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MODEL SELECTION AND STRUCTURE SPECIFICATION IN
ULTRA-HIGH DIMENSIONAL GENERALISED SEMI-VARYING

COEFFICIENT MODELS1

BY DEGUI LI, YUAN KE AND WENYANG ZHANG

University of York

In this paper, we study the model selection and structure specification for
the generalised semi-varying coefficient models (GSVCMs), where the num-
ber of potential covariates is allowed to be larger than the sample size. We first
propose a penalised likelihood method with the LASSO penalty function to
obtain the preliminary estimates of the functional coefficients. Then, using the
quadratic approximation for the local log-likelihood function and the adap-
tive group LASSO penalty (or the local linear approximation of the group
SCAD penalty) with the help of the preliminary estimation of the functional
coefficients, we introduce a novel penalised weighted least squares proce-
dure to select the significant covariates and identify the constant coefficients
among the coefficients of the selected covariates, which could thus specify
the semiparametric modelling structure. The developed model selection and
structure specification approach not only inherits many nice statistical proper-
ties from the local maximum likelihood estimation and nonconcave penalised
likelihood method, but also computationally attractive thanks to the computa-
tional algorithm that is proposed to implement our method. Under some mild
conditions, we establish the asymptotic properties for the proposed model se-
lection and estimation procedure such as the sparsity and oracle property. We
also conduct simulation studies to examine the finite sample performance of
the proposed method, and finally apply the method to analyse a real data set,
which leads to some interesting findings.

1. Introduction. In recent years, model selection has become an important
and fundamental issue in data analysis as high-dimensional data are commonly
encountered in various applied fields such as epidemiology, genetics and finance.
It is well known that the traditional model selection procedures such as the step-
wise regression and the best subset variable selection can be extremely compu-
tationally intensive in the analysis of the high-dimensional data. To address this
computational challenge, various penalised likelihood/least-square methods have
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been well studied and become a promising alternative. With an appropriate penalty
function, the penalised method would automatically shrink the small coefficients to
zero and remove the associated variables from the model, hence serve the purpose
of model selection. Some commonly-used penalty functions include the LASSO
[Tibshirani (1996)], SCAD [Fan and Li (2001)], group LASSO [Yuan and Lin
(2006)], adaptive LASSO [Zou (2006)] and MCP [Zhang (2010)], and the algo-
rithms to implement the penalised likelihood/least squares methods have also been
developed in the literature [cf., Efron et al. (2004), Hunter and Li (2005), Zou and
Li (2008)]. In high-dimensional data analysis, it is often the case that the num-
ber of potential covariates grows over sample size or even diverges with certain
exponential rate. In the context of parametric models, there has been some liter-
ature addressing this problem; see, for example, Huang and Xie (2007), Fan and
Lv (2008), Huang, Horowitz and Ma (2008), Zhang and Huang (2008), Fan, Sam-
worth and Wu (2009), Zou and Zhang (2009), Fan and Song (2010) and Bühlmann
and van de Geer (2011).

However, the pre-supposed parametric linear relationships and models, although
easy to implement, are often too restricted and unrealistic in practical applica-
tion. They often lead to model misspecification, which would result in inconsistent
estimates and incorrect conclusions being drawn from the data analysed. In this
paper, we relax this linear restriction and use functional coefficients to describe
the relationship between response and covariates. The varying coefficient mod-
els, as an important and useful generalisation of the linear models, have played
a very important role in the analysis of the complex data and experienced deep
and exciting developments; see, for example, Fan and Zhang (1999, 2000), Cheng,
Zhang and Chen (2009), Wang and Xia (2009), Wang, Kai and Li (2009), Zhang,
Fan and Sun (2009), Kai, Li and Zou (2011) and Li and Zhang (2011). Sup-
pose we have a response variable y, an index variable U , and potential covari-
ates X = (x1, . . . , xdn)

T, where the dimension dn depends on sample size n and
dn → ∞ when n → ∞. Define the conditional expectation of y for given (U,X)

by

m(U,X) = E(y|U,X).

We assume in this paper that the log conditional density function of y given X and
U is

C1(φ1)�
(
m(U,X), y

) + C2(y,φ2) with g
(
m(U,X)

) =
dn∑

j=1

aj (U)xj ,(1.1)

where g(·), �(·, ·), C1(·) and C2(·, ·) are known, the functional coefficients
a1(·), . . . , ap(·) are unknown to be estimated, C1(φ1) > 0, φ1 and φ2 are unknown
nuisance parameters. When the response variable is discrete, we define the den-
sity function as its probability mass function. It is easy to see that model (1.1) is
a natural extension of the generalised linear models by allowing the coefficients
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varying with the index variable U . As some functional coefficients in (1.1) may be
constant coefficients, we call (1.1) as generalised semi-varying coefficient models
(GSVCMs).

The model selection in the varying coefficient models (which can be seen as a
special case of the GSVCMs) has been extensively studied in existing literature.
For instance, Wang, Li and Huang (2008) and Wang and Xia (2009) use the group
penalisation to select the significant variables in the varying coefficient models
when the number of potential covariates is fixed. More recently, for the ultra-high
dimensional varying coefficient models, Song, Yi and Zuo (2015), Cheng et al.
(2014), Fan, Ma and Dai (2014) and Liu, Li and Wu (2014) combine the non-
parametric independence screening technique and the group penalised method to
choose the significant covariates and estimate the functional coefficients for the
varying coefficient models. Fan, Feng and Song (2011) consider a nonparamet-
ric independence screening in sparse ultra-high dimensional additive models. Wei,
Huang and Li (2011) consider the penalised variable selection by using a basis
function approximation for the functional coefficients in the varying coefficient
models and allows that the number of covariates diverges with the sample size.
Lian (2012) further generalises Wei, Huang and Li’s (2011) methodology to the
generalised varying coefficient models which are similar to our framework (1.1).
Unlike the existing literature, in this paper, the model selection for the proposed
GSVCMs has two aspects: (1) variable selection; and (2) identification of the con-
stant coefficients. As the variable selection is equivalent to identifying the zero
functional coefficients, and the identification of the constant coefficients is equiv-
alent to identifying the functional coefficients with zero derivative or variation.
Either of the two aspects would be related to the so-called “all-in-all-out” prob-
lem.

In this paper, we first propose a penalised likelihood method with the LASSO
penalty function to obtain the preliminary estimates of the functional coefficients,
which is proved to be uniformly consistent. The uniform convergence rate for the
preliminary penalised nonparametric estimation results relies on the number of
nonzero functional coefficients and the tuning parameter involved in the penalty
term. Then we use the preliminary estimates of the functional coefficients in the
quadratic approximation for the local log-likelihood function and the construction
of the adaptive group LASSO penalty or the local linear approximation of the
group SCAD penalty, and introduce a novel penalised weighted least squares pro-
cedure to simultaneously select the significant covariates and identify the constant
coefficients among the coefficients of the selected covariates. Hence, the semi-
varying coefficient modelling structure can be specified. The developed model se-
lection and structure specification approach inherits many nice statistical proper-
ties from both the local maximum likelihood estimation and nonconcave penalised
likelihood method. Under some regularity conditions, we establish the asymptotic
properties for the proposed model selection and estimation procedure such as the
sparsity and oracle property. In order to implement our method in practice, we
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develop a novel computational algorithm to do the maximisation involved in the
estimation procedure when the SCAD or LASSO penalty is used. The SCAD has
many advantages, and is widely used as a penalty function in the shrinkage meth-
ods. The commonly used approach, to deal with the SCAD penalty in the imple-
mentation of shrinkage method for the varying coefficient models, consists of two
steps: (1) approximate SCAD by an L1 penalty locally by local linear approxi-
mation; (2) apply the quadratic approximation to deal with the L1 penalty. In this
paper, we do not go down that route. Making use of the structure of the group
SCAD, we propose a different algorithm to implement our method. Our simula-
tion results show that both the adaptive group LASSO and the SCAD methods
perform reasonably well with the latter giving slightly better performance, and the
method developed in the present paper outperforms those in Wang and Xia (2009),
and Lian (2012).

The rest of the paper is organised as follows. Section 2 describes the penalised
model selection and structure specification procedure. Section 3 gives the asymp-
totic properties of the proposed model selection and structure specification proce-
dure. Section 4 provides a computational algorithm to implement the developed
method and discusses how to determine the tuning parameters. Section 5 com-
pares the finite sample performance of the developed model selection with those
proposed in the existing literature through some simulation studies. In Section 6,
we apply the GSVCMs together with the proposed model selection, structure spec-
ification and estimation procedure to analyse an environmental data set from Hong
Kong, and explore how some pollutants and other environmental factors affect
the number of daily total hospital admissions for circulationary and respirationary
problems in Hong Kong. The regularity conditions for the asymptotic theory are
given in Appendix A. The proofs of the main theoretical results and some auxiliary
results are provided in Appendices B and C of a supplemental document [Li, Ke
and Zhang (2015)].

