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JOINT ASYMPTOTICS FOR SEMI-NONPARAMETRIC
REGRESSION MODELS WITH PARTIALLY LINEAR STRUCTURE

BY GUANG CHENG1 AND ZUOFENG SHANG

Purdue University

We consider a joint asymptotic framework for studying semi-nonpara-
metric regression models where (finite-dimensional) Euclidean parameters
and (infinite-dimensional) functional parameters are both of interest. The
class of models in consideration share a partially linear structure and are
estimated in two general contexts: (i) quasi-likelihood and (ii) true likeli-
hood. We first show that the Euclidean estimator and (pointwise) functional
estimator, which are re-scaled at different rates, jointly converge to a zero-
mean Gaussian vector. This weak convergence result reveals a surprising joint
asymptotics phenomenon: these two estimators are asymptotically indepen-
dent. A major goal of this paper is to gain first-hand insights into the above
phenomenon. Moreover, a likelihood ratio testing is proposed for a set of joint
local hypotheses, where a new version of the Wilks phenomenon [Ann. Math.
Stat. 9 (1938) 60–62; Ann. Statist. 1 (2001) 153–193] is unveiled. A novel
technical tool, called a joint Bahadur representation, is developed for study-
ing these joint asymptotics results.

1. Introduction. In the literature, a statistical model is called semi-nonpara-
metric if it contains both finite-dimensional and infinite-dimensional unknown pa-
rameters of interest (e.g., [14]). An example is semi-nonparametric copula model
that can be applied to address tail dependence among shocks to different finan-
cial series and also to recover the shape of the “news impact curve” for individ-
ual financial series. Another example is the semi-nonparametric binary regression
models proposed by Banerjee, Mukherjee and Mishra [2] to define the conditional
probability of attending primary school in Indian villages through an appropriate
link function influenced by a set of covariates such as gender and household in-
come. As a first step in exploring the joint asymptotics results, we focus on the
semi-nonparametric regression models with a partial linear structure in this paper.

The existing semiparametric literature is concerned with asymptotic theories
and inference procedures for the Euclidean parameter only. The functional param-
eter is profiled out as an infinite-dimensional nuisance parameter; see [3, 8–10, 25,
29]. In the special case where both parameters are estimable at the same root-n
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rate (e.g., [19, 20]), we can combine them as an infinite-dimensional parameter
and then apply the functional Z-estimation theorem (e.g., Theorem 3.3.1 in [34]),
to study its joint asymptotic distribution. However, it is more common for the
two parameters to be estimated at different parametric and nonparametric rates.
In general, their radically different parameter dimensionality poses technical chal-
lenges for the construction of valid procedures for joint inference. In this paper,
we develop a new technical tool, called a joint Bahadur representation (JBR), for
studying the joint asymptotics results. As far as we are aware, our joint asymptotic
theories and inference procedures are new. The only relevant reference of which
we are aware is [27], which focuses on a fully parametric setting.

In this paper, we assume a partially linear structure for the conditional mean
of the response, and then estimate the model in two general contexts: (i) quasi-
likelihood and (ii) true likelihood. Within this framework, we derive a joint limit
distribution for the Euclidean estimator and the (point-wise) functional estimator
as a zero-mean Gaussian vector after they are re-scaled properly. One surprising
result is that these two estimators are asymptotically independent. This asymp-
totic independence will prove to be useful in making joint inference. For exam-
ple, it is now straightforward to construct the joint confidence interval based on
two marginal ones. Under similar conditions, the marginal limit distribution for
the Euclidean estimator coincides with that derived in [22]. On the other hand,
we observe that the (pointwise) marginal asymptotic results for the nonparametric
component are generally different from those derived in a purely nonparametric
setup (without the Euclidean parameter) (i.e., [30]), even though the Euclidean
parameter is estimated at a faster rate; see Remark 5.1. This conclusion is a bit
counterintuitive.

We next propose likelihood ratio testing for a variety of joint local hypotheses
such as H0 : θ = θ0 and g(z0) = w0 and H0 :xT θ + g(z0) = α, where θ and g

denote the parametric and nonparametric components, respectively. Conventional
semiparametric testing only focuses on the parametric components; see [10, 25].
However, in practice, it is often of great interest to evaluate the nonparametric
components at the same time. For example, we may test the joint effect of child
gender θ and household income g on the probability of attending primary school
in the Indian schooling model; see [2]. In particular, we show that the null limit
distribution is a mixture of two independent Chi-square distributions that are con-
tributed by the parametric and nonparametric components, respectively. Note that
this independence property is implied by the joint asymptotics phenomenon, and
is practically useful in finding the critical value. In the parametric framework,
Wilks (1938) showed that the likelihood ratio test statistic (under H0 : θ = θ0)
converges to a Chi-square distribution. Fan et al. (2001) call the above result the
Wilks phenomenon due to the nice property that the asymptotic null distribution is
free of nuisance parameters, and further generalize it to the nonparametric setting.
Therefore, we unveil a new version of Wilks phenomenon that adapts to the semi-
nonparametric context in this paper. As far as we are aware, this joint testing result
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is new. The only relevant paper of which we are aware is [2], where the authors
consider two separate null hypotheses, that is, H01 : θ = θ0 and H02 :g(z0) = w0,
under the monotonicity constraint of g(·).

The class of semi-nonparametric regression models considered in this paper
serves as a natural platform to deliver a new theoretical insight: joint asymptotics
phenomenon. We also note that our results may be extended to the other mod-
els: (i) generalized additive partially linear models, (ii) partial functional linear
regression models [32] and (iii) partially linear Cox proportional hazard models
[15] by either modifying the JBR or the criterion function; see Section 6 for more
elaborations. All the possible extensions mentioned above require a smoothness
assumption on the nonparametric function. This assumption is crucially different
from the shape-constraint assumption, which in general leads to the “nonstandard
asymptotics” problems (e.g., [7, 17, 21]). Our framework cannot be easily adapted
to handle these challenging problems, which are usually analyzed by rather differ-
ent technical tools.

The rest of this paper is organized as follows. Section 2 introduces the model
assumptions and builds a theoretical foundation. Sections 3 and 4 formally discuss
the joint limit distribution and joint local hypothesis testing, respectively. In Sec-
tion 5, we give three concrete examples with extensive simulations to illustrate our
theory. Section 6 discusses some possible extensions. The proofs are postponed to
the Appendix or online supplementary document [6].

2. Preliminaries. This section introduces the model assumptions and estab-
lishes the theoretical foundation of our results in two layers: (i) the partially linear
extension of reproducing kernel Hilbert space (RKHS) theory and (ii) the joint
Bahadur representation. Both technical results are of independent interest.

2.1. Notation and model assumptions. Suppose that Ti = (Yi,Xi,Zi), i =
1, . . . , n, are i.i.d. copies of T = (Y,X,Z), where Y ∈ Y ⊆ R is the response vari-
able, U = (X,Z) ∈ U ≡ I

p × I is the covariate variable, and I = [0,1]. Through-
out the paper we assume that the density of Z, denoted by π(z), has positive lower
bound and finite upper bound for z ∈ [0,1]. Consider a general class of semi-
nonparametric regression models with the following partially linear structure:

μ0(U) ≡ E(Y |U) = F
(
XT θ0 + g0(Z)

)
,(2.1)

where F(·) is some known link function and g0(·) is some unknown smooth func-
tion. This primary assumption covers two classes of statistical models. The first
class is called generalized partially linear models [5]; here the data are mod-
eled by y|u ∼ p(y;μ0(u)) for a conditional distribution p. Instead of assuming
the underlying distribution, the second class specifies only the relationship be-
tween the conditional mean and the conditional variance: Var(Y |U) = V(μ0(U))

for some known positive-valued function V . The nonparametric estimation of g

in the second situation uses the quasi-likelihood Q(y;μ) ≡ ∫ μ
y (y − s)/V(s) ds
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with μ = F(xT θ + g(z)) [37]. Despite the distinct modeling principles, these
two classes have a large overlap under many common combinations of (F,V),
as summarized in Table 2.1 of [23]. From now on, we work with a general crite-
rion function �(y;a) :Y × R �→ R, which can represent either logp(y;F(a)) or
Q(y;F(a)).

Let the full parameter space for f ≡ (θ, g) be H ≡ R
p × Hm(I), where Hm(I)

is an mth order Sobolev space defined as

Hm(I) ≡ {
g : I �→R|g(j) is absolutely continuous

for j = 0,1, . . . ,m − 1 and g(m) ∈ L2(I)
}
.

With some abuse of notation, H may also refer to R
p × Hm

0 (I), where Hm
0 (I) is

a homogeneous subspace of Hm(I). The space Hm
0 (I) is also known as the class

of periodic functions such that a function g ∈ Hm
0 (I) has additional restrictions

g(j)(0) = g(j)(1) for j = 0,1, . . . ,m − 1. Throughout this paper we assume m >

1/2 to be known. Consider the penalized semi-nonparametric estimator

(θ̂n,λ, ĝn,λ) = arg max
(θ,g)∈H

�n,λ(f )

(2.2)

= arg max
(θ,g)∈H

{
1

n

n∑
i=1

�
(
Yi;XT

i θ + g(Zi)
)− (λ/2)J (g, g)

}
,

where J (g, g̃) = ∫
I
g(m)(z)g̃(m)(z) dz and λ → 0 as n → ∞. Here, we use λ/2

(rather than λ) to simplify future expressions. Write f̂n,λ = (θ̂n,λ, ĝn,λ). The
existence of ĝn,λ is guaranteed by Theorem 2.9 of [13] when the null space
Nm ≡ {g ∈ Hm(I) :J (g, g) = 0} is finite-dimensional and �(y;a) is concave and
continuous w.r.t. a.

We next assume some basic model conditions. For simplicity, throughout the
paper we do not distinguish f = (θ, g) ∈ H from its associated function f ∈ F ≡
{f (x, z) = xT θ + g(z) : (θ, g) ∈ H, (x, z) ∈ U}. Let I0 be the range for the true
function f0(x, z) ∈ F , that is, a compact interval. Denote the first-, second- and
third-order derivatives of �(y;a) (w.r.t. a) by �̇a , �̈a and �′′′

a .

ASSUMPTION A1. (a) �(y;a) is three times continuously differentiable and
concave w.r.t. a. There exists a bounded open interval I ⊃ I0 and positive con-
stants C0 and C1 s.t.

E
{
exp

(
sup
a∈I

∣∣�̈a(Y ;a)
∣∣/C0

)∣∣U}≤ C1 a.s.(2.3)

and

E
{
exp

(
sup
a∈I

∣∣�′′′
a (Y ;a)

∣∣/C0

)∣∣U}≤ C1 a.s.(2.4)
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(b) There exists a positive constant C2 s.t. C−1
2 ≤ I (U) ≡ −E(�̈a(Y ;XT θ0 +

g0(Z))|U) ≤ C2, a.s.
(c) ε ≡ �̇a(Y ;XT θ0 + g0(Z)) satisfies E(ε|U) = 0, E(ε2|U) = I (U), a.s., and

E{ε4} < ∞.

A detailed discussion of the above model assumptions can be found in [30]. In
particular, Assumption A1(a) is typically used in semiparametric quasi-likelihood
models; see [22]. Three concrete examples showing the validity of Assumption A1
are presented in Section 5.

Hereinafter, if for positive sequences aμ and bμ we have that aμ/bμ tends to a
strictly positive constant, we write aμ � bμ. If that constant is one, we write aμ ∼
bμ. Let

∑
ν denote the sum over ν ∈ N= {0,1,2, . . .} for convenience. Let the sup-

norm of g ∈ Hm(I) be ‖g‖sup = supz∈I |g(z)|. Let λ∗ be the optimal smoothing
parameter; λ∗ � n−2m/(2m+1). For simplicity, we write λ1/(2m) as h, and thus h∗ �
n−1/(2m+1).

2.2. A partially linear extension of RKHS theory. In this section, we adapt the
nonparametric RKHS framework to our semi-nonparametric setup.

