classifier using a plug-in rule
after a preliminary estimation of the regression function. We refer to [18] for a
general overview (see also [2]).

In this general overview, the k-nearest neighbor rule (k-N.N. for short) belongs
to the last two classes: it is a plug-in classifier with a simple geometrical interpre-
tation. It has attracted a great deal of attention for the past few decades, from the
seminal work of [13]. In particular, a famous positive result of [30] is its universal
consistency (see also [11]), meaning that the k-N.N. can be carefully tuned to be
consistent under mild assumptions on the model. Recently, this algorithm has re-
ceived further attention and is still at the core of several studies: [8] identifies the
importance of the Besicovitch assumption, [19] is concerned with two notions of
the sample structure, [28] describes an improvement of the algorithm that allows
to deal with smoother regression functions, while [9] studies the consistency and
the rate of convergence of the algorithm in abstract metric spaces.

We investigate here the achievable consistency rate of the k-N.N. under various
conditions. Most of the results obtained for penalized ERM, SVM or plug-in clas-
sifiers are based on complexity considerations (entropy or VC dimension). In this
paper, we mainly use the asymptotic behavior of the small ball probabilities in-
stead (see [23] and the references therein), which is a dual quantity of the entropy
(see [22]) and we deal with the intricate situation of not bounded away from zero
densities (and noncompactly supported measures). For this purpose, we handle
smoothness and minimal mass assumptions that will provide a pertinent estima-
tion of the function η. We also consider an additional margin parameter α: [25]
proved that fast rates (faster than

√
n−1) can be obtained by exploiting the law of

(X,Y ) near {η = 1/2}. Our contributions can be gathered in 3 different axes.

Rate for bounded from below densities. We state the optimality of the k-N.N.
�n and show that mild assumptions implies the minimax consistency rate

sup
F∈F

[
R(�n) −R

(
�∗)] ≤ Cn−(1+α)/(2+d),

where α denotes the margin parameter, d the dimension of the problem, R(�) the
miss-classification error of � and �∗ the Bayes classifier.1

1This result has also been established in the recent work of [28].
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Rate for general densities. We study the behavior of �n when the marginal
density μ of X is not bounded from below on its support. Such an improvement is
of first importance since it corresponds to many practical situations. To do this, we
add an assumption on the tail of μ and prove that generically

sup
F∈F

[
R(�n) −R

(
�∗)] ≤ Cn−(1+α)/(2+α+d),

as soon as the bandwidth k involved in the classifier is allowed to depend on the
spatial position of X. The tail assumption on μ involved in this result describes
the behavior of μ near the set {μ = 0}.

Lower bounds. Finally, we derive some lower bounds for the supervised clas-
sification problem, which extends the results obtained in [2]. We prove that our tail
assumption is unavoidable to ensure uniform consistency rates for classification in
a noncompact case. We then see how these upper and lower bounds are linked and
show that a very unfavorable situation of classification occurs when the regres-
sion function η oscillates in the tail of the distribution μ: it is even impossible in
these situations to obtain uniform consistency rates, and thus elucidate two open
questions in [7].

The paper is organized as follows. Section 2 reminds some basics of the k-N.N.
rule. Section 3 is devoted to the bounded from below case. We then extend our
study to the general (typically noncompact) case in Section 4. Proofs of the upper
bound are included in Appendix. Technical results and the proofs of the lower
bounds can be found in the supplementary material [15].

We use the following notation throughout the paper. The term PX,Y denotes
the distribution of the couple (X,Y ) and PX is the marginal distribution of X,
which possesses a density μ w.r.t. the Lebesgue measure. Similarly, we set P⊗n =∏n

i=1 P(Xi,Yi) and P = P(X,Y ) ×P⊗n . Naturally, E[·], EX[·] and E⊗n[·] correspond
hereafter to the expectations w.r.t. the measures P, PX and P⊗n respectively. Fi-
nally, given two real sequences (an)n∈N and (bn)n∈N, we write an � bn (resp.,
an ∼ bn) if a constant C ≥ 1 exists such that an ≤ Cbn (resp., C−1bn ≤ an ≤ Cbn)
for all n ∈ N.

2. Statistical setting and k-nearest neighbor classifier.

2.1. Statistical classification problem. We observe an i.i.d. sample Sn :=
(Xi, Yi)i=1,...,n ∈ � × {0,1}, whose distribution is PX,Y and where � = Supp(μ)

is an open set of R
d . For a new incoming observation X, our goal is to predict

its corresponding label Y . To do this, we use a classifier � that provides a deci-
sion rule for this problem: � is a measurable mapping from R

d to {0,1}, whose
corresponding miss-classification error is then defined as

R(�) = P
(
�(X) 	= Y

)
.
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In practice, the most interesting classifiers are those associated with the smallest
error. It is well known that the Bayes classifier �∗ defined as

�∗(X) = 1{η(X)>1/2} where η(x) := E[Y |X = x] ∀x ∈ �,(2.1)

minimizes the misclassification error, that is,

R
(
�∗) ≤ R(�) ∀� :Rd −→ {0,1}.

Unfortunately, �∗ is not available since the regression function η depends on the
underlying distribution of (X,Y ). The Bayes classifier can be considered as an
oracle that provides a benchmark error and the main challenge is to construct a
classifier � that possesses a small excess risk given by

R(�) −R
(
�∗).

We study the properties of the excess risk of a given classifier �n through the
minimax paradigm. Given a set F of possible distributions F for (X,Y ), we define

δn(F) := inf
�

sup
F∈F

[
R(�) −R

(
�∗)],

where the infimum in the above formula is taken over all Sn measurable classifiers.
A classifier �n is then said to be minimax over the set F if

sup
F∈F

[
R(�n) −R

(
�∗)] ≤ Cδn(F),

for a positive constant C. The considered set F will be detailed later on and will
depend on some smoothness, margin and minimal mass assumptions.

2.2. The k-nearest neighbor rule. The k-N.N. rule is one of the simplest and
widespread classification procedures. Suppose that the state space is Rd with a ref-
erence norm ‖ · ‖. Given any sample Sn and for any x ∈ R

d , we build the reordered
sample (X(j)(x), Y(j)(x))1≤j≤n w.r.t. the distances ‖Xi − x‖:∥∥X(1)(x) − x

∥∥ ≤ ∥∥X(2)(x) − x
∥∥ ≤ · · · ≤ ∥∥X(n)(x) − x

∥∥.
In this context, X(m)(x) is the m-nearest neighbor of x w.r.t. the distance ‖ · ‖
and Y(m)(x) its corresponding label. Given any integer k in N, the principle of the
k-nearest neighbor algorithm is to construct a decision rule based on the k-nearest
neighbors of the input X: the Sn-measurable classifier �n,k is

�n,k(X) =
⎧⎪⎨⎪⎩1, if

1

k

k∑
j=1

Y(j)(X) >
1

2
,

0, otherwise.

(2.2)

For all x ∈ �, the term 1
k

∑k
j=1 Y(j)(x) appears to be an estimator of the regression

function η(x). In particular, we can write the classifier �n,k as

�n,k(X) = 1{η̂n(X)>1/2} where η̂n(x) = 1

k

k∑
j=1

Y(j)(x) ∀x ∈ �.(2.3)
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Hence, the k-N.N. is a plug-in classifier, that is, a preliminary estimator of the
function η is plugged in our decision rule. It is worth noting that the integer k is a
regularization parameter. The k-N.N. is quite robust since universal consistency is
obtained as soon as kn → +∞ and kn/n → 0, but a careful tuning of the number
of neighbors kn is needed to obtain an acceptable rate of convergence. Indeed, if
k is too small, the classifier �n,k only uses a small amount of the neighbors of X,
inducing a large variance of the classification process. On the other hand, large
values of k generate some bias into the decision rule since we use observations
that may be far away from the input X.