2. Model selection and structure specification method. For any function
f (·), throughout this paper, we use ḟ (·) to denote its first-order derivative, and
f̈ (·) its second-order derivative. For any vector u, we define ‖u‖2 = uTu. As in
the generalised linear models, our main interest lies in the conditional mean of the
response variable for given covariates, and C1(φ1) and C2(y,φ2) in model (1.1)
have little to do with the mean part. In order to make the presentation simpler,
without loss of generality, we assume the log conditional density function of y

given X and U is

�
(
m(U,X), y

)
with g

(
m(U,X)

) =
dn∑

j=1

aj (U)xj(2.1)

and further assume the support of the index variable U is [0,1] throughout this
paper. Our model selection and structure specification procedure can be sum-
marised as follows: (i) use the penalised local maximum likelihood method with
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the LASSO penalty to obtain the preliminary estimation of the functional coef-
ficients (see Section 2.1); (ii) consider the quadratic approximation of the log-
likelihood function by using the preliminary functional coefficients estimates and
the approximated log-likelihood function is essentially an L2 objective function
(see Section 2.2); (iii) conduct the variable selection and structure specification
by using a penalised weighted least squares method with two types of weighted
group LASSO penalty functions: the adaptive group LASSO and the local linear
approximation of the group SCAD where the preliminary functional coefficients
estimates are also used (see Section 2.3); (iv) finally estimate the constant coeffi-
cients in the GSVCMs (see Section 2.4). The model selection procedure proposed
in this paper can be seen, in some sense, as a generalisation of Fan, Ma and Dai’s
(2014) folded concave penalised estimation for ultra-high dimensional parametric
regression models.

2.1. Preliminary estimation of the functional coefficients. Suppose we have a
sample (Ui,Xi, yi), i = 1, . . . , n, from model (2.1), where Xi = (xi1, . . . , xidn)

T.
For each given k, k = 1, . . . , n, by Taylor’s expansion of aj (·), j = 1, . . . , dn, we
have

aj (Ui) ≈ aj (Uk) + ȧj (Uk)(Ui − Uk),

when Ui , i = 1, . . . , n, are in a small neighbourhood of Uk . This local linear ap-
proximation leads to the construction of the following local log-likelihood function
to estimate aj (Uk) and ȧj (Uk), j = 1, . . . , dn:

Lnk(ak,bk)
(2.2)

= 1

n

n∑
i=1

�

(
g−1

{
dn∑

j=1

[
αjk + βjk(Ui − Uk)

]
xij

}
, yi

)
Kh(Ui − Uk),

where K(·) is a kernel function, h is a bandwidth, Kh(·) = 1
h
K(·/h),

ak = (α1k, . . . , αdnk)
T, bk = (β1k, . . . , βdnk)

T.

When the dimension of the covariates is fixed, we may obtain the solution which
maximises the local log-likelihood function Lnk(·, ·) defined in (2.2) and show
that the resulting nonparametric estimators are consistent [cf., Cai, Fan and Li
2000; Zhang and Peng (2010)]. However, for the case of the ultra-high dimensional
GSVCMs, it would be difficult to obtain satisfactory estimation by maximising
Lnk(·, ·) as the number of unknown nonparametric components involved exceeds
the number of observations. In order to address this issue, we next introduce a
penalised local log-likelihood method by adding an appropriate penalty function
to the above local log-likelihood function.

Without loss of generality, we assume that there exist 1 ≤ sn1 < sn2 < dn such
that for 1 ≤ j ≤ sn1, aj (·) are the functional coefficients with nonzero deviation;
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for sn1 +1 ≤ j ≤ sn2, aj (·) ≡ cj are the constant coefficients; for sn2 +1 ≤ j ≤ dn,
aj (·) ≡ 0. Moreover, we assume that sn2, although may diverge with the sample
size, is much smaller than the sample size n and the dimension of the whole co-
variates dn. Hence, for any k = 1, . . . , n, the number of nonzero elements in ak0 =
[a1(Uk), . . . , adn(Uk)]T and bk0 = [ȧ1(Uk), . . . , ȧdn(Uk)]T is at most sn1 +sn2. De-
fine the penalised local log-likelihood function with the LASSO penalty function
as

Qnk(ak,bk) = Lnk(ak,bk) − λ1

dn∑
j=1

|αjk| − λ2

dn∑
j=1

h|βjk|,(2.3)

where λ1 and λ2 are two tuning parameters. We let (̃ak, b̃k) be the maximiser
of Qnk(·, ·) and call it the preliminary estimator of the functional coefficients
aj (Uk)’s and their derivatives ȧj (Uk)s, j = 1, . . . , dn.

We will show in Proposition 3.1 that the above preliminary estimator obtained
by the penalised local likelihood estimation with the LASSO penalty is uniformly
consistent. The preliminary estimates of the functional coefficients will be used
in the approximation of log-likelihood function and the construction of weighted
LASSO penalty functions in our model selection and structure specification pro-
cedure; see Sections 2.2 and 2.3 below.

2.2. Quadratic approximation of the log-likelihood estimation. In the model
selection and structure specification procedure for the GSVCMs, we need to con-
sider the following local log-likelihood function:

Ln(A,B) =
n∑

k=1

Lnk(ak,bk),(2.4)

where A = (aT
1 , . . . ,aT

n)T, B = (bT
1 , . . . ,bT

n)T, and Lnk(ak,bk) is defined in (2.2).
To alleviate the computational burden for the optimisation of Ln(A,B), we next
introduce a simple approximation.

Let

L̇n(A,B) = [
L̇T

n1(a1,b1), . . . , L̇T
nn(an,bn)

]T

and

L̈n(A,B) = diag
{
L̈n1(a1,b1), . . . , L̈nn(an,bn)

}
,

where

L̇nk(ak,bk) = 1

n

n∑
i=1

q1

{
dn∑

j=1

[
αjk + βjk(Ui − Uk)

]
xij , yi

}(
Xi

Ui − Uk

h
· Xi

)

× Kh(Ui − Uk),
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L̈nk(ak,bk, l) = 1

n

n∑
i=1

q2

{
dn∑

j=1

[
αjk + βjk(Ui − Uk)

]
xij , yi

}(
Ui − Uk

h

)l

× XiX
T
i Kh(Ui − Uk), l = 0,1,2,

L̈nk(ak,bk) =
[ L̈nk(ak,bk,0) L̈nk(ak,bk,1)

L̈nk(ak,bk,1) L̈nk(ak,bk,2)

]
and

q1(s, y) = ∂�[g−1(s), y]
∂s

, q2(s, y) = ∂2�[g−1(s), y]
∂s2 .

Denote Ãn = (̃aT
1 , . . . , ãT

n)T and B̃n = (̃bT
1 , . . . , b̃T

n)T where (̃ak, b̃k) is the max-
imiser of the objective function Qnk(·, ·) in (2.3), and define

Vn(A,B) = (
aT

1 ,bT
1 , . . . ,aT

n,bT
n

)T
, Vn(A, hB) = (

aT
1 , hbT

1 , . . . ,aT
n, hbT

n

)T
.

By Taylor’s expansion of the log-likelihood function Ln(A,B), we may obtain
the following quadratic approximation:

Ln(A,B) ≈ Ln(Ãn, B̃n) + [
Vn(A, hB) − Vn(Ãn, hB̃n)

]TL̇n(Ãn, B̃n)

+ 1
2

[
Vn(A, hB) − Vn(Ãn, hB̃n)

]T

(2.5)
× L̈n(Ãn, B̃n)

[
Vn(A, hB) − Vn(Ãn, hB̃n)

]
≡ L�

n(A,B).

It is easy to see that L�
n(A,B) is essentially an L2 objective function. Hence, it

would be much easier to deal with L�
n(A,B) in (2.5) than to directly deal with

Ln(A,B). In the model selection procedure introduced in Section 2.3 below, we
may replace Ln(A,B) by L�

n(A,B).

2.3. Penalised local likelihood estimation with weighted LASSO penalties. In
order to conduct the model selection and structure specification, we define the
following penalised local log-likelihood function:

Qn(A,B) = Ln(A,B) −
dn∑

j=1

pnj

(‖αj‖) −
dn∑

j=1

p∗
nj

(‖βj‖
)
,(2.6)

where pnj (·) and p∗
nj (·) are two penalty functions which will be specified later,

αj = (αj1, . . . , αjn)
T and βj = (βj1, . . . , βjn)

T,

which correspond to [aj (U1), . . . , aj (Un)]T and [ȧj (U1), . . . , ȧj (Un)]T, respec-
tively. By the quadratic approximation (2.5), we may approximate Qn(A,B) by
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Q�
n(A,B) which is defined through

Q�
n(A,B) = L�

n(A,B) −
dn∑

j=1

pnj

(‖αj‖) −
dn∑

j=1

p∗
nj

(‖βj‖
)
,(2.7)

where L�
n(A,B) is defined in (2.5).

