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In this work, we study the problem of aggregating a finite number of pre-
dictors for nonstationary sub-linear processes. We provide oracle inequalities
relying essentially on three ingredients: (1) a uniform bound of the �1 norm
of the time varying sub-linear coefficients, (2) a Lipschitz assumption on the
predictors and (3) moment conditions on the noise appearing in the linear
representation. Two kinds of aggregations are considered giving rise to dif-
ferent moment conditions on the noise and more or less sharp oracle inequal-
ities. We apply this approach for deriving an adaptive predictor for locally
stationary time varying autoregressive (TVAR) processes. It is obtained by
aggregating a finite number of well chosen predictors, each of them enjoying
an optimal minimax convergence rate under specific smoothness conditions
on the TVAR coefficients. We show that the obtained aggregated predictor
achieves a minimax rate while adapting to the unknown smoothness. To prove
this result, a lower bound is established for the minimax rate of the predic-
tion risk for the TVAR process. Numerical experiments complete this study.
An important feature of this approach is that the aggregated predictor can be
computed recursively and is thus applicable in an online prediction context.

1. Introduction. In many applications where high frequency data are ob-
served, we wish to predict the next values of this time series through an online
prediction learning algorithm able to process a large amount of data. The classical
stationarity assumption on the distribution of the observations has to be weakened
to take into account some smooth evolution of the environment. From a statisti-
cal modelling point of view, this is described by some time varying parameters.
In order to sequentially track them from high-frequency data, the algorithms must
require few operations and a low storage capacity to update the parameters esti-
mation and the prediction after each new observation. The most common online
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methods are least mean squares (LMS), normalized least mean squares (NLMS),
regularized least squares (RLS) or Kalman. All of them rely on the choice of a gra-
dient step, a forgetting factor, or more generally on a tuning parameter correspond-
ing to some a priori knowledge on how smoothly the local statistical distribution of
the data evolves along the time. To adapt automatically to this smoothness, usually
unknown in practice, we propose to use an exponentially weighted aggregation
of several such predictors, with various tuning parameters. We emphasize that to
meet the online constraint, we cannot use methods that require a large amount of
computations (such as cross validation).

The exponential weighting technique in aggregation have been developed in
parallel in the machine learning community [see the seminal paper Vovk (1990)],
in the statistical community [see Catoni (1997), Yang (2000a, 2004), Leung and
Barron (2006), or more recently Audibert (2009), Dalalyan and Tsybakov (2008),
Rigollet and Tsybakov (2012)] and in the game theory community for individ-
ual sequences prediction [see Cesa-Bianchi and Lugosi (2006) and Stoltz (2011)
for recent surveys]. In contrast to the classical statistical setting, in the individ-
ual sequence setting the observations are not assumed to be generated by an un-
derlying stochastic process. The link between both settings has been analyzed in
Gerchinovitz (2011) for the regression model with fixed and random designs.

Exponential weighting has also been investigated in the case of weakly depen-
dent stationary data in Alquier and Wintenberger (2012). More recently, an ap-
proach inspired from individual sequences prediction has been studied in Anava
et al. (2013) for bounded ARMA processes under some specific conditions on the
(constant) ARMA coefficients.

In this contribution, we consider two possible aggregation schemes based on ex-
ponential weights which can be computed recursively. We provide oracle inequal-
ities applying to the aggregated predictor under the following main assumptions
that (1) the observations are sub-linearly with respect to a sequence of random
variables with possibly time varying linear coefficients and (2) the predictors to
be aggregated are Lipschitz functions of the past. An important feature of our ob-
servation model is that it embeds the well-known class of locally stationary pro-
cesses. We refer to Dahlhaus (2009) and the references therein for a recent general
view about statistical inference for locally stationary processes. As an applica-
tion, we focus on a particular locally stationary model, that of the time varying
autoregressive (TVAR) process. The minimax rate of certain recursive estimators
of the TVAR coefficients is studied in Moulines, Priouret and Roueff (2005). To
our knowledge, there is not a well-established method on the automatic choice of
the gradient step when the smoothness index is unknown. Here, we are interested
in the prediction problem which is closely related to the estimation problem. We
show that the proposed aggregation methods provide a solution to this question, in
the sense that they give rise to recursive adaptive minimax predictors.

The paper is organized as follows. In Section 2, we provide oracle inequalities
for the aggregated predictors under general conditions applying to nonstationary
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sub-linear processes. TVAR processes are introduced in Section 3 in a nonpara-
metric setting based on Hölder smoothness assumptions on the TVAR coefficients.
A lower bound of the prediction risk is given in this setting and this result is used
to show that the proposed aggregation methods achieve the minimax adaptive rate.
Section 4 contains the proofs of the oracle inequalities. The proof of the lower
bound of the minimax prediction risk is presented in Section 5. Numerical experi-
ments illustrating these results are then described in Section 6. One Appendix and
one supplementary material [Giraud, Roueff and Sanchez-Perez (2015)] complete
this paper. Appendix and [Giraud, Roueff and Sanchez-Perez (2015), Section A]
contain some postponed proofs and useful lemmas, [Giraud, Roueff and Sanchez-
Perez (2015), Section B] explains how to build nonadaptive minimax predictors
which can be used in the aggregation step and [Giraud, Roueff and Sanchez-Perez
(2015), Section C] provides additional results with improved aggregation rates.

2. Online aggregation of predictors for nonstationary processes.

2.1. General model. In this section, we consider a time series (Xt)t∈Z admit-
ting the following nonstationary sub-linear property with respect to the nonnega-
tive process (Zt )t∈Z.

(M-1) The process (Xt)t∈Z satisfies

|Xt | ≤
∑
j∈Z

At(j)Zt−j ,(2.1)

where (At (j))t,j∈Z are nonnegative coefficients such that

A∗ := sup
t∈Z

∑
j∈Z

At(j) < ∞.(2.2)

Additional assumptions will be required on (Zt )t∈Z to deduce useful properties
for (Xt)t∈Z. Note, for instance, that the condition on A∗ in (2.2) guarantees that,
if (Zt )t∈Z has a uniformly bounded Lp-norm, the convergence of the infinite sum
in (2.1) holds almost surely and in the Lp-sense, with both convergences defining
the same limit. It follows that (Xt)t∈Z also has uniformly bounded Lp moments.
Let us give some particular contexts where the representation (M-1) can be used.

EXAMPLE 1 (Time varying linear processes). Standard weakly stationary pro-
cesses such as ARMA processes [see Brockwell and Davis (2006)] admit a Wold
decomposition of the form

Xt = ∑
j≥0

a(j)ξt−j ,

where (ξt )t∈Z is a weak white noise with, says, unit variance. This model, some-
times referred to as an MA(∞) representation, is often extended to a two-sided
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sum representation

Xt = ∑
j∈Z

a(j)ξt−j ,

and additional assumptions on the existence of higher moments for (ξt )t∈Z or on
the independence of the ξt ’s are often used for statistical inference or predic-
tion; see Brockwell and Davis (2006), Chapters 7 and 8. Because the sequence
(At (j))j∈Z may vary with t in (M-1), we may extend this standard stationary set-
ting and also consider linear processes with time varying coefficients. In this case,
we have

Xt = ∑
j∈Z

at (j)ξt−j ,(2.3)

where (ξt ) is a sequence of centered independent random variables with unit
variance and (at (j))t,j∈Z is supposed to satisfy (2.2) with At(j) = |at (j)|, so
that (M-1) holds with Zt = |ξt |. For this general class of processes, statistical infer-
ence is not easily carried out: each new observation Xt comes with a new unknown
sequence (at (j))j∈Z. However, additional assumptions on this set of sequences
allow to derive and study appropriate statistical inference procedures. A sensible
approach in this direction is to consider a locally stationary model as introduced in
Dahlhaus (1996). In this framework, the set of sequences {(at (j))j∈Z,1 ≤ t ≤ T }
is controlled as T → ∞ by artificially (but meaningfully) introducing a depen-
dence in T , hence is written as (at,T (j))j∈Z,1≤t≤T , and by approximating it with a
set of sequences rescaled on the time interval [0,1], a(u, j), u ∈ [0,1], j ∈ Z, for
example, in the following way:

sup
T ≥1

sup
j∈Z

T∑
t=1

∣∣∣∣at,T (j) − a

(
t

T
, j

)∣∣∣∣ < ∞.

Then various interesting statistical inference problems based on X1, . . . ,XT can be
tackled by assuming some smoothness on the mapping u �→ a(u, j) and, possibly,
additional assumptions on the structure of the sequence (a(u, j))j∈Z for each u ∈
[0,1] [see Dahlhaus (2009) and the references therein].

EXAMPLE 2 (TVAR model). A particular instance of Example 1 is the time
varying autoregressive (TVAR) process, which is assumed to satisfy the recursive
equation

Xt =
d∑

j=1

θj,tXt−j + σtξt ,

where (ξt )t∈Z is a white noise process; see Grenier (1983). It turns out that, in the
framework introduced by Dahlhaus (1996), under suitable assumptions, such pro-
cesses admit a time varying linear representation of the form (2.3); see Dahlhaus
(1996), Künsch (1995). In Section 3, we focus on such a class of processes and use
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the aggregation of predictors to derive adaptive minimax predictors under specific
smoothness assumptions on the time varying coefficients.

EXAMPLE 3 (A nonlinear extension). It can also be interesting to consider
nonlinear extensions of Example 2. A simple example is obtained by setting

Xt = gt (Xt−1) + ξt ,

where (ξt )t∈Z is an i.i.d. sequence and gt is a time varying sub-linear sequence of
functions satisfying, for all t that ∣∣gt (x)

∣∣ ≤ α|x|,
for some α ∈ (0,1). Since gt is no longer linear but sub-linear, such a model does
not enjoy an exact linear representation of the form (2.3). Nevertheless, since we
have

|Xt | ≤ α|Xt−1| + |ξt |,
and iterating this equation backwards yields assumption (M-1) with Zt = |ξt | and
At(j) = αj . In the stationary case, where g = gt does not depend on t , a well-
known nonlinear extension is the threshold autoregressive model where g is piece-
wise linear; see Tong and Lim (1980).

Our goal in this section is to derive oracle bounds for the aggregation of predic-
tors that hold for the general model (M-1) with one of the two following additional
assumptions on (Zt )t∈Z.

(N-1) The nonnegative process (Zt )t∈Z satisfies

mp := sup
t∈Z

E
[
Z

p
t

]
< ∞.

(N-2) The nonnegative process (Zt )t∈Z is a sequence of independent random
variables fulfilling

φ(ζ ) := sup
t∈Z

E
[
eζZt

]
< ∞.

Assumptions (N-1) and (N-2) appear to be quite mild. As mentioned in Example 1,
basic assumptions in stationary time series usually include moments of sufficiently
high order for the innovations and their independence, or rely on the Gaussian
assumption, which is contained in (N-2). We also note that, in the context of locally
stationary time series, our assumptions on the innovations are weaker than those
used in the recent works Dahlhaus (2009), Dahlhaus and Polonik (2006, 2009).
Precise comparisons between our assumptions and usual ones in the aggregation
literature will be given after Corollary 1.

2.2. Aggregation of predictors. Let (xt )t∈Z be a real valued sequence. We say
that x̂t is a predictor of xt if it is a measurable function of (xs)s≤t−1. Throughout
this paper, the quality of a sequence of predictors (x̂t )1≤t≤T is evaluated for some
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T ≥ 1 using the �2 loss averaged over the time period {1, . . . , T }
1

T

T∑
t=1

(x̂t − xt )
2.