For this purpose, we introduce some baseline assumptions into the following
section that will make it possible to characterize an optimal value for kn.

2.3. Baseline assumptions. It is well known that no reliable prediction can
be made in a distribution-free setting (see [18]). We restrict the class of possible
distributions of (X,Y ) below.

Since the k-nearest neighbor rule is a plug-in classification rule, we expect to
take advantage of some smoothness properties of η in order to improve the classifi-
cation process. In fact, when η is smooth, the respective values of η(x1) and η(x2)

are comparable for close enough x1, x2. In other words, we can infer the sign of
η(x) − 1

2 from those of the neighbors of x.

ASSUMPTION A1 (Smoothness). The regression function η belongs to the
Hölder class of parameter 1 with a radius L, which is denoted C1,0(�,L) and
corresponds to the set of functions such that

∀(x1, x2) ∈ �2 ∣∣η(x1) − η(x2)
∣∣ ≤ L|x1 − x2|.

REMARK 2.1. It would be tempting to consider some more general smooth-
ness classes for the regression function η. Nevertheless, the standard k-nearest
neighbor algorithm does not make it possible to use smoothness indexes greater
than 1. An alternative procedure has been proposed in [28]: the idea is then to bal-
ance the (Y(j))j=1,...,k with a suitable monotonous weighting sequence. However,
this modification complicates the statistical analysis and may alter the ideas devel-
oped below. We therefore chose to fix the smoothness of η to 1 [i.e., restrict our
study to C1,0(�,L)].

Our second assumption was introduced by [31] in the binary supervised classi-
fication model (see [25] in a smooth discriminant analysis setting).

ASSUMPTION A2 (Margin assumption). Some constants α > 0 and C > 0
exist such that

PX

(
0 <

∣∣η(X) − 1
2

∣∣ < ε
) ≤ Cεα ∀ε > 0.

In such a case, we write (μ,η) ∈ Mα .
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The Bayes classifier depends on the sign of η(X)− 1/2. Intuitively, it would be
easier to mimic the behavior of this classifier when the mass around the set {η =
1/2} is small. On the other hand, the decision process may be more complicated
when η(X) is close to 1/2 with a large probability. Quantifying this closeness is
the purpose of this margin assumption.

For the sake of convenience, we use the set FL,α throughout the paper, which
contains distributions that satisfy both Assumptions A1 and A2, namely

FL,α := {
P(X,Y ) : L(X) ∼ μ,L(Y |X) ∼ B

(
η(X)

)
such that

η ∈ C1,0(�,L) and (μ,η) ∈ Mα

}
.

We now turn to our last assumption that involves the marginal distribution of
the variable X.

2.4. Minimal mass assumption. In the sequel, this type of hypothesis will play
a very important role.

ASSUMPTION A3 (Strong Minimal Mass Assumption). There exists κ > 0
such that the marginal density μ of X satisfies μ ∈ Mmma(�,κ) where

Mmma(�,κ) := {
PX : L(X) ∼ μ|∃δ0 > 0,∀δ ≤ δ0,

∀x ∈ � : PX

(
X ∈ B(x, δ)

) ≥ κμ(x)δd}.
This assumption guarantees that PX possesses a minimal amount of mass on

each ball B(x, δ); this lower bound being balanced by the level of the density
on x. In some sense, distributions in Mmma(�,κ) will make it possible to obtain
reliable predictions of the regression function η according to its Lipschitz property.

The strong minimal mass Assumption A3 is much stronger than the so-called
Besicovitch assumption that is quite popular in the statistical literature (see, e.g.,
[10] for a version of the Besicovitch assumption used for pointwise consistency or
[8] for a general discussion on this hypothesis in finite or infinite dimension). It is
worth pointing out that the Besicovitch assumption introduced in [8] states that η

satisfies:

∀ε > 0 lim
δ→0

μ

{
x : 1

μ(B(x, δ))

∫
B(x,δ)

∣∣η(z) − η(x)
∣∣dμ(z) > ε

}
= 0.(2.4)

As shown in [8], (2.4) is always true in finite dimensional space.
We can also remark that if η is L-Lipschitz (Assumption A1), we have

∀x ∈ �

∫
B(x,δ)

∣∣η(z) − η(x)
∣∣μ(z) dz ≤ L

∫
B(x,δ)

|x − z|μ(z) dz

≤ Lδμ
(
B(x, δ)

)
,
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which implies that the set involved in (2.4) is empty as soon as Lδ ≤ ε. Hence,
(2.4) is true when η ∈ C1,0(�,L), whatever the dimension of � is. In fact, we can
also show that the continuity of η implies (2.4) we refer to Section 3 in [8] for
more details.

We will see that Assumption A3 is necessary to obtain quantitative estimates
for any finite dimensional classification problem.

In a slightly different setting, our Assumption A3 is used in [2] when the den-
sity μ is lower bounded on its (compact) support, which is assumed to possess
some geometrical properties [(c0, r0) regularity]. This setting is at the core of the
study presented in Section 3 below. Assumption A3 also recalls the notion of stan-
dard sets used in [27] for the estimation of compact support sets. More generally,
the following examples present some standard distributions that satisfy Assump-
tion A3.

EXAMPLE 2.1.

• In R
d , it is not difficult to check that Gaussian measures with non-degenerated

covariance matrices satisfy Mmma(�,κ). As a simple example, consider a stan-
dard Gaussian law μ ∼ N (0,1). For any x ∈ R and δ > 0, if x belongs to a
compact set K , then a constant CK exists such that (2π)−1/2 ∫ x+δ

x−δ e−t2/2 dt ≥
CKe−x2/2δ. Now, if x −→ +∞, we can check that

(2π)−1/2
∫ x+δ

x−δ
e−t2/2 dt ∼ (2π)−1/2e−x2/2

[
exδ

x − δ
− e−xδ

x + δ

]
e−δ2/2.

The bracket above is always greater than δ when (xδ)−1 = O(1). Now, if δ =
o(1/x), a simple Taylor expansion yields

(2π)−1/2
∫ x+δ

x−δ
e−t2/2 dt ∼ μ(x)

1 + 2xδ

x
� μ(x)δ.

• The same computations are still possible for symmetric Laplace distributions
(et

∫ t+δ
t−δ e−x dx = [eδ − e−δ] ∼ 2δ when δ is small. Thus, any Laplace distri-

butions belongs to Mmma(�,κ). In a same way, when μ is a standard Cauchy
distribution, we can check that∫ x+δ

x−δ

dt

1 + t2 = 1

1 + x2

∫ δ

−δ

1

1 + h(2x + h)/(1 + x2)
dh

∼ 1

1 + x2

[
2δ − 2

3

δ3

1 + x2 + +8
δ3x2

(1 + x2)2 o
(
δ3)]

� δ

1 + x2 .
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In the case of compactly supported distribution, it is intuitive to see that
Mmma(�,κ) is related to the regularity of the boundary of the support. For ex-
ample, consider the uniform law on the 
1/2 ball of R2 given by � := {(x1, x2) ∈
R

2|√|x1| + √|x2| ≤ 1}. In this case, we can check that PX(X ∈ B((1,0), δ)) =
4δ3/3 for δ ≤ 1, which is much smaller than δ2 when δ → 0 and this distribution
does not belong to Mmma(�,κ). This last distribution exemplifies that Assump-
tion A3 is not only an assumption on the boundedness of the derivatives of μ, but
is also strongly related to the geometrical shape of its support.