We define the inner product for H to be, for any (θ, g), (θ̃ , g̃) ∈ H,〈
(θ, g), (θ̃ , g̃)

〉= EU

{
I (U)

(
XT θ + g(Z)

)(
XT θ̃ + g̃(Z)

)}+ λJ (g, g̃),(2.5)

and we define the norm to be ‖(θ, g)‖2 = 〈(θ, g), (θ, g)〉. The validity of such
a norm is demonstrated in Section S.1 of the supplement document [6] (under
Assumption A3 introduced later). Under this norm, we will construct two linear
operators, Ru ∈H, for any u ∈ U , and Pλ :H �→ H satisfying

〈Ru,f 〉 = xT θ + g(z) for any u ∈ U and f ∈ H(2.6)

and

〈Pλf, f̃ 〉 = λJ (g, g̃) for any f = (θ, g), f̃ = (θ̃ , g̃) ∈ H.(2.7)

As will be seen, Ru and Pλ are two major building blocks of this enlarged RKHS
framework. In particular, Propositions 2.1 and 2.2 show that these two operators
are actually built upon their nonparametric counterparts Kz and Wλ defined below.

Let K(z1, z2) be a (symmetric) reproducing kernel of Hm(I) endowed with the
inner product 〈g, g̃〉1 = EZ{B(Z)g(Z)g̃(Z)}+λJ (g, g̃) and norm ‖g‖2

1 = 〈g,g〉1,
where B(Z) = E{I (U)|Z}. Hence, Kz(·) ≡ K(z, ·) satisfies 〈Kz,g〉1 = g(z).
We next specify a positive definite self-adjoint operator Wλ :Hm(I) �→ Hm(I)

satisfying 〈Wλg, g̃〉1 = λJ (g, g̃) for any g, g̃ ∈ Hm(I). The existence of such
Wλ is proved in Section S.2 of the supplement document [6]. Write V (g, g̃) =
EZ{B(Z)g(Z)g̃(Z)}. Hence, 〈g, g̃〉1 = V (g, g̃) + 〈Wλg, g̃〉1, which implies

V (g, g̃) = 〈
(id − Wλ)g, g̃

〉
1,(2.8)
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where id denotes the identity operator. We next assume that there exists a sequence
of basis functions in the space Hm(I) that simultaneously diagonalizes the bilinear
forms V and J . Such an eigensystem assumption is typical in the smoothing spline
literature; see [13].

ASSUMPTION A2. There exists a sequence of real-valued functions hν ∈
Hm(I), ν ∈ N satisfying supν∈N ‖hν‖sup < ∞ and a nondecreasing real sequence
γν � ν2m such that V (hμ,hν) = δμν and J (hμ,hν) = γμδμν for any μ,ν ∈ N,
where δμν is the Kronecker’s delta. Furthermore, any g ∈ Hm(I) admits the Fourier
expansion g =∑

ν V (g,hν)hν under the ‖ · ‖1-norm.

Under Assumption A2 and by B(Z) = E{I (U)|Z}, it can be seen that
E{I (U)hν(Z)hμ(Z)} = V (hν,hμ) = δνμ. Then we can easily derive explicit ex-
pressions for ‖g‖1, Wλhν(·) and Kz(·) in terms of the hν and γν as follows:

‖g‖2
1 =∑

ν

∣∣V (g,hν)
∣∣2(1 + λγν), Wλhν(·) = λγν

1 + λγν

hν(·) and

(2.9)

Kz(·) =∑
ν

hν(z)

1 + λγν

hν(·).

Using similar arguments to those in Proposition 2.2 of [30], we know that As-
sumption A2 holds when Assumption A1 is satisfied and the hνs are chosen as the
(normalized) solutions of the following ODE problem:

(−1)mh(2m)
ν (·) = γνB(·)π(·)hν(·),

(2.10)
h(j)

ν (0) = h(j)
ν (1) = 0, j = m,m + 1, . . . ,2m − 1.

For example, the hνs are constructed as an explicit trigonometric basis in case (I)
of Example 5.1. As will be seen later, by employing the above ordinary differen-
tial equation (ODE) approach, we will reduce the challenging infinite-dimensional
inference problems to simple exercises on finding the underlying eigensystem. We
remark that proving the existence of the above eigensystem is nontrivial and relies
substantially on the ODE techniques developed in [4, 33].

We next state a regularity Assumption A3 guaranteeing that Ru and Pλ are
both well defined. Define A0(Z) = E{I (U)X|Z} and G(Z) = A0(Z)/B(Z). Note
that G = (G1, . . . ,Gp)T is a p-dimensional vector-valued function, for example,
G(Z) = E(X|Z) in the L2 regression.

ASSUMPTION A3. G1, . . . ,Gp ∈ L2(PZ), that is, Gk has a finite second mo-
ment, and the p × p matrix � ≡ E{I (U)(X − G(Z))(X − G(Z))T } is positive
definite.
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Under the assumption that Gk ∈ L2(PZ), the linear functional Ak defined
by Akg = V (Gk, g) is bounded (or equivalently, continuous) for any g ∈
Hm(I) because of the following inequality: |Akg| ≤ V 1/2(Gk,Gk)V

1/2(g, g) ≤
V 1/2(Gk,Gk)‖g‖1 < ∞. Thus, by Riesz’s representation theorem, there exists
an Ak ∈ Hm(I) such that Akg = 〈Ak,g〉1 for any g ∈ Hm(I). Thus if we write
A = (A1, . . . ,Ap)T , then

V (G,g) = 〈A,g〉1.(2.11)

We also note that A = (id − Wλ)G when G1, . . . ,Gp ∈ Hm(I) based on (2.8).
Taking g = Kz in (2.11) and applying (2.9), we find that

A(z) =∑
ν

V (G,hν)

1 + λγν

hν(z) and (WλA)(z) =∑
ν

V (G,hν)λγν

(1 + λγν)2 hν(z).(2.12)

Now, we are ready to construct Ru and Pλ in Propositions 2.1 and 2.2, respec-
tively. Define �λ = EZ{B(Z)G(Z)(G(Z) − A(Z))T } as a p × p matrix.

PROPOSITION 2.1. Ru defined in (2.6) can be expressed as Ru :u �→
(Hu,Tu) ∈ H, where

Hu = (� + �λ)
−1(x − A(z)

)
and

(2.13)
Tu = Kz − AT (� + �λ)

−1(x − A(z)
)
.

PROPOSITION 2.2. Pλ defined in (2.7) can be expressed as Pλ : (θ, g) �→
(H ∗

g , T ∗
g ) ∈ H, where{

H ∗
g = −(� + �λ)

−1E
{
B(Z)G(Z)(Wλg)(Z)

}
,

T ∗
g = E

{
B(Z)G(Z)T (Wλg)(Z)

}
(� + �λ)

−1A + Wλg.

Note that limλ→0 �λ = 0 according to (A.2) in the Appendix. Therefore, (� +
�λ)

−1 above is well defined under Assumption A3. In addition, we note that Pλ is
self-adjoint and bounded because of the following inequality:

‖Pλf ‖ = sup
‖f̃ ‖=1

∣∣〈Pλf, f̃
〉∣∣

(2.14)
= sup

‖f̃ ‖=1

∣∣λJ (g, g̃)
∣∣≤√

λJ (g, g) sup
‖f̃ ‖=1

√
λJ (g̃, g̃) ≤ ‖f ‖.

Finally, we derive the Fréchet derivatives of �n,λ(f ) defined in (2.2). Let
f,fj ∈H for j = 1,2,3. The Fréchet derivative of �n,λ(f ) is given by

D�n,λ(f )f = 1

n

n∑
i=1

�̇a

(
Yi;XT

i θ + g(Zi)
)〈RUi

,f 〉 − 〈Pλf,f 〉

≡ 〈
Sn(f ),f

〉− 〈Pλf,f 〉 ≡ 〈
Sn,λ(f ),f

〉
.
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Note that Sn,λ(f̂n,λ) = 0. In particular, Sn,λ(f0) is of interest, and it can be ex-
pressed as

Sn,λ(f0) = 1

n

n∑
i=1

εiRUi
− Pλf0.(2.15)

The Frechét derivatives of Sn,λ and DSn,λ, denoted DSn,λ(f )f1f2 and
D2Sn,λ(f )f1f2f3, can be explicitly calculated as (1/n)

∑n
i=1 �̈a(Yi;XT

i θ +
g(Zi))〈RUi

,f1〉〈RUi
,f2〉 − 〈Pλf1,f2〉 and (1/n)

∑n
i=1 �′′′

a (Yi;XT
i θ +

g(Zi))〈RUi
,f1〉〈RUi

,f2〉〈RUi
,f3〉, respectively. Define S(f ) = E{Sn(f )},

Sλ(f ) = S(f ) − Pλf and DSλ(f ) = DS(f ) − Pλ, where DS(f )f1f2 =
E{�̈a(Y ;XT θ + g(Z))〈RU,f1〉〈RU,f2〉}. Since 〈DSλ(f0)f, f̃ 〉 = −〈f, f̃ 〉 for
any f, f̃ ∈ H, we have the following result:

PROPOSITION 2.3. DSλ(f0) = −id , where id is the identity operator on H.

2.3. Joint Bahadur representation. This section presents the second layer of
our theoretical foundation, the joint Bahadur representation (JBR). The JBR is
developed based on empirical processes theory and will prove to be a powerful
tool in the study of joint asymptotics.

We start with a useful lemma stating the relationship between ‖f ‖ and ‖f ‖sup,
where the former f = (θ, g) and the latter f = xT θ + g(z).

LEMMA 2.4. There exists a constant cm > 0 such that ‖Ru‖ ≤ cmh−1/2 and
|f (u)| ≤ cmh−1/2‖f ‖ for any u ∈ U and (θ, g) ∈ H. In particular, cm does not
depend on the choice of u and (θ, g). Hence ‖f ‖sup ≤ cmh−1/2‖f ‖.

An additional convergence-rate condition is needed to obtain JBR. Assump-
tion A4 implies that f̂n,λ achieves the optimal rate of convergence, that is,
OP (n−m/(2m+1)), when λ = λ∗.

ASSUMPTION A4. ‖f̂n,λ − f0‖ = OP ((nh)−1/2 + hm).

Interestingly, we show below that the above rate condition (Assumption A4) is
valid for a broad range of h once Assumptions A1–A3 hold (by employing the
contraction mapping idea).

PROPOSITION 2.5. Suppose Assumptions A1–A3 are satisfied. Furthermore,
as n → ∞, h = o(1) and n−1/2h−2(logn)(log logn)1/2 = o(1). Then ‖f̂n,λ −
f0‖ = OP ((nh)−1/2 + hm).

We remark that the optimal rate for the smoothing parameter, that is, h∗ �
n−1/(2m+1), satisfies the rate conditions for h specified in Proposition 2.5 when
m > 3/2.
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The following joint Bahadur representation can be viewed as a nontrivial ex-
tension of the Bahadur representation [1] for parametric models by adding a func-
tional component.

THEOREM 2.6 (Joint Bahadur representation). Suppose that Assumptions A1
through A4 hold, h = o(1) and nh2 → ∞. Recall that Sn,λ(f0) is defined in (2.15).
Then we have ∥∥f̂n,λ − f0 − Sn,λ(f0)

∥∥= OP (an logn),(2.16)

where an = n−1/2((nh)−1/2 +hm)h−(6m−1)/(4m)(log logn)1/2 +C�h
−1/2((nh)−1+

h2m)/ logn and C� = supu∈U E{supa∈I |�′′′
a (Y ;a)||U = u}.

The proof of Theorem 2.6 relies heavily on modern empirical process theory,
and in particular a concentration inequality given in the supplementary mate-
rial [6].

3. Joint limit distribution. As far as we are aware, the current semipara-
metric literature on the smoothing spline models mostly focus on the asymptotic
normality of the parametric parts, and derive only rates of convergence (in estima-
tion) for functional parts; see [13, 35, 36]. In this section, we demonstrate the joint
asymptotic normality of both parametric and functional parts.

We start from a preliminary result that for any z0 ∈ I, (
√

n(θ̂n,λ − θ∗
0 ),√

nh(ĝn,λ − g∗
0)(z0)) weakly converges to a zero-mean Gaussian vector. Unfor-

tunately, the center (θ∗
0 , g∗

0) ≡ f0 − Pλf0 is biased and the asymptotic variance is
not diagonal; see Theorem A.1 in the Appendix for more technical details. Under
a regularity condition on the least favorable direction [18], that is, (3.1), we can
remove the estimation bias for θ ; see Lemma A.2 in the Appendix. In this case,
the parametric estimate θ̂n,λ is semiparametric efficient when Y belongs to an ex-
ponential family; see Remark 3.1. However, what is more surprising is that θ̂n,λ

and ĝn,λ(z0) become asymptotically independent after the bias removal procedure.
We call this discovery the joint asymptotics phenomenon. This leads to the first
main result of this paper, given in Theorem 3.1 below.