For the penalty functions pnj (·) and p∗
nj (·) in (2.6) and (2.7), we consider two

possible cases: (i) the adaptive group LASSO penalty, and (ii) the group SCAD
penalty. Note that identifying the constant coefficients in model (2.1) is equivalent
to identifying the functional coefficients such that either ȧj (U1) = · · · = ȧj (Un) =
0 or its deviation Dj = 0, where

Dj =
{

n∑
k=1

[
aj (Uk) − 1

n

n∑
l=1

aj (Ul)

]2}1/2

.

Using the preliminary estimates, we can construct the preliminary estimator of Dj ,

D̃j =
{

n∑
k=1

[
ãj (Uk) − 1

n

n∑
l=1

ãj (Ul)

]2}1/2

,

where ãj (Uk) is the j th element of ãk .
For case (i) of the adaptive group LASSO, we define

pnj

(‖αj‖) = λ3‖α̃j‖−κ‖αj‖, p∗
nj

(‖βj‖
) = λ∗

3D̃
−κ
j ‖hβj‖,(2.8)

where λ3 and λ∗
3 are two tuning parameters, κ is pre-determined and can be chosen

as 1 or 2 as in the literature, α̃j = [̃aj (U1), . . . , ãj (Un)]T.
For case (ii) of the group SCAD, we may apply the local linear approximation

to the SCAD penalty function pnj (·) [Zou and Li (2008)] and then obtain

pnj

(‖αj‖) ≈ pnj

(‖α̃j‖) − ṗnj

(‖α̃j‖)‖α̃j‖ + ṗnj

(‖α̃j‖)‖αj‖,(2.9)

where pnj (z) ≡ pλ4(z) is the SCAD penalty function with the derivative defined
by

ṗnj (z) ≡ ṗλ4(z) = λ4

[
I (z ≤ λ4) + (a0λ4 − z)+

(a0 − 1)λ
I (z > λ4)

]
,(2.10)

λ4 is a tuning parameter and a0 = 3.7 as suggested in Fan and Li (2001). Note
that the first two terms on the right-hand side of (2.9) do not involve ‖αj‖, which
motivates us to choose

pnj

(‖αj‖) = ṗλ4

(‖α̃j‖)‖αj‖(2.11)

with ṗλ4(·) defined in (2.10). For p∗
nj (‖βj‖), similar to the corresponding defini-

tion in (2.8) for case (i), we consider the structure

p∗
nj

(‖βj‖
) = ṗλ∗

4
(D̃j )‖hβj‖,(2.12)
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where ṗλ∗
4
(·) is defined similar to ṗλ4(·) in (2.10) with λ4 replaced by λ∗

4.
Based on (2.7) and the above specification of the penalty functions, we may

consider the following two objective functions:

Q1
n(A,B) = L�

n(A,B) − λ3

dn∑
j=1

‖α̃j‖−κ‖αj‖ − λ∗
3

dn∑
j=1

D̃−κ
j ‖hβj‖(2.13)

for the adaptive group LASSO penalty; and

Q2
n(A,B) = L�

n(A,B) −
dn∑

j=1

ṗλ4

(‖α̃j‖)‖αj‖ −
dn∑

j=1

ṗλ∗
4
(D̃j )‖hβj‖(2.14)

for the group SCAD penalty. Note that the penalty terms in (2.13) and (2.14) are
the weighted LASSO penalty functions. In particular, the weights in (2.14) are
determined by the derivative of the SCAD penalty using the preliminary estimators
α̃j and D̃j . The objective functions in (2.13) and (2.14) can be seen, in some sense,
as an extension of that in Bradic, Fan and Wang (2011) from the parametric linear
models to the flexible GSVCMs.

Our model selection and structure specification procedure is based on maximis-
ing the objective function in either (2.13) or (2.14). Let

α̂j = (α̂j1, . . . , α̂jn)
T and β̂j = (β̂j1, . . . , β̂jn)

T,
(2.15)

j = 1, . . . , dn,

be the maximiser of Q1
n(A,B), and

αj = (αj1, . . . , αjn)
T and βj = (βj1, . . . , βjn)

T,
(2.16)

j = 1, . . . , dn,

be the maximiser of Q2
n(A,B). The asymptotic theorems and remarks in Section 3

show that the estimators defined in (2.15) and (2.16) equal to the biased oracle es-
timators of the functional coefficients (see Section 3 for the definition) with prob-
ability approaching one.

2.4. Estimation of the constant coefficients. We next discuss how to estimate
the constant coefficients in GSVCMs. By choosing the penalty function as the
adaptive group LASSO (or the group SCAD) penalty, we would expect ‖α̂j‖ = 0
(or ‖αj‖ = 0) when aj (·) = 0, and ‖β̂j‖ = 0 (or ‖βj‖ = 0) when aj (·) is a con-
stant. Hence, our model selection and structure specification procedure works as
follows: if ‖α̂j‖ = 0 (or ‖αj‖ = 0), the corresponding variable xj is not significant
and should be removed from the model; if ‖β̂j‖ = 0 (or ‖βj‖ = 0), the functional
coefficient of aj (·) is a constant which is denoted by cj and can be estimated by

ĉj = n−1
n∑

i=1

α̂j i or cj = n−1
n∑

i=1

αji, j = sn1 + 1, . . . , sn2.(2.17)

Then the semi-varying coefficient modelling structure is finally specified.
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3. Asymptotic theory. In this section, we present the asymptotic properties of
the model selection and structure specification procedure introduced in Section 2.
Recall that

ak0 = [
a1(Uk), . . . , adn(Uk)

]T and bk0 = [
ȧ1(Uk), . . . , ȧdn(Uk)

]T

for k = 1, . . . , n. We start with the uniform consistency results for their penalised
local maximum likelihood estimators

ãk = [
ã1(Uk), . . . , ãdn(Uk)

]T and b̃k = [̃
ȧ1(Uk), . . . ,˜̇adn(Uk)

]T
,

which are the maximisers of the objective function in (2.3). In the sequel, we let
αn ∝ βn denote c1βn ≤ αn ≤ c2βn when n is sufficiently large, where 0 < c1 ≤
c2 < ∞.

PROPOSITION 3.1. Suppose that Assumptions 1–4 in Appendix A are satis-
fied.

(i) If the moment condition (A.1) and Assumption 5 are satisfied with dn ∝ nτ1 ,
0 ≤ τ1 < ∞, we have

max
1≤k≤n

‖̃ak − ak0‖ + max
1≤k≤n

∥∥h(̃bk − bk0)
∥∥ = OP (

√
sn2λ1),(3.1)

where sn2 is the number of the nonzero functional coefficients
(ii) If the moment condition (A.2) and Assumption 5′ are satisfied with dn ∝

exp{(nh)τ2}, then (3.1) also holds, where 0 ≤ τ2 < 1 − τ3 with 0 < τ3 < 1.

REMARK 3.1. The above proposition indicates that the preliminary estimators
ãk and b̃k are uniformly consistent, as Assumption 3 in Appendix A guarantees that
the maximal distance between two consecutive index variables Ui is only with the
order OP (logn/n) [cf., Janson (1987)] and the observed values of U can be suffi-
ciently dense on the compact support [0,1]. The uniform convergence rate in (3.1)
depends on sn2, the number of the nonzero functional coefficients, and the tuning
parameter λ1. In Assumptions 5 and 5′, we impose some condition on the relation-

ship between λ1 and the well-known uniform convergence rate (
logh−1

nh
)1/2, and

assume that λ1 ∝ λ2. As a consequence, the influence of (
logh−1

nh
)1/2 and λ2 would

be dominated by that of λ1. Although the dimension of potential covariates in our
model can be larger than the sample size and diverge at an exponential rate, sn2 is
not allowed to diverge too fast in order to guarantee the consistency of the prelim-
inary estimators of the functional coefficients. The condition sn2λ

2
1h

−2 = o(1) in
Assumptions 5 and 5′ indicates that sn2 is allowed to be divergent at a slow poly-
nomial rate of n. It is also interesting to find from the comparison between (A.1)
and (A.2) in Appendix A that the required moment condition when dn diverges at
a polynomial rate is weaker than that when dn diverges at an exponential rate.
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REMARK 3.2. Note that in the penalised local log-likelihood estimation
method in Section 2.1, we do not use the group LASSO or SCAD penalty function.
Although Proposition 3.1 establishes the uniform consistency for the preliminary
estimators of the functional coefficients and their derivatives, the shrinkage estima-
tion method in Section 2.1 does not have the well-known sure screening property
[Fan, Ma and Dai (2014); Liu, Li and Wu (2014)]. However, under some further
conditions, the uniform convergence rate in (3.1) would be sufficient for us to
prove Theorems 3.1 and 3.2 below.