Other typical distributions that do not satisfy the strong minimal mass Assump-
tion A3 possess some important oscillations in their tails (when the density μ is
close to 0). In such a setting, the alternative set M̃mma(�,κ) defined as follows,
may be considered:

M̃mma(�,κ) := {
PX : L(X) ∼ μ|∃(ρ,C) ∈]0;+∞[2,∃δ0 > 0,∀δ ≤ δ0,

∀x ∈ � : μ(x) ≥ e−Cδ−ρ �⇒ μ
(
B(x, δ)

) ≥ κμ(x)δd}.
The interest of the weaker M̃mma(�,κ) compared to Mmma(�,κ) is that the sta-
tistical abilities of the k-nearest neighbor rule are still the same with Mmma(�,κ)

or M̃mma(�,κ). Moreover, an analytic criterion that ensures M̃mma(�,κ) can
be found (see Proposition 4.1). This is not the case for the uniform assumption
Mmma(�,κ) (it is indeed more difficult to ensure the lower bound on the global
set �).

Although all the subsequent results may be established for a weaker version
of the minimal mass assumption [based on the set M̃mma(�,κ)], we will restrict
ourselves to its strong formulation (Assumption A3). In Section 3, we prove that
the k-nearest neighbor rule is optimal in the minimax sense provided that the mar-
gin and smoothness assumptions hold, with a marginal density of the variable X

bounded away from 0 and a suitable choice of k. In Section 4, we will see that
Mmma(�,κ) is not yet sufficient to derive some uniform consistency rates for
classifiers with non-compactly supported densities and a last additional hypothesis
is needed.

3. Bounded away from zero densities.

3.1. Minimax consistency of the k-nearest neighbor rule. In this section, we
are interested in the special case of a marginal density μ bounded from below by
a strictly positive constant μ−. In this context, we can state an upper bound on the
consistency rate of the k-nearest neighbor rule.

THEOREM 3.1. Assume that Assumptions A1–A3 hold. The k-nearest neigh-
bor classifier �n,kn with kn = �n2/(2+d)� satisfies

sup
PX,Y ∈FL,α∩Mmma(�,κ)μ−

[
R(�n,kn) −R

(
�∗)]� n−(1+α)/(2+d),
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where Mmma(�,κ)μ− denotes the subset of densities of Mmma(�,κ) that are
bounded from below by μ−.

Theorem 3.1 establishes a consistency rate of the k-nearest neighbor rule over
FL,α ∩ Mmma(�,κ)μ− . A detailed proof of is presented in Appendix. Implicitly,
we restrict our analysis to compactly supported observations, these assumptions
being at the core of several statistical analyses (see, e.g., [5, 18, 25] or [19] among
others). It is worth pointing out that this setting falls into the framework considered
in [2].

DEFINITION 3.1 (Strong Density Assumption (SDA), [2]). The marginal dis-
tribution of the variable X satisfies the strong density assumption if:

• it admits a density μ w.r.t. the Lebesgue measure of Rd ;
• the density μ satisfies

μ− ≤ μ(x) ≤ μ+ ∀x ∈ Supp(μ)

for some constants (μ−,μ+) ∈]0,+∞[2;
• the support of μ is (c0, r0)-regular, namely

λ
[
Supp(μ) ∩ B(x, r)

] ≥ c0λ
[
B(x, r)

] ∀r ≤ r0,

for some positive constants c0 and r0.

As soon as the marginal density is bounded from below by a strictly positive
constant, then both SDA and strong minimal mass Assumption A3 are equivalent,
as stated in the following proposition.

PROPOSITION 3.1. For bounded away from zero density, the SDA is equiva-
lent to the strong minimal mass assumption.

PROOF OF PROPOSITION 3.1. As soon as the support of μ is (c0, r0)-regular
and the density is lower bounded by μ− > 0, then SDA implies a minimal mass
type assumption:

∀δ ≤ r0 μ
(
B(x, δ)

) =
∫
B(x,δ)

μ(z) dz ≥ μ− × λ
[
B(x, δ) ∩ Supp(μ)

]
≥ c0γdμ−δd.

Conversely, we can also check the fact that the strong minimal mass Assump-
tion A3 implies the SDA [including the (c0, r0)-regularity of μ]. Indeed, since for
any x and δ ≤ δ0

1 ≥
∫
B(x,δ)

μ(y) dy ≥ κμ(x)δd,
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then the density μ is upper bounded and we obtain that∫
B(x,δ)

μ(y) dy ≤ ‖μ‖∞λ
[
Supp(μ) ∩ B(x, r)

]
.

We therefore obtain

λ
[
Supp(μ) ∩ B(x, r)

] ≥ κ
μ(x)

‖μ‖∞
δd ≥ κ

μ−
‖μ‖∞

δd .

This completes the proof of this proposition. �

It is possible to link the constants (c0, r0) and κ involved in SDA with
Mmma(�,κ)μ− , we have omitted their relationships here for the sake of simplic-
ity. Minimax rates of excess risk under the SDA are established in Theorem 3.5
of [2]. A consequence of Proposition 3.1 is that the same lower bound is still valid
with Mmma(�,κ)μ− . Consequently, under Assumptions A1–A3 and if a constant
μ− > 0 exists such that μ(x) > μ− on �, then we obtain that

inf
�

sup
PX,Y ∈FL,α∩Mmma(�,κ)μ−

[
R(�) −R

(
�∗)]� n−(1+α)/(2+d).

This inequality and Theorem 3.1 show that the k-N.N. rule achieves the min-
imax rate of convergence in the particular case where the density μ is lower
bounded on its (compact) support. As already discussed in [25] or [2], the higher
the margin index α is, the smaller the excess risk will be. On the other hand, the
performance deteriorates as the dimension of the considered problem increases.
The lower bound obtained by [2] is based on an adaptation of standard tools from
non-parametric statistics (Assouad’s lemma). This proof is of primary importance
for next lower bound results. It is recalled in Section 1 of the supplementary mate-
rial [15] for the sake of convenience.

4. Non-compact finite dimensional case.

4.1. The tail assumption. Results of the previous section are designed for the
problem of supervised binary classification with compactly supported inputs and
lower bounded densities. Such an assumption is an important prior on the prob-
lem that may be improper in several practical settings. Various situations involve
Gaussian, Laplace, Cauchy or Pareto distributions on the observations, and both
the compactness and the boundedness away from zero assumptions may seem to
be very unrealistic. This is even more problematic when dealing with functional
classification with a Gaussian White Noise model (GWN). In such a case, obser-
vations are described through an infinite sequence of Gaussian random variables,
and the SDA or Mmma(�,κ)μ− are far from being well tailored for this situation
(see [23] for a discussion and further references).

This section is dedicated to a more general case of binary supervised classifica-
tion problems where the marginal density μ of X is no longer assumed to be lower
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bounded on its support. The main problem related to such a setting is that we have
to predict labels in places where few (or even no) observations are available in the
training set. In order to address this problem, we take the following assumption.