THEOREM 3.1 (Joint limit distribution). Let Assumptions A1 through A4 be
satisfied. Suppose there exists b ∈ (1/(2m),1] such that Gk satisfies∑

ν

∣∣V (Gk,hν)
∣∣2γ b

ν < ∞ for any k = 1, . . . , p.(3.1)

Furthermore, as n → ∞, h = o(1), nh2 → ∞, an logn = o(n−1/2h1/2) [with an

defined as in (2.16)], hV (Kz0,Kz0) → σ 2
z0

and n1/2hm(1+b) = o(1). Then we have,
for any z0 ∈ I,( √

n(θ̂n,λ − θ0)√
nh
{
ĝn,λ(z0) − g0(z0) + (Wλg0)(z0)

}) d−→ N(0,�),(3.2)
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where

� =
(

�−1 0
0 σ 2

z0

)
.(3.3)

Furthermore, if

lim
n→∞(nh)1/2(Wλg0)(z0) = −bz0,(3.4)

then we have ( √
n(θ̂n,λ − θ0)√

nh
(
ĝn,λ(z0) − g0(z0)

)) d−→ N

((
0

bz0

)
,�

)
.(3.5)

We remark that Theorem 3.1 holds under the optimal smoothing parameter h∗ =
n−1/(2m+1). It follows from (2.9) and (2.12) that

σ 2
z0

= lim
h→0

∑
ν

h|hν(z0)|2
(1 + λγν)2 .(3.6)

It is worth pointing out that we obtain the above results without strengthening
the regularity conditions used in the semiparametric literature, for example, those
in [22]. We next discuss the key condition (3.1). When b = 0, condition (3.1) re-
duces to Assumption A3 that Gk ∈ L2(PZ). However, we require 1/(2m) < b ≤ 1
such that the Fourier coefficients V (Gk,hν) in (3.1) converge to zero at a faster
rate than ν−mb because γν � ν2m; see Assumption A2. It is well known that a
faster decaying rate of the Fourier coefficients V (Gk,hν) implies a more smooth
Gk ; see [11], page 1681. Therefore, condition (3.1) requires more smoothness of
Gk . In fact, it follows from [11] that (3.1) is equivalent to Gk ∈ Hmb(I) with
1/(2m) < b ≤ 1. Hence, the condition Gk ∈ Hm(I) assumed in the classical semi-
parametric work by Mammen and van de Geer [22] may actually be weakened.

We next discuss three important consequences of Theorem 3.1. First, the asymp-
totic independence between θ̂n,λ and ĝn,λ(z0) greatly facilitates the construction of
the joint CI for (θ0, g0(z0)) by directly building on the marginal CIs. Second, based
on Theorem 3.1 and the Delta method, we can easily establish the prediction in-
terval for a new response Ynew given future data u0 = (x0, z0) and the CI for some
real-valued smooth function of (θ0, g0(z0)); see Section 5. Finally, the nonpara-
metric estimation bias bz0 can be further removed under an additional assumption;
see Corollary 3.2.

In Remarks 3.1 and 3.2 below, we compare the marginal limit distributions im-
plied by Theorem 3.1 with those derived in the semiparametric [22] and nonpara-
metric [30] literature.

REMARK 3.1. Our parametric limit distribution is
√

n(θ̂n,λ − θ0)
d−→ N(0,

�−1), where � = E{I (U)(X − G(Z))(X − G(Z))T }. We find that it is exactly
the same as that obtained in [22]; see Section S.14 of supplementary document
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[6]. Mammen and van de Geer [22] further showed that the parametric estimate
is semiparametric efficient when Y belongs to an exponential family; see their
Remark 4.1. For example, in the partially linear models under Gaussian errors,
� reduces to the semiparametric efficiency bound E(X − E(X|Z))⊗2; see [18].
Note the profile approach in [22] treats g as a nuisance parameter, and thus it
cannot be adapted to obtain our joint limiting distribution.

REMARK 3.2. Our (pointwise) nonparametric limit distribution, that is,√
nh(ĝn,λ(z0)−g0(z0))

d−→ N(bz0, σ
2
z0

), is in general different from that obtained
in the nonparametric smoothing spline setup (without θ ) in terms of different val-
ues of bz0 and σ 2

z0
; see [30]. This is mainly due to the eigensystem difference

in the two setups; see Remark 5.1 for more illustrations. An exception is the L2

regression in which the two eigensystems coincide. Our general finding gives a
counter-example to the common intuition in the literature that the nonparametric
limit distribution is not affected by the involvement of a parametric component
that is estimated at a faster convergence rate.

To further illustrate Theorem 3.1, we consider the partial smoothing spline
model with unit error variance (Example 5.1) and the shape-rate Gamma model
with unit shape (Example 5.2), which share the same joint limit distribution with
an explicit covariance matrix � .

COROLLARY 3.2 (Joint limit distribution for partial smoothing spline model
and shape-rate gamma model). Let m > 1 + √

3/2 ≈ 1.866, and h � h∗. Sup-
pose that (3.1) holds for some 1 ≥ b > 1/(2m), and E(X − E(X|Z))⊗2 is posi-
tive definite. Furthermore, g0 ∈ Hm(I) satisfies

∑
ν |V (g0, hν)|νm < ∞. Then, as

n → ∞, ( √
n(θ̂n,λ − θ0)√

nh
(
ĝn,λ(z0) − g0(z0)

)) d−→ N(0,�),(3.7)

where

� =
⎛⎝
{
E
[
X − E(X|Z)

]⊗2}−1 0

0

∫∞
0 (1 + x2m)−2 dx

π

⎞⎠ .

In Corollary 3.2, we notice that the nonparametric estimation bias asymptoti-
cally vanishes. This is due to the condition

∑
ν |V (g0, hν)|νm < ∞, which imposes

additional smoothness on g0 ∈ Hm(I). Therefore, convergence rate n−m/(2m+1) for
ĝn,λ(z0) is actually sub-optimal given this additional smoothness (under λ = λ∗).
In practice, we select the smoothing parameter based on CV or GCV; see [13].
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4. Joint hypothesis testing. In this section, we propose likelihood ratio test-
ing for a set of joint local hypotheses in a general form (4.1). Under very general
conditions, the null limit distribution is proved to be a mixture of a Chi-square
distribution with p degrees of freedom and a scaled noncentral Chi-square distri-
bution with one degree of freedom. Obviously, these two Chi-square distributions
are contributed by the parametric and nonparametric components, respectively.
Hence, we reveal a new version of the Wilks phenomenon [12, 38] which adapts
to the semi-nonparametric context. We further give more explicit null limit distri-
butions for three commonly used joint hypotheses. A key technical tool used in
this section is a restricted version of JBR.

Consider the following joint hypothesis:

H0 :Mθ + Qg(z0) = α vs. H1 :Mθ + Qg(z0) �= α,(4.1)

where M = (MT
1 , . . . ,MT

k )T is a k × p matrix with k ≤ p + 1, Q = (q1, . . . , qk)
T

and the α are k-vectors. Without loss of generality, we assume N ≡ (M,Q) to have
elements in I = [0,1]. We further assume that the matrix N has full rank. M , Q and
α are all prespecified according to the testing needs. For example, when N is the
identity matrix Ip+1 and α = (θT

0 ,w0)
T , H0 reduces to (θT , g(z0))

T = (θT
0 ,w0)

T .
See Corollary 4.6 for more examples. This provides another way to construct the
joint CIs for (θT

0 , g0(z0))
T without estimating �−1 or σz0 . The simultaneous test-

ing of two marginal hypotheses, that is, HP
0 : θ = θ0 and HN

0 :g(z0) = w0, can also
be used for this purpose, but it requires the very conservative Bonferroni correc-
tion. Moreover, our joint hypothesis is more general, and the testing approach is
more straightforward to implement.

To define the likelihood ratio statistic, we establish the constrained estimate
under (4.1) in three steps: (i) arbitrarily choose (θ†,w†) ∈ R

p × R satisfying
Mθ† + Qw† = α; (ii) define f̂ 0

n,λ ≡ (θ̂0
n,λ, ĝ

0
n,λ) = arg maxf ∈H0 Ln,λ(f ), where

H0 ≡ {(θ, g) ∈ H|Mθ + Qg(z0) = 0} and

Ln,λ(f ) = n−1
n∑

i=1

�
(
Yi;XT

i θ + g(Zi) + XT
i θ† + w†)− (1/2)λJ (g, g);(4.2)

(iii) define the constrained estimate as f̂
H0
n,λ = (θ̂0

n,λ + θ†, ĝ0
n,λ + w†). Then, the

LRT statistic is LRTn,λ = �n,λ(f̂
H0
n,λ) − �n,λ(f̂n,λ).

Given the inner product 〈·, ·〉, we note that H0 is a closed subset in H and thus
a Hilbert space. Hence, we will construct the projections of the two operators Ru

and Pλ (associated with H) onto the subspace H0, denoting them R0
u and P 0

λ ,
respectively. Lemma 4.1 below provides a preliminary step for the construction.
Its proof is similar to that of Proposition 2.1 and is thus omitted.

LEMMA 4.1. For any u = (x, z) ∈ U and q ∈ I, define

Hq,u = (� + �λ)
−1(x − qA(z)

)
and Tq,u = qKz − AT Hq,u.
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Let Rq,u ≡ (Hq,u, Tq,u) ∈H. Then, for any f ∈ H and u ∈ U , we have 〈Rq,u, f 〉 =
xT θ + qg(z).

Obviously, Rq,u is a generalization of Ru defined in Proposition 2.1, that is,
Ru = R1,u. Lemma 4.1 implies that the restricted parameter space H0 can be
rewritten as

H0 = {
f = (θ, g) ∈H|〈Rqj ,Wj

, f 〉 = 0, j = 1, . . . , k
}
,(4.3)

where Wj = (Mj , z0). Define H(Q,W) = (Hq1,W1, . . . ,Hqk,Wk
), T (Q,W) =

(Tq1,W1(z0), . . . , Tqk,Wk
(z0)) and MK = MH(Q,W) + QT (Q,W). Construct the

projections

R0
u = Ru −

k∑
j=1

ρu,jRqj ,Wj
and P 0

λ f = Pλf −
k∑

j=1

ζj (f )Rqj ,Wj
,

where (ρu,1, . . . , ρu,k)
T = M−1

K (MHu + QTu(z0)) and (ζ1(f ), . . . , ζk(f ))T =
M−1

K (MH ∗
g + QT ∗

g (z0)). Recall that Ru :u �→ (Hu,Tu) and Pλ : (θ, g) �→ (H ∗
g ,

T ∗
g ) in Proposition 2.1. The invertibility of MK is given in the proof of Proposi-

tion 4.2 below.
Proposition 4.2 below says that R0

u and P 0
λ defined above are indeed what we

need.

PROPOSITION 4.2. Let f = (θ, g) and f̃ = (θ̃ , g̃). For any u = (x, z) ∈ I
p ×

I, f, f̃ ∈H0, we have 〈R0
u, f 〉 = xT θ + g(z) and 〈P 0

λ f, f̃ 〉 = λJ (g, g̃).

Based on Proposition 4.2, we can write down the Fréchet derivatives of Ln,λ

defined in (4.2) under H0 by modifying those of �n,λ as follows: replace θ , g, RU

and Pλ by θ + θ†, g + w†, R0
U and P 0

λ . For example,

DLn,λ(f )f

= 1

n

n∑
i=1

�̇a

(
Yi;XT

i θ + g(Zi) + XT
i θ† + w†)〈R0

Ui
,f

〉− 〈
P 0

λ f,f
〉

≡ 〈
S0

n(f ),f
〉− 〈

P 0
λ f,f

〉= 〈
S0

n,λ(f ),f
〉
.

Similarly, we have S0
n,λ(f̂

0
n,λ) = 0. Also define S0(f ) = E{S0

n(f )} and S0
λ(f ) =

S0(f ) − P 0
λ (f ). For the second derivative, we have DS0

n,λ(f )f1f2 =
D2Ln,λ(f )f1f2 and DS0

λ(f )f1f2 = DS0(f )f1f2 − 〈P 0
λ f1,f2〉,

where

DS0(f )f1f2 = E
{
�̈a

(
Y ;XT θ + g(Z) + XT θ† + w†)〈R0

U,f1
〉〈
R0

U,f2
〉}
.