Now, given a collection of N sequences of predictors {(x̂(i)
t )1≤t≤T ,1 ≤ i ≤ N}, we

wish to sequentially derive a new predictor which predicts almost as accurately as
or more accurately than the best of them.

In the present paper and for our purposes, aggregating the predictors amounts
to compute a convex combination of them at each time t . This corresponds to
choosing at each time t an element αt of the simplex

SN =
{

s = (s1, . . . , sN) ∈R
N+ :

N∑
i=1

si = 1

}
(2.4)

and compute

x̂
[αt ]
t =

N∑
i=1

αi,t x̂
(i)
t .

We consider two strategies of aggregation, which are studied in the context of
bounded sequences in Catoni (2004), Cesa-Bianchi and Lugosi (2006). More re-
cent contributions and extensions can be found in Gerchinovitz (2011). See also
Stoltz (2011) for a pedagogical Introduction. These strategies are sequential and
online, meaning that:

(i) to compute the aggregation weights αt at time t , only the values of {x̂(i)
s ,1 ≤

i ≤ N} and xs up to time s = t − 1 are used,
(ii) the computation can be done recursively by updating a set of quantities, the

number of which does not depend on t .

These two properties are met in the Algorithm 1 detailed below.
We consider in the remaining of the paper a convex aggregation of predictors

x̂t = x̂
[α̂t ]
t =

N∑
i=1

α̂i,t x̂
(i)
t , 1 ≤ t ≤ T ,

with some specific weights α̂i,t defined as follows.

Strategy 1: Building weights from the gradient of the quadratic loss. The first
strategy is to define for all i = 1, . . . ,N and t = 1, . . . , T , the weights α̂i,t by

α̂i,t = exp(−2η
∑t−1

s=1(
∑N

j=1 α̂j,s x̂
(j)
s − xs)x̂

(i)
s )∑N

k=1 exp(−2η
∑t−1

s=1(
∑N

j=1 α̂j,s x̂
(j)
s − xs)x̂

(k)
s )

,(2.5)

with the convention that a sum over no element is zero, so α̂i,1 = 1/N for all i.
The parameter η > 0, usually called the learning rate, will be specified later.
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Algorithm 1: Online computation of the aggregation algorithms

parameters the learning rate η (in (0,∞)) and the strategy (1 or 2);
initialization t = 1, α̂t = (1/N)i=1,...,N ;

while input the predictions x̂
(i)
t for i = 1, . . . ,N ;

do
x̂t = x̂

[α̂t ]
t = ∑N

i=1 α̂i,t x̂
(i)
t ;

return x̂t ;
and when input a new xt ;
do

t = t + 1;
for i = 1 to N do

switch strategy do
case 1: vi,t = α̂i,t−1 exp(−2η(x̂

[α̂t−1]
t−1 − xt−1)x̂

(i)
t−1)

case 2: vi,t = α̂i,t−1 exp(−η(x̂
(i)
t−1 − xt−1)

2)

α̂t = (vi,t /
∑N

k=1 vk,t )i=1,...,N ;

Strategy 2: Building weights from the quadratic loss. The second strategy is to
define for all i = 1, . . . ,N and t = 1, . . . , T , the weights α̂i,t by

α̂i,t = exp(−η
∑t−1

s=1(x̂
(i)
s − xs)

2)∑N
k=1 exp(−η

∑t−1
s=1(x̂

(k)
s − xs)2)

,(2.6)

with again the convention that a sum over no element is zero.
Both strategies yield the same algorithm up to the line where vi,t is computed.

For sake of brevity, we write only one algorithm (see Algorithm 1) and use a
switch/case statement to distinguish between the two strategies. Note, however,
that the choice of the strategy (1 or 2) holds for the whole sequence of predictions.

2.3. Oracle bounds. We establish oracle bounds on the average prediction er-
ror of the aggregated predictors. These bounds ensure that the error is equal to
that associated with the best convex combination of the predictors or with the best
predictor (depending on the aggregation strategy), up to two remaining terms. One
remaining term depends on the number N of predictors to aggregate and the other
one on the variability of the original process. The learning rate η can then be cho-
sen to achieve the best trade-off between these two terms.

The second remaining term indirectly depends on the variability of the predic-
tors. We control below this variability in terms of the variability of the original
process by using the following Lipschitz property.
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DEFINITION 1. Let L = (Ls)s≥1 be a sequence of nonnegative numbers.
A predictor x̂t of xt from (xs)s≤t−1 is said to be L-Lipschitz if

|x̂t | ≤
∑
s≥1

Ls |xt−s |.

We more specifically consider a sequence L satisfying the following assump-
tion.

(L-1) The sequence L = (Ls)s≥1 satisfies

L∗ = ∑
j≥1

Lj < ∞.(2.7)

This condition is trivially satisfied by constant linear predictors depending only
on a finite number of previous observations, that is, x̂t = ∑d

s=1 Lsxt−s . In Giraud,
Roueff and Sanchez-Perez [(2015), Section B.1], we extend this case in the con-
text of the TVAR process where the coefficients Ls are replaced by estimates of the
time varying autoregressive coefficients. More generally, assumption (L-1) appears
to be quite natural in the general context where E[Xt |(Xt−s)s≥1] = ft ((Xt−s)s≥1),
where ft is a Lipschitz function from R

N
∗

to R, with Lipschitz coefficients satis-
fying a condition similar to (2.7); see, for instance, Doukhan and Wintenberger
(2008) in the case of stationary time series.

We now state two upper-bounds on the mean quadratic prediction error of the
aggregated predictors defined in the previous section, when the process X fulfills
the sub-linear property (M-1).

THEOREM 2.1. Assume that assumption (M-1) holds. Let {(X̂(i)
t )1≤t≤T ,1 ≤

i ≤ N} be a collection of sequences of L-Lipschitz predictors with L satisfy-
ing (L-1).

(i) Assume that the noise Z fulfills (N-1) with p = 4 and let X̂ = (X̂t )1≤t≤T

denote the aggregated predictor obtained using the weights (2.5) with any η > 0.
Then we have

1

T

T∑
t=1

E
[
(X̂t − Xt)

2] ≤ inf
ν∈SN

1

T

T∑
t=1

E
[(

X̂
[ν]
t − Xt

)2]
(2.8)

+ logN

T η
+ 2η(1 + L∗)4A4∗m4.

(ii) Assume that the noise Z satisfies (N-1) with a given p > 2 and let
X̂ = (X̂t )1≤t≤T denote the aggregated predictor obtained using the weights (2.6)
with any η > 0. Then we have

1

T

T∑
t=1

E
[
(X̂t − Xt)

2] ≤ min
1≤i≤N

1

T

T∑
t=1

E
[(

X̂
(i)
t − Xt

)2]
(2.9)

+ logN

T η
+ (2η)p/2−1Ap∗ (1 + L∗)pmp.
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(iii) Assume that the noise Z fulfills (N-2) for some positive ζ and let X̂ =
(X̂t )1≤t≤T denote the aggregated predictor obtained using the weights (2.6) with
η > 0. Then, for any

λ ∈
(

0,
ζ

a∗(L∗ + 1)

]
with a∗ := sup

j∈Z
sup
t∈Z

At(j) ≤ A∗,(2.10)

we have

1

T

T∑
t=1

E
[
(X̂t − Xt)

2]

≤ min
1≤i≤N

1

T

T∑
t=1

E
[(

X̂
(i)
t − Xt

)2](2.11)

+ logN

T η
+ 2

e
λ−2(2 + λ(2η)−1/2)e−λ(2η)−1/2(

φ(ζ )
)λA∗(1+L∗)/ζ .

The proof can be found in Section 4.2.

REMARK 1. The bounds (2.8), (2.9) and (2.11) are explicit in the sense that
all the constants appearing in them are directly derived from those appearing in
assumptions (M-1), (L-1), (N-1) and (N-2).

The following corollary is obtained by choosing η [and λ in the case (iii)] ade-
quately in the three cases of Theorem 2.1.

COROLLARY 1. Assume that assumption (M-1) holds. Let {(X̂(i)
t )1≤t≤T ,1 ≤

i ≤ N} be a collection of sequences of L-Lipschitz predictors with L satisfy-
ing (L-1).

(i) Assume that the noise Z fulfills (N-1) with p = 4 and let X̂ = (X̂t )1≤t≤T

denote the aggregated predictor obtained using the weights (2.5) with

η = 1

(2m4)1/2(1 + L∗)2A2∗

(
logN

T

)1/2
.(2.12)

This gives

1

T

T∑
t=1

E
[
(X̂t − Xt)

2] ≤ inf
ν∈SN

1

T

T∑
t=1

E
[(

X̂
[ν]
t − Xt

)2] + C1

(
logN

T

)1/2

,(2.13)

with C1 = 2(2m4)
1/2(1 + L∗)2A2∗.
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(ii) Assume that the noise Z satisfies (N-1) with a given p > 2 and let X̂ =
(X̂t )1≤t≤T denote the aggregated predictor obtained using the weights (2.6) with

η = 1

2m
2/p
p (1 + L∗)2A2∗

(
logN

T

)2/p

.(2.14)

We then have

1

T

T∑
t=1

E
[
(X̂t − Xt)

2]
(2.15)

≤ min
1≤i≤N

1

T

T∑
t=1

E
[(

X̂
(i)
t − Xt

)2] + C2

(
logN

T

)1−2/p

,

with C2 = 3m
2/p
p (1 + L∗)2A2∗.

(iii) Assume that the noise Z fulfills (N-2) for some positive ζ and let X̂ =
(X̂t )1≤t≤T denote the aggregated predictor obtained using the weights (2.6) with

η = ζ 2

2(1 + L∗)2A2∗

(
log

(
T

logN

))−2

.(2.16)

Then we have

1

T

T∑
t=1

E
[
(X̂t − Xt)

2]

≤ min
1≤i≤N

1

T

T∑
t=1

E
[(

X̂
(i)
t − Xt

)2] + 2A2∗(L∗ + 1)2

ζ 2

logN

T
(2.17)

×
{(

log
(

T

logN

))2

+ φ(ζ )

e

(
2 + log

(
T

logN

))}
.

[Note that when (logN)/T → 0, the term between curly brackets is equivalent to
(log(T / logN))2.]

Cases (i) and (ii) in Corollary 1 follow directly from Theorem 2.1. Case (iii) is
more delicate since it requires optimizing λ as well as η in the second line of (2.11).
The details are postponed to Section 4.3.

REMARK 2. We observe that the bound in (2.17) improves that in (2.15) for
any p > 2. For p > 4, the remaining term (logN/T )1−2/p in (2.15) is smaller
than the remaining term (logN/T )1/2 in (2.13). Similarly, the remaining term
logN(logT )2/T in (2.17) is smaller than (logN/T )1/2 in (2.13). Yet, we empha-
size that the oracle inequalities (2.15) and (2.17) compare the prediction risk of X̂

to the prediction risk of the best predictor X̂(i), while the oracle inequality (2.13)
compare the prediction risk of X̂ to the prediction risk of the best convex combi-
nation of the predictors X̂(i), so they cannot be directly compared.
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REMARK 3. As explained in Giraud, Roueff and Sanchez-Perez [(2015), Sec-
tion C], under the hypotheses of cases (ii) and (iii) and for certain values of
T and N , using a more involved aggregation step, we can get a new predictor
satisfying an oracle inequality better than that in (2.13). For example, under the
hypotheses of case (iii), for T > N2(logT )6, the remaining term (logN/T )1/2

in (2.13) can be replaced by N(logT )3/T which is smaller; see Giraud, Roueff
and Sanchez-Perez [(2015), inequality (C.7), page 8]. Yet, this aggregation has a
prohibitive computational cost and seems difficult to implement in practice.