Let

An = (
aT

1 , . . . ,aT
n

)T and Bn = (
b

T
1 , . . . ,b

T
n

)T
,

where ak = (α1k, . . . , αdnk)
T and bk = (β1k, . . . , βdnk)

T. Let ao
k be any dn-

dimensional vector with the last (dn − sn2) elements being zeros, and bo
k be any

dn-dimensional vector with the last (dn − sn1) elements being zeros. Denote

Ao = [(
ao

1
)T

, . . . ,
(
ao
n

)T]T and Bo = [(
bo

1
)T

, . . . ,
(
bo

n

)T]T
,

and then define the biased oracle estimators

Abo

n = [(
abo

1
)T

, . . . ,
(
abo
n

)T]T and Bbo

n = [(
b

bo

1
)T

, . . . ,
(
b

bo

n

)T]T
,

which maximise the objective function Q2
n(Ao,Bo) when the penalty function is

the SCAD penalty. The following theorem gives the relation between the penalised
estimators which maximise the objective function (2.14) and the corresponding
biased oracle estimators when the SCAD penalty is used. The result for the case of
the adaptive group LASSO penalty is similar and will be discussed in Remark 3.3
below.

THEOREM 3.1. Suppose that the conditions in Proposition 3.1(i) are satisfied.
When the penalty functions are defined in (2.11) and (2.12), and Assumption 6
in Appendix A is satisfied, with probability approaching one, the maximiser of
the objective function Q2

n(·, ·) defined in (2.14), (An,Bn), exists and equals to

(Abo

n ,Bbo

n ). Furthermore,

1

n

∥∥Abo

n −A0
∥∥2 = sn2

nh
,

1

n

∥∥Bbo

n −B0
∥∥2 = sn2

nh3 ,(3.2)

where

A0 = (
aT

10, . . . ,aT
n0

)T
, B0 = (

bT
10, . . . ,bT

n0
)T

.

REMARK 3.3. Given the moment condition (A.2) and Assumption 5′ in Ap-
pendix A with dn ∝ exp{(nh)τ2}, the above result still holds. It can be proved by
using Proposition 3.1(ii) and strengthening (A.3) in Assumption 6 to

h−1/2
[(

logh−1

nh

)τ3/2√
nh + s

1/2
n2 (1 + λ1

√
nh)

]
= o(λ4),
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where τ3 is defined in Proposition 3.1(ii). Noting that the left-hand side is con-
trolled by λ1

√
nsn2, the above condition can be simplified to λ1

√
nsn2 = o(λ4).

Theorem 3.1 suggests, using the proposed model selection procedure, the zero co-
efficients can be estimated exactly as zeros, and the derivatives of the constant co-
efficients can also be estimated exactly as zeros, which indicates that the sparsity
property holds for the proposed model selection procedure. Hence, our theorem
complements some existing ultra-high dimensional sparsity results such as those
derived by Bradic, Fan and Wang (2011), Fan and Lv (2011) and Lian (2012). Fur-
thermore, for the penalty functions defined in (2.11) and (2.12), by Proposition 3.1
and Assumption 6, we may show that properties (i)–(iv) for the folded concave
penalty function introduced by Fan, Ma and Dai (2014) are satisfied with proba-
bility approaching one. Hence, Theorem 3.1 can also be seen, in some sense, as a
generalisation of Theorem 1 in Fan, Ma and Dai (2014). When the adaptive group
LASSO penalty is used, by modifying the conditions in Assumption 6(i), we may
show that the above sparsity result still holds and (3.2) is satisfied by replacing

Abo

n and Bbo

n by Âbo
n and B̂bo

n , the biased oracle estimators with the adaptive group
LASSO penalty.

We next study the oracle property for the penalised estimators of the nonzero
functional coefficients and constant coefficients. Let auo

j (Uk), j = 1, . . . , sn1,
k = 1, . . . , n, be the (unbiased) oracle estimator of aj (Uk), and cuo

j , j = sn1 +
1, . . . , sn2, be the (unbiased) oracle estimator of the constant coefficient cj . The
(unbiased) oracle estimators are obtained by the standard estimation procedure
for the GSVCMs, that is, the maximisation of the objective function L�

n(Ao,Bo)

with respect to Ao and Bo [the penalty terms in (2.13) and (2.14) are ignored]
and the application of (2.17) under the assumption that we know aj (·) ≡ 0 when
j = sn2 + 1, . . . , dn and aj (·) ≡ cj when j = sn1 + 1, . . . , sn2. In the following
theorem, we only consider the case that the penalty functions are defined in (2.11)
and (2.12) to save the space. Let

Dn =
(

max
1≤k≤n

∣∣a1(Uk) − auo
1 (Uk)

∣∣, . . . , max
1≤k≤n

∣∣asn1(Uk) − auo
sn1

(Uk)
∣∣)T

,

where aj (Uk) = αjk is defined in (2.16), and

Cuo
n = (

cuo
sn1+1, . . . , c

uo
sn2

)T
, Cn = (csn1+1, . . . , csn2)

T,

where cj is defined in (2.17).

THEOREM 3.2. Suppose that the conditions of Theorem 3.1 are satisfied. For
any sn1-dimensional vector Bn with ‖Bn‖ = 1, we have√

nhBT
nDn = oP (1);(3.3)

and for any (sn2 − sn1)-dimensional vector An with ‖An‖ = 1, we have√
nAT

n

(
Cn − Cuo

n

) = oP (1).(3.4)
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REMARK 3.4. Theorem 3.2 indicates that the penalised likelihood estima-
tors of the nonzero functional coefficients and constant coefficients have the
same asymptotic distribution as the corresponding oracle estimators, and thus the
oracle property holds. As discussed in Remark 3.3, by strengthening the mo-
ment conditions, we can also show that the above oracle property holds when
dn ∝ exp{(nh)τ2}. Following the arguments in Zhang and Peng (2010) and Li,
Ke and Zhang (2013), we can easily establish the asymptotic normality of aj (·),
j = 1, . . . , sn1, and cj , j = sn1 + 1, . . . , sn2.

4. Computational algorithm and selection of tuning parameters. In this
section, we introduce a computational algorithm to maximise Q1

n(A,B) and
Q2

n(A,B) defined in Section 2.3 and discuss how to choose the tuning parame-
ters involved in the proposed penalised likelihood method.

4.1. Computational algorithm. We first re-arrange the quadratic objective
function L�

n(A,B) in order to make it have the standard form when using the
penalised estimation method. Let

θ = (
αT

1 , . . . ,αT
dn

, hβT
1 , . . . , hβT

dn

)T

and define the transformation matrix

T = (In ⊗ e1,2dn, . . . , In ⊗ edn,2dn, In ⊗ edn+1,2dn, . . . , In ⊗ e2dn,2dn)
T,

where ek,d is a d-dimensional unit vector with the kth component being 1 and
In is an n × n identity matrix. With the above notation, it is easy to show that
θ = TVn(A, hB), where Vn(A, hB) is defined as in Section 2.2. Let θ̃ be defined
as θ but with A and B replaced by Ã and B̃, respectively, and

H2 = HTH = −TL̈n(Ãn, B̃n)TT, η̃ = Hθ̃ + (
H−1)TTL̇n(Ãn, B̃n).

We define a quadratic objective function

L∗
n(A,B) = −1

2(η̃ − Hθ)T(η̃ − Hθ).