In Theorem 4.3 below, we present a new version of JBR that is restricted to the
subspace H0. We need an additional Assumption A5 here. Let f 0

0 ≡ (θ0 − θ†, g0 −
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w†), which belongs to H0 under H0. Assumption A5 holds under mild conditions
similar to those specified in Proposition 2.5. The proof can be similarly conducted
by replacing the space H by H0, and thus, is omitted.

ASSUMPTION A5. Under H0 specified in (4.1),∥∥f̂ 0
n,λ − f 0

0

∥∥= OP

(
(nh)−1/2 + hm).

THEOREM 4.3 (Restricted joint Bahadur representation). Suppose that As-
sumptions A1, A2, A3 and A5 hold and that h = o(1) and nh2 → ∞ as n → ∞.
Under H0 specified in (4.1), we have ‖f̂ 0

n,λ − f 0
0 − S0

n,λ(f
0
0 )‖ = OP (an logn),

where an is defined as in (2.16).

Given the above preparatory results, we are ready to present general results for
the null limit distribution of −2n ·LRTn,λ in Theorem 4.4. Define rn = (nh)−1/2 +
hm, and let

�λ = �NT M−1
K N�T ,

where

� =
(

(� + �λ)
−1/2 0

0 K(z0, z0)
1/2

)(
Ip −A(z0)

0 1

)
.

THEOREM 4.4 (Joint local testing). Suppose that Assumptions A1 through A5
are satisfied, there exists b ∈ (1/(2m),1] such that Gk satisfies (3.1), and h =
o(1), nh2 → ∞, n1/2hm(1+b) = o(1), r2

nh−1/2 = o(an) and an = o(min{rn,
n−1r−1

n (logn)−1, n−1/2h1/2(logn)−1}), where an is defined as in (2.16). Further-
more, for any z0 ∈ [0,1], limh→0

√
n(Wλg0)(z0)/

√
K(z0, z0) = cz0 , limh→0 �λ =

�0, where �0 is a fixed (p + 1) × (p + 1) positive semidefinite matrix, and

lim
h→0

hV (Kz0,Kz0) → σ 2
z0

> 0,(4.4)

lim
h→0

EZ

{
B(Z)

∣∣Kz0(Z)
∣∣2}/K(z0, z0) ≡ c0 ∈ (0,1].(4.5)

Under H0 specified in (4.1), we obtain: (i) ‖f̂n,λ − f̂
H0
n,λ‖ = OP (n−1/2); (ii) −2n×

LRTn,λ = n‖f̂n,λ − f̂
H0
n,λ‖2 + oP (1);

(iii) − 2n · LRTn,λ
d−→ υT �0υ,(4.6)

where υ ∼ N
(( 0

cz0

)
,
(Ip 0

0 c0

))
.

The parametric convergence-rate result proved in (i) of Theorem 4.4 is rea-
sonable since the null hypothesis imposes only a finite-dimensional constraint.
By (2.9), it can be explicitly shown that

c0 = lim
λ→0

Q2(λ, z0)

Q1(λ, z0)
where Ql(λ, z) ≡ ∑

ν∈N

|hν(z)|2
(1 + λγν)l

for l = 1,2.(4.7)
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It is well known that the reproducing kernel K is uniquely determined for any
Hilbert space if it exists; see [28], page 38. This implies that c0 defined in (4.5) is
also uniquely determined. Therefore, different choices of (hν, γν) in (4.7) will give
exactly the same value of c0, although a particular choice may facilitate the com-
putation of c0. For example, in case (I) of Example 5.1, we can explicitly calculate
c0 as 0.75 (0.83) when m = 2 (3) by choosing the trigonometric basis (5.2).

The null limit distribution derived in Theorem 4.4 cannot be directly used for
inference because of the nontrivial estimation of cz0 . Hence, in Corollary 4.5, we
present a set of conditions under which the estimation bias of ĝn,λ can be removed,
and thus cz0 = 0.

COROLLARY 4.5. Suppose that Assumptions A1 through A5 are satisfied, and
hypothesis H0 holds. Let m > 1 + √

3/2 ≈ 1.866 and G1, . . . ,Gp satisfy (3.1)
with 1/(2m) < b ≤ 1. Also assume that the Fourier coefficients {V (g0, hν)}ν∈N of
g0 satisfy

∑
ν |V (g0, hν)|γ 1/2

ν < ∞. Furthermore, if �λ converges to some fixed
(p + 1) × (p + 1) positive semidefinite matrix, that is, �0, and (4.4) and (4.5) are
both satisfied for any z0 ∈ [0,1], then (4.6) holds with cz0 = 0 given that h = h∗ �
n−1/(2m+1).

Combining Theorem 4.4 with Corollary 4.5, we immediately obtain Corol-
lary 4.6, which gives null limit distributions of the three commonly assumed joint
hypotheses.

COROLLARY 4.6. Suppose that the conditions in Corollary 4.5 hold. We
have:

(I) H0 : θ = θ0 and g(z0) = w0:

−2n · LRTn,λ
d−→ χ2

p + c0χ
2
1 ,

where the two Chi-square distributions are independent. In this case, N = Ip+1,
α = (θT

0 ,w0)
T and �λ = �0 = Ip+1.

(II) H0 :Dθ = θ ′
0 and g(z0) = w0 [D is an r × p matrix with 0 < r ≤ p and

rank(D) = r , θ ′
0 is an r-vector with 0 < r < p]:

−2n · LRTn,λ
d−→ χ2

r + c0χ
2
1 ,

where the two Chi-square distributions are independent. In this case, N = (D 0r

0T
p 1

)
,

α = (θ ′T
0 ,w0)

T and �0 = (Pr 0p

0T
p 1

)
with the projection matrix (of rank r) Pr =

�−1/2DT (D�−1DT )−1D�−1/2.
(III) H0 :xT

0 θ + g(z0) = α (α, x0 and z0 are given):

−2n · LRTn,λ
d−→ c0χ

2
1 .

In this case, N = (xT
0 ,1) and �0 = (0p×p 0p

0T
p 1

)
.
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The independence between the two Chi-square distributions in (I) and (II) fol-
lows from the joint asymptotics phenomenon that θ̂n,λ and ĝn,λ(z0) are asymp-
totically independent. In comparison with (I) and (II), we note that the null limit
distribution in (III) is dominated by the effect from g(z0) because of its nonpara-
metric nature, that is, its slower convergence rate.

As far as we are aware, Corollary 4.6 is a new version of the Wilks phenomenon
[12, 38] that adapts to the semi-nonparametric context. Note that the value of c0
converges to one as m → ∞. Therefore, this new type of Wilks phenomenon re-
verts to the classical version in the parametric setup as m → ∞ by further con-
sideration of the independence of the two Chi-squares. For example, the null limit
distribution in (I) of Corollary 4.6 becomes χ2

p+1 as m → ∞.
In the end of this section, we apply Theorem 4.4 to partial smoothing spline

models (Example 5.1) and shape-rate gamma models (Example 5.2). For simplic-
ity, let 0 < z0 < 1. Corollary 4.7 directly follows from Corollary 4.5 and equivalent
kernel theory [24, 26].

COROLLARY 4.7 (Joint local testing for partial smoothing spline model and
shape-rate gamma model). Suppose that the hypothesis H0 specified in (I) [(II)
or (III)] in Corollary 4.6 holds. Let m > 1 + √

3/2 ≈ 1.866, G1, . . . ,Gp sat-
isfy (3.1) with 1/(2m) < b ≤ 1 and h � h∗. Also assume that g0 ∈ Hm(I) sat-
isfies

∑
ν |V (g0, hν)|νm < ∞, and E(X − E(X|Z))⊗2 is positive definite. Then,

as n → ∞, the conclusion of (I) [(II) or (III)] in Corollary 4.6 holds with

c0 = π(z0)
∫
R

ω0(t)
2 dt

ω0(0)
, where the equivalent kernel function ω0 is specified in [24],

page 184. In particular, when m = 2 (3) and the design is uniform, c0 = 0.75
(0.83).

As for the logistic regression model (Example 5.3), we need to numerically
approximate the value of c0 due to the implicit forms of the eigenfunctions and
eigenvalues; see more detailed discussions in Section S.15 of the supplementary
file [6].

5. Examples. In this section, we present three concrete examples together
with simulations. In all the examples, the Gks are sufficiently smooth for The-
orem 3.1 and Corollary 4.6 to apply. Detailed assumption verifications for three
examples can be found in Sections S.9, S.13 and S.15 of [6].

EXAMPLE 5.1 (Partial smoothing spline). Consider a partially linear regres-
sion model

Y = XT θ + g(Z) + ε,(5.1)

where ε ∼ N(0, σ 2) with an unknown σ 2. Hence, B(Z) = σ−2. For simplicity,
Z is assumed to be uniformly distributed over I. In this case, V (g, g̃) becomes
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the usual L2-norm. The function ssr() in the R package assist was used to se-
lect the smoothing parameter λ based on CV or GCV; see [16]. The unknown
error variance can be consistently estimated by σ̂ 2 = n−1∑

i (Yi − XT
i θ̂n,λ −

ĝn,λ(Zi))
2/(n− trace(A(λ))), where A(λ) denotes the smoothing matrix; see [35].

We next consider two separate cases: (I) g ∈ Hm
0 (I) and (II) g ∈ Hm(I).

Case (I) g ∈ Hm
0 (I): We choose the following trigonometric eigensystem for

Hm
0 (I):

hμ(z) =
⎧⎨⎩

σ, μ = 0,√
2σ cos(2πkz), μ = 2k, k = 1,2, . . . ,√
2σ sin(2πkz), μ = 2k − 1, k = 1,2, . . . ,

(5.2)

with the corresponding γν specified as γ0 = 0 and γ2k−1 = γ2k = σ 2(2πk)2m for
k ≥ 1.

It follows from (3.6) and (5.2) that the asymptotic variance of ĝn,λ(z0) is ex-
pressed as

σ 2
z0

= lim
h→0

{
σ 2h

(
1 + 2

∞∑
k=1

1

(1 + (2πhσ 1/mk)2m)2

)}
.

Lemma 6.1 in [30] leads to, for l = 1,2,
∞∑

k=1

1

(1 + (2πhσ 1/mk)2m)l
∼ Il

2πhσ 1/m
,(5.3)

where Il = ∫∞
0 (1 + x2m)−l dx. Therefore, we have σ 2

z0
= (I2σ

2−1/m)/π . Accord-
ing to Corollary 3.2, the 95% prediction interval for Y at a new observed covariate
u0 = (x0, z0) is

Ŷ ± 1.96
√

σ̂ 2−1/mI2/(πnh) + σ̂ 2,(5.4)

where Ŷ = xT
0 θ̂n,λ + ĝn,λ(z0) is the predicted response. We next calculate c0 based

on (4.7). It follows from (5.2) and (5.3) that

Ql(λ, z0) = σ 2 +∑
k≥1

{ |h2k(z0)|2
(1 + λσ 2(2πk)2m)l

+ |h2k−1(z0)|2
(1 + λσ 2(2πk)2m)l

}

= σ 2 + 2σ 2
∑
k≥1

1

(1 + λσ 2(2πk)2m)l

= σ 2 + 2σ 2
∑
k≥1

1

(1 + (2πhσ 1/mk)2m)l
∼ Il

πhσ 1/m

for l = 1,2. Hence we obtain

c0 = I2/I1.(5.5)

Further calculations reveal that c0 = 0.75 (0.83) when m = 2 (3).
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In the simulations, we first verify the joint asymptotics phenomenon, that is,
(3.5), by investigating the (asymptotic) independence between θ̂n,λ and ĝn,λ(z0).
Let θ0 = (8,−8)T and g0(z) = 0.6β30,17(z) + 0.4β3,11(z), where βa,b is the den-
sity function for Beta(a, b). We estimate the nonparametric function g0, which
has many peaks and troughs, using periodic splines with m = 2; σ is set to one.
To allow the linear and nonlinear covariates (X,Z) to be dependent, we generate

them as follows: generate U,V,Z
i.i.d.∼ Unif[0,1], and set X1 = (U + 0.2Z)/1.2,

X2 = (V +0.2Z)/1.2. This leads to corr(X1,Z) = corr(X2,Z) ≈ 0.20, where corr
denotes the correlation coefficient. The dependence between θ̂n,λ and ĝn,λ(z) is
evaluated through the absolute values of the sample correlation coefficients (ACC)
between θ̂n,λ = (θ̂n,λ,1, θ̂n,λ,2)

T and ĝn,λ(z) at ten evenly spaced z points in [0,1]
based on 500 replicated data sets. The results are summarized in Figure 1 for sam-
ple sizes n = 100,300,1000. As n increases, it is easy to see that the ACC curves
become uniformly closer to zero, which strongly indicates the desired asymptotic
independence.