REMARK 4. In cases (ii) and (iii), which correspond to the weights (2.6), the
choice of the optimal η depends on the assumptions on the noise, namely (N-1)
or (N-2). Under a moment condition of order p, the optimal η is of order
(logN/T )2/p and under an exponential condition, it is of order (logT )−2. It is
known from Catoni [(2004), Proposition 2.2.1] and Yang [(2004), Theorem 5] that
η can be chosen as a constant (provided that it is small enough) under a bounded
noise condition, or under an exponential moment condition on the noise for predic-
tors at a bounded distance from the conditional mean. Hence, coarsely speaking,
the heavier the tail of the noise, the smallest η should be chosen. Observing that η

allows us to tune the influence of the empirical risk on the weights from no influ-
ence at all (η = 0 yielding uniform weights) to the selection of the empirical risk
minimizer (η → ∞), the specific choices of η can be interpreted as follows: the
heavier the tail of the noise, the less we can trust the empirical risk.

Comparison with previous works. In the literature, prediction risk bounds of
the form (2.13) [case (i) of Corollary 1] are sometimes called convex regret bounds,
and prediction risk bounds of the form (2.15) and (2.17) [cases (ii) and (iii) of
Corollary 1] are sometimes called best predictor regret bounds.

Sancetta (2010) exhibits convex regret bounds in a setting close to ours, namely
for an online aggregation of predictors for a sequence of possibly dependent ran-
dom variables. Under our moment condition (N-1) with p = 4, Sancetta [(2010),
Theorem 2] provides an upper bound similar to (2.13) but with our remaining
term (logN/T )1/2 replaced by (N log(N)/T )1/2. Under the exponential condi-
tion (N-2), Sancetta [(2010), Theorem 1] provides an upper bound similar to (2.13)
but with a remaining term (logN/T )1/2 × (log(NT ))2, which is still larger than
our remaining term under moment conditions.

Best predictor regret bounds can be found in Yang (2004) for some sequences
of possibly dependent random variables. The predictors are assumed to remain at
a bounded distance to the conditional means and the scaled innovation noise is as-
sumed to have either a known distribution (satisfying a certain technical condition)
or an exponential moment. The regret bounds are presented in a slightly different
fashion from ours but it is easy to see that a similar result as our bound (2.17) is
obtained in this setting. However, we do not require bounded prediction errors and
our conditions on the noise are milder.
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The i.i.d. setting has received much more attention and, even if the setting is
quite different, it is interesting to briefly compare our results to previous works in
this case. Let us start with the convex regret bound in case (i) of Corollary 1. Most
of the existing results [see, e.g., Juditsky and Nemirovski (2000), Yang (2000a),
Tsybakov (2003) or Wang et al. (2014) for recent extensions to �q aggregation]
assume the predictors to be bounded and various conditions on the noise are con-
sidered (very often the noise is assumed to be Gaussian). In such settings, the best
possible remaining term typically takes the form (logN/T )1/2 when N is much
larger than T 1/2 and of the form N/T if N is smaller than T 1/2; see Juditsky
and Nemirovski [(2000), Theorem 3.1], Yang [(2004), Theorem 6] and Tsybakov
[(2003), Theorem 2]. Hence, our bound (2.13) is similar only in the case where N

is much larger than T 1/2. However, as explained in Remark 3 and [Giraud, Roueff
and Sanchez-Perez (2015), Section C], when T is larger than N2 and under the
moment condition (N-2), we can get via a more involved aggregation procedure, a
convex regret bound with a remaining term of the same order N/T up to a (logT )3

factor [see Giraud, Roueff and Sanchez-Perez (2015), inequality (C.7), page 8]. Let
us now compare our bound (2.15) in case (ii) to optimal bounds in the i.i.d. setting
under moment conditions on the noise. Corollary 7.2 and Theorem 8.6 in Audibert
(2009) shows that the optimal aggregation rate is (logN/T )1−2/(p+2) in the i.i.d.
setting with bounded predictors and moment conditions of order p on the noise.
Our remaining term (logN/T )1−2/p in (2.15) is slightly larger, yet an inspection
of the proof of Audibert [(2009), Corollary 7.2] shows that the aggregation rate
would also be (logN/T )1−2/p in this corollary, if the predictors were assumed
to have a moment condition of order p instead of being uniformly bounded (we
are not aware of any lower bound in this setting matching this rate). Finally, when
the data and the predictors are bounded, the best aggregation rate is known to be
(logN)/T in the i.i.d. setting; see, for example, Audibert (2009), Theorem 8.4.
Our bound (2.17) in case (iii) achieves the same rate up to a (logT )2 factor.

3. Time-varying autoregressive (TVAR) model.

3.1. Nonparametric TVAR model.

3.1.1. Vector norms and Hölder smoothness norms. We introduce some pre-
liminary notation before defining the model. In the remainder of this article, vec-
tors are denoted using boldface symbols and |x| denotes the Euclidean norm of x,
|x| = (

∑
i |xi |2)1/2.

For β ∈ (0,1] and an interval I ⊆ R, the β-Hölder semi-norm of a function
f : I →R

d is defined by

|f|β = sup
0<|s−s′|<1

|f(s) − f(s′)|
|s − s′|β .
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This semi-norm is extended to any β > 0 as follows. Let k ∈ N and α ∈ (0,1] be
such that β = k + α. If f is k times differentiable on I , we define

|f|β = ∣∣f(k)
∣∣
α,

and |f|β = ∞ otherwise. We consider the case I = (−∞,1]. For R > 0 and β > 0,
the (β,R)-Hölder ball is denoted by

d(β,R) = {
f : (−∞,1] → R

d, such that |f|β ≤ R
}
.

3.1.2. TVAR parameters in rescaled time. The idea of using a rescaled time
with the sample size T for the TVAR parameters goes back to Dahlhaus (1996).
Since then, it has always been a central example of locally stationary linear pro-
cesses. In this setting, the time varying autoregressive coefficients and variance
which generate the observations Xt,T for 1 ≤ t ≤ T are represented by functions
from [0,1] to R

d and from [0,1] to R+, respectively. The definition sets of these
functions are extended to (−∞,1] in the following definition.

DEFINITION 2 (TVAR model). Let d ≥ 1. Let θ1, . . . , θd and σ be functions
defined on (−∞,1] and (ξt )t∈Z be a sequence of i.i.d. random variables with zero
mean and unit variance. For any T ≥ 1, we say that (Xt,T )t≤T is a TVAR pro-
cess with time varying parameters θ1, . . . , θd, σ 2 sampled at frequency T −1 and
normalized innovations (ξt ) if the two following assertions hold:

(i) The process X fulfills the time varying autoregressive equation

Xt,T =
d∑

j=1

θj

(
t − 1

T

)
Xt−j,T + σ

(
t

T

)
ξt for − ∞ < t ≤ T .(3.1)

(ii) The sequence (Xt,T )t≤T is bounded in probability,

lim
M→∞ sup

−∞<t≤T

P
(|Xt,T | > M

) = 0.

This definition extends the usual definition of TVAR processes, where the time
varying parameters θ1, . . . , θd and σ 2 are assumed to be constant on R−; see, for
example, Dahlhaus [(1996), page 144]. The TVAR model is generally used for the
sample (Xt,T )1≤t≤T . The definition of the process for negative times t can be seen
as a way to define initial conditions for X1−d,T , . . . ,X0,T , which are then sufficient
to compute (Xt,T )1≤t≤T by iterating (3.1). However, in the context of prediction,
it can be useful to consider predictors X̂t,T which may rely on historical data Xs,T

arbitrarily far away in the past, that is, with s tending to −∞. To cope with this
situation, our definition of the TVAR process (Xt,T ) holds for all time indices
−∞ < t ≤ T and we use the following definition for predictors.
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DEFINITION 3 (Predictor). For all 1 ≤ t ≤ T , we say that X̂t,T is a predictor
of Xt,T if it is Ft−1,T -measurable, where

Ft,T = σ(Xs,T , s = t, t − 1, t − 2, . . .)(3.2)

is the σ -field generated by (Xs,T )s≤t . For any T ≥ 1, we denote by PT the set of
sequences X̂T = (X̂t,T )1≤t≤T of predictors for (Xt,T )1≤t≤T , that is, the set of all
processes X̂T = (X̂t,T )1≤t≤T adapted to the filtration (Ft−1,T )1≤t≤T .

In this general framework, the time t = 1 corresponds to the beginning of the
aggregation procedure. Such a framework applies in two practical situations. In
the first one, we start collecting data Xt,T at t ≥ 1 and compute several predictors
X̂

(j)
t,T , j = 1, . . . ,N from them. Thus, the resulting aggregated predictor only de-

pends on (Xs,T )1≤s≤t−1. A somewhat different situation is when historical data is
available beforehand the aggregation step, so that a given predictor X̂

(j)
t,T is allowed

to depend also on data Xs,T with s ≤ 0, while the aggregation step only starts at
t ≥ 1, and thus depends on the data (Xs,T )s≤0 only through the predictors. It is im-
portant to note that, in contrast to the usual stationary situation, having observed
the process Xs,T for infinitely many s’s in the past (for all s ≤ t − 1) is not so
decisive for deriving a predictor of Xt,T , since observations far away in the past
may have a completely different statistical behavior.

3.1.3. Stability conditions. The next proposition proves that under standard
stability conditions on the time varying parameters θ1, . . . , θd and σ 2, condi-
tion (ii) in Definition 2 ensures the existence and uniqueness of the solution of
equation (3.1) for t ≤ 0 (and thus for all t ≤ T ). We define the time varying au-
toregressive polynomial by

θ(z;u) = 1 −
d∑

j=1

θj (u)zj .

Let us denote, for any δ > 0,

sd(δ) = {
θ : (−∞,1] → R

d, θ(z;u) �= 0,∀|z| < δ−1, u ∈ [0,1]}.(3.3)

Define, for β > 0, R > 0, δ ∈ (0,1), ρ ∈ [0,1] and σ+ > 0, the class of param-
eters

C(β,R, δ, ρ, σ+)

= {
(θ , σ ) : (−∞,1] → R

d × [ρσ+, σ+] : θ ∈ d(β,R) ∩ sd(δ)
}
.

The definition of the class C is very similar to that of Moulines, Priouret and
Roueff (2005). The domain of definition in their case is [0,1] whereas it is (−∞,1]
in ours. We have the following stability result.
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PROPOSITION 1. Assume that the time varying AR coefficients θ1, . . . , θd are
uniformly continuous on (−∞,1] and the time varying variance σ 2 is bounded
on (−∞,1]. Assume moreover that there exists δ ∈ (0,1) such that θ ∈ sd(δ).
Then there exists T0 ≥ 1 such that, for all T ≥ T0, there exists a unique process
(Xt,T )t≤T which satisfies (i) and (ii) in Definition 2. This solution admits the linear
representation

Xt,T =
∞∑

j=0

at,T (j)σ

(
t − j

T

)
ξt−j , −∞ < t ≤ T ,(3.4)

where the coefficients (at,T (j))t≤T ,j≥0 satisfy that for any δ1 ∈ (δ,1),

K̄ = sup
T ≥T0

sup
−∞<t≤T

sup
j≥0

δ
−j
1

∣∣at,T (j)
∣∣ < ∞.