Given the initial estimator Vn(Ãn, hB̃n), it is easy to see the difference between
L�

n(A,B) and L∗
n(A,B) is a constant. Therefore, the maximiser of Q1

n(A,B) or
Q2

n(A,B) is the minimiser of the following target function:

O(θ) ≡ 1

2
(η̃ − Hθ)T(η̃ − Hθ) +

dn∑
j=1

τ1j‖αj‖ +
dn∑

j=1

τ2j‖hβj‖,(4.1)

where

τ1j = λ3‖α̃j‖−κ and τ2j = λ∗
3D̃

−κ
j

for Q1
n(A,B); and

τ1j = ṗλ4

(‖α̃j‖)
and τ2j = ṗλ∗

4
(D̃j )
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for Q2
n(A,B). As a direct consequence of the Karush–Kuhn–Tucker conditions,

we have that a necessary and sufficient condition for θ to be a minimiser of O(θ)

is, for j = 1, . . . , dn,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−HT
j (η̃ − Hθ) + τ1j‖αj‖−1αj = 0n, ∀αj �= 0n,∥∥HT

j (η̃ − Hθ)
∥∥ < τ1j , ∀αj = 0n,

−HT
j+dn

(η̃ − Hθ) + τ2j‖βj‖−1βj = 0n, ∀βj �= 0n,∥∥HT
j+dn

(η̃ − Hθ)
∥∥ < τ2j , ∀βj = 0n,

where Hj is the matrix consisting of the ((j − 1)n + 1)th to the (jn)th column
of H and 0n is an n-dimensional vector with each component being 0. Hence, for
j = 1, . . . , dn, we have αj = 0n if ‖HT

j (η̃ − Hθ−j )‖ < τ1j , otherwise

αj = (
HT

j Hj + τ1j‖αj‖−1In

)−1HT
j (η̃ − Hθ−j );

and βj = 0n if ‖HT
j+dn

(η̃ − Hθ−(j+dn))‖ < τ2j , otherwise

βj = (
hHT

j+dn
Hj+dn + τ2j‖βj‖−1In

)−1HT
j+dn

(η̃ − Hθ−(j+dn)),

where

θ−j = (
αT

1 , . . . ,αT
j−1,0T

n,αT
j+1, . . . ,α

T
dn

, hβT
1 , . . . , hβT

dn

)T
,

θ−(j+dn) = (
αT

1 , . . . ,αT
dn

, hβT
1 , . . . , hβT

j−1,0T
n, hβT

j+1, . . . , hβT
dn

)T
.

This leads to the following iterative algorithm to obtain the minimisers of O(θ).

Step 1. Start with α
(0)
j = α̃j and β

(0)
j = β̃j , j = 1, . . . , dn, where α̃j and β̃j

are the preliminary estimates of the functional coefficients [aj (U1), . . . , aj (Un)]T

and their derivatives [ȧj (U1), . . . , ȧj (Un)]T, respectively, which are introduced in
Section 2.1.

Step 2. For j = 1, . . . , dn, let α
(k)
j and β

(k)
j be the results after the kth itera-

tion. Update α
(k)
j and β

(k)
j in the (k + 1)th iteration as follows: for j = 1, . . . , dn,

α
(k+1)
j = 0n if ‖HT

j (η̃ − Hθ
(k)
−j )‖ < τ

(k)
1j , otherwise

α
(k+1)
j = (

HT
j Hj + τ

(k)
1j

∥∥α(k)
j

∥∥−1
In

)−1HT
j

(
η̃ − Hθ

(k)
−j

);
and β

(k+1)
j = 0n if ‖HT

j+dn
(η̃ − Hθ

(k)
−(j+dn))‖ < τ

(k)
2j , otherwise

β
(k+1)
j = (

hHT
j+dn

Hj+dn + τ
(k)
2j

∥∥β(k)
j

∥∥−1
In

)−1HT
j+dn

(
η̃ − Hθ

(k)
−(j+dn)

);
where τ

(k)
1j is defined as τ1j in (4.1) but with α̃j replaced by α

(k)
j , τ

(k)
2j is defined

as τ2j in (4.1) but with D̃j replaced by D
(k)
j ,

D
(k)
j =

{
n∑

s=1

[
a

(k)
j (Us) − 1

n

n∑
l=1

a
(k)
j (Ul)

]2}1/2

,
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θ
(k)
−j = [(

α
(k+1)
1

)T
, . . . ,

(
α

(k+1)
j−1

)T
,0T

n,
(
α

(k)
j+1

)T
, . . . ,

(
α

(k)
dn

)T
,(

hβ
(k)
1

)T
, . . . ,

(
hβ

(k)
dn

)T]T and

θ
(k)
−(j+dn) = [(

α
(k+1)
1

)T
, . . . ,

(
α

(k+1)
dn

)T
,
(
hβ

(k+1)
1

)T
, . . . ,

(
hβ

(k+1)
j−1

)T
,0T

n,(
hβ

(k)
j+1

)T
, . . . ,

(
hβ

(k)
dn

)T]T
.

Furthermore, if ‖α(k)
j ‖ = 0n and ‖HT

j (η̃ − Hθ
(k)
−j )‖ > τ

(k)
1j , we set

α
(k+1)
j = (

HT
j Hj + (

τ
(k)
1j /	(k)

α

)
In

)−1HT
j

(
η̃ − Hθ

(k)
−j

)
with 	

(k)
α = min{‖α(k)

l ‖ : ‖α(k)
l ‖ �= 0, l = 1, . . . , dn}. If ‖β(k)

j ‖ = 0n and

‖HT
j+dn

(η − Hθ
(k)
−(j+dn))‖ > τ

(k)
2j , we set

β
(k+1)
j = (

hHT
j+dn

Hj+dn + (
τ

(k)
2j /	

(k)
β

)
In

)−1HT
j+dn

(
η̃ − Hθ

(k)
−(j+dn)

)
with 	

(k)
β = min{‖β(k)

l ‖ : ‖β(k)
l ‖ �= 0, l = 1, . . . , dn}.

Step 3. If
∑dn

j=1(‖α(k)
j − α

(k+1)
j ‖ + h‖β(k)

j − β
(k+1)
j ‖) is smaller than a cho-

sen threshold, we stop the iteration, and (α
(k+1)
j ,β

(k+1)
j ), j = 1, . . . , dn, are the

minimisers of O(θ).

The simulation studies in Section 5 below will show that the above iterative
procedure works reasonably well in the finite sample cases. The simulation studies
are conducted by a small computer cluster which contains 64 CPUs while the real
data analysis results are obtained by a single PC within one day.

4.2. Selection of the tuning parameters. The tuning parameters involved in
the proposed model selection and structure specification procedure play a very
important role. We next discuss how to choose these tuning parameters. First, for
the preliminary estimates, the tuning parameters λ1 and λ2 are selected through
BIC, and the bandwidth is set to be h = 0.75[(logdn)/n]0.2. The reason for not
using a data-driven method to select the bandwidth h is to reduce the computational
cost. Also the preliminary estimation is not very sensitive to the choice of the
bandwidth. Then, for the model selection and specification procedure based on
Q1

n(A,B) or Q2
n(A,B), the tuning parameters λ3 and λ∗

3 or λ4 and λ∗
4 are selected

by the generalised information criterion (GIC) proposed by Fan and Tang (2013).
We next briefly introduce the GIC method.

As the models concerned involve both unknown constant parameters and un-
known functional parameters, to use GIC, we first need to figure out how many un-
known constant parameters an unknown functional parameter amounts to. Cheng,
Zhang and Chen (2009) suggest that an unknown functional parameter would
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amount to 1.028571h−1 unknown constant parameters when Epanechnikov ker-
nel is used. Hence, we construct the GIC for model (2.1) as

GIC
(
λ,λ∗) = −2

n∑
i=1

�
(
m̂(Ui,Xi), yi

)
+2ln

{
ln(n)

}
ln

(
1.028571dnh

−1)(
k1 + 1.028571k2h

−1)
,

where m̂(Ui,Xi) is defined as m(Ui,Xi) with all unknowns being replaced by
their estimators obtained based on the tuning parameters λ3 and λ∗

3 (or λ4 and
λ∗

4), k1 is the number of significant covariates with constant coefficients obtained
based on the given pair of tuning parameters, and k2 is the number of significant
covariates with functional coefficients obtained based on the given pair of tuning
parameters. For the maximisation of Q1

n(A,B), the minimiser of GIC(λ3, λ
∗
3) is

the selected λ3 and λ∗
3, while for the maximisation of Q2

n(A,B), the minimiser of
GIC(λ4, λ

∗
4) is the selected λ4 and λ∗

4.

5. Simulation studies. In this section, we give three simulated examples to
examine the accuracy of the proposed model selection, structure specification and
estimation procedure, as well as the oracle property of the proposed estimators.
Throughout this section, we call the procedure based on (2.13) the adaptive group
LASSO method and the procedure based on (2.14) the group SCAD method. For
the adaptive group LASSO method, the pre-determined parameter κ is chosen to
be 1. For the group SCAD method, the SCAD penalty is defined through its deriva-
tive as in (2.10). The kernel function used in this section is taken to be the Epanech-
nikov kernel K(t) = 0.75(1 − t2)+. The bandwidth and other tuning parameters
are selected by the approach described in Section 4.2.

We will start with a simulated example on a semi-varying coefficient Poisson
regression model, then an example on varying coefficient models and finally an
example on a varying coefficient logistic regression model. In Example 5.1, we
will compare the performance of the proposed adaptive group LASSO and group
SCAD methods on model selection, structure specification and estimation, and find
that the group SCAD method gives slightly better finite sample performance under
all simulation settings. Thus, we will call the group SCAD method “our method”
in the following two examples and only compare it with some existing methods. In
Example 5.2, we will compare our method with the KLASSO proposed in Wang
and Xia (2009) based on varying coefficient models. In Example 5.3, we will com-
pare our method with the method proposed in Lian (2012). The simulation results
of the KLASSO and Lian’s method in Tables 3–5 are the original results reported
in Wang and Xia (2009) and Lian (2012), respectively. From the simulation results,
we will find that our method outperforms the existing ones.