To examine the performance of the 95% prediction intervals (5.4), we calculate
the proportions of the prediction intervals covering the future response Y gener-
ated from model (5.1), that is, the coverage proportion. The simulation setup is
the same as before, except that we assume a one-dimensional θ0 = 4 for simplic-
ity. The new covariates are (x0, z0) with x0 = 1/4,2/4,3/4 and z0 being thirty
evenly spaced points in [0,1]. The coverage proportions are calculated based on

FIG. 1. Absolute values of correlation coefficients (ACC) between θ̂n,λ,1 and ĝn,λ(z) (the upper
plot), and θ̂n,λ,2 and ĝn,λ(z) (the lower plot), at ten evenly spaced nonlinear covariates in case (I)
of Example 5.1. The three lines correspond to three sample sizes: n = 100 (solid), n = 300 (dashed),
n = 1000 (dotted).
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FIG. 2. Coverage proportion of 95% prediction intervals in case (I) of Example 5.1.

500 replications. We summarize our simulation results in Figure 2 for sample sizes
n = 100,300,1000. As n grows, all the coverage proportions approach the nomi-
nal level, 95%. In addition, the prediction interval lengths approach the theoretical
value indicated in formula (5.4), that is, 2 × 1.96 = 3.92.

Finally, we test H0 :x0θ + g(z0) = 0. The true parameters are chosen as θ0 =
−4, g0(z) = sin(πz) and σ = 1. The performance is demonstrated by calculating
the powers for the nine combinations of x0 = 1/4,2/4,3/4 and z0 = 1/4,2/4,3/4
through 500 replicated data sets. In particular, H0 is true when x0 = 1/4 and z0 =
2/4, and H0 is false at the other values of (x0, z0). The results are summarized in
Table 1 for sample sizes n = 50,100,300,500,1000,1500. We observe that when
x0 = 1/4 and z0 = 2/4, the power approaches the correct size 5%, while at the
other values of (x0, z0), where H0 does not hold, the power approaches one. This
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TABLE 1
100× power of the local LRT test for nine combinations of x0 and z0 for case (I) of Example 5.1

n = 50 n = 100 n = 300 n = 500 n = 1000 n = 1500

x0 = 1/4
z0 = 1/4 43.00 56.60 77.60 90.40 97.80 98.60
z0 = 2/4 20.60 13.00 7.20 7.00 5.60 5.10
z0 = 3/4 42.00 50.00 77.60 89.60 97.80 99.20

x0 = 2/4
z0 = 1/4 98.60 99.80 100 100 100 100
z0 = 2/4 96.80 99.00 100 100 100 100
z0 = 3/4 98.80 99.80 100 100 100 100

x0 = 3/4
z0 = 1/4 99.80 100 100 100 100 100
z0 = 2/4 99.60 100 100 100 100 100
z0 = 3/4 99.60 100 100 100 100 100

shows the validity of our local LRT test. The detailed computational algorithm for
the constrained estimate under H0 is given in Section S.16 of the supplementary
document [6].

Case (II) g ∈ Hm(I): For this larger parameter space, we first construct an
effective eigensystem that satisfies (2.10). Let h̃νs and γ̃νs be the normalized
(with respect to the usual L2-norm) eigenfunctions and eigenvalues of the bound-
ary value problem (−1)mh̃

(2m)
ν = γ̃ν h̃ν , h̃

(j)
ν (0) = h̃

(j)
ν (1) = 0, j = m,m +

1, . . . ,2m − 1. Then we can construct hν = σ h̃ν and γν = σ 2γ̃ν . Consequently,

Ql(λ, z) =∑
ν

|hν(z)|2
(1 + λγν)l

(5.6)

= σ 2−1/mh−1
∑
ν

hσ 1/m|h̃ν(z)|2
(1 + (hσ 1/m)2mγ̃ν)l

∼ σ 2−1/mh−1cl(z),

where cl(z) = limh†→0
∑

ν
h†|h̃ν (z)|2

(1+(h†)2mγ̃ν)l
and h† = hσ 1/m, for l = 1,2. Hence,

by (4.7), we have c0 = c2(z0)/c1(z0). In addition, by (3.6), we obtain the asymp-
totic variance of ĝn,λ(z0) as σ 2−1/mc2(z0), implying the following 95% prediction
interval:

Ŷ ± 1.96
√

σ̂ 2−1/mc2(z0)/(nh) + σ̂ 2.

The above discussion applies to general m. However, when m = 2, we can avoid
estimating the cl(z0)s required in the inference by applying the equivalent ker-
nel approach. Following the discussion in [30], we can actually obtain the same
values of c0 and σ 2

z0
as in case (I). The simulation setup is the same as before



JOINT ASYMPTOTICS FOR SEMI-NONPARAMETRIC MODELS 1371

FIG. 3. Coverage proportion of 95% prediction intervals in case (II) of Example 5.1.

except that a different (nonperiodic) g0(z) = sin(2.8πz) is used. Figure 3 dis-
plays the coverage proportion of the 95% prediction intervals for three sample
sizes n = 100,300,1000. As n grows, all the coverage proportions approach the
95% nominal level, and the prediction interval lengths approach the theoretical
value 3.92.

EXAMPLE 5.2 (Semiparametric gamma model). Consider a two-parameter
exponential model

Y |X,Z ∼ Gamma
(
α, exp

(
XT θ0 + g0(Z)

))
,

where α > 0 is known, g0 ∈ Hm
0 (I) and Z ∼ Unif[0,1]. It can be easily shown that

I (U) = α, and thus B(Z) = α in this model. Consequently, we can construct the
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basis functions hν as those defined in (5.2) with σ = α−1/2, and the eigenvalues
as γ0 = 0 and γ2k−1 = γ2k = α−1(2πk)2m for k ≥ 1. The remaining analysis is
similar to case (I) of Example 5.1; for example, c0 is given in (5.5).

EXAMPLE 5.3 (Semiparametric logistic regression). For the binary response
Y ∈ {0,1}, we consider the following semiparametric logistic model:

P(Y = 1|X = x,Z = z) = exp(xT θ0 + g0(z))

1 + exp(xT θ0 + g0(z))
,(5.7)

where g0 ∈ Hm(I). It can be shown that, in reasonable situations, all the conditions
in Theorems 3.1 and 4.4 are satisfied; see Section S.15 in [6] for more details.

The solutions γν and hν to the problem (2.10) are useful to calculate the quanti-
ties in the limit distribution (such as σ 2

z0
and c0 in Theorems A.1 and 4.4). However,

in this model, due to the intractable forms of these solutions, we need to use con-
sistent estimators of B(·) and π(·) to find the approximated solutions; for example,
B̂(·) is a plug-in estimator and π̂(·) is a kernel density estimator.

Given the length of this paper, we conduct simulations only for the CIs of
the conditional mean defined in (5.7) at a number of (x0, z0) values, that is,
x0 = 1/4,2/4,3/4 and thirty evenly spaced z0 over [0,1]. The true parameters
are θ0 = −0.5 and g0(z) = 0.3(106)(1 − z)6 + (104)(1 − z)10 − 2. For simplicity,

we generate X,Z
i.i.d.∼ Unif[0,1]. Based on 500 replicated data sets, we construct

the 95% CIs and calculate their coverage proportions. The results are summarized
in Figure 4 for various sample sizes n = 400,500,700. We observe that, as n in-
creases, the coverage proportions approach the desired level, 95%, and the lengths
of the CI approach zero.

REMARK 5.1. We use this logistic regression model to illustrate the eigen-
system difference between the semi-nonparametric context and the nonparamet-
ric context, which leads to different inference for the nonparametric components
[except under some strong conditions, e.g., (5.8) below]. This is slightly coun-
terintuitive given that the parametric component can be estimated at a faster
rate. As discussed above, the eigensystem for the semiparametric logistic model
relies on B(z) defined in (S.18) of [6]. According to Shang and Cheng [30],
the eigensystem for the nonparametric logistic model relies on I ′(z) defined as
exp(g0(z))/(1 + exp(g0(z)))

2. Therefore, the equivalence of the two eigensystems
holds if and only if B(z) = I ′(z), that is,

E

{
exp(XT θ0)

(1 + exp(XT θ0 + g0(z)))2

∣∣∣Z = z

}
= 1

(1 + exp(g0(z)))2 .(5.8)

If θ0 = 0, it is clear that (5.8) is true. However, we argue that in general (5.8) may
not hold. For instance, it does not hold when g0(z) = 0 for some z ∈ [0,1] because

the above equation then simplifies to E{ exp(XT θ0)

(1+exp(XT θ0))
2 } = 1. This is not possible

since exp(XT θ0)

(1+exp(XT θ0))
2 < 1 almost surely. This concludes our argument. �
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FIG. 4. Coverage proportion of 95% CIs for the conditional mean constructed at a variety of (x, z)

values.

6. Future work. The general framework in this paper covers a wide range of
commonly used models. In this section, we discuss some possible extensions us-
ing heuristic arguments, while omitting all the technical details due to the length of
this paper. The first possible extension is to the class of generalized additive partial
linear models in which E(Y |X,Z) = F(XT θ0 +∑J

j=1 gj0(Zj )). Our techniques
are expected to handle this more general class by modifying the joint Bahadur
representation in Theorem 2.6, that is, to replace f therein by (θ, g1, . . . , gJ ).
The second possible extension is to deal with the functional data. In [31], we de-
velop nonparametric inference for the (generalized) functional linear models, that
is, E(Y |Z) = F(

∫ 1
0 Z(t)β0(t) dt), by penalizing the slope function β(·). By incor-

porating the techniques in [31] into our paper, we believe that it is feasible to do
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the joint asymptotic study of the (generalized) partial functional linear regression
models [32], that is, E(Y |X,Z) = F(XT θ0 + ∫ 1

0 Z(t)β0(t) dt). The third possi-
ble extension is from the above regression models to survival models. Specifically,
our results may be extended to the partially linear Cox proportional hazard models
(under right censored data) (i.e., [15]), by replacing our criterion function by their
partial likelihood. This extension seems technically feasible given the quadratic
structure of the profile likelihood (a generalization of partial likelihood) proven
in [25].

APPENDIX

In this section, proofs of the main results are provided. In Section A.1, a pre-
liminary lemma used for main results is provided. In Section A.2, an initial result
about the joint limit distribution of the parametric and nonparametric estimators
with biased center is given. Section A.3 includes the proof of Theorem 3.1. In Sec-
tion A.4, the proof of Theorem 4.4 on the null limit distribution of likelihood ratio
testing is provided.

For any f = (θ, g) ∈ H, we treat f as a “partly linear” function, that is,
f : (x, z) �→ xT θ + g(z), where (x, z) ∈ U . Thus (θ, g) can be viewed as a bi-
variate function defined on U . Throughout the Appendix, we will not distinguish
(θ, g) and its associated function f . For instance, we use (θ, g) ∈ G0 to mean
f ∈ G0, some set of functions defined over U .

A.1. An important lemma.

LEMMA A.1.

lim
λ→0

EZ

{
B(Z)

(
G(Z) − A(Z)

)(
G(Z) − A(Z)

)T }= 0.(A.1)

lim
λ→0

EZ

{
B(Z)G(Z)

(
G(Z) − A(Z)

)T }= 0.(A.2)

PROOF. The proofs of (A.1) and (A.2) are similar, so we only show that (A.2)
holds. Considering (2.11) and taking g = hν , one has

V (Gk,hν) = 〈Ak,hν〉1 =
〈∑

μ

V (Ak,hμ)hμ,hν

〉
1
= (1 + λγν)V (Ak,hν),(A.3)

and, taking g = Kz, one has V (Gk,Kz) = Ak(z). By (A.3), Ak =∑
ν

V (Gk,hν)
1+λγν

hν

holds in L2(I). For any k, j = 1, . . . , p, by a straightforward calculation, we have

EZ

{
B(Z)Gj(Z)

(
Gk(Z) − Ak(Z)

)}=∑
ν

V (Gj ,hν)V (Gk,hν)
λγν

1 + λγν

.