Moreover, if (θ , σ ) ∈ C(β,R, δ,0, σ+) for some positive constants β , R and σ+,
then the constants T0 and K̄ can be chosen only depending on δ1, δ, β and R.

A proof of Proposition 1 is provided in Appendix. This kind of result is classi-
cal under various smoothness assumptions on the parameters and initial conditions
for X1−k,T , k = 1, . . . , d . For instance, in Dahlhaus and Polonik (2009), bounded
variations and a constant θ for negative times are used for the smoothness assump-
tion on θ and for defining the initial conditions. The linear representation (3.4)
of TVAR processes was first obtained in the seminal papers Dahlhaus (1996),
Künsch (1995). We note that an important consequence of Proposition 1 is that
for any T ≥ T0, the process (Xt,T )t≤T satisfies assumption (M-1) with Zt = |ξt |
and At(j) = |at,T (j)σ ((t − j)/T )| for j ≥ 0. Moreover, the constant A∗ in (2.2)
is bounded independently of T , and we have, for all (θ , σ ) ∈ C(β,R, δ,0, σ+),

A∗ ≤ K̄σ+
1 − δ1

,(3.5)

where K̄ > 0 and δ1 ∈ (0,1) can be chosen only depending on δ, β and R.

3.1.4. Main assumptions. Based on Proposition 1, given an i.i.d. sequence
(ξt )t∈Z and constants δ ∈ (0,1), ρ ∈ [0,1], σ+ > 0, β > 0 and R > 0, we con-
sider the following assumption.

(M-2) The sequence (Xt,T )t≤T is a TVAR process with time varying standard
deviation σ , time varying AR coefficients θ1, . . . , θd and innovations (ξt )t∈Z, and
(θ , σ ) ∈ C(β,R, δ, ρ, σ+).

Let ξ denote a generic random variable with the same distribution as the ξt ’s.
Under assumption (M-2), the distribution of (Xt,T )1−d≤t≤T only depends on that
of ξ and on the functions θ and σ . For a given distribution ψ on R for ξ , we
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denote by P
ψ
(θ,σ ) the probability distribution of the whole sequence (Xt,T )t≤T and

by E
ψ
(θ,σ ) its corresponding expectation.

The next two assumptions on the innovations are useful to prove upper bounds
of the prediction error.

(I-1) The innovations (ξt )t∈Z satisfy mp := E[|ξ |p] < ∞.
(I-2) The innovations (ξt )t∈Z satisfy φ(ζ ) := E[eζ |ξ |] < ∞.

The following one will be used to obtain a lower bound.

(I-3) The innovations (ξt )t∈Z admit a density f such that

κ = sup
v �=0

v−2
∫

f (u) log
f (u)

f (u + v)
du < ∞.

Assumption (I-3) is standard for proving lower bounds in nonparametric regres-
sion estimation, see Tsybakov (2009), Chapter 2. It is satisfied by Gaussian density
with κ = 1.

3.1.5. Nonparametric setting. The setting of Definition 2 and of assumptions
derived thereafter is essentially nonparametric, since for given initial distribu-
tion ψ , the distribution of the observations X1,T , . . . ,XT,T are determined by the
unknown parameter function (θ , σ ). The doubly indexed Xt,T refers to the fact
that this distribution cannot be seen as a distribution on R

Z marginalized on R
T

as the usual time series setting but rather as a sequence of distributions on R
T

indexed by T . It corresponds to the usual nonparametric approach for studying
statistical inference based on this model. In this contribution, we focus on the pre-
diction problem, which is to answer the question: for given smoothness conditions
on (θ , σ ), what is the mean prediction error for predicting Xt,T from its past? The
standard nonparametric approach is to answer this question in a minimax sense by
determining, for a given sequence of predictors X̂T = (X̂t,T )1≤t≤T , the maximal
risk

ST (X̂T ;ψ,β,R, δ, ρ, σ+)
(3.6)

= sup
(θ ,σ )

1

T

T∑
t=1

(
E

ψ
(θ ,σ )

[
(X̂t,T − Xt,T )2] − σ 2

(
t

T

))
,

where:

(a) X̂T is assumed to belong to PT as in Definition 3,
(b) the sup is taken over (θ , σ ) ∈ C(β,R, δ, ρ, σ+) within a smoothness class

of functions,
(c) the expectation E

ψ
(θ,σ ) is that associated to assumption (M-2).
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The reason for subtracting the average σ 2(t/T ) over all 1 ≤ t ≤ T in this predic-
tion risk is that it corresponds to the best prediction risk, would the parameters
(θ , σ ) be exactly known. We observe that dividing Xt,T by the class parameter σ+
amounts to take σ+ = 1. In addition, we have

ST (X̂T ;ψ,β,R, δ, ρ, σ+) = σ 2+ST

(
X̂T σ−1+ ;ψ,β,R, δ, ρ,1

)
,

so the prediction problem in the class C(β,R, δ, ρ, σ+) can be reduced to the pre-
diction problem in the class C(β,R, δ, ρ,1). Accordingly, we define the reduced
minimax risk by

MT (ψ,β,R, δ, ρ)

= inf
X̂T ∈PT

ST (X̂T ;ψ,β,R, δ, ρ,1)(3.7)

= inf
X̂T ∈PT

σ−2+ ST (X̂T ;ψ,β,R, δ, ρ, σ+) for all σ+ > 0.

In Section 3.2, we provide a lower bound of the minimax rate in the case where
the smoothness class is of the form C(β,R, δ, ρ, σ+). Then, in Section 3.3, relying
on the aggregation oracle bounds of Section 2.3, we derive an upper bound with the
same rate as the lower bound using the same smoothness class of the parameters.
Moreover, we exhibit an online predictor which does not require any knowledge
about the smoothness class and which is thus minimax adaptive. In other words,
it is able to adapt to the unknown smoothness of the parameters from the data. To
our knowledge, such theoretical results are new for locally stationary models.

3.2. Lower bound. A lower bound on the minimax rate for the estimation er-
ror of θ is given by Moulines, Priouret and Roueff [(2005), Theorem 4]. Clearly,
a predictor

X̂t,T =
d∑

k=1

θ̂ t,T (k)Xt−k,T

can be defined from an estimator θ̂ t,T , and the resulting prediction rate can be con-
trolled using the estimation rate (see Giraud, Roueff and Sanchez-Perez [(2015),
Section B.1] for the details). The next theorem provides a lower bound of the min-
imax rate of the risk of any predictor of the process (Xt,T )1≤t≤T . Combining this
result with [Giraud, Roueff and Sanchez-Perez (2015), Lemma 9], we show that a
predictor obtained by [Giraud, Roueff and Sanchez-Perez (2015), equation (B.1)]
from a minimax rate estimator of θ automatically achieves the minimax prediction
rate.

THEOREM 3.1. Let δ ∈ (0,1), β > 0, R > 0 and ρ ∈ [0,1]. Suppose that
assumption (M-2) holds and assume (I-3) on the distribution ψ of the innovations.
Then we have

lim inf
T →∞ T 2β/(1+2β)MT (ψ,β,R, δ, ρ) > 0,(3.8)
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where MT is defined in (3.7).

The proof is postponed to Section 5.

3.3. Minimax adaptive forecasting of the TVAR process. In Arkoun (2011), an
adaptive estimator of the autoregressive function of a Gaussian TVAR process of
order 1 is studied. It relies on the Lepskiı̆’s procedure [see Lepskiı̆ (1990)], which
seems difficult to implement in an online context.

Our minimax adaptive predictor is based on the aggregation of sufficiently many
predictors, assuming that at least one of them converges at the minimax rate. The
oracle bounds found in Section 2.3 imply that the aggregated predictor is minimax
rate adaptive under appropriate assumptions. Seminal works using the aggregation
to adapt to the minimax convergence rate are Yang (2000a) (nonparametric regres-
sion) and Yang (2000b) (density estimation); see also Catoni (2004) for a more
general presentation.

In the TVAR model (M-2), it is natural to consider L-Lipschitz predictors
(X̂t,T )1≤t≤T of (Xt,T )1≤t≤T with a sequence L supported on {1, . . . , d}. Then
L∗ in (2.7) corresponds to the maximal �1-norm of the TVAR parameters. Since
for the process itself to be stable, this norm has to be bounded independently of T ,
condition (L-1) is a quite natural assumption for the TVAR model; see Giraud,
Roueff and Sanchez-Perez [(2015), Section B.1] for the details.

A practical advantage of the proposed procedures is that, given a set of pre-
dictors that behaves well under specific smoothness assumptions, we obtain an
aggregated predictor which performs almost as well as or better than the best of
these predictors, hence which behaves well without any prior knowledge on the
smoothness of the unknown parameter. Such an adaptive property can be formally
demonstrated by exhibiting an adaptive minimax rate for the aggregated predictor
which coincides with the lower bound given in Theorem 3.1.

The first ingredient that we need is the following.

DEFINITION 4 [(ψ,β)-minimax-rate predictor]. Let ψ be a distribution on R

and β > 0. We say that X̂ = (X̂T )T ≥1 is a (ψ,β)-minimax-rate sequence of pre-
dictors if, for all T ≥ 1, X̂T ∈ PT and, for all δ ∈ (0,1), R > 0, ρ ∈ (0,1] and
σ+ > 0,

lim sup
T →∞

T 2β/(1+2β)ST (X̂T ;ψ,β,R, δ, ρ, σ+) < ∞,(3.9)

where ST is defined by (3.6).

The term minimax-rate in this definition refers to the fact that the maximal rate
in (3.9) is equal to the minimax lower bound (3.8) for the class C(β,R, δ, ρ, σ+).
We explain in Giraud, Roueff and Sanchez-Perez [(2015), Section B] how to build
such predictors which are moreover L-Lipschitz for some L only depending on d .
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To adapt to an unknown smoothness, we rely on a collection of (ψ,β)-minimax-
rate predictors with β within (0, β0), where β0 is the (possibly infinite) maximal
smoothness index.

DEFINITION 5 (Locally bounded set of ψ-minimax-rate predictors). Let ψ be
a distribution on R and β0 ∈ (0,∞]. We say that {X̂(β), β ∈ (0, β0)} is a locally
bounded set of ψ-minimax-rate predictors if for each β , X̂(β) is a (ψ,β)-minimax-
rate predictor and if moreover, for all δ ∈ (0,1), R > 0, ρ ∈ (0,1], σ+ > 0 and for
each closed interval J ⊂ (0, β0),

lim sup
T →∞

sup
β∈J

T 2β/(1+2β)ST

(
X̂

(β)
T ;ψ,β,R, δ, ρ, σ+

)
< ∞,

where ST is defined by (3.6).

The following lemma shows that, given a locally bounded set of minimax-rate
predictors, we can always pick a finite subset of at most N = �(logT )2� predictors
among which the best one achieves the minimax rate of any unknown smoothness
index.