ASSUMPTION A4 (Tail Assumption). A function ψ that satisfies ψ(ε) → 0
as ε → 0 and that increases in a neighborhood of 0 exists such that

P(X,Y ) ∈ PT ,ψ := {
PX : ∃ε0 ∈ R

∗+ : ∀ε < ε0,PX

({μ < ε}) ≤ ψ(ε)
}
,

where PT ,Id corresponds to the particular case where ψ = Id.

The aim of this tail assumption is to ensure that the set where μ is small has a
small mass. We use the notation T because of the interpretation on the tail of μ,
but PT ,ψ is not just an assumption on the tail of the μ. It is, in fact, an assumption
on the behavior of μ near the set {μ = 0}. We provide below some examples of
marginal distributions that satisfy this tail requirement. In Section 4.2 below, we
prove that the tail Assumption A4 is unavoidable in this setting. In Section 4.3, we
investigate the performances of the k-nearest neighbor rule in this context.

EXAMPLE 4.1. The following are several families of densities in PT ,ψ .

• Laplace distributions obviously satisfy PT ,Id, and a straightforward integration
by parts shows that Gamma distributions �(k, θ) satisfy PT ,ψ with ψ(ε) =
ε log(ε−1)k−1 (the term around x = 0 is on the order of εk/(k−1), and thus neg-
ligible compared to the term around +∞).

• An immediate computation shows that the family of Pareto distributions of pa-
rameters (x0, k) satisfies PT ,ψ where ψ(ε) = εk/(k+1), regardless of the value
of x0.

• The family of Cauchy distributions satisfies PT ,ψ with ψ(ε) = √
ε.

• Univariate Gaussian laws γm,σ 2 with mean m and variance σ 2 satisfy

γm,σ 2(x) ≤ ε ⇐⇒ |x − m| ≥ tσ,ε := √
2σ

√
log

(
1

ε

)
+ log

(
1

σ
√

2π

)
,

and a standard result on the size of Gaussian tails (see [3]) yields

γm,σ 2(γm,σ 2 ≤ ε) = ε

tσ,ε

[
1 − 1

t2
σ,ε

+ 1.3

t4
σ,ε

− · · ·
]
� ε√

log(1/ε)
.

Hence, univariate Gaussian laws satisfy PT ,ψ with ψ(ε) = ε log(ε−1)−1/2.
• Multivariate Gaussian laws. If m is any real vector of Rd and �2 a covariance

matrix whose spectrum is λ1 ≥ · · · ≥ λd ≥ 0:

γm,�2(γm,�2 ≤ ε) = γ0,�2(γ0,�2 ≤ ε) � γ0,�2

(
‖X‖ ≥

√
2λ1 log

(
1

ε

))
.
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Careful inspection of Theorem 1 of [20] now yields

γ0,�2

(
‖X‖ ≥

√
2λ1 log

(
1

ε

))
∼ C�2 log

(
1

ε

)r/2−1

ε,

where C�2 is a constant that only depends on the spectrum of �2 and r is
the multiplicity of the eigenvalue λ1. In particular, γm,�2 satisfy PT ,ψ where
ψ(ε) = C�2ε log(ε−1)r/2−1.

4.2. Non-uniform consistency results. We first justify the introduction of the
sets Mmma(�,κ) and PT ,ψ and discuss their influences regarding feasibility to
derive lower bounds and even uniform consistency of any estimator. To do this, we
first state that the minimal mass Assumption A3 is necessary to obtain uniformly
consistent classification rules. Second, we assert that the tail Assumption A4 is
also unavoidable.

THEOREM 4.1. Assume that the law PX,Y belongs to FL,α , then:

(i) No classification rule can be uniformly consistent if Assumptions A1–A3
hold and not A4. For any integer n, any discrimination rule �n and for any ε <

4−α , a distribution P
(n)
(X,Y ) in FL,α ∩Mmma(�,κ) exists such that

R(�n) −R
(
�∗) ≥ ε.

(ii) No classification rule can be uniformly consistent if Assumptions A1, A2,
A4 hold and not A3. For any integer n, any discrimination rule �n and for any
ε < 4−α , a distribution P

(n)
(X,Y ) in FL,α ∩PT ,Id exists such that

R(�n) −R
(
�∗) ≥ ε.

We briefly comment on the two points raised by this last theorem. First and fore-
most, Theorem 4.1 does not contradict the seminal result of [30] that establishes
the universal consistency of the k-N.N. as soon as kn → +∞ with kn/n → 0. This
positive result corresponds to the consistency of the k-N.N. (without any rate) as
soon as the distribution P(X,Y ) is fixed while the number of observations n is grow-
ing to infinity. Theorem 4.1 states that both Assumptions A3 and A4 are necessary
to derive uniform consistency rates for a family of distributions. In particular, The-
orem 4.1 is obtained via the construction of a set of distributions P

(n)
(X,Y ) on the

entries that depend on n. To sum up, results obtained in [30] and Theorem 4.1
illustrate essentially the difference between universal convergence and uniform
convergence over a class of distribution.

The first result (i) asserts that even if the minimal mass Assumption A3 holds
for the underlying density on X, it is not possible to expect a uniform consis-
tency result over the entire class of non-compactly considered densities. In some
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sense, the support of the variable X seems to be too large to obtain reliable predic-
tions with any classifiers without additional assumptions. As discussed above, the
tail Assumption A4 may make it possible to counterbalance this curse of support
effect (see next section). Such statistical damage has also been observed for the es-
timation of densities that are supported on the real line instead of being compactly
supported, even though such dramatic consequences are not shown here. We refer
to [26] and the references therein for a more detailed description.

The second result (ii) states that the strong minimal mass Assumption A3 can-
not be skipped for uniform consistency rates and no compactly supported densities.
This is in line with the former studies of [17] and [11]. In particular, Lemma 2.2
of [11] takes advantage of some of the positive consequences of this type of as-
sumption. Our proof relies on the construction of a sample size dependent law on
(X,Y ) that violates Assumption A3 but that keeps the regression function η in our
smoothness class FL,α . This is a major difference with former counterexamples
built in [12] where the nonuniform consistency is obtained with a family of non-
smooth regression functions η. In our study, we also obtained a family of smooth
regression functions for which such phenomena occur. Even in this case, it is still
possible to keep the excess risk larger than a fixed positive constant (independent
on n) for any classifier �n.

Finally, these uniform inconsistency results always occur when building a net-
work of regression functions η that oscillate around the value 1/2 at the neighbor-
hood of the set {μ = 0}. In a sense, Theorem 4.1 contributes to the understanding
of one of the open questions put forth in [7] on the behavior of the k-nearest neigh-
bor rule when η is oscillating about 1/2 in the tail.

4.3. Minimax rates of convergence. In the meantime, when both Assumptions
A2, A3 and A4 hold, we are able to precisely describe the corresponding minimax
rate of convergence.

4.3.1. Minimax lower bound.

THEOREM 4.2. Assume that Assumptions A1–A4 hold. Then

inf
�n

sup
P(X,Y )∈FL,α∩Mmma(�,κ)∩PT ,Id

[
R(�n) −R

(
�∗)]� n−(1+α)/(2+α+d).

For the sake of convenience, we briefly outline the proof of Theorem 3.5 bor-
rowed from [2] in Section 1 of the supplementary material [15]. It is then adapted
to our new set of assumptions.