By square summability of {V (Gk,hν)}ν∈N and dominated convergence theorem,
the above sum converges to zero as λ → 0. �
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A.2. An initial result on joint asymptotic distribution with biased center.

THEOREM A.1. Let Assumptions A1 through A4 be satisfied. Suppose that as
n → ∞, h = o(1), nh2 → ∞ and an logn = o(n−1/2h1/2), where an is defined as
in (2.16). Furthermore, assume that, as n → ∞,

hV (Kz0,Kz0) → σ 2
z0

, h1/2(WλA)(z0) → αz0 ∈ R
p and

(A.4)
h1/2A(z0) → −βz0 ∈ R

p,

where A is the Riesz representer defined in (2.11). Then we have, for any z0 ∈ I,( √
n
(
θ̂n,λ − θ∗

0

)
√

nh
(
ĝn,λ(z0) − g∗

0(z0)
)) d−→ N

(
0,�∗),(A.5)

where

�∗ =
(

�−1 �−1(αz0 + βz0)

(αz0 + βz0)
T �−1 σ 2

z0
+ 2βT

z0
�−1αz0 + βT

z0
�−1βz0

)
.(A.6)

Note that �−1 is well defined under Assumption A3. It follows from (2.9)
and (2.12) that

αz0 = lim
h→0

h1/2
∑
ν

V (G,hν)λγν

(1 + λγν)2 hν(z0),

βz0 = − lim
h→0

h1/2
∑
ν

V (G,hν)

1 + λγν

hν(z0).

PROOF OF THEOREM A.1. Define

f̂ h
n,λ = (

θ̂n,λ, h
1/2ĝn,λ

)
, f ∗h

0 = (
θ∗

0 , h1/2g∗
0
)
, Rh

u = (
Hu,h

1/2Tu

)
,

where we recall f ∗
0 = (id −Pλ)f0, Hu,Tu were defined by (2.13), and Pλ is spec-

ified in Proposition 2.2. By Theorem 2.6,

Remn = f̂n,λ − f ∗
0 − 1

n

n∑
i=1

εiRUi

satisfies ‖Remn‖ = OP (an logn), which will imply by Assumption A1(b) that∥∥∥∥∥θ̂n,λ − θ∗
0 − 1

n

n∑
i=1

εiHUi

∥∥∥∥∥
l2

= OP (an logn).(A.7)

Define Remh
n = f̂ h

n,λ − f ∗h
0 − 1

n

∑n
i=1 εiR

h
Ui

, then it is easy to see that

Remh
n − h1/2Remn =

((
1 − h1/2)(θ̂n,λ − θ∗

0 − 1

n

n∑
i=1

εiHUi

)
,0

)
.
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Thus, by (A.7),

∥∥Remh
n − h1/2Remn

∥∥ ≤ (
1 − h1/2) · O(∥∥∥∥∥θ̂n,λ − θ∗

0 − 1

n

n∑
i=1

εiHUi

∥∥∥∥∥
l2

)
= OP (an logn).

Since by assumption an logn = o(n−1/2), ‖Remh
n‖ = oP (n−1/2). Next we will use

Remh
n to obtain the target joint limiting distribution.

The idea is to employ the Cramér–Wald device. For any x ∈ I
p , we will obtain

the limiting distribution of n1/2xT (θ̂n,λ − θ∗
0 ) + (nh)1/2(ĝn,λ(z0) − g∗

0(z0)). Note
that this is equal to n1/2〈Ru, f̂

h
n,λ − f ∗h

0 〉 with u = (x, z0). Using the fact that∣∣∣∣∣n1/2

〈
Ru, f̂

h
n,λ − f ∗h

0 − 1

n

n∑
i=1

εiR
h
Ui

〉∣∣∣∣∣
≤ n1/2‖Ru‖ · ∥∥Remh

n

∥∥
= OP

(
n1/2h−1/2an logn

)= oP (1),

we just need to find the limiting distribution of n1/2〈Ru,
1
n

∑n
i=1 εiR

h
Ui

〉, which is
equal to

n1/2

〈
Ru,

1

n

n∑
i=1

εiR
h
Ui

〉
= n−1/2

n∑
i=1

εi

(
xT HUi

+ h1/2TUi
(z0)

)
.

Next we will use CLT to find its limiting distribution. By Assumption A1(c), that
is, E{ε2|U} = I (U), we have that

s2
n ≡ Var

(
n∑

i=1

εi

(
xT HUi

+ h1/2TUi
(z0)

))

= nE
{
ε2∣∣xT HU + h1/2TU(z0)

∣∣2}
= nE

{
E
{
ε2|U}∣∣xT HU + h1/2TU(z0)

∣∣2}
= nE

{
I (U)

∣∣xT HU + h1/2TU(z0)
∣∣2}.

A direct examination from (2.13) shows that

xT HU + h1/2TU(z)

= xT (� + �λ)
−1(X − A(Z)

)+ h1/2KZ(z0)
(A.8)

− h1/2A(z0)
T (� + �λ)

−1(X − A(Z)
)

= h1/2KZ(z0) + (
x − h1/2A(z0)

)T
(� + �λ)

−1(X − A(Z)
)
.
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It follows by the proof of Lemma 2.4 that |KZ(z0)| = O(h−1). On the other
hand, for any z ∈ I and j = 1, . . . , p,∣∣Ak(z)

∣∣= ∣∣∣∣∣
∞∑

ν=1

V (Gk,hν)hν

1 + λγν

∣∣∣∣∣
≤
(∑

ν

∣∣V (Gk,hν)
∣∣2hν(z)

2
)1/2(∑

ν

1

(1 + λγν)2

)1/2

≤ C′
kh

−1/2,

where C′
k is free of z. Thus, by (A.8), there exists a constant c′ s.t. |xT HU +

h1/2TU(z)| ≤ c′h−1/2, a.s.
Thus

E
{
I (U)

∣∣xT HU + h1/2TU(z0)
∣∣2}

= hE
{
I (U)

∣∣KZ(z0)
∣∣2}

(A.9)
+ 2h1/2(x − h1/2A(z0)

)T
(� + �λ)

−1E
{
I (U)KZ(z0)

(
X − A(Z)

)}
+ (

x − h1/2A(z0)
)T

E
{
I (U)HUHT

U

}(
x − h1/2A(z0)

)
.

Lemma A.1 tells us, as λ → 0, �λ = EZ{B(Z)G(Z)(G(Z) − A(Z))T } → 0. It
can be verified that

EU

{
I (U)HUHT

U

}
= (� + �λ)

−1E
{
I (U)

(
X − A(Z)

)(
X − A(Z)

)T }
(� + �λ)

−1

= (� + �λ)
−1E

{
I (U)

(
X − G(Z) + G(Z) − A(Z)

)
× (

X − G(Z) + G(Z) − A(Z)
)T }

(� + �λ)
−1

= (� + �λ)
−1(E{I (U)

(
X − G(Z)

)(
X − G(Z)

)T }
+ E

{
I (U)

(
G(Z) − A(Z)

)(
G(Z) − A(Z)

)T })
(� + �λ)

−1

→ �−1,

where the last limit follows by Lemma A.1. By assumption, as λ → 0,
hE{I (U)|KZ(z0)|2} = hV (Kz0,Kz0) → σ 2

z0
, h1/2A(z0) → −βz0 and

h1/2E
{
I (U)KZ(z0)

(
X − A(Z)

)}
= h1/2E

{
B(Z)Kz0(Z)

(
G(Z) − A(Z)

)}
= h1/2(V (G,Kz0) − V (A,Kz0)

)
= h1/2(A(z0) − V (A,Kz0)

)
= h1/2(WλA)(z0) → αz0 .

Thus, as λ approaches zero, the limit of (A.9) is

σ 2
z0

+ 2(x + βz0)
T �−1αz0 + (x + βz0)

T �−1(x + βz0) = (
xT ,1

)
�∗(xT ,1

)T
,
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where �∗ is defined in (A.6). So s2
n � n. Then it can be shown that, for any ε > 0,

E
{∣∣ε(xT HU + h1/2TU(z0)

)∣∣2I ∣∣ε(xT HU + h1/2TU(z0)
)∣∣≥ εsn

}
≤ (

c′h−1/2)2E{ε2I
(|ε| ≥ εsnh

1/2/c′)}
≤ (

c′h−1/2)2E{ε4}1/2
P
(|ε| ≥ εsnh

1/2/c′)1/2

≤ (
c′h−1/2)E{ε4}1/2(

ε4s4
nh2)−1/2

E
{
ε4}1/2

= (c′)2E{ε4}
ε2s2

nh2 → 0,

where the last limit follows by s2
n � n and the assumption nh2 → ∞. Then as n

approaches infinity,

1

s2
n

n∑
i=1

E
{∣∣εi

(
xT HUi

+ h1/2TUi
(z0)

)∣∣2I ∣∣εi

(
xT HUi

+ h1/2TUi
(z0)

)∣∣≥ εsn
}

= n

s2
n

E
{∣∣ε(xT HU + h1/2TU(z0)

)∣∣2I ∣∣ε(xT HU + h1/2TU(z0)
)∣∣≥ εsn

}→ 0.

So Lindeberg’s condition holds. The desired result follows immediately by central
limit theorem. This completes the proof. �

A.3. Proof of Theorem 3.1. The proof of Theorem 3.1 directly follows The-
orem A.1 and the following lemma.

LEMMA A.2. Suppose that there exists b ∈ (1/(2m),1] such that Gk satis-
fies (3.1). Then we have, for any z0 ∈ I, h1/2A(z0) = o(1), h1/2(WλA)(z0) = o(1).
Furthermore, if n1/2hm(1+b) = o(1), then as n → ∞,( √

n
(
θ∗

0 − θ0
)

√
nh
(
g∗

0(z0) − g0(z0) + (Wλg0)(z0)
))−→ 0.(A.10)

PROOF. We will show (A.10) in three steps:

(i) Show ‖V (G,Wλg0)‖l2 = o(n−1/2). By (2.9),

V (Gk,Wλg0) = ∑
μ∈Z

V (Gk,hμ)V (g0, hμ)
λγμ

1 + λγμ

,

for any k = 1, . . . , p. Then by Cauchy’s inequality, we have∣∣V (Gk,Wλg0)
∣∣2

≤∑
μ

∣∣V (Gk,hμ)
∣∣2 λγμ

1 + λγμ

∑
μ

∣∣V (g0, hμ)
∣∣2 λγμ

1 + λγμ
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≤ const · λ∑
μ

∣∣V (Gk,hμ)
∣∣2 λγμ

1 + λγμ

= const · λ∑
μ

∣∣V (Gk,hμ)
∣∣2γ b

μ

(
λγ 1−b

μ

1 + λγμ

)
≤ const · λ1+b.

Thus, when n1/2λ(1+b)/2 = n1/2hm(1+b) = o(1), ‖V (G,Wλg0)‖l2 = o(n−1/2).
(ii) Show ‖Ak‖sup = O(1), for any k = 1, . . . , p. Note for any z ∈ I, by (2.11),

Ak(z) = 〈Ak,Kz〉1 = V (Gk,Kz)

= ∑
μ∈N

V (Gk,hμ)

1 + λγμ

hμ(z).

By boundedness of hνs (Assumption A3) and by Cauchy’s inequality, uniformly
for z ∈ I,∣∣Ak(z)

∣∣2 ≤∑
μ

∣∣V (Gk,hμ)
∣∣2(1 + γμ)b

∣∣hμ(z)
∣∣2 ·∑

μ

1

(1 + γμ)b(1 + λγμ)2

= O

(∑
μ

1

(1 + γμ)b

)
= O(1),

where the last equality follows by γμ � μ2m and 2mb > 1. This shows ‖Ak‖sup =
O(1), implying h1/2A(z0) = o(1). By (2.12), (WλA)(z) = A(z) −∑

μ
V (G,hμ)

(1+λγμ)2 ×
hμ(z). Using the above derivations we can show that uniformly for z ∈ I,

|∑μ
V (G,hμ)

(1+λγμ)2 hμ(z)|2 = O(
∑

μ
1

(1+γμ)b
) = O(1), implying h1/2(WλA)(z0) = o(1).