EXAMPLE 5.1. We generate a sample from a Poisson regression model as fol-
lows: first independently generate xij , i = 1, . . . , n, j = 1, . . . , dn, from the stan-
dard normal distribution N(0,1), and Ui , i = 1, . . . , n, from uniform distribution
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U[0,1], and then generate yi based on

P(yi = k) = ξk
i

k! e
−ξi , log(ξi) =

dn∑
j=1

aj (Ui)xij .(5.1)

We set the sample size n = 200, the number of significant covariates sn2 to be the
integer part of lnn and aj (·)’s in (5.1) to be

a1(U) = −U, a2(U) = sin(2πU), a3(U) = 4(U − 0.5)2,

a4(U) = c1 = 0.6, a5(U) = c2 = −0.7, aj (U) = 0 for j > 5.

For dimensions dn = 50, dn = 100, dn = 200, and dn = 500, we apply both
the adaptive group LASSO method and the group SCAD method to the simu-
lated sample to select the model, and estimate the unknown functional or con-
stant coefficients. For each case, we do 1000 simulations, and compute the
mean integrated squared error (MISE) of the estimators of the unknown func-
tional coefficients and the mean squared error (MSE) of the estimators of the
unknown constant coefficients. We also calculate the ratios of correct, under-
selected, under-specified, over-selected, over-specified and other models. The
“under-selected models” means the selected models ignoring the significant co-
variates. The “under-specified models” means where the functional coefficients are
mis-specified as the constant coefficients. The “over-selected models” means the
selected models including the insignificant covariates. The “over-specified mod-
els” means where the constant coefficients are mis-specified as functional. The
“other models” means that there exist more than one incorrect situation as listed
above. The “correct models” need not only select the true model but also correctly
identify the modelling structure.

The simulation results are reported in Tables 1 and 2. We can see from Table 1
that both the adaptive group LASSO method and the group SCAD method work
well for model selection and structure specification, and the group SCAD method
gives slightly better performance. Table 2 shows that the estimators obtained by
either the adaptive group LASSO method or the group SCAD method are doing
very well, and their performance is comparable to that of the oracle estimators.

EXAMPLE 5.2. As the varying coefficient models are a special case of the
generalised varying coefficient models, our method is also applicable to the vary-
ing coefficient models. In this example, we compare our method with the KLASSO
method proposed in Wang and Xia (2009) for varying coefficient models. We con-
sider exactly the same simulated example as that in Wang and Xia (2009), that is
the following three varying coefficient models:

(I) yi = 2 sin(2πUi)xi1 + 4Ui(1 − Ui)xi2 + σεi ,
(II) yi = exp(2Ui − 1)xi1 + 8Ui(1 − Ui)xi2 + 2 cos2(2πUi)xi3 + σεi ,
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TABLE 1
The ratios of model selection in 1000 simulations

dn Correct Under-selected Under-specified Over-selected Over-specified Others

Adaptive group LASSO method
50 0.967 0.001 0.002 0.005 0.024 0.001

100 0.944 0.001 0.005 0.008 0.039 0.003
200 0.915 0.006 0.014 0.012 0.045 0.008
500 0.863 0.015 0.023 0.026 0.057 0.016

Group SCAD method
50 0.970 0.001 0.002 0.003 0.022 0.002

100 0.948 0.002 0.004 0.006 0.038 0.002
200 0.925 0.005 0.012 0.010 0.042 0.006
500 0.878 0.013 0.020 0.022 0.051 0.016

The ratios of choosing the correct, under-selected, under-specified, over-selected, over-specified and
other models in 1000 simulations by using either the adaptive group LASSO method or the group
SCAD method.

(III) yi = 4Uixi1 + 2 sin(2πUi)xi2 + xi3 + σεi ,

where xi1 = 1 for any i, (xi2, . . . , xi7)
T and εi , i = 1, . . . , n, are independently

generated from a multivariate normal distribution with cov(xij1, xij2) = 0.5|j1−j2|
for any 2 ≤ j1, j2 ≤ 7 and the standard normal distribution N(0,1), respectively,

TABLE 2
The MISEs and MSEs of the estimators for the functional and constant coefficients

Adaptive group LASSO Group SCAD Oracle estimators

dn â1(·) â2(·) â3(·) a1(·) a2(·) a3(·) auo
1 (·) auo

2 (·) auo
3 (·)

50 0.026 0.037 0.038 0.024 0.033 0.036 0.019 0.023 0.025
100 0.038 0.049 0.050 0.035 0.045 0.048 0.019 0.023 0.025
200 0.058 0.069 0.072 0.052 0.063 0.066 0.019 0.023 0.025
500 0.090 0.095 0.098 0.084 0.093 0.091 0.019 0.023 0.025

dn ĉ1 ĉ2 c1 c2 cuo
1 cuo

2

50 0.015 0.017 0.014 0.017 0.006 0.008
100 0.020 0.022 0.018 0.021 0.006 0.008
200 0.030 0.035 0.025 0.029 0.006 0.008
500 0.046 0.050 0.039 0.042 0.006 0.008

The MISEs or MSEs of the estimators obtained by either the adaptive group LASSO method or the
group SCAD method. For j = 1,2,3 and k = 1,2, âj (·)’s and ĉk ’s are the estimators obtained by
the adaptive group LASSO method, aj (·)’s and ck ’s are the estimators obtained by the group SCAD
method, and auo

j (·)’s and cuo
k ’s are the unbiased oracle estimators.
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TABLE 3
Comparison of model selection between our method and KLASSO

Our method KLASSO

fU (·) n Under Correct Over Under Correct Over

Model I
U[0,1] 100 0.020 0.910 0.070 0.09 0.74 0.16

200 0.005 0.985 0.010 0.02 0.95 0.03
B[4,1] 100 0.020 0.875 0.105 0.21 0.58 0.21

200 0.005 0.950 0.045 0.08 0.86 0.05

Model II
U[0,1] 100 0.015 0.915 0.070 0.01 0.83 0.16

200 0.005 0.990 0.005 0.00 0.99 0.01
B[4,1] 100 0.015 0.890 0.095 0.01 0.82 0.18

200 0.005 0.970 0.025 0.00 0.96 0.04

Model III
U[0,1] 100 0.010 0.935 0.055 0.02 0.85 0.13

200 0.000 0.995 0.005 0.00 0.99 0.01
B[4,1] 100 0.015 0.895 0.090 0.02 0.79 0.19

200 0.005 0.975 0.020 0.00 0.96 0.04

The columns corresponding to “Under”, “Correct” and “Over” are the ratios of under-fitting, correct-
fitting and over-fitting for our method and KLASSO under different situations.

Ui , i = 1, . . . , n, are independently generated from either uniform distribution
U[0,1] or Beta distribution B(4,1), σ is set to be 1.5. For each model, we con-
duct 200 simulations, and in each simulation, we apply either our method or the
KLASSO to do model selection and estimation and then make the comparison.
We measure the performance of model selection by reporting the percentages of
correct-, under- and over-fitting. The obtained results are presented in Table 3.
From Table 3, we can see our method performs better than the KLASSO in model
selection.

As in Wang and Xia (2009), we employ the median of the relative estimation
errors (MREE), obtained in the 200 simulations, to assess the accuracy of an esti-
mation method. The relative estimation error (REE) is defined as

REE = 100 ×
∑n

i=1
∑dn

j=1 |âj (Ui) − aj (Ui)|∑n
i=1

∑dn

j=1 |âuo
j (Ui) − aj (Ui)|

,(5.2)

where âj (·) is the estimator of aj (·), obtained by the estimation method concerned,
and âuo

j (·) is the oracle estimator of aj (·). The median of REEs of our method and
the KLASSO under different situations are presented in Table 4, which shows our
method is more accurate than the KLASSO on estimation side. We thus conclude
that our method performs better than the KLASSO on both model selection and
estimation.
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TABLE 4
Comparison of estimation between our method and KLASSO

Median of relative estimation errors

fU (·) n Our method KLASSO fU (·) n Our method KLASSO

Model I
U[0,1] 100 109.35 121.00 B[4,1] 100 114.41 127.42
U[0,1] 200 101.78 115.45 B[4,1] 200 103.49 122.12

Model II
U[0,1] 100 107.81 109.45 B[4,1] 100 115.17 111.06
U[0,1] 200 101.51 109.46 B[4,1] 200 103.73 108.07

Model III
U[0,1] 100 106.71 116.53 B[4,1] 100 112.39 118.91
U[0,1] 200 101.21 110.59 B[4,1] 200 104.06 113.43

EXAMPLE 5.3. In this example, we compare the model selection performance
of our method with the method proposed in Lian (2012) for generalised varying
coefficient models. We consider exactly the same simulation settings as that in Ex-
ample 2 of Lian (2012), that is the following varying coefficient logistic regression
model where the conditional mean function is

E[yi |Xi] = exp{∑dn

j=1 aj (Ui)xij }
1 + exp{∑dn

j=1 aj (Ui)xij }
.(5.3)

The covariates are generated as following: for any i = 1, . . . , n, xi1 = 1 and
(xi2, . . . , xidn)

T are generated from a multivariate normal distribution with
cov(xij1, xij2) = 0.1|j1−j2| for any 2 ≤ j1, j2 ≤ dn. The index variable Ui , i =
1, . . . , n, are independently generated from the uniform distribution U[0,1]. We
set the aj (·)’s in (5.3) to be

a1(U) = −4
(
U3 + 2U2 − 2U

)
, a2(U) = 4 cos(2πU),

a3(U) = 3 exp{U − 0.5}, aj (U) = 0 when j > 3.