Theorem 4.5 below provides some lower bounds for different tails of distribu-
tions (through the function ψ). It should be noted that we recover the known rate
of compactly supported densities with the so-called Mild Density Assumption of
[2] in the particular case ψ = Id. This implies that in the noncompact case, the rate
cannot be improved compared to the compact setting, even with an additional tail
assumption.
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4.3.2. An upper bound for the k-nearest neighbor rule. When the density is
no longer bounded away from 0, the integer kn will be chosen in order to counter-
balance the vanishing probability of the small balls in the tail of the distributions.
For example, when ψ = Id, we show that a suitable choice of the integer kn is

kn := ⌊
n2/(3+α+d)⌋,

which appears to be quite different from the one in the previous section.

THEOREM 4.3. Assume that Assumptions A1–A3 hold and if the tail Assump-
tion A4 is driven by ψ = Id, the choice kn := �n2/(3+α+d)� yields

sup
P(X,Y )∈FL,α∩PT ,Id∩Mmma(�,κ)

[
R(�n,kn) −R

(
�∗)]� n−(1+α)/(3+α+d).

The proof of Theorem 4.3 is provided in Section A.1. The above results indicate
that the price to pay for the classification from entries in compact sets to arbitrary
large sets of R

d is translated by the degradation from n−(1+α)/(2+d) to at least
n−(1+α)/(2+α+d) [see, e.g., Theorem 4.2 when ψ(ε) ∼ ε]. Our upper bound for the
k-nearest neighbor rule does not exactly match this lower bound since we obtain
n−(1+α)/(3+α+d) in a similar situation. At this step, obtaining the appropriate min-
imax rate requires slight changes inside the construction of the k-nearest neighbor
rule. This is the purpose of the next paragraph.

4.3.3. Minimax upper bound for an optimal k-nearest neighbor rule. The up-
per bound proposed in the theorem can be improved if we change the way in which
the regularization parameter kn is constructed. We use a k-nearest neighbor algo-
rithm with a number of neighbors that depends on the position of the observation x

according to the value of the density μ(x). More formally, we define for all j ∈ N

�n,0 := {
x ∈R

d : μ(x) ≥ n−α/(2+α+d)},
and

�n,j =
{
x ∈ R

d : n−α/(2+α+d)

2j+1 ≤ μ(x) <
n−α/(2+α+d)

2j

}
.

Setting kn,0 = �n2/(2+α+d) log(n)�, we then use for all j ∈ N

kn(x) = ⌊
kn,02−2j/(2+d)⌋ ∨ 1 when x ∈ �n,j .(4.1)

According to (4.1), the number of neighbors involved in the decision process
depends on the spatial position of the input X. In some sense, this position is linked
to the tail. The statistical performances of the corresponding k-nearest neighbor
classifier is displayed below. Such a construction of this sequence of “slices” may
be interpreted as a spatial adaptive bandwidth selection. This bandwidth is smaller
at points x ∈ R

d such that μ(x) is small. In a sense, this idea is close to the one
introduced in [16] that provides a similar slicing procedure to obtain an adaptive
minimax density estimation on R

d .
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THEOREM 4.4. Assume that Assumptions A1–A3 hold and that the tail As-
sumption A4 is driven by ψ = Id. Then, if �∗

n,kn
is the classifier associated

with (4.1), we have

sup
P(X,Y )∈FL,α∩PT ,Id∩Mmma(�,κ)

[
R

(
�∗

n,kn

) −R
(
�∗)]

� n−(1+α)/(2+α+d)(logn)1/2+1/d .

We stress that the upper bound obtained in Theorem 4.4 nearly matches the
lower bound proposed in Theorem 4.2, up to a log-term. This log-term can be re-
moved by the use of additional technicalities that are omitted in our proof. Hence,
Theorems 4.4 and 4.2 make it possible to identify the exact minimax rate of clas-
sification when the tail assumption is driven by ψ = Id, that is,

inf
�

sup
P(X,Y )∈FL,α∩PT ,Id∩Mmma(�,κ)

[
R

(
�∗

n,kn

) −R
(
�∗)] ∼ n−(1+α)/(2+α+d).

REMARK 4.1. Let us briefly compare our results with those obtained in the
recent contribution [9] on k-N.N. in general metric spaces. In the particular case of
� = R

d with compactly supported measure, Theorem 3.1 yields an excess risk of
the order n−(1/d)(1+α)/(2/d+1), which is also the result stated in Theorem 4 of [9].
Both results are obtained with an additional smoothness assumption (see Assump-
tion A1 in our framework and the (α,L) smoothness assumption of [9] related to
the average value of η on small balls of radius r).

Now, when the measure is not compactly supported, [9] describes a geometric
set En,k that involves all points for which a ball of relative mass k/n (in the sense
of μ) leads to an average value of η around 1/2 ± k−1/2. We refer to their Sec-
tion 2.4 for a complete definition of En,k . Taking together Theorems 5 and 6 of
[9] shows that the performance of the k-N.N. classifier is almost proportional to
μ(En,k) but the excess risk is not explicit.

In our work, Mmma(�,κ)and our tail Assumption A4 may be seen as one way
to obtain a quantitative description of the set En,kn and then derive explicit in n

consistency rates. Finally, our lower bound stated in Theorem 4.1 is obtained via
a construction of a set of pairs (μ,η) that keep a sufficiently large mass on the
associated geometric set En,k . It is important to note that this lower bound applies
not only for the k-N.N. but for any classifier.

4.3.4. Generalizations. We propose several extensions of our previous results
(lower and upper bounds) for more general tails of distribution. We also propose
to enlighten the minimal mass assumption Mmma(�,κ).
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Effect of the tail: From PT ,Id to PT ,ψ .

THEOREM 4.5. Assume that Assumptions A1–A4 hold. For any tail T param-
eterized by a function ψ , we obtain the following results:

(i) Lower bound: the minimax classification rate satisfies

inf
�n

sup
P(X,Y )∈FL,α∩PT ,ψ∩Mmma(�,κ)

[
R(�n) −R

(
�∗)]� ε1+α

n,α,d ,

where εn,α,d satisfies the balance

n−1 = {εn,α,d}2+d × ψ−1({εn,α,d}α).(4.2)

(ii) Upper bound: the k-nearest neighbor rule satisfies

sup
P(X,Y )∈FL,α∩PT ,ψ∩Mmma(�,κ)

[
R(�n,kn) −R

(
�∗)] ≤ Cν1+α

n,α,d

with kn = ν−2
n,α,d where νn,α,d fulfills the balance

n−1 = ψ−1({νn,α,d}1+α){νn,α,d}2+d .(4.3)

It would also be possible to propose some generalizations using the sliced
k-nearest neighbor rule presented in Sections 4.3.2 and 4.3.3 for tails driven by
a general function ψ , even if we do not include this additional result for the pur-
pose of clarity.

Meeting the minimal mass assumption M̃mma(�,κ). We now obtain similar
rates when using the weaker assumption M̃mma(�,κ) instead of Mmma(�,κ):
the lower bounds of μ(B(x, δ)) are only useful for some points x such that μ(x)

is large enough. We can state the next corollary.

COROLLARY 4.1. Assume that Assumptions A1, A2, A4 hold and P(X,Y ) ∈
M̃mma(�,κ), then

sup
P(X,Y )∈FL,α∩PT ,ψ∩M̃mma(�,κ)

[
R(�n,kn) −R

(
�∗)]� ν1+α

n,α,d ,

with kn = ν−2
n,α,d where νn,α,d satisfies the balance

n−1 = ψ−1({νn,α,d}1+α){νn,α,d}2+d .