LEMMA 1. Let ψ be a distribution on R. Let β0 ∈ (0,∞] and {X̂(β), β ∈
(0, β0)} be a corresponding locally bounded set of ψ-minimax-rate predictors.
Set, for any N ≥ 1,

βi =
{

(i − 1)β0/N, if β0 < ∞,

(i − 1)/N1/2, otherwise,
1 ≤ i ≤ N.(3.10)

Suppose moreover, in the case where β0 < ∞, that N ≥ �logT �, and, in the case
where β0 = ∞, that N ≥ �(logT )2�. Then we have, for all β ∈ (0, β0), δ ∈ (0,1),
R > 0, ρ > 0 and σ+ > 0,

lim sup
T →∞

T 2β/(1+2β) min
i=1,...,N

ST

(
X̂

(βi)
T ;ψ,β,R, δ, ρ, σ+

)
< ∞.

The proof of this lemma is postponed to Giraud, Roueff and Sanchez-Perez
[(2015), Section A.8]. Lemma 1 says that to obtain a minimax-rate predictor which
adapts to an unknown smoothness index β , it is sufficient to select it judiciously
among logT or (logT )2 well chosen nonadaptive minimax-rate predictors.

As a consequence of Theorem 2.1 and Lemma 1, we obtain an adaptive pre-
dictor by aggregating them (instead of selecting one of them), as stated in the
following result.

THEOREM 3.2. Let ψ be a distribution on R. Let β0 ∈ (0,∞] and {X̂(β), β ∈
(0, β0)} be a locally bounded set of ψ-minimax-rate and L-Lipschitz predictors
with L satisfying (L-1). Define (X̂t,T )1≤t≤T as the predictor aggregated from
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{X̂(βi),1 ≤ i ≤ N} with N defined by

N =
{ �logT �, if β0 < ∞,⌈

(logT )2⌉, otherwise,
(3.11)

βi defined by (3.10), and with weights defined according to one of the following
setting depending on the assumption on ψ and β0:

(i) If ψ satisfies (I-1) with p ≥ 4 and β0 ≤ 1/2, use the weights (2.5) with
η = σ−2+ (log(�logT �)/T )1/2.

(ii) If ψ satisfies (I-1) with p > 2 and β0 ≤ (p − 2)/4, use the weights (2.6)
with η = σ−2+ (log(�logT �)/T )2/p .

(iii) If ψ satisfies (I-2), use the weights (2.6) with η = σ−2+ (logT )−3.

Then we have, for any β ∈ (0, β0), δ ∈ (0,1), R > 0, ρ ∈ (0,1] and σ+ > 0,

lim sup
T →∞

T 2β/(1+2β)ST (X̂T ;ψ,β,R, δ, ρ, σ+) < ∞.(3.12)

The proof of this theorem is postponed to Giraud, Roueff and Sanchez-Perez
[(2015), Section A.9].

REMARK 5. The limitation to β0 ≤ 1/2 in (i) under assumption (I-1) for ψ

follows from the factor (logN/T )1/2 obtained in the oracle inequality (2.8) of
Theorem 2.1 after optimizing in η [see (2.13)]. If p > 4 this restriction is weakened
to β0 ≤ (p − 2)/4 in (ii) taking into account the factor (logN/T )1−2/p obtained
in the oracle inequality (2.9) of Theorem 2.1 after optimizing in η [see (2.15)]. In
the last case, the limitation of β0 drops when applying the oracle inequality (2.11)
of the same theorem. However, a stronger condition on ψ is then required.

REMARK 6. It may happen that the locally bounded set of ψ-minimax-rate
predictors is limited to some β0 < ∞ [see the example of the NLMS predictors
in Giraud, Roueff and Sanchez-Perez (2015), Section B.2]. In this case, the result
roughly needs logT predictors and the computation of the aggregated one requires
less operations than if β0 were infinite. For these reasons, we do not consider in
general that β0 = ∞. On the one hand, a finite β0 yields a restriction on the set of
(unknown) smoothness indices β for which the aggregated predictors are minimax
rate adaptive. On the other hand, if β0 = ∞, Theorem 3.2 then requires the stronger
assumption (I-2) on the process.

REMARK 7. The constant σ−2+ present in the definitions of η in the three
cases (i), (ii) and (iii) corresponds to the homogenization of the remaining terms
appearing in Theorem 2.1 [the second lines of (2.8), (2.9) and (2.11)]. Indeed with
the proposed choices and in the three cases, the constant σ 2+ factors out in front of
the remaining terms [see the last three displayed equations in Giraud, Roueff and
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Sanchez-Perez (2015), Section A.9]. However, the σ−2+ in the definitions of η does
not impact the convergence rate in the sense that Theorem 3.2 is still valid using
any other constant (1, e.g.) in these definitions.

4. Proofs of the upper bounds.

4.1. Preliminary results. We start with a lemma which gathers useful adapta-
tions of well-known inequalities applying to the aggregation of deterministic pre-
dicting sequences.

LEMMA 2. Let (xt )1≤t≤T be a real valued sequence and {(x̂(i)
t )1≤t≤T ,1 ≤ i ≤

N} be a collection of predicting sequences. Define (x̂t )1≤t≤T as the sequence of
aggregated predictors obtained from this collection with the weights (2.5). Then,
for any η > 0, we have

1

T

T∑
t=1

(x̂t − xt )
2 ≤ inf

ν∈SN

1

T

T∑
t=1

(
x̂

[ν]
t − xt

)2 + logN

T η
+ 2η

T

T∑
t=1

y4
t ,(4.1)

where yt = |xt | + max1≤i≤N |x̂(i)
t |.

Define now (x̂t )1≤t≤T as the sequence of aggregated predictors obtained with
the weights (2.6). Then, for any η > 0, we have

1

T

T∑
t=1

(x̂t − xt )
2

(4.2)

≤ min
i=1,...,N

1

T

T∑
t=1

(
x̂

(i)
t − xt

)2 + logN

T η
+ 1

T

T∑
t=1

(
y2
t − 1

2η

)
+
,

where yt = |xt | + max1≤i≤N |x̂(i)
t |.

PROOF. With the weights defined by (2.5), by slightly adapting [Stoltz (2011),
Theorem 1.7], we have that

1

T

T∑
t=1

(x̂t − xt )
2 − inf

ν∈SN

1

T

T∑
t=1

(
x̂

[ν]
t − xt

)2 ≤ logN

T η
+ η

8T
s∗
T ,

where s∗
T = ∑T

t=1 s2
t and st = 2 max1≤i≤N |2(

∑N
j=1 α̂j,t x̂

(j)
t − xt )x̂

(i)
t |. The bound

(4.1) follows by using that {α̂i,t }1≤i≤N is in the simplex SN defined in (2.4).
We now prove (4.2). We adapt the proof of Catoni [(2004), Proposition 2.2.1.]

to unbounded sequences by replacing the convexity argument by the following
lemma.
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LEMMA 3. Let a > 0 and P a probability distribution supported on [−a, a].
Then we have∫

exp
(−x2)dP(x) ≤ exp

(
−
(∫

x dP(x)

)2
+

(
a2 − 1

2

)
+

)
.

The proof of Lemma 3 is postponed to Section A.3 in Appendix. Now, let η > 0
and t = 1, . . . , T . Using Lemma 3 with the probability distribution P defined by
P(A) = ∑N

i=1 α̂i,t1A(η1/2(x̂
(i)
t − xt )) and a = η1/2yt , we get that

N∑
i=1

α̂i,t exp
(−η

(
x̂

(i)
t − xt

)2) ≤ exp
(
−η(x̂t − xt )

2 + η

(
y2
t − 1

2η

)
+

)
.

Taking the log, multiplying by −η−1 and re-ordering the terms, we obtain that

(x̂t − xt )
2 ≤ −1

η
log

(
N∑

j=1

α̂i,t exp
(−η

(
x̂

(i)
t − xt

)2))

+
(
y2
t − 1

2η

)
+
.

Taking the average over t = 1, . . . , T and developing the expression of α̂i,t , we
obtain

1

T

T∑
t=1

(xt − x̂t )
2 ≤ − 1

ηT
log

(
1

N

N∑
i=1

exp

(
−η

T∑
t=1

(
x̂

(i)
t − xt

)2
))

(4.3)

+ 1

T

T∑
t=1

(
y2
t − 1

2η

)
+
.

Using that
∑N

i=1 exp(−η
∑T

t=1(x̂
(i)
t − xt )

2) ≥ exp(−η mini=1,...,N

∑T
t=1(x̂

(i)
t −

xt )
2), we get the bound (4.2). �

4.2. Proof of Theorem 2.1. We prove the cases (i), (ii) and (iii) successively.
We denote Yt = |Xt | + max1≤i≤N |X̂(i)

t |.
Case (i). Applying (4.1) in Lemma 2 with E[inf · · ·] ≤ infE[· · ·], we obtain

1

T

T∑
t=1

E
[
(X̂t − Xt)

2] ≤ inf
ν∈SN

1

T

T∑
t=1

E
[(

X̂
[ν]
t − Xt

)2]
(4.4)

+ logN

T η
+ 2η

T

T∑
t=1

E
[
Y 4

t

]
.



2434 C. GIRAUD, F. ROUEFF AND A. SANCHEZ-PEREZ

Using that the predictors are L-Lipschitz and the process (Xt)t∈Z satisfies (M-1),
we have, for all 1 ≤ t ≤ T ,

Yt = |Xt | + max
1≤i≤N

∣∣X̂(i)
t

∣∣
≤ ∑

j∈Z
At(j)Zt−j + ∑

s≥1

∑
j∈Z

LsAt−s(j)Zt−s−j(4.5)

≤ ∑
j∈Z

Bt(j)Zt−j ,

where

Bt(j) = At(j) + ∑
s≥1

LsAt−s(j − s).

Applying the Minkowski inequality together with (4.5), (2.2) and (2.7), we obtain,
for all 1 ≤ t ≤ T ,

E
[
Y 4

t

] ≤ E

[(∑
j∈Z

Bt(j)Zt−j

)4]
≤ A4∗(1 + L∗)4 sup

t∈Z
E
[
Z4

t

]
.

Since the process Z fulfills (N-1) with p = 4, plugging this bound in (4.4) we
obtain (2.8).

Case (ii). We use (4.2) in Lemma 2 and the inequality (x2 − 1/(2η))+ ≤
(2η)p/2−1xp which holds for x ≥ 0 and p ≥ 2. We get, taking the expectation,

1

T

T∑
t=1

E
[
(X̂t,T − Xt,T )2] ≤ min

i=1,...,N

1

T

T∑
t=1

E
[(

X̂
(i)
t,T − Xt,T

)2] + logN

T η

(4.6)
+ (2η)p/2−1 max

t=1,...,T
E
[
Y

p
t

]
.

Applying the Minkowski inequality, (4.5) and assumption (N-2),

E
[
Y

p
t

] ≤
(∑

j∈Z

Bt(j)
(
E
[
Z

p
t−j

])1/p
)p

≤ Ap∗ (1 + L∗)p sup
t∈Z

E
[
Z

p
t

]
.

Using this bound which is independent of t , with (N-1) and (4.6), the inequal-
ity (2.9) follows.

Case (iii). To obtain (2.11), we again use (4.2) in Lemma 2 but now with an
exponential bound for (Y 2

t − 1/(2η))+. We note that, or all u > 0,

sup
x≥1

(
x2 − 1

)
e−ux = (

x2
0 − 1

)
e−ux0 with x0 = u−1(1 + (

1 + u2)1/2)
.