(iii) By (i) and (ii), (A.10) follows by, as n → ∞,(
n1/2(θ∗

0 − θ0
)

(nh)1/2(g∗
0(z) − g0(z) + (Wλg0)(z)

))

=
(

n1/2(� + �λ)
−1V (G,Wλg0)

−(nh)1/2V
(
GT ,Wλg0

)
(� + �λ)

−1A(z)

)
→ 0. �

A.4. Proof of Theorem 4.4. For notational convenience, denote f̂ = f̂n,λ,
f̂ 0 = f̂

H0
n,λ , the constrained estimate of f under H0, and f = f̂ 0 − f̂ = (θ, g).

By Assumptions A4 and A5, with large probability, ‖f ‖ ≤ rn, where rn =
M((nh)−1/2 + hm) for some large M . By Assumption A1(a), for some large
constant C > 0, the event Bn ≡ Bn1 ∩ Bn2 has large probability, where Bn1 =
{max1≤i≤n supa∈I |�̈a(Yi;a)| ≤ C logn} and Bn2 = {max1≤i≤n supa∈I |�′′′

a (Yi;
a)| ≤ C logn}. Let an be defined as in (2.16).
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By Taylor’s expansion,

LRTn,λ = �n,λ

(
f̂ 0)− �n,λ(f̂ )

= Sn,λ(f̂ )f +
∫ 1

0

∫ 1

0
sDSn,λ

(
f̂ + ss′f

)
ff ds ds′

=
∫ 1

0

∫ 1

0
sDSn,λ

(
f̂ + ss′f

)
ff da ds′(A.11)

=
∫ 1

0

∫ 1

0
s
{
DSn,λ

(
f̂ + ss′f

)
ff − DSn,λ(f0)ff

}
ds ds′

+ 1

2

(
DSn,λ(f0)ff − E

{
DSn,λ(f0)ff

})+ 1

2
E
{
DSn,λ(f0)ff

}
.

Denote the above three sums by I1, I2 and I3. Next we will study the asymptotic
behavior of these sums. Denote f̃ = f̂ + ss′f − f0 = (θ̃ , g̃), for any 0 ≤ s, s′ ≤ 1.
So ‖f̃ ‖ = OP (rn).

By calculations of the Frechét derivatives, we have

DSn,λ

(
f̂ + ss′f

)
ff

= DSn,λ(f̃ + f0)ff

= 1

n

n∑
i=1

�̈a

(
Yi;XT

i θ0 + g0(Zi) + XT
i θ̃ + g̃(Zi)

)(
XT

i θ + g(Zi)
)2 − 〈Pλf,f 〉,

and

DSn,λ(f0)ff = 1

n

n∑
i=1

�̈a

(
Yi;XT

i θ0 + g0(Zi)
)(

XT
i θ + g(Zi)

)2 − 〈Pλf,f 〉.

On Bn, ∣∣DSn,λ

(
f̂ + ss′f

)
ff − DSn,λ(f0)ff

∣∣
≤ 1

n
C(logn)‖f̃ ‖sup

n∑
i=1

(
XT

i θ + g(Zi)
)2

= C(logn)‖f̃ ‖sup

〈
1

n

n∑
i=1

(
XT

i θ + g(Zi)
)
RUi

, f

〉
(A.12)

= C(logn)‖f̃ ‖sup

〈
1

n

n∑
i=1

(
XT

i θ + g(Zi)
)
RUi

− ET

{(
XT θ + g(Z)

)
RU

}
, f

〉

+ C(logn)‖f̃ ‖supET

{(
XT θ + g(Z)

)2}
.
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Now we study 1
n
‖∑n

i=1(X
T
i θ + g(Zi))RUi

− ET {(XT θ + g(Z))RU }‖. Let dn =
cmh−1/2rn and f̄ = d−1

n f/2 = (d−2
n θ/2, d−1

n g/2) ≡ (θ̄ , ḡ). Consider ψ(T ;f ) =
XT θ + g(Z) and ψn(T ; f̄ ) = (1/2)c−1

m h1/2d−1
n ψ(T ;2dnf̄ ). It is easy to see that

ψn(T ; f̄ ), as a function of f̄ , satisfies the Lipschitz continuity condition (S.6) in
the online supplementary.

Since h = o(1) and nh2 → ∞, dn = o(1). Then by Lemma 2.4, on Bn, ‖f̄ ‖sup ≤
1/2, which implies that for any (x, z) ∈ U , |xT θ̄ + ḡ(z)| ≤ 1/2. Letting x approach
zero, one gets that |ḡ(z)| ≤ 1/2, and thus, ‖ḡ‖sup ≤ 1/2, which further implies that
|xT θ̄ | ≤ ‖ḡ‖sup + ‖f̄ ‖sup ≤ 1 for any x ∈ I

p . Also note that

J (ḡ, ḡ) = d−2
n λ−1(λJ (g, g)

)
/4

≤ d−2
n λ−1‖f ‖2/4

≤ d−2
n λ−1r2

n/4

< c−2
m hλ−1.

Thus, when event Bn holds, f̄ is an element in G. Then by Lemma S.3 (in the
supplementary material [6]), with large probability∥∥∥∥∥1

n

n∑
i=1

[(
XT

i θ + g(Zi)
)
RUi

− ET

{(
XT θ + g(Z)

)
RU

}]∥∥∥∥∥
= cmh−1/2dn

n

∥∥∥∥∥
n∑

i=1

[
ψn(Ti; f̄ )RUi

− ET

{
ψn(T ; f̄ )RU

}]∥∥∥∥∥(A.13)

= OP

(
a′
n

)
,

where a′
n = n−1/2((nh)−1/2 + hm)h−(6m−1)/(4m)(log logn)1/2. So by a′

n = o(rn),∣∣DSn,λ

(
f̂ + ss′f

)
ff − DSn,λ(f0)ff

∣∣
= ‖f̃ ‖sup

(
OP

(
a′
nrn logn

)+ OP

(
r2
n logn

))
(A.14)

= h−1/2rnOP

(
r2
n logn

)
= OP

(
r3
nh−1/2 logn

)
.

Thus |I1| = OP (r3
nh−1/2 logn).

Next we approximate I2. Define ψ(T ;f ) = �̈a(Y ;XT θ0 + g0(Z))(XT θ +
g(Z)). Then by calculation of the Fréchet derivative (Section 2.2),

DSn,λ(f0)ff − E
{
DSn,λ(f0)ff

}
=
〈

1

n

n∑
i=1

[
ψ(Ti;f )RUi

− ET

{
ψ(T ;f )RU

}]
, f

〉
.
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Thus 2|I2| ≤ 1
n
‖∑n

i=1[ψ(Ti;f )RUi
− ET {ψ(T ;f )RU }]‖ · ‖f ‖. So it is suffi-

cient to approximate ‖∑n
i=1[ψ(Ti;f )RUi

− ET {ψ(T ;f )RU }]‖. Let ψ̃n(T ; f̄ ) =
(1/2)C−1c−1

m (logn)−1h1/2d−1
n ψ(T ;2dnf̄ ) and ψn(Ti; f̄ ) = ψ̃n(Ti; f̄ )IAi

, where
f̄ = d−1

n f/2 and Ai = {supa∈I |�̈a(Yi;a)| ≤ C logn} for i = 1, . . . , n. By similar
derivations as the ones below (A.12), it can be shown that on Bn, f̄ ∈ G. Ob-
serve that Bn implies

⋂
i Ai . A direct examination shows that ψn satisfies (S.6).

By Lemma S.3, with large probability,∥∥∥∥∥
n∑

i=1

[
ψn(Ti; f̄ )RUi

− ET

{
ψn(T ; f̄ )RU

}]∥∥∥∥∥
(A.15)

≤ (
n1/2h−(2m−1)/(4m) + 1

)
(5 log logn)1/2.

On the other hand, by Chebyshev’s inequality

P
(
Ac

i

)= exp
(−(C/C0) logn

)
E
{
exp

(
sup
a∈I

∣∣�̈a(Yi;a)
∣∣/C0

)}
≤ C1n

−C/C0 .

Since h = o(1) and nh2 → ∞, we may choose C to be large so that (logn)−1 ×
n−C/(2C0) = o(a′

nh
1/2d−1

n ), where

a′
n = n−1/2((nh)−1/2 + hm)h−(6m−1)/(4m)(log logn)1/2.

By (2.3), which implies E{supa∈I |�̈a(Yi;a)||Ui} ≤ 2C1C
2
0 , we have, on Bn,

ET {|ψ(T ;2dnf̄ )|2} ≤ 2C1C
2
0d2

n . So when n is large, on Bn, by Chebyshev’s in-
equality, ∥∥ET

{
ψn(Ti; f̄ )RUi

}− ET

{
ψ̃n(Ti; f̄ )RUi

}∥∥
= ∥∥ET

{
ψ̃n(Ti; f̄ )RUi

· IAc
i

}∥∥
≤ (1/2)C−1(logn)−1d−1

n

(
ET

{∣∣ψ(T ;2dnf̄ )
∣∣2})1/2

P
(
Ac

i

)1/2(A.16)

≤ (1/2)21/2C−1C0C1(logn)−1n−C/(2C0)

= o
(
a′
nh

1/2d−1
n

)
.

Therefore, by (A.15) and (A.16), on Bn with large probability,

1

n

∥∥∥∥∥
n∑

i=1

[
ψ(Ti;f )RUi

− ET

{
ψ(T ;f )RU

}]∥∥∥∥∥
= 2Ccm(logn)h−1/2dn

n

∥∥∥∥∥
n∑

i=1

[
ψ̃n(Ti; f̄ )RUi

− ET

{
ψ̃n(T ; f̄ )RU

}]∥∥∥∥∥
≤ 2Ccm(logn)h−1/2dn

n
(A.17)
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×
(∥∥∥∥∥

n∑
i=1

[
ψn(Ti; f̄ )RUi

− ET

{
ψn(T ; f̄ )RU

}]∥∥∥∥∥
+ n

∥∥ET

{
ψn(Ti; f̄ )RUi

}− ET

{
ψ̃n(Ti; f̄ )RUi

}∥∥)

≤ 2Ccm(logn)h−1/2dn

n

× [(
n1/2h−(2m−1)/(4m) + 1

)
(5 log logn)1/2 + o

(
na′

nh
1/2d−1

n

)]
≤ C′a′

n logn,

for some large constant C′ > 0. Thus |I2| = OP (a′
nrn logn).

Note that I3 = −‖f ‖2/2. Therefore,

−2n · LRTn,λ = n
∥∥f̂ 0 − f̂

∥∥2 + OP

(
nrna

′
n logn + nr3

nh−1/2 logn
)

= n
∥∥f̂ 0 − f̂

∥∥2 + OP

(
nrnan logn + nr3

nh−1/2 logn
)
.

By r2
nh−1/2 = o(an) and nrnan = o((logn)−1), we have that OP (nrnan logn +

nr3
nh−1/2 logn) = oP (1). This shows −2n · LRTn,λ = n‖f̂ 0 − f̂ ‖2 + oP (1). So

we only focus on n‖f̂ 0 − f̂ ‖2. By Theorems 2.6 and 4.3,

n1/2∥∥f̂ 0 − f̂ − S0
n,λ

(
f 0

0
)+ Sn,λ(f0)

∥∥= OP

(
n1/2an logn

)= oP (1),(A.18)

so we just have to focus on n1/2{S0
n,λ(f

0
0 )−Sn,λ(f0)}. Recall that under H0, f 0

0 =
(θ0

0 , g0
0) ∈ H0, so

S0
n,λ

(
f 0

0
)= 1

n

n∑
i=1

�̇a

(
Yi;XT

i θ0
0 + g0

0(Zi) + XT
i θ† + w†)R0

Ui
− P 0

λ f 0
0

= 1

n

n∑
i=1

�̇a

(
Yi;XT

i θ0 + g0(Zi)
)
R0

Ui
− P 0

λ f 0
0 = 1

n

n∑
i=1

εiR
0
Ui

− P 0
λ f 0

0 ,

where εi = �̇a(Yi;XT
i θ0 + g0(Zi)), R0

U and P 0
λ f 0

0 are defined in Section 4, and

Sn,λ(f0) = 1

n

n∑
i=1

εiRUi
− Pλf0.