The condition Mmma(�,κ) cannot be easily described through an analytical
condition because of its uniform nature over �. In contrast, M̃mma(�,κ) is more
tractable in view of the criterion given by the next result (Proposition 4.1). Using
a log-density model, we write the density μ as

μ(x) = e−ϕ(x) ∀x ∈ R
d .
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PROPOSITION 4.1. Let ϕ ∈ C1(�) and assume that a real number a > 0 exists
such that

lim
x:μ(x)−→0

‖∇ϕ(x)‖
ϕ(x)a

= 0,

then a suitable κ can be found such that μ = e−ϕ ∈ M̃mma(�,κ).

PROOF. For any δ > 0, we compute a lower bound of

PX

(
B(x, δ)

) =
∫
B(x,δ)

e−ϕ(z) dz.

The Jensen inequality applied to the normalized Lebesgue measure over B(x, t),
which is denoted d̄z, yields∫

B(x,δ)
e−ϕ(z) dz ≥ πd/2δd

�(d/2 + 1)
exp

(
−ϕ(x) +

∫
B(x,δ)

[
ϕ(z) − ϕ(x)

]
d̄z

)
.(4.4)

A first-order Taylor expansion leads to∫
B(x,δ)

[
ϕ(z) − ϕ(x)

]
d̄z ≤ sup

z∈B(x,δ)

∥∥∇ϕ(z)
∥∥∫

B(x,δ)
‖z − x‖ d̄z

≤ δ sup
z∈B(x,δ)

∥∥∇ϕ(z)
∥∥.

Now, our assumption on ϕ implies that a large enough Ca exists such that∥∥∇ϕ(z)
∥∥ ≤ Ca

(
1 + ϕ(z)a

)
.

Thus, the lower bound (4.4) becomes∫
B(x,δ)

e−ϕ(z) dz ≥ πd/2δd

�(d/2 + 1)
e−ϕ(x)e−Caδ(1+supz∈B(x,δ) ϕa(z)).

It is now sufficient to consider points x such that ϕ ≤ δ−1/a (equivalent to
μ ≥ e−δ−1/a

) to obtain a meaningful lower bound. Hence, M̃mma(�,κ) is satis-
fied choosing

ρ = 1/a and κ = πd/2

2�(d/2 + 1)
e−Ca . �

4.4. Practical settings on typical examples. The aim of this section is to il-
lustrate the results obtained above. We first describe a location model for which
we can derive explicit upper and lower bounds in several different cases. We then
propose a small numerical study in order to enhance the discussion regarding the
importance of the tail assumption and we conclude by drawing a comparison be-
tween the standard k-nearest neighbor and sliced k-nearest neighbor rules.
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TABLE 1
Convergence rates for locations models with several tail sizes

Law Tail ψ Margin kn ∼ nβ Upper bound

Gauss ψ(ε) ∝ ε log(1/ε)r/2−1 α = 1 β = 2/(4 + d) n−2/(4+d) log(n)β(r)

Laplace ψ(ε) ∝ ε α = 1 β = 2/(4 + d) n−2/(4+d)

Gamma ψ(ε) ∝ ε log(1/ε)k−1 α = 1 β = 2/(4 + d) n−2/(4+d) log(n)β(k)

Cauchy ψ(ε) ∝ √
ε α = 1 β = 1/(3 + d) n−2/(3+d)

Power laws/Pareto ψ(ε) ∝ εp/(p+1) α = 1 ∧ p β = 2(p+1)
p(3+α+d)+2+d

n
−4(p+1)

p(3+α+d)+2+d

Explicit rates for specific location models. We investigate here the influence
of the function ψ in PT ,ψ as well as the one of the margin parameter on the con-
vergence rates through several specific location models. These models are defined
as follows: given any positive random variable Z (whose cumulative distribution
function is denoted as F ) and two real location values a and b, the random variable
X is given by

X = εZ + Yb + (1 − Y)a,(4.5)

where ε is a Rademacher random variable (whose values is ±1) independent of Z,
and Y is the label of the observation, sampled independently of ε and Z with a
Bernoulli law B(1/2). Using a translation invariance argument, it is enough in the
next study to consider a = 0 and b > 0. Table 1 illustrates the rate reached by the
k-nearest neighbor procedure in each situation.

A numerical study for “power laws.” In order to illustrate equations (4.2) and
(4.3), we consider some specific cases of “power laws” such that

PX

(
μ(X) < ε

) = ψ(ε) ∼ εg when ε −→ 0+,

for some g > 0. In this case, the upper bound on the k-nearest neighbor classifier
is given by

R(�n) −R
(
�∗)� n−(1+α)/(1+α+(2+d)/g)

although the lower bound derived from (4.2) is

inf
�n

sup
P(X,Y )∈FL,α∩PT ,ψ∩Mmma(�,κ)

[
R(�n) −R

(
�∗)]� n−(1+α)/(α+(2+d)/g).

We immediately observe that the classification rates are seriously damaged when
g is small. In contrast, for very thin tails, the rate can be arbitrarily close to n−1.
For this purpose, we illustrate this phenomenon with a family of distributions Pg ,
where the parameter g > 0 influences the tail size. We define the cumulative dis-
tribution function of the positive random variable Z:

∀t ≥ 0 Fg(t) = 1 − 1

(t + 1)g
.
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FIG. 1. Example of observed empirical rates and upper bound theoretical rates given by (4.3) for
several power law distributions of parameter g.

Then, for two real values (a, b), we sample n observations (Xi, Yi) according to
the previous model and the Bayes classifier is given by

�∗(X) = 1{X>(a+b)/2}.

In this example, the margin α is equal to 1 and η is L-Lipschitz. We then con-
sider kn = �n2/5�+1 to assess the statistical performance of the k-nearest neighbor
classifier. Figure 1 represents the excess risk obtained by the k-nearest neighbor
classifier and the successive degradation of the convergence rate when g decreases
to 0 [on the left, the empirical performance of the k-nearest neighbor rule with
the underlying distributions and on the right for the upper bound theoretically de-
rived from Theorem (4.3)]. These numerical experiments are consistent with the
theoretical result obtained in Theorem 4.5.

Comparison between the standard k-nearest neighbor and its sliced counter-
part. We provide here a short numerical study that aims to compare the results
reached by the standard k-nearest neighbor rule described in Theorem 4.3 and
the ones obtained by its sliced counterpart described in Section 4.3.3 and in The-
orem 4.4. To measure such an improvement, we have chosen to once again use
some noncompactly supported distributions and several different location models.

On the one hand, as pointed out in Theorem 4.3, the standard k-nearest neighbor
procedure will be tuned with a number of neighbor kn := �n2/(3+α+d)�+1. On the
other hand, the sliced k-nearest neighbor rule described in Theorem 4.4 requires a
preliminary estimation of the law of observation PX . To do this, we used the recent
kernel density estimation package2 provided by [4], which is an adaptive estimator
based on linear diffusion processes. Given any training set (Xi, Yi)1≤i≤n, we first
built the preliminary estimator μ̂n of the unknown density μ. This estimator is

2kde.m is available on the author’s Website of [4].
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interesting because of its adaptive smoothing properties and because it includes a
very fast automatic bandwidth selection algorithm.

The sliced k-nearest neighbor rule then uses a number of neighbors that depends
on the design point X. If the density estimate is large enough, that is, if μ̂n(X) ≥
n−α/(2+α+d),

kn(X) := ⌊
n2/(2+α+d)⌋ + 1.