It follows that, for all x ∈ R and u > 0,(
x2 − 1

)
+ ≤ eux(x2

0 − 1
)
e−ux0 ≤ eux2u−2(2 + u)e−1−u.



AGGREGATION OF PREDICTORS 2435

Applying this bound with x = (2η)1/2Yt and u = λ(2η)−1/2 we get(
Y 2

t − 1

2η

)
+

= (2η)−1(x2 − 1
)
+ ≤ 2λ−2(2 + λ(2η)−1/2)e−1−λ(2η)−1/2

eλYt .

Plugging this into (4.2) and taking the expectation, we obtain that

1

T

T∑
t=1

E
[
(X̂t,T − Xt,T )2]

≤ min
i=1,...,N

1

T

T∑
t=1

E
[(

X̂
(i)
t,T − Xt,T

)2] + logN

T η
(4.7)

+ 2λ−2(2 + λ(2η)−1/2)e−1−λ(2η)−1/2
max

t=1,...,T
E
[
eλYt

]
.

We now use assumption (N-2). Since Bt(j) ≤ a∗(1 + L∗) for all j, t ∈ Z and∑
j∈Z

Bt(j) ≤ A∗(1 + L∗),

Jensen’s inequality and (4.5) gives that, for any λ ≤ ζ/(a∗(1 + L∗)),

E
[
eλYt

] ≤ E
[
eλ(|Xt |+max1≤i≤N |X̂(i)

t |)]
≤ ∏

j∈Z
E
[
eλBt (j)Zt−j

]
≤ ∏

j∈Z

(
φ(ζ )

)λBt (j)/ζ ≤ (
φ(ζ )

)λA∗(1+L∗)/ζ .

The combination of this bound with (4.7) gives (2.11). The proof of Theo-
rem 2.1 is complete.

4.3. Proof of case (iii) in Corollary 1. Minimizing the sum of the two terms
appearing in the second line of (2.11) is a bit more involved, since it depends
both on η and λ. Under condition (2.10), the quantity (φ(ζ ))λA∗(1+L∗)/ζ remains
between two positive constants while, for any η > 0, λ−2(2 + λ(2η)−1/2) is de-
creasing as λ increases. To simplify (φ(ζ ))λA∗(1+L∗)/ζ into φ(ζ ), we simply take

λ = ζ

A∗(1 + L∗)
,

which satisfies (2.10). Now that λ is set, it remains to choose a value of η which
(almost) minimizes

logN

T η
+ 2φ(ζ )

e
λ−2(2 + λ(2η)−1/2)e−λ(2η)−1/2

.

The η defined as in (2.16) is chosen so that (logN)/T = e−λ(2η)−1/2
, and we

get (2.17).
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5. Proof of the lower bound. We now provide a proof of Theorem 3.1. We
consider an autoregressive equation of order one

Xt,T = θ

(
t − 1

T

)
Xt−1,T + ξt ,(5.1)

where (ξt )t∈Z is i.i.d. with density f as in (I-3). In this case, if supu≤1 |θ(u)| < 1,
the representation (3.4) of the stationary solution reads, for all t ≤ T as

Xt,T =
∞∑

j=0

j∏
s=1

θ

(
t − s

T

)
ξt−j ,(5.2)

with the convention
∏0

s=1 θ((t − s)/T ) = 1. The class of models so defined
with θ ∈ 1(β,R) ∩ s1(δ) corresponds to assumption (M-2) with (θ , σ ) in
C(β,R, δ, ρ,1) such that only the first component of θ is nonzero and σ is constant
and equal to one.

We write henceforth in this proof Pθ for the law of the process X =
(Xt,T )t≤T ,T ≥1 and Eθ for the corresponding expectation.

Let X̂ = (X̂t,T )1≤t≤T be any predictor of (Xt,T )1≤t≤T in the sense of Defini-
tion 3. Define θ̂ = (θ̂t,T )0≤t≤T −1 ∈R

T by

θ̂t,T =
{

X̂t+1,T /Xt,T , if Xt,T �= 0,
0, otherwise.

For any vectors u,v ∈ R
T , we define

dX(u,v) =
(

1

T

T −1∑
t=0

X2
t,T (ut − vt )

2

)1/2

.(5.3)

By (5.1), since Xt,T and θ̂t,T are Ft,T -measurable, they are independent of ξt+1
and we have

1

T

T∑
t=1

Eθ

[
(X̂t,T − Xt,T )2] − 1 = Eθ

[
d2
X

(
θ̂ ,vT {θ})],

where, for any θ : (−∞,1] → R, vT {θ} ∈ R
T denotes the T -sample of θ on the

regular grid 0,1/T , . . . , (T − 1)/T ,

vT {θ} =
(
θ

(
t

T

))
0≤t≤T −1

.

Hence, to prove the lower bound of Theorem 3.1, it is sufficient to show that
there exist θ0, . . . , θM ∈ 1(β,R) ∩ s1(δ), c > 0 and T0 ≥ 1 both depending only
on δ, β , R and the density f , such that for any θ̂ = (θ̂t,T )0≤t≤T −1 adapted to
(Ft,T )0≤t≤T −1 and T ≥ T0, we have

max
j=0,...,M

Eθj

[
d2
X

(
θ̂ ,vT {θj })] ≥ cT −2β/(2β+1).(5.4)
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We now face the more standard problem of providing a lower bound for the mini-
max rate of an estimation error, since θ̂ is an estimator of vT {θ}. The path for de-
riving such a lower bound is explained in [Tsybakov (2009), Chapter 2]. However,
we have to deal with a loss function dX which depends on the observed process X.
Not only the loss function is random, but it is also not independent of the estima-
tor θ̂ . The proof of the lower bound (5.4) thus requires nontrivial adaptations. It
relies on some intermediate lemmas.

LEMMA 4. We write K(P,P′) for the Kullback–Leibler divergence between P

and P
′. For any functions θ0, . . . , θM from [0,1] to R such that

max
j=0,...,M

K(Pθj
,Pθ0) ≤ 2e

2e + 1
log(1 + M)(5.5)

and any r > 0 we have

max
j=0,...,M

Eθj

[
d2
X

(
θ̂ ,vT {θ1})]

≥ r2

4

(
1

2e + 1
− max

j=0,...,M
Pθj

(
min
i:i �=j

dX,T (θi, θj ) ≤ r
))

,

where we denote, for any two functions θ, θ ′ from (−∞,1] to R,

dX,T

(
θ, θ ′) = dX

(
vT {θ},vT {θ ′}).

The proof is postponed to Section A.4 in Appendix.
We next construct certain functions θ0, . . . , θM ∈ 1(β,R) ∩ s1(δ) fulfill-

ing (5.5) and well spread in terms of the pseudo-distance dX,T . Consider the in-
finitely differentiable kernel K defined by

K(u) = exp
(
− 1

1 − 4u2

)
1|u|<1/2.

Given any m ≥ 8, Vershamov–Gilbert’s lemma [Tsybakov (2009), Lemma 2.9]
ensures the existence of M + 1 points w(0), . . . ,w(M) in the hypercube {0,1}m
such that

M ≥ 2m/8, w(0) = 0 and card
{
� : w(j)

� �= w
(i)
�

} ≥ m/8
(5.6)

for all j �= i.

We then define θ0, . . . , θM by setting, for all x ≤ 1,

θj (x) = R0

mβ

m∑
�=1

w
(j)
l K

(
mx − � + 1

2

)
for j = 0, . . . ,M,(5.7)

where

R0 = min
(
δ,

R

(2|K|β)

)
.(5.8)
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Since K = 0 out of (−1/2,1/2), we observe that

θj (x) = 0 for all x ≤ 0,(5.9)

and

θj (x) = R0

mβ
w

(j)
�mx�+1K

(
{mx} − 1

2

)
for all x ∈ [0,1],(5.10)

where {mx} = mx − �mx� denotes the fractional part of mx. Thus, we have

θ∗ := max
0≤j≤M

sup
x∈[0,1]

∣∣θj (x)
∣∣ ≤ R0e−1

mβ
≤ δ < 1.(5.11)

We first check that the definition of R0 ensures that the θj ’s are in the expected set
of parameters.

LEMMA 5. For all j = 0, . . . ,M , we have θj ∈ 1(β,R) ∩ s1(δ).

The proof can be found in Section A.5 of Appendix.
Next, we provide a bound to check the required condition (5.5) on the cho-

sen θj ’s.

LEMMA 6. For all j = 1, . . . ,M , we have

K(Pθj
,Pθ0) ≤ 8e−2κR2

0

(1 − δ2) log 2

T

m1+2β
log(1 + M),

where κ is the constant appearing in (I-3).

We prove it in Section A.6 of Appendix.
Finally, we need a control on the distances d2

X,T (θi, θj ).

LEMMA 7. For any ε > 0, there exists a constant A depending only on ε and
the density f of ξ such that for all m ≥ 16, T ≥ 4m and j = 0, . . . ,M ,

Pθj

(
min
i:i �=j

d2
X,T (θi, θj ) ≤ A

R2
0

m2β

)
≤ ε + 2R0e−3

A(1 − δ)mβ
.(5.12)

The proof is postponed to Section A.7 of Appendix.
We can now complete the proof of Theorem 3.1.

PROOF OF THEOREM 3.1. Recall that θ0, . . . , θM in (5.7) are some parameters
only depending on β and δ and a certain integer m ≥ 8 and that, whatever the value
of m, Lemma 5 insures that θ0, . . . , θM belongs to 1(β,R) ∩ s1(δ).

Hence, it is now sufficient to show that (5.4) holds for a correct choice of m,
relying on Lemmas 4, 6 and 7. Let us set

m = max
{⌈

c0T
1/(2β+1)⌉,16

}
,(5.13)
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where c0 is a constant to be chosen. Then T m−1−2β ≤ c
−1−2β
0 and, by Lemma 6,

we can choose c0 only depending on β , R, κ and δ so that condition (5.5) of
Lemma 4 is met. We thus get that, for any r > 0,

max
j=0,...,M

Eθj

[
d2
X

(
θ̂ ,vT {θj })]

≥ r2

4

(
1

2e + 1
− max

j=0,...,M
Pθj

(
min
i:i �=j

dX,T (θi, θj ) ≤ r
))

.

Applying Lemma 7 with ε = 1/(4e + 2) and the previous bound with r2 =
AR2

0m−2β , we get, as soon as T ≥ 4m,

max
j=0,...,M

Eθj

[
d2
X

(
θ̂ ,vT {θj })] ≥ r2

4

(
1

4e + 2
− 2R0e−1

A(1 − δ)mβ

)
.

The proof is concluded by observing that, as a consequence of (5.13), we can
choose a constant T0 only depending on β , R, κ and δ such that T ≥ T0 implies
that T ≥ 4m and that the term between parentheses is bounded by 1/(8e + 4) from
below. �

6. Numerical experiments. In this section, we test the proposed aggregation
methods on data simulated according to a TVAR process with d = 3. The choice of
a smooth parameter function t �→ θ(t) within sd(δ) for some δ ∈ (0,1) is done by
first picking randomly some smoothly time varying partial autocorrelation func-
tions up to the order d that are bounded between −1 and 1 and then by relying on
the Levinson–Durbin algorithm. We show the three components of the obtained
θ(t) on t ∈ [0,1] in the top parts of Figure 1. Realizations of the TVAR process
are then obtained from an innovation sequence (ξt )t∈Z of i.i.d. centered Gaussian
process with unit variance as in Definition 2 by sampling θ at a given rate T ≥ 1.
Figure 1 displays one realization of such a TVAR process for T = 210.