Consequently,

S0
n,λ

(
f 0

0
)− Sn,λ(f0)

= 1

n

n∑
i=1

εi

(
R0

Ui
− RUi

)− (
P 0

λ f 0
0 − Pλf0

)
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= −1

n

n∑
i=1

εi

(
k∑

j=1

ρUi,jRqj ,Wj

)
+
(

k∑
j=1

ζjRqj ,Wj

)

= −1

n

n∑
i=1

εi

(
H(Q,W)ρUi

,
(
QT Kz0 − AT H(Q,W)

)
ρUi

)
+ (

H(Q,W)ζ,
(
QT Kz0 − AT H(Q,W)

)
ζ
)

= (ξ, β) + (
H(Q,W)ζ,

(
QT Kz0 − AT H(Q,W)

)
ζ
)
,

where

β = −δKz0 − AT ξ, ξ = −(1/n)

n∑
i=1

εiH(Q,W)ρUi

and

δ = (1/n)

n∑
i=1

εiQ
T ρUi

.

Therefore,∥∥S0
n,λ

(
f 0

0
)− Sn,λ(f0)

∥∥2

= ∥∥(ξ, β)
∥∥2 + 2

〈
(ξ, β),

(
H(Q,W)ζ,

(
QT Kz0 − AT H(Q,W)

)
ζ
)〉

+ ∥∥(H(Q,W)ζ,
(
QT Kz0 − AT H(Q,W)

)
ζ
)∥∥2

.

We next evaluate the three items on the right-hand side of the above equation. De-
note �λ = EU {I (U)(G(Z) − A(Z))(G(Z) − A(Z))T }. Note EZ{B(Z)(G(Z) −
A(Z))Kz0(Z)} = V (G,Kz0) − V (A,Kz0) = 〈A,Kz0〉1 − V (A,Kz0) = 〈WλA,

Kz0〉1 = (WλA)(z0). First,∥∥(ξ, β)
∥∥2

= EU

{
I (U)

(
XT ξ + β(Z)

)2}+ λJ (β,β)

= EU

{
I (U)

[(
X − A(Z)

)T
ξ − δKz0(Z)

]2}+ λJ (β,β)

= ξT EU

{
I (U)

(
X − A(Z)

)(
X − A(Z)

)T }
ξ

− 2ξT EU

{
I (U)

(
X − A(Z)

)
Kz0(Z)

}
δ

+ δ2EZB(Z)
∣∣Kz0(Z)

∣∣2 + 〈
Wλ

(
δKz0 + AT ξ

)
, δKz0 + AT ξ

〉
1(A.19)

= ξT (� + �λ)ξ − 2ξT EZ

{
B(Z)

(
G(Z) − A(Z)

)
Kz0(Z)

}
δ

+ δ2V (Kz0,Kz0) + δ2〈WλKz0,Kz0〉1

+ 2δξT 〈WλA,Kz0〉1 + ξT 〈WλA,AT 〉
1ξ
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= ξT �λξ − 2ξT (WλA)(z0)δ + δ2K(z0, z0) + 2δξT (WλA)(z0)

= ξT �λξ + δ2K(z0, z0),

where �λ = � + �λ + 〈WλA,AT 〉1 and �λ = EZ{B(Z)(G(Z) − A(Z))(G(Z) −
A(Z))T }. Second,〈

(ξ, β),
(
H(Q,W)ζ,

(
QT Kz0 − AT H(Q,W)

)
ζ
)〉

= EU

{
I (U)

[(
X − A(Z)

)T
ξ − δKz0(Z)

]
× [(

X − A(Z)
)T

H(Q,W)ζ + QT ζKz0(Z)
]}

+ 〈
Wλβ,QT ζKz0 − AT H(Q,W)ζ

〉
1

= ξT EU

{
I (U)

(
X − A(Z)

)(
X − A(Z)

)T }
H(Q,W)ζ

+ ξT EU

{
I (U)

(
X − A(Z)

)
Kz0(Z)

}
QT ζ(A.20)

− δEU

{
I (U)Kz0(Z)

(
X − A(Z)

)T }
H(Q,W)ζ

− δQT ζV (Kz0,Kz0) − δQT ζ 〈WλKz0,Kz0〉1

+ δ
(
H(Q,W)ζ

)T
(WλA)(z0) − QT ζξT (WλA)(z0)

+ ξT 〈WλA,AT 〉
1H(Q,W)ζ

= ξT �λH(Q,W)ζ − δQT ζK(z0, z0).

Third, similar to the calculations in (A.19) and (A.20), we have〈(
H(Q,W)ζ,

(
QT Kz0 − AT H(Q,W)

)
ζ
)
,(

H(Q,W)ζ,
(
QT Kz0 − AT H(Q,W)

)
ζ
)〉

= EU

{
I (U)

[(
X − A(Z)

)T
H(Q,W)ζ + QT ζKz0(Z)

]2}(A.21)

+ 〈
Wλ

(
QT ζKz0 − AT H(Q,W)ζ

)
,QT ζKz0 − AT H(Q,W)ζ

〉
1

= ζ T H(Q,W)T �λH(Q,W)ζ + (
QT ζ

)2
K(z0, z0).

It follows from (A.19) to (A.21) that∥∥S0
n,λ

(
f 0

0
)− Sn,λ(f0)

∥∥2

= (
ξ + H(Q,W)ζ

)T
�λ

(
ξ + H(Q,W)ζ

)+ (
δ − QT ζ

)2
K(z0, z0)(A.22)

=
(

ξ + H(Q,W)ζ

δ − QT ζ

)T (�λ 0

0 K(z0, z0)

)(
ξ + H(Q,W)ζ

δ − QT ζ

)
.

Next we find the limiting distribution of n‖S0
n,λ(f

0
0 ) − Sn,λ(f0)‖2, which leads to

the limiting distribution of −2n · LRTn,λ in view of (A.18). By definition of ξ and
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the expressions of H(Q,W), T (Q,W), ρUi
and ζ in Section 4, we have

ξ + H(Q,W)ζ

= −1

n

n∑
i=1

εiH(Q,W)M−1
K

(
MHUi

+ QTUi
(z0)

)
+ H(Q,W)M−1

K

(
MH ∗

g0
+ QT ∗

g0
(z0)

)
= H(Q,W)M−1

K N

(
−1

n

n∑
i=1

εi

(
HUi

TUi
(z0)

)
+
(

H ∗
g0

T ∗
g0

(z0)

))

= H(Q,W)M−1
K N

(
Ip 0

−A(z0)
T 1

)

×
(
−1

n

n∑
i=1

εi

(
HUi

Kz0(Zi)

)
+
(

H ∗
g0

(Wλg0)(z0)

))
.

On the other hand,

δ − QT ζ

= QT M−1
K N

(
1

n

n∑
i=1

εi

(
HUi

TUi
(z0)

)
−
(

H ∗
g0

T ∗
g0

(z0)

))

= QT M−1
K N

(
Ip 0

−A(z0)
T 1

)(
1

n

n∑
i=1

εi

(
HUi

Kz0(Zi)

)
−
(

H ∗
g0

(Wλg0)(z0)

))
.

Therefore, (
ξ + H(Q,W)ζ

δ − QT ζ

)

=
(

H(Q,W)

−QT

)
M−1

K N

(
Ip 0

−A(z0)
T 1

)
(A.23)

×
(
−1

n

n∑
i=1

εi

(
HUi

Kz0(Zi)

)
+
(

H ∗
g0

(Wλg0)(z0)

))
.

Define M̃K = (H(Q,W)

−QT

)T (�λ 0
0 K(z0,z0)

)(H(Q,W)

−QT

)
, where we recall that �λ = � +

�λ + 〈WλA,AT 〉1. Since for any 1 ≤ j, k ≤ p, 〈WλAk,Aj 〉1 = λ
∑

ν V (Aj ,

hν)V (Ak,hnu)γν = O(λ) = o(1), we have as λ → 0, 〈WλA,AT 〉1 → 0, a p × p

zero matrix. Define λ1 as the maximum eigenvalue of 〈WλA,AT 〉1, and λ2 as
the minimum eigenvalue of � + �λ. Thus λ1 = o(1). By equation (A.1) in
Lemma A.1, λ2 is asymptotically finitely upper bounded, and is lower bounded
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from zero. Note that

M̃K − MK =
(

H(Q,W)

−QT

)T ( 〈WλA,AT
〉
1 0

0 0

)(
H(Q,W)

−QT

)

≤ λ1

λ2

(
H(Q,W)

−QT

)T (� + �λ 0
0 0

)(
H(Q,W)

−QT

)
(A.24)

≤ λ1

λ2

(
H(Q,W)

−QT

)T (� + �λ 0
0 K(z0, z0)

)(
H(Q,W)

−QT

)
= λ1

λ2
MK.

Define

�λ =
(

(� + �λ)
−1/2 0

0 K(z0, z0)
1/2

)(
Ip −A(z0)

0 1

)
NT M−1

K M̃KM−1
K N

×
(

Ip 0

−A(z0)
T 1

)(
(� + �λ)

−1/2 0

0 K(z0, z0)
1/2

)
.

Therefore, by (A.24),

0 ≤ �λ − �λ

≤ λ1

λ2

(
(� + �λ)

−1/2 0

0 K(z0, z0)
1/2

)(
Ip −A(z0)

0 1

)
NT M−1

K N

×
(

Ip 0

−A(z0)
T 1

)(
(� + �λ)

−1/2 0

0 K(z0, z0)
1/2

)
= λ1

λ2
�λ.

Since �λ ≤ trace(�λ)Ip+1 = kIp+1, �λ − �λ = o(1)Ip+1. Thus, as n → ∞, �λ

approaches �0.
Next we will complete the proof by demonstrating the asymptotic distribution. It

follows by Lemma A.2 that n1/2H ∗
g0

= o(1). Denote NU = (−HT
U ,KZ(z0)/K(z0,

z0)
1/2)T . By Assumption A1(c),

E
{
ε2NUNT

U

}
= E

{
I (U)

(
HUHT

U −HUKZ(z0)/K(z0, z0)
1/2

−HT
U KZ(z0)/K(z0, z0)

1/2 |KZ(z0)|2/K(z0, z0)

)}
.

To find the limit of this matrix, note that as λ → 0, the following limits hold:

• by Lemma A.1,

E
{
I (U)HUHT

U

}
= (� + �λ)

−1E
{
I (U)

(
X − A(Z)

)(
X − A(Z)

)T }
(� + �λ)

−1

= (� + �λ)
−1(� + EZ{B(Z)

(
G(Z) − A(Z)

)(
G(Z) − A(Z)

)T )
× (� + �λ)

−1

→ �−1;
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• by h1/2(WλA)(z0) → 0 (see Lemma A.2) and hK(z0, z0) → σ 2
z0

/c0 [by as-
sumption (4.4)],

E
{
I (U)HUKZ(z0)

}
/K(z0, z0)

1/2

= E
{
I (U)(� + �λ)

−1(X − A(Z)
)
KZ(z0)

}
/K(z0, z0)

1/2

= E
{
B(Z)

(
G(Z) − A(Z)

)
KZ(z0)

}
/K(z0, z0)

1/2

= (WλA)(z0)/K(z0, z0)
1/2 → 0;

• by assumption, E{B(Z)|KZ(z0)|2}/K(z0, z0) → c0.

Thus, as λ → 0, E{ε2NUNT
U } → (�−1 0

0 c0

)
. So as n → ∞,

n1/2
(

(� + �λ)
1/2 0

0 1

)⎛⎝−1

n

n∑
i=1

εi

⎛⎝ HUi

Kz0(Zi)√
K(z0, z0)

⎞⎠+
⎛⎝ H ∗

g0

(Wλg0)(z0)√
K(z0, z0)

⎞⎠⎞⎠
(A.25)

d−→ υ,

where υ ∼ N
(( 0

cz0

)
,
(Ip 0

0 c0

))
. Therefore, it follows by (A.22), (A.23) and (A.25)

that, as n → ∞, n‖S0
n,λ(f

0
0 ) − Sn,λ(f0)‖2 d−→ υT �0υ . It immediately follows

that ‖f̂ 0 − f̂ ‖ = OP (n−1/2). Besides, when n → ∞, −2n · LRTn,λ
d−→ υT �0υ .

SUPPLEMENTARY MATERIAL

Supplement to “Joint asymptotics for semi-nonparametric regression mod-
els with partially linear structure” (DOI: 10.1214/15-AOS1313SUPP; .pdf). Ad-
ditional proofs are provided.
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