Otherwise, when 2−(j+1) ≤ μ̂n(X)nα/(2+α+d) ≤ 2−(j), the number kn(X) is

kn(X) := ⌊
n2/(2+α+d)2−2j/(2+d)⌋ + 1.

To draw some reliable comparisons, we also used some various univariate
laws (d = 1) for the random variable Z involved in the definition of the location
model (4.5) (Normal distributions, Cauchy distributions and Power laws) whose
parameters are described in Table 1. The two location parameters are still denoted
a and b and fixed such that a = −b.

In each situation, we used a Monte-Carlo strategy with 1000 replications to
compute the mean excess risk of each k-nearest neighbor rule. We used a training
set of cardinal n, as well as a test set of size 200. Results are given in Table 2.

We may observe in Table 2 that the sliced version of the k-nearest neighbor al-
ways outperforms the standard one. Such a numerical result is consistent with the
theoretical ones of Theorems 4.3 and 4.4. Note also that the relative improvement
of the sliced k-nearest neighbor rule seems to increase when the number of obser-
vations n growth, meaning that each excess risk of the two procedures varies with
a different power of n.

Finally, it should be mentioned that we have not tried to modify the dimension of
the observations X. Indeed, the difference of the upper bounds given by Theorems
4.3 and 4.4 becomes more and more negligible when the dimension is increasing.
This should also be the case in the empirical study that will be in the subject of a
future work. Likewise, the statistical study of the empirical sliced k-nearest neigh-
bor rule should also be addressed in a future study, since a balance between the

TABLE 2
Mean excess risk multiplied by 100 (left: standard k-nearest neighbor; middle: sliced k-nearest

neighbor; right: percentage of improvement). Standard errors are lower than 0.2

Law of Z n = 100 n = 500 n = 1000

Gauss, a = 1, σ = 2 4.51 4.47 8.9% 3.34 2.48 25.7% 2.71 1.81 33%

Cauchy, a = 1
2 , γ = 1

2 2.43 2.08 14.5% 1.26 1.07 14.8% 1 0.83 16%

Cauchy, a = 1
2 , γ = 1 4.6 3.78 17.8% 2.89 2.08 27% 2.30.2 1.55 32.5%

Power, a = 1
2 , γ = 1 4.13 3.32 19.6% 2.48 1.9 23.7% 2.06 1.49 27.3%

Power, a = 1
2 , γ = 2 2.18 1.92 12.1% 1.09 0.95 12.4% 0.79 0.69 12.6%



1002 S. GADAT, T. KLEIN AND C. MARTEAU

estimation μ̂n of the density μ and the excess risk of classification with the sliced
rule may exist. We have left this problem open for a future study.

APPENDIX: PROOF OF THE UPPER BOUNDS

Recall that E (resp., EX , E⊗n ) denote the expectation with respect to the mea-
sure P (resp., PX , P⊗n ). Let ε > 0 be a given real number (whose value will be
specified later), and define

Bε := {
x ∈R

d |∣∣η(x) − 1/2
∣∣ ≤ ε

}
.

Applying Proposition 2.1 in Section 2 of the supplementary material [15], the
excess risk can be decomposed as follows:

R(�n) −R
(
�∗) = E

[∣∣2η(X) − 1
∣∣1{�n(X) 	=�∗(X)}

]
= E

[∣∣2η(X) − 1
∣∣1{�n(X) 	=�∗(X)}1X∈Bε

]︸ ︷︷ ︸
:=T1,ε

+E
[∣∣2η(X) − 1

∣∣1{�n(X) 	=�∗(X)}1X∈Bc
ε

]︸ ︷︷ ︸
:=T2,ε

.

Now, the margin Assumption A2 yields

T1,ε ≤ 2E
[∣∣η(X) − 1/2

∣∣1X∈Bε

] ≤ 2εPX(X ∈ Bε) ≤ 2Cε1+α.(A.1)

In order to control T2,ε , define

∀j ≥ 1 Bε,j := {
x ∈R

d |2j−1ε ≤ ∣∣η(x) − 1/2
∣∣ ≤ 2j ε

}
.

Now,

T2,ε = 2
∑
j≥1

E
[∣∣η(X) − 1/2

∣∣1{�n(X) 	=�∗(X)}1{X∈Bε,j }
]

≤ 2ε
∑
j≥1

2j
EX

[
1{X∈Bε,j }E⊗n(1{�n(X) 	=�∗(X)})

]
.

We can apply Proposition 2.2 of the supplementary material [15] to obtain

T2,ε ≤ 4ε
∑
j≥1

2j
EX

[
1{X∈Bε,j } exp

(−2kn

⌊
2j−1ε − �n(X)

⌋2
+
)]

.(A.2)

Since μ is lower bounded by a > 0 on �, we can apply Proposition 2.3 of the
supplementary material [15] with a = μ− to obtain

�n(X) ≤ C

((
kn

n
μ−1−

)1/d

+ exp(−3kn/14)

)
.

Now, we consider ε = εn ≥ 2�n(X), for example, by choosing

εn := 2C

((
kn

n
a−1

)1/d

+ exp(−3kn/14)

)
.(A.3)
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With εn defined as in (A.3), we deduce that 2j−1εn − �n(X) ≥ 2j−1εn − εn

2 ≥
εn(2j−1 − 1

2) > 0. Thus, (A.2) becomes

T2,εn ≤ 4εn

∑
j≥1

2j
EX

[
1{0<|η(X)−1/2|<2j εn} exp

(−2knε
2
n

(
2j−1 − 1/2

)2)]
.

Now, in order to control the previous bound, we get the constraint on kn:

kn = ε−2
n .(A.4)

Thanks to (A.3), the constraint (A.4) then yields

εn ∼ n−1/(2+d) and kn ∼ n2/(2+d).(A.5)

We then obtain that

T2,εn ≤ 4εn

∑
j≥1

2j
EX

[
1{0<|η(X)−1/2|<2j εn} exp

(
−22j

8

)]

≤ εn

∑
j≥1

2j+2 exp
(
−22j

8

)
PX

(∣∣η(X) − 1/2
∣∣ < 2j εn

)
.

The margin assumption applied to PX(|η(X) − 1/2| < 2j εn) leads to

T2,εn ≤ ε1+α
n

∑
j≥1

2j (1+α)+2 exp
(
−22j

8

)
.

The series on the right-hand side converges. This last bound associated with (A.1)
leads to

sup
F∈F

[
R(�n) −R

(
�∗)] ≤ Cn−(1+α)/(2+d).

A.1. Proof of the upper bounds: Theorem 4.3 and Theorem 4.5(ii).

PROOF OF THEOREM 4.3. We consider a constant γ and use the following
decomposition of Rd for a suitable γ > 0 (that will be chosen later on):

R
d = {

x : 0 ≤ μ(x) ≤ n−γ }︸ ︷︷ ︸
Rn

∪ {
x : μ > n−γ }︸ ︷︷ ︸

Qn

.

We follow the road map of the proof of Theorem 3.1 and keep the notation Bε ,
which refers to Bε := {x ∈ R

d : |η(x)−1/2| ≤ ε}. Thanks to Proposition 2.1 of the
supplementary material [15], we obtain

R(�n) −R
(
�∗) = E

[∣∣2η(X) − 1
∣∣1{�n(X) 	=�∗(X)}

]
= E

[∣∣2η(X) − 1
∣∣1{�n(X) 	=�∗(X)}1X∈Rn

]︸ ︷︷ ︸
:=TRn

+E
[∣∣2η(X) − 1

∣∣1{�n(X) 	=�∗(X)}1X∈Qn

]︸ ︷︷ ︸
:=TQn

.
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Study of Rn. The tail Assumption A4 in the particular case where ψ = Id leads
to

TRn ≤ PX(X ∈ Rn) = PX

(
μ(X) ≤ n−γ )� n−γ .