The NLMS algorithm [see Giraud, Roueff and Sanchez-Perez (2015), Algo-
rithm 1] studied in Moulines, Priouret and Roueff (2005) provides an online es-
timator of θ depending on a gradient step size μ. For any β ∈ (0,1], choosing
μ ∝ T −2β/(2β+1) yields a C(β,R, δ, ρ,1)-minimax-rate online L-Lipschitz pre-
dictor as explained in Giraud, Roueff and Sanchez-Perez (2015), Section B.1.
Hence, proceeding as in Lemma 1 to define N and βi , i = 1, . . . ,N , with β0 = 0.5,
we obtain a finite set of NLMS predictors corresponding to gradient step sizes
μ1 > · · · > μN . This set of predictors is aggregated in two possible ways accord-
ing to the online Algorithm 1 with the specifications on η and N given in The-
orem 3.2. The overall running time of T iterates of the algorithm leading to the
aggregated predictors from the data X1, . . . ,XT is then O(dNT ). Since the algo-
rithm is recursive, the corresponding required storage capacity is O(dN).

We evaluate the obtained NLMS predictors and their aggregated predictors by
running 1000 simulations based on equally distributed realizations of the above
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FIG. 1. The first three plots represent θ1, θ2 and θ3 on the interval [0,1]. The last plot displays
T = 210 samples of the corresponding TVAR process with Gaussian innovations.

Gaussian TVAR process in the case T = 210 which yields N = 7. In Figure 2, we
compare the averaged downward shifted empirical losses defined for any predictor
(X̂t,T )1≤t≤T by

LT = 1

T

T∑
t=1

(
(X̂t,T − Xt,T )2 − σ 2

(
t

T

))
.

This empirical averaged loss mimics the risk considered in (3.6).
We observe that the best NLMS predictor is the third one while the aggregated

predictor of strategy 1 enjoys a smaller loss and that of strategy 2 a slightly larger
one. This is in accordance with Theorem 2.1(i) and (iii) where it is shown that the
aggregated predictor of the first strategy may outperform the best predictor as it
nearly achieves the loss of the best possible convex combination of the original
predictors while the aggregated predictor of the second strategy nearly achieves
the loss of the best original predictor.

APPENDIX: POSTPONED PROOFS

A.1. A useful lemma. The following lemma provides a uniform bound on the
norm of a product of matrices sampled from a continuous function defined on an
interval I and valued in a set of d × d matrices with bounded spectral radius and
norm.
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FIG. 2. The seven boxplots on the left of the vertical red line correspond to the averaged downward
shifted empirical losses LT of the NLMS predictors X̂(1), . . . , X̂(7). The ones on the right of the
same line are those associated to the aggregated predictors using the weights (2.5) and (2.6).

LEMMA 8. Let d ≥ 1 and I an interval of R. Let A be a function defined on
I taking values in the set of d × d matrices with eigenvalues moduli at most equal
to δ. Let | · | be any matrix norm. Denote by A∗ the corresponding uniform norm
of A,

A∗ = sup
t∈I

∣∣A(t)
∣∣,

and, for any h > 0, ωh(A, I) the modulus of continuity of A over I ,

ωh(A; I ) = sup
{∣∣A(t) − A(s)

∣∣ : s, t ∈ I, |s − t | ≤ h
}
.

Let δ1 > δ and assume that A∗ < ∞. Then there exist some positive constants ε,
� and K only depending on A∗, δ and δ1 such that, for any h ∈ (0,1) fulfilling
ωh(A; I ) ≤ ε, we have, for all s < t in I and all integer p ≥ �(t − s)/h,∣∣∣∣A(t)A

(
t − t − s

p

)
A

(
t − 2(t − s)

p

)
· · ·A(s)︸ ︷︷ ︸

p+1 terms

∣∣∣∣ ≤ Kδ
p+1
1 .(A.1)

PROOF. Denote by �(s, t;p) the product of matrices appearing in the left-
hand side of (A.1). The proof goes along the same lines as [Moulines, Priouret and
Roueff (2005), Proposition 13] but we use the modulus of continuity instead of the
β-Lipschitz norm to control the local oscillation of matrices.
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For �1 ≥ 1 and any square matrices A1, . . . ,A�1 , adopting the convention∏i2
i=i1

Ai = Ai1 · · ·Ai2 if i1 ≤ i2 and
∏i2

i=i1
Ai is the identity matrix if i1 > i2, we

have
�1∏

k=1

Ak = A
�1
1 +

�1−1∑
k=1

(
A

�1−k
1

�1∏
i=�1−k+1

Ai − A
�1−(k−1)
1

�1∏
i=�1−k+2

Ai

)
(A.2)

= A
�1
1 +

�1−1∑
k=1

A
�1−k
1 (A�1−k+1 − A1)

�1∏
i=�1−k+2

Ai.

Given a positive integer �, using the Euclidean division of p + 1 by �, p + 1 =
�q + r , we decompose the product �(s, t;p) as

�(s, t;p) =
q−1∏
j=0

(
�∏

k=1

A

(
t − (j� + k − 1)(t − s)

p

))
(A.3)

×
r∏

k=1

A

(
t − (q� + k − 1)(t − s)

p

)
.

Using (A.2), we have for any h ≥ �(t − s)/p, 0 ≤ j ≤ q and 0 ≤ �1 ≤ �,∣∣∣∣∣
�1∏

k=1

A

(
t − (j� + k − 1)(t − s)

p

)∣∣∣∣∣
(A.4)

≤
∣∣∣∣(A

(
t − j�(t − s)

p

))�1
∣∣∣∣ + (�1 − 1)

(
A∗)�1−1

ωh(A; I ).

Take an arbitrary δ2 ∈ (δ, δ1) (say the middle point). The eigenvalues of A are
at most δ on I and A∗ < ∞. Applying [Moulines, Priouret and Roueff (2005),
Lemma 12] we obtain that there is a constant K1 ≥ 1 only depending on δ, δ2 and
A∗ such that |(A(t − j�(t − s)/p))�1 | ≤ K1δ

�1
2 .

From (A.3) and (A.4), we derive the following inequality:∣∣�(s, t;p)
∣∣ ≤ (

K1δ
�
2 + K2ωh(A; I )

)q(
K1δ

r
2 + K2ωh(A; I )

)
,

where K2 = (� − 1)(max{A∗,1})�−1.
We can choose a positive integer � and a positive number ε0 only depending on

δ2, δ1 and K1 such that

K1δ
�
2 ≤ δ�

1 − ε0.

In the following, we set ε = ε0/K2. The previous bound gives that for any h ∈
(0,1) such that ωh(A; I ) ≤ ε and �(t − s)/p ≤ h,∣∣�(s, t;p)

∣∣ ≤ δ
�q
1

(
K1δ

r
2 + ε0

) ≤ K1δ
p+1
1 + ε0δ

�q
1

≤ (
K1 + ε0 max

{
1, δ1−�

1

})
δ
p+1
1 .

Hence, we have the result. �
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A.2. Proof of Proposition 1. We can now provide a proof of Proposition 1.
Equation (3.1) can be more compactly written as

Xt,T = θ ′
(

t − 1

T

)
Xt−1,T + σ

(
t

T

)
ξt,T .(A.5)

For all k ≥ 0, iterating this recursive equation k times, we have

Xt,T = e′
1

[
k+1∏
i=1

A

(
t − i

T

)]
Xt−k−1,T

(A.6)

+
k∑

j=0

σ

(
t − j

T

)
e′

1

[ j∏
i=1

A

(
t − i

T

)]
e1ξt−j ,

where e1 = [1 0 · · ·0]′ and

A(u) =

⎡⎢⎢⎢⎢⎢⎣
θ1(u) θ2(u) · · · · · · θd(u)

1 0 · · · · · · 0

0 1 0
. . . 0

... 0
. . .

. . .
...

0 · · · 0 1 0

⎤⎥⎥⎥⎥⎥⎦ .

Note that the eigenvalues of A(u) are the reciprocals of the roots of the local
time varying autoregressive polynomial z �→ θ(z;u), and thus are at most δ < 1.
Moreover, since θ is bounded by a constant only depending on d and is uniformly
continuous on I = (−∞,1], so is A as a function defined on I and we can find
h ∈ (0,1) such that ωh(A, I) ≤ ε for any positive ε. If θ ∈ d(β,R), this h can be
chosen depending only on ε,β and R (and also on the matrix norm | · |).

Consider δ1 ∈ (δ,1). Lemma 8 gives that there exist some positive constant ε,
� and K only depending on A∗, δ and δ1 such that, for any h ∈ (0,1) fulfilling
ωh(A; I ) ≤ ε, we have, for all T ≥ 1, t ≤ T and j ≥ 1 so that T ≥ �/h,∣∣∣∣∣

j∏
i=1

A

(
t − i

T

)∣∣∣∣∣ ≤ Kδ
j
1 .

We here consider the �∞ operator norm which is the maximum absolute row
sum of the matrix, in which case A∗ = max{1, supu∈I (|θ1(u)| + · · · + |θd(u)|)} ≤
2dd1/2. Hence, by (A.6) we obtain that

Xt,T =
d∑

i=1

bt,T (k, i)Xt−k−i,T +
k∑

j=0

at,T (j)σ

(
t − j

T

)
ξt−j,T ,

(A.7)
1 ≤ t ≤ T ,
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with, provided that T > �/h, for all t ≤ T , k, j ≥ 1 and i = 1, . . . , d ,∣∣bt,T (k, i)
∣∣ ≤ Kδk+1

1 ,∣∣at,T (j)
∣∣ ≤ Kδ

j
1 .

The result follows.

A.3. Proof of Lemma 3. Denote ω(x) = min{2−1/2,max{x,−2−1/2}}, so
that ω(x)2 = min(1/2, x2) ≤ x2. The function x �→ exp(−x2) is concave on
[−2−1/2,2−1/2], so introducing ω(x) and then using Jensen’s inequality, we get∫

exp
(−x2)dP(x)

≤
∫

exp
(−ω2(x)

)
dP(x) ≤ exp

(
−
(∫

ω(x)dP(x)

)2)

= exp
(
−
(∫

x dP(x)

)2

+
(∫

x dP(x)

)2

−
(∫

ω(x)dP(x)

)2)
.

It only remains to show that (
∫

x dP(x))2 − (
∫

ω(x)dP(x))2 ≤ (a2 − 1/2)+, with
the assumption that P has support on [−a, a]. This is verified if a ≤ 2−1/2, so we
now assume a > 2−1/2. We write(∫

x dP(x)

)2

−
(∫

ω(x)dP(x)

)2

=
∫ (

x − ω(x)
)(

y + ω(y)
)

dP(x)dP(y).

We note that |x − ω(x)| = (|x| − 1/2)+ and |y + ω(y)| ∈ {2|y|, |y| + 2−1/2}. We
deduce that the product (x − ω(x))(y + ω(y)) either take nonpositive values or
positive values of the form{

2|y|(|x| − 2−1/2), with |x| > 2−1/2, |y| < 2−1/2,(|x| − 2−1/2)(|y| + 2−1/2), with |x| > 2−1/2, |y| > 2−1/2.