Similar to Example 2 of Lian (2012), we set the sample size n = 150 and di-
mension dn = 50 or dn = 200. For each case, the simulation results are based on
100 replications. The model selection performance is measured by the average
number of correct and incorrect varying coefficients. The former one means the
average number of significant covariates that are correctly selected into the final
model while the latter means the average number of insignificant covariates that
are falsely selected as significant. The comparison results are shown in Table 5,
from which we can see our method gives better model selection results.
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TABLE 5
Comparison between our method and Lian’s methods on model selection

Average # of varying coef.

Method Correct Incorrect

dn = 50
GL(BIC) 3 18.75
GL(eBIC) 3 16.33
AGL(BIC-BIC) 3 10.29
AGL(eBIC-eBIC) 3 1.56
Our method 3 1.37

dn = 200
GL(BIC) 3 38.78
GL(eBIC) 3 21.04
AGL(BIC-BIC) 3 25.72
AGL(eBIC-eBIC) 2.96 2.49
Our method 3 2.18

The simulation results are based on 100 replications with sample size n = 150. GL means group
lasso method, AGL means adaptive group lasso method. The details of GL and AGL methods can
be found in Lian (2012) and eBIC means extended Bayesian information criterion [Chen and Chen
(2008)].

6. Real data analysis. We now apply the proposed method to analyse an en-
vironmental data set from Hong Kong. This data set was collected between Jan-
uary 1, 1994, and December 31, 1995. It is a collection of numbers of daily total
hospital admissions for circulationary and respirationary problems, measurements
of pollutants and other environmental factors in Hong Kong. The collected envi-
ronmental factors are SO2 (coded by x1), NO2 (coded by x2), dust (coded by x3),
temperature (coded by x4), change of temperature (coded by x5), humidity (coded
by x6) and ozone (coded by x7). What we are interested in is which environmental
factors among the collected factors have significant effects on the number of daily
total hospital admissions for circulationary and respirationary problems (coded
by y), and whether the impacts of those factors vary over time (coded by U ). As
the numbers of daily total hospital admissions are count data, it is natural to use
Poisson regression model with varying coefficients, namely (5.1), to fit the data.

We apply the proposed group SCAD method to identify the significant variables
and the nonzero constant coefficients, and estimate the functional or constant co-
efficients in the selected model. The kernel function used is still taken to be the
Epanechnikov kernel, and the bandwidth is chosen to be 0.75[(logdn)/n]0.2100%
of the range of the time. The tuning parameters λ1, λ2, λ4 and λ∗

4 are selected by
the data driven approach described in Section 4.2.
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The selected model is

P(yi = k) = ξk
i

k! e
−ξi

with

log(ξi) = a0(Ui) + a2(Ui)xi2 + a4(Ui)xi4 + a5(Ui)xi5 + a6(Ui)xi6.

This shows only variables NO2, temperature, change of temperature and humidity
have effects on the number of daily total hospital admissions for circulationary and
respirationary problems, and all of these variables have time-varying impacts. The
estimates of the impacts of these variables are presented in Figure 1.

Figure 1 shows that NO2 always has a positive impact on the daily number of
total hospital admissions for circulationary and respirationary problems, and this
impact is stronger in winter and spring than that in summer and autumn. This is
in line with the finding in one World Health Organization report [WHO report,
(2003)] which shows some evidence that “long-term exposure to NO2 at concen-
trations above 40–100 µg/m3 may decrease lung function and increase the risk of
respiratory symptoms.” The nonlinear dynamic pattern of the impact of NO2 also
makes sense. This is because the main source of NO2 pollution comes from the
burning of coals and gasolines. In the winter and spring season, heating require-
ments will increase the amount of NO2 pollution. This is evident from the plot of
NO2 in the data set. Furthermore, the fog and mist in winter and spring will also
increase the chance that people expose to NO2. Though NO2 is toxic by inhala-
tion, as its compound is acrid and easily detectable by smell at low concentrations,
in most cases, the inhalation exposure to NO2 can be generally avoided. However,
when NO2 is dissolved into the fog, this acid mist will be hard to detect, and people
may easily expose to this toxic acid mist for a long time without awareness.

Figure 1 also shows the change of temperature has a time-varying positive im-
pact on the daily number of total hospital admissions for circulationary and res-
pirationary problems. This coincides with the intuition that a sudden change of
temperature would greatly increase the risk of catching cold, fever and other upper
respirationary diseases. The impact of temperature is also time varying and mostly
negative. It is stronger in autumn and spring than that in other seasons. This makes
sense, indeed, colder autumn or spring would see more people catching circula-
tionary or respirationary diseases.

The impact of humidity on the daily number of total hospital admissions for
circulationary and respirationary problems is interesting and complicated. It does
not seem to have any seasonal pattern. This is in line with the findings reported
in the literature. Indeed, existing research [Schwartz (1995), Strachan and Sanders
(1989); and de Leon et al. (1996)] agrees that humidity has a significant effect
on daily hospital admissions for circulationary and respirationary problems in
many different places. Strachan and Sanders (1989) study the childhood respi-
ratory problems against the indoor air temperature and relative humidity. Through
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FIG. 1. Estimated curves of the functional coefficients in the selected model for the Hong Kong
environment data.
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a randomly sampled questionnaire survey, and interview of 1000 children aged 7
about their living conditions and reported circulationary and respirationary prob-
lems, they show that the children living in damp (higher relative humidity level)
bedrooms had significantly higher probability to catch day cough, night cough and
chesty colds. Schwartz (1995) studies the short term fluctuations in air pollution
and hospital admissions of the elderly for respiratory disease. According to their
data set, the risk, measured by sample variance, of respiratory hospital admissions
of people aged 65 or above is bigger in the cities with higher average humidity lev-
els (measured by dew point). de Leon et al. (1996) study the effects of air pollution
on daily hospital admissions for respiratory disease based on a data set collected in
London between 1987–1988 and 1991–1992. They show that the relative humid-
ity is more significant for the respiratory hospital admission numbers of children
(0–14 years) and the elderly (65+ years). All of these suggest that there may be
a strong relationship between humidity level and the risk for children and elderly
people to catch circulationary or respirationary disease.

Furthermore, we would like to examine the prediction performance of the se-
lected model and compare it with the full model with functional coefficients. Given
either model, we begin with using the first 700 observations as the training set to
estimate the conditional expectation of the response variable of the 701st obser-
vation. Then we repeat this one-step forward prediction by enrolling one more
observation into the training set at a time. Finally, we end with using the first 729
observations to predict the 730th observation. The prediction performance is mea-
sured by the mean relative prediction error (MRPE) defined as follows:

MRPE = 1

30

730∑
i=701

∣∣∣∣ ξ̂i − yi

yi

∣∣∣∣ × 100%,

where ξ̂i is the estimator of the conditional expectation of the response variable
at time Ui , i = 701, . . . ,730. The MRPE of the model selected by our method is
18.7% while the MRPE of the full model with functional coefficients is 41.6%.
Hence, we can see that the model selected by our method do have a better predic-
tion accuracy than the full model.

APPENDIX A: ASSUMPTIONS

In this appendix, we give some regularity conditions which are needed to prove
the asymptotic theory. In Appendices B and C of the supplemental material [Li,
Ke and Zhang (2015)], we provide the proofs of the main theoretical results and
some auxiliary results, respectively.