Study of Qn. Following the proof of Theorem 3.1 with a = n−γ , equations
(A.2)–(A.4) yield

TQn ≤ Cε1+α
n ,(A.6)

where εn and kn satisfy the balance equations

εn ∼ 2C

(
kn

n
a−1

)1/d

= 2C

(
kn

n1−γ

)1/d

and kn = ε−2
n .

The equilibria are met in the two terms above with

kn ∼ Cn2(1−γ )/(2+d) and εn � n−(1−γ )/(2+d).(A.7)

Final control of the risk. From the previous bounds, we obtain that

R(�n) −R
(
�∗)� n−(1−γ )(1+α)/(2+d) + n−γ .(A.8)

We optimize the last expression with respect to γ by setting

(1 − γ )(1 + α) = γ (2 + d) ⇔ γ = 1 + α

3 + α + d
.

The above choices allow us to conclude that

sup
F∈F

[
R(�n) −R

(
�∗)] ≤ Cn−(1+α)/(3+α+d). �

PROOF OF THEOREM 4.5. (ii) We follow the road map of the previous proof
and replace the threshold n−γ with an, which should be carefully chosen. The key
balance is still kn = ν−2

n on the set {μ ≥ an} with the optimal setting

kn

nan

� νd
n .

Since we want to obtain a minimal value for νn, this last equation leads to the
choice

an = 1

nν2+d
n

,(A.9)

and the upper bound of the excess risk we obtained is then

sup
F∈F

[
R(�n) −R

(
�∗)]� ν1+α

n + ψ(an).

The natural equilibrium is found when plug-in (A.9) in this last upper bound and
νn are be fixed so that ψ−1(ν1+α

n ) = n−1ν
−(2+d)
n . We then obtain the rate ν1+α

n

with the balance equation

ν2+d
n ψ−1(ν1+α

n

) ∼ n−1. �
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A.2. Proof of Theorem 4.4 (sliced k-nearest neighbor).

PROOF. We use the partition of � naturally derived from the slices �n,0 and
(�n,j )j≥1:

�n,0 := {
x|μ(x) ≥ n−γ }

and

�n,j := {
x|n−γ 2−(j+1) ≤ μ(x) ≤ n−γ 2−j }.

For this purpose, let γ ∈ (0,1) (that will be specified later) and

kn,j = kn,02−2j/(2+d) with kn,0 = n2(1−γ )/(2+d) log(n).

We then use the following decomposition of the excess risk:

R(�n) −R
(
�∗)

= E

[∣∣2η(X) − 1
∣∣1{�n(X) 	=�∗(X)}

(
1�n,0 +

+∞∑
j=1

1�n,j

)]

= E
[∣∣2η(X) − 1

∣∣1{�n(X) 	=�∗(X)}1�n,0

]
+

+∞∑
j=1

E
[∣∣2η(X) − 1

∣∣1{�n(X) 	=�∗(X)}1�n,j

]

:= Tn +
+∞∑
j=1

Rn,j .

Study of Tn. The density is lower bounded by n−γ on �n,0. The proof of The-
orem 4.3 yields [see (A.6) and (A.7)]

Tn ≤ n−(1+α)(1−γ )/(2+d).

Study of Rn,j . For any j > J0(n) := (1 − γ )
log(n)
log(2)

and for any x ∈ �n,j with
j > J0, we have

μ(x) < n−γ 2−(1−γ ) log(n)/ log(2) = 1/n.

The tail assumption with ψ = Id leads to∑
j>J0

Rn,j ≤ PX

[
μ(X) ≤ n−1]� n−1.



1006 S. GADAT, T. KLEIN AND C. MARTEAU

Study of Rn,j , j ≤ J0(n). We consider the intermediary slices, and for 1 ≤ j ≤
J0(n),

Rn,j =
:=Rn,j,1︷ ︸︸ ︷

E
[∣∣2η(X) − 1

∣∣1{�n(X) 	=�∗(X)}[1|η(X)−1/2|≤εn,j
]1X∈�n,j

]
+E

[∣∣2η(X) − 1
∣∣1{�n(X) 	=�∗(X)}[1|η(X)−1/2|>εn,j

]1X∈�n,j

]︸ ︷︷ ︸
:=Rn,j,2

,

where εn,j will be chosen later. To bound Rn,j,1, we use the fact that |η − 1/2| ≤
εn,j as well as the tail assumption on the set �n,j ⊂ {μ(X) ≤ n−γ 2−j } to obtain

Rn,j,1 ≤ 2εn,jn
−γ 2−j .(A.10)

Thanks to Proposition 2.2 of the supplementary material [15], we can bound the
term Rn,j,2 as follows:

Rn,j,2 ≤ 4E
[
1X∈�n,j

exp
(−2kn,j

⌊
εn,j − �n(X)

⌋
+

2)]
.

The term εn,j is then chosen such that εn,j −�n(X) ≤ εn,j /2. According to Propo-
sition 2.3 of the supplementary material [15], we obtain

εn,j = c

(
kn,j

nγ 2j+1

n

)1/d

,

where c is chosen large enough. With this value, we obtain the following simplifi-
cations:

ε2
n,j kn,j = c2

k
1+2/d
n,j 2(j+1)/d

n(1−γ )/d
= c2 k

1+2/d
n,0

n(1−γ )/d
2−(2j/(2+d))(1+2/d)2(2j+2)/d

(A.11)
= c222/d log(n)1+2/d .

Taken together, (A.10) and (A.11) lead to

Rn,j ≤ 2εn,jn
−γ 2−j + 4 exp

(−c222/d log(n)1+2/d)
P(X ∈ �n,j ).

We then sum up all these terms for j ≥ 1:

Rn �
J0∑

j=1

log(n)1/2+1/d√
kn,j

n−γ 2−j + 1

n

J0∑
j=1

P(X ∈ �n,j )

� n−γ log(n)1/2+1/d
J0∑

j=1

2−j k
−1/2
n,j + 1

n

� n−γ n−(1−γ )/(2+d) log(n)1/2+1/d
J0∑

j=1

2−j+(j+1)/(2+d) + 1

n

� n−γ n−(1−γ )/(2+d) log(n)1/2+1/d + 1

n
.
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We can see in this last upper bound that we obtain an improvement between the
standard rule and the one fixed here since the term n−γ that appears in the tail of
μ on the right-hand side of (A.8) is transformed into n−γ × n−(1−γ )/(2+d) up to a
log term.

Final equilibrium. We now fix the optimal value of γ with the conjunction of
the upper bounds for Rn and Tn:

R(�n) −R
(
�∗)

� n−(1+α)((1−γ )/(2+d)) + n−γ−(1−γ )/(2+d) log(n)1/2+1/d + O(1/n).

The balance equilibrium is reached with (1 + α)
1−γ
2+d

= γ + 1−γ
2+d

, meaning that

γ = 1
2+α+d

. This completes the proof. �
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SUPPLEMENTARY MATERIAL

Supplement to “Classification in general finite dimensional spaces with the
k-nearest neighbor rule”. (DOI: 10.1214/15-AOS1395SUPP; .pdf). Supplement
contains some technical results and the proofs of Theorem 4.1, 4.2 and 4.5(i).
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