Now, for x, y ∈ [−a, a] with a > 2−1/2, in the first case, we have 2|y|(|x| −
2−1/2) ≤ 21/2(a − 2−1/2) ≤ a2 − 1/2 since 21/2 ≤ a + 2−1/2, and, in the second
case, (|x|− 2−1/2)(|y|+ 2−1/2) ≤ (a − 2−1/2)(a + 2−1/2) = a2 − 1/2. The lemma
follows.

A.4. Proof of Lemma 4. We define Ĵ as the (random) smallest index
which minimizes dX(θ̂ ,vT {θj }) over j ∈ {0, . . . ,M} so that dX(θ̂,vT {θĴ}) =
minθ∈{θ0,...,θM } dX(θ̂ ,vT {θ}). Note that dX,T (θĴ, θj ) ≤ dX(vT {θĴ}, θ̂ ) + dX(θ̂,
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vT {θj }) ≤ 2dX(θ̂ ,vT {θj }). Hence,

max
j=0,...,M

Eθj

[
d2
X

(
θ̂ ,vT {θj })]

≥ 1

4
max

j=0,...,M
Eθj

[
d2
X,T (θĴ, θj )

]
≥ r2

4
max

j=0,...,M
Pθj

(
{Ĵ �= j} ∩

{
min
i:i �=j

dX,T (θi, θj ) > r
})

≥ r2

4

(
1 − min

j=0,...,M
Pθj

(Ĵ = j) − max
j=0,...,M

Pθj

(
min
i:i �=j

dX,T (θi, θj ) ≤ r
))

.

Birgé’s lemma [Massart (2007), Corollary 2.18] implies that

min
j=0,...,M

Pθj
(Ĵ = j) ≤ max

{(
2e

2e + 1

)
,

(maxj=0,...,M K(Pθj
,Pθ0)

log(1 + M)

)}
,

so the lemma follows from condition (5.5).

A.5. Proof of Lemma 5. By (5.11), we have θj ∈ s1(δ) for all j = 0, . . . ,M .
Decompose the Hölder-exponent β = k + α where k is an integer and α ∈ (0,1].
Differentiating (5.7) k times, we have, as in (5.10),

θ
(k)
j (x) = R0

mα
w

(j)
�mx�+1K

(k)

(
{mx} − 1

2

)
for all x ∈ [0,1].

Thus, for s, s ′ in the same interval [�/m, (�+ 1)/m] with � = 0, . . . ,m− 1, we get∣∣θ(k)
j (s) − θ

(k)
j

(
s′)∣∣ ≤ R0

mα

∣∣∣∣K(k)

(
ms − � − 1

2

)
− K(k)

(
ms′ − � − 1

2

)∣∣∣∣
≤ R0|K|β

∣∣s − s′∣∣α.

The same inequality then follows with R0 replaced by 2R0 for s, s′ in two such
consecutive intervals. Now, if s, s′ are separated by at least one such interval, we
have |s − s′| ≥ m−1 and, using that K has support in (−1/2,1/2), we have that
|K(k)(x)| is bounded by |K|β . We thus get in this case that

|θ(k)
j (s) − θ

(k)
j

(
s′)| ≤ 2R0

mα
sup

−1/2≤x≤1/2

∣∣K(k)(x)
∣∣ ≤ 2R0|K|β

∣∣s − s′∣∣α.

The last two displays and (5.8) then yields θj ∈ 1(β,R).

A.6. Proof of Lemma 6. Let j = 1, . . . ,M . Recall that θ0 ≡ 0 by (5.6)
and (5.7). By (5.9) and (5.1), we have that (Xs,T )s≤0 has the same distribution
under Pθj

and Pθ0 [which is the distribution of (ξs)s≤0]. Hence, the likelihood ra-
tio dPθj

/dPθ0 of (Xs,T )s≤T is given by the corresponding conditional likelihood
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ratio of (Xs,T )1≤s≤T given (Xs,T )s≤0. Hence, under (I-3), we obtain that

dPθj

dPθ0

=
T∏

t=1

f (Xt,T − θj ((t − 1)/T )Xt−1,T )

f (Xt,T − θ0((t − 1)/T )Xt−1,T )

=
T∏

t=1

f (Xt,T − θj ((t − 1)/T )Xt−1,T )

f (Xt,T )
,

where, in the second equality, we used again that θ0 ≡ 0. Now, under Pθj
, we have

Xt,T = θj ((t − 1)/T )Xt−1,T + ξt . Thus, we get

K(Pθj
,Pθ0) = Eθj

[
log

dPθj

dPθ0

]

=
T∑

t=1

Eθj

[
log

f (ξt )

f (θj ((t − 1)/T )Xt−1,T + ξt )

]

=
T∑

t=1

Eθj

∫
log

(
f (u)

f (θj ((t − 1)/T )Xt−1,T + u)

)
f (u)du.

Using assumption (I-3) yields

K(Pθj
,Pθ0) ≤

T∑
t=1

Eθj

[
κθ2

j

(
t − 1

T

)
X2

t−1,T

]
≤ κθ∗2

T∑
t=1

Eθj

[
X2

t−1,T

]
.(A.8)

The series representation (5.2), the fact that ξ is centered with unit variance
and (5.11) imply that for all t = 0, . . . , T

Eθj

[
X2

t,T

] ≤ (
1 − θ∗2)−1

.

Using this bound and (5.11) in (A.8), we obtain

K(Pθj
,Pθ0) ≤ R2

0e−2κT

(1 − δ2)m2β
.

The proof of Lemma 6 now follows by applying the first bound in (5.6).

A.7. Proof of Lemma 7. The proof relies on an upper bound of d2
X,T (θi, θj )

involving the noise (ξt ). By the expression of θj in (5.10), we have

d2
X,T (θi, θj ) = R2

0

T m2β

T −1∑
t=0

X2
t,T

(
w

(i)
k(t) − w

(j)
k(t)

)2
K2(ϕ(t)

)
,(A.9)

where we denoted ϕ(t) = {mt/T } − 1/2 and k(t) = �mt/T � + 1. Using (5.2)
and (5.11), we have, for all 0 ≤ t ≤ T − 1,

|Xt,T | ≥ |ξt | −
∞∑

j=1

θ∗j |ξt−j |,
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which implies

X2
t,T ≥ ξ2

t − 2|ξt |
∞∑

j=1

θ∗j |ξt−j |.

Inserting this bound in (A.9), we get

m2β

R2
0

d2
X,T (θi, θj ) ≥ 1

T

T −1∑
t=0

ξ2
t

(
w

(i)
k(t) − w

(j)
k(t)

)2
K2(ϕ(t)

) −RT ,(A.10)

where

RT = 2e−2

T

T −1∑
t=0

∞∑
j=1

θ∗j |ξt ||ξt−j |.

Thus, with (A.10), the left-hand side of inequality (5.12) is upper bounded by

Pθj

(
min
i:i �=j

1

T

T −1∑
t=0

ξ2
t

(
w

(i)
k(t) − w

(j)
k(t)

)2
K2(ϕ(t)

)
< 2A

)
+ P(RT > A).

Using that ξ is centered with unit variance and then (5.11), we easily get that

Eθj
[RT ] ≤ 2e−2

T

T −1∑
t=0

∞∑
j=1

θ∗j ≤ 2e−2θ∗

1 − θ∗ ≤ 2R0e−3

(1 − δ)mβ
.

Hence, by Markov’s inequality, to conclude the proof, it now suffices to show that,
for A well chosen,

Pθj

(
min
i:i �=j

1

T

T −1∑
t=0

ξ2
t

(
w

(i)
k(t) − w

(j)
k(t)

)2
K2(ϕ(t)

)
< 2A

)
≤ ε.(A.11)

For k ∈ {1, . . . ,m} we define Jk = {�(k − 1)T /m� + i�T/(4m)� + 1 ≤ i ≤
�3T/(4m)�}. We observe that the cardinality of Jk is

�

(
T

m

)
=

⌊
3T

4m

⌋
−

⌈
T

4m

⌉
≥ 1,

where the lower bound is a consequence of the assumption T ≥ 4m in the lemma.
Moreover, it is easy to check that we have |ϕ(t)| ≤ 1/4 for all index t ∈ Jk and
that, for each 1 ≤ k ≤ m, the set Jk is included in the set {1 ≤ t ≤ T − 1 : k(t) = k}
(so that, in particular, Jk ∩ Jk′ = ∅ for k < k′). It follows that random variables

Sk = 1

�(T /m)

∑
t∈Jk

ξ2
t−1 for k = 1, . . . ,m
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are i.i.d. By the monotonicity of K in R− and its symmetry, we have

1

T

T −1∑
t=0

ξ2
t

(
w

(i)
k(t) − w

(j)
k(t)

)2
K2(ϕ(t)

) ≥ 1

T

m∑
k=1

(
w

(i)
k − w

(j)
k

)2 ∑
t∈Jk

ξ2
t K2(ϕ(t)

)

≥ K2(1/4)�(T /m)

T

m∑
k=1

(
w

(i)
k − w

(j)
k

)2
Sk.

From (5.6), for any i, j ∈ {1, . . . ,M} there exist at least �m/8� values of k for
which (w

(i)
k −w

(j)
k )2 equals one in the above sum. Hence, using the order statistics

S(1,m) ≤ · · · ≤ S(m,m), we thus obtain that

min
i:i �=j

1

T

T −1∑
t=0

ξ2
t

(
w

(i)
k(t) − w

(j)
k(t)

)2
K2(ϕ(t)

) ≥ K2(1/4)�(T /m)

T

�m/8�∑
k=1

S(k,m)

≥ K2(1/4)m�(T /m)

16T
S(�m/16�,m)

≥ K2(1/4)

128
S(�m/16�,m),

where we used �(T /m) ≥ T/(8m) for T/m ≥ 4 in the last inequality. Let us
denote by F the cumulative distribution function of S1, which only depends on
�(T /m) and on the distribution of ξ0. For x > 0, we have

P(S(�m/16�,m) ≤ x) = P

(
Bin

(
m,F(x)

) ≥
⌊

m

16

⌋)
≤ m

�m/16�F(x) ≤ 32F(x).

Gathering the last two bounds, we get that

Pθj

(
min
i:i �=j

1

T

T −1∑
t=1

ξ2
t

(
w

(i)
k(t) − w

(j)
k(t)

)2
K2(ϕ(t)

) ≤ 2A

)

≤ P

(
S(�m/16�,m) ≤ 256A

K2(1/4)

)

≤ 32F

(
256A

K2(1/4)

)
.

Recall that �(T /m) ≥ 1 and note that S1 admits a density, since ξ does. By the
strong law of large numbers, we further have that the random variable S1 con-
verges to 1 almost surely when �(T /m) goes to infinity, so there exists x0 > 0
depending only on the density of ξ such that F(x0) ≤ ε/32 whatever the value of
�(T /m) ≥ 1. Therefore, there exists some A > 0, depending only on the distribu-
tion of ξ , such that (A.11) holds, which achieves the proof.
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SUPPLEMENTARY MATERIAL

Supplementary material for: Aggregation of predictors for nonstationary
sub-linear processes and online adaptive forecasting of time varying autore-
gressive processes (DOI: 10.1214/15-AOS1345SUPP; .pdf). We explain how to
build nonadaptive minimax predictors which can be used in the aggregation step.
The document also contains some technical proofs and provides additional results
with improved aggregation rates.
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