Recall that

q1(s, y) = ∂�[g−1(s), y]
∂s

, q2(s, y) = ∂2�[g−1(s), y]
∂s2
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and define

L̈n(u) =
[ L̈n(u,0) L̈n(u,1)

L̈n(u,1) L̈n(u,2)

]
with

L̈n(u, l) = 1

n

n∑
i=1

q2

[
dn∑

j=1

aj (Ui)xij , yi

]
XiX

T
i

(
Ui − u

h

)l

Kh(Ui − u)

for l = 0,1,2. Define b = max{λ1/λ2, λ2/λ1} + δ for any δ > 0, where λ1 and λ2
are defined in (2.3), and let

�0(b) =
{

v = (v11, . . . , v1dn, v21, . . . , v2dn)
T : ‖v‖ = 1,

dn∑
j=1

(|v1j | + |v2j |) ≤ 2(1 + b)

sn2∑
j=1

(|v1j | + |v2j |)
}
.

When λ1 ∝ λ2 (see Assumptions 5 or 5′ below), b is bounded by a positive con-
stant, and it becomes 1 + δ which could be sufficiently close to 1 if we further
assume that λ1 = λ2. To simplify the presentation, we denote

Qi1 = q1

[
dn∑

j=1

aj (Ui)xij , yi

]
, Qi2 = q2

[
dn∑

j=1

aj (Ui)xij , yi

]
.

We next introduce some regularity conditions which are needed to establish the
asymptotic theory for the proposed model selection and structure specification pro-
cedure. Some of the conditions might be not the weakest possible conditions.

ASSUMPTION 1. The kernel function K(·) is a continuous and symmetric
probability density function with a compact support.

ASSUMPTION 2. (i) Let E(Qi1|Xi,Ui) = 0 a.s., and E(Q2
i1|Ui = u) be con-

tinuous for u ∈ [0,1]. Moreover, suppose that uniformly for u ∈ [0,1], either

max
1≤j≤dn

E
[|Qi1xij |m0 |Ui = u

] + max
1≤j,k≤dn

E
[|Qi2xij xik|m0 |Ui = u

]
(A.1)

< ∞ a.s.

for m0 > 2, or

max
1≤j≤dn

E
[|Qi1xij |m|Ui = u

] + max
1≤j,k≤dn

E
[|Qi2xij xik|m|Ui = u

]
(A.2)

≤ M0m!
2

a.s.
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for all m ≥ 2 and 0 < M0 < ∞.
(ii) Let q2(s, y) < 0 for s ∈ R and y in the range of the response variable. Fur-

thermore, there exists an M(X,U,y) > 0 such that∣∣q2
[
r(X,U) + δ∗, y

] − q2
[
r(X,U), y

]∣∣ ≤ M(X,U,y)|δ∗|
with r(X,U) = ∑dn

j=1 aj (U)xj , and uniformly for u ∈ [0,1] either

max
1≤j,k,l≤dn

E
[∣∣xij xikxilM(Xi,Ui, yi)

∣∣m0 |Ui = u
]
< ∞ a.s.

for m0 > 2 if (A.1) is satisfied, or

max
1≤j,k,l≤dn

E
[∣∣xij xikxilM(Xi,Ui, yi)

∣∣m|Ui = u
]
<

M1m!
2

a.s.

for all m ≥ 2 if (A.2) is satisfied, 0 < M1 < ∞.
(iii) There exist 0 < ρ1 ≤ ρ2 < ∞ such that

ρ1 ≤ inf
u∈[0,1] inf

v∈�0(b)
vT[−L̈n(u)

]
v ≤ sup

u∈[0,1]
sup

v∈�0(b)

vT[−L̈n(u)
]
v ≤ ρ2

with probability approaching one.

ASSUMPTION 3. The density function fU(·) has a continuous second-order
derivative. In addition, fU(u) is bounded away from zero and infinity when u ∈
[0,1].

ASSUMPTION 4. The functional coefficients, aj (·), have continuous second-
order derivatives for j = 1, . . . , dn.

ASSUMPTION 5. Let dn ∝ nτ1 and nh

(nd3
n)2/m0 logh−1 → ∞, where 0 ≤ τ1 < ∞

and m0 is defined in (A.1). Moreover, the bandwidth h and the tuning parameters

λ1 and λ2 satisfy h ∝ n−δ1 with 0 < δ1 < 1, sn2h
2 + (

logh−1

nh
)1/2 = o(λ1), λ1 ∝ λ2

and sn2λ
2
1h

−2 + s2
n2λ1 = o(1).

ASSUMPTION 5′ . Let dn ∝ exp{(nh)τ2} with 0 ≤ τ2 < 1−τ3, 0 < τ3 < 1. Fur-
thermore, the bandwidth h and the tuning parameters λ1 and λ2 satisfy h ∝ n−δ1

with 0 < δ1 < 1, sn2h
2 + (

logh−1

nh
)τ3/2 = o(λ1), λ1 ∝ λ2 and sn2λ

2
1h

−2 + s2
n2λ1 =

o(1).

ASSUMPTION 6. (i) Let sn2h
2 ∝ (nh)−1/2, λ4 ∼ λ∗

4, λ4 = o(n1/2), and

h−1/2[(
logh−1)1/2 + s

1/2
n2 (1 + λ1

√
nh)

] = o(λ4).(A.3)

(ii) There exists a positive constant b� such that

min
1≤j≤sn2

‖αj0‖ ≥ b�n1/2, min
1≤j≤sn1

Dj ≥ b�n1/2(A.4)
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with probability approaching one. Furthermore, uniformly for k = sn2 + 1, . . . ,

dn, dn + sn1 + 1, . . . ,2dn,

sup
u∈[0,1]

sup
‖wo‖=1

∣∣L̈n(u|k)wo
∣∣ = OP (1),(A.5)

where L̈n(u|k) is the kth row of L̈n(u), wo = [(wo
1)

T, (wo
2)

T]T, wo
1 and wo

2 are
two dn-dimensional column vectors, the last dn − sn2 elements of wo

1 and the last
dn − sn1 elements of wo

2 are zeros.

REMARK A.1. The above assumptions are mild and justifiable. Assumption 1
is a commonly-used condition on the kernel function and can be satisfied for the
uniform kernel function and the Epanechnikov kernel function which is used in
our numerical study. The compact support restriction on the kernel function is not
essential and can be removed at the cost of more tedious proofs. Assumption 2 im-
poses some smoothness and moment conditions on Qi1 and Qi2, some of which
are commonly used in local maximum likelihood estimation [cf., Cai, Fan and Li
(2000), Li and Liang (2008)]. Two moment conditions (A.1) and (A.2) are im-
posed in Assumption 2(i), and they are used to handle the polynomially diverging
dimension of the covariates (in Assumption 5) and the exponentially diverging
dimension of the covariates (in Assumption 5′), respectively. Hence, as the dimen-
sion of the covariates increase from the polynomial order to the exponential order,
the required moment condition would be stronger. In contrast, most of the existing
literature such as Lian (2012) only considers the case of the stronger moment con-
dition in (A.2), which may possibly limit the applicability of the model selection
methodology. Assumption 2(iii) can be seen as the modified version of the so-
called restricted eigenvalue condition introduced by Bickel, Ritov and Tsybakov
(2009) for the parametric regression models. Assumptions 3 and 4 provide some
smoothness conditions on the density function of U and the functional coefficients
aj (·), which are not uncommon when the local linear approach is applied [cf., Fan
and Gijbels (1996)].

Assumption 5 imposes some restrictions on the bandwidth h and the tuning
parameters λ1 and λ2 when dn ∝ nτ1 , whereas Assumption 5′ imposes some con-
ditions when dn ∝ exp{(nh)τ2}. They are crucial to derive the uniform conver-
gence rates for the preliminary estimation in Proposition 3.1. Consider a spe-
cial case when sn2 is a fixed positive integer; we may choose h ∝ n−1/5 and
λ1 = λ2 ∝ n−3/10. Then the conditions in Assumption 5 would be satisfied when
m0 is sufficiently large, and those in Assumption 5′ would be satisfied when

3/4 < τ3 < 1. Noting that sn2h
2 + (

logh−1

nh
)1/2 = o(λ1) and λ1 ∝ λ2 by Assump-

tion 5, the influence by h and λ2 on the uniform convergence rate in (3.1) is dom-
inated by that of λ1. The regularity conditions in Assumption 6 is mainly used to
prove the sparsity and oracle property for the proposed model selection procedure.
By Assumption 5, we may show that the leading term of the left-hand side of (A.3)
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is λ1
√

nsn2. Once again we consider the special case when sn2 is a fixed positive
integer and h ∝ n−1/5. Then the conditions in Assumption 6 would be satisfied if
we choose λ1 ∝ n−3/10 and λ4 = λ∗

4 ∝ nτ4 with 1/5 < τ4 < 1/2.
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SUPPLEMENTARY MATERIAL

Supplement to “Model selection and structure specification in ultra-high
dimensional generalised semi-varying coefficient models” (DOI: 10.1214/15-
AOS1356SUPP; .pdf). We provide the detailed proofs of the main results stated in
Section 3 as well as some technical lemmas which are useful in the proofs.
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