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ASYMPTOTIC NORMALITY AND OPTIMALITIES IN ESTIMATION
OF LARGE GAUSSIAN GRAPHICAL MODELS

BY ZHAO REN∗, TINGNI SUN†,
CUN-HUI ZHANG1,‡ AND HARRISON H. ZHOU2,§

University of Pittsburgh∗, University of Maryland†, Rutgers University‡

and Yale University§

The Gaussian graphical model, a popular paradigm for studying rela-
tionship among variables in a wide range of applications, has attracted great
attention in recent years. This paper considers a fundamental question: When
is it possible to estimate low-dimensional parameters at parametric square-
root rate in a large Gaussian graphical model? A novel regression approach is
proposed to obtain asymptotically efficient estimation of each entry of a pre-
cision matrix under a sparseness condition relative to the sample size. When
the precision matrix is not sufficiently sparse, or equivalently the sample size
is not sufficiently large, a lower bound is established to show that it is no
longer possible to achieve the parametric rate in the estimation of each entry.
This lower bound result, which provides an answer to the delicate sample size
question, is established with a novel construction of a subset of sparse preci-
sion matrices in an application of Le Cam’s lemma. Moreover, the proposed
estimator is proven to have optimal convergence rate when the parametric
rate cannot be achieved, under a minimal sample requirement.

The proposed estimator is applied to test the presence of an edge in the
Gaussian graphical model or to recover the support of the entire model, to
obtain adaptive rate-optimal estimation of the entire precision matrix as mea-
sured by the matrix �q operator norm and to make inference in latent variables
in the graphical model. All of this is achieved under a sparsity condition on
the precision matrix and a side condition on the range of its spectrum. This
significantly relaxes the commonly imposed uniform signal strength condi-
tion on the precision matrix, irrepresentability condition on the Hessian tensor
operator of the covariance matrix or the �1 constraint on the precision matrix.
Numerical results confirm our theoretical findings. The ROC curve of the
proposed algorithm, Asymptotic Normal Thresholding (ANT), for support
recovery significantly outperforms that of the popular GLasso algorithm.
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1. Introduction. The Gaussian graphical model, a powerful tool for inves-
tigating the relationship among a large number of random variables in a com-
plex system, is used in a wide range of scientific applications. A central ques-
tion for Gaussian graphical models is how to recover the structure of an undi-
rected Gaussian graph. Let G = (V ,E) be an undirected graph representing the
conditional dependence relationship between components of a random vector
Z = (Z1, . . . ,Zp)T as follows. The vertex set V = {V1, . . . , Vp} represents the
components of Z. The edge set E consists of pairs (i, j) indicating the conditional
dependence between Zi and Zj given all other components. In applications, the
following question is fundamental: Is there an edge between Vi and Vj ? It is well
known that recovering the structure of an undirected Gaussian graph G = (V ,E)

is equivalent to recovering the support of the population precision matrix of the
data in the Gaussian graphical model. Let

Z = (Z1,Z2, . . . ,Zp)T ∼N (μ,�),

where � = (σij ) is the population covariance matrix. The precision matrix, de-
noted by � = (ωij ), is defined as the inverse of covariance matrix, � = �−1.
There is an edge between Vi and Vj , that is, (i, j) ∈ E, if and only if ωij �= 0; see,
for example, Lauritzen (1996). Consequently, the support recovery of the precision
matrix � yields the recovery of the structure of the graph G.

Suppose n i.i.d. p-variate random vectors X(1),X(2), . . . ,X(n) are observed
from the same distribution as Z, that is, the Gaussian N (μ,�−1). Assume without
loss of generality that μ = 0 hereafter. In this paper, we address the following two
fundamental questions: When is it possible to make statistical inference for each
individual entry of a precision matrix � at the parametric n−1/2 rate? When and in
what sense is it possible to recover the support of � in the presence of some small
nonzero |ωij |?

The problems of estimating a large sparse precision matrix and recovering
its support have drawn considerable recent attention. There are mainly two ap-
proaches in the literature. The first approach is a penalized likelihood estimation
approach with a lasso-type penalty on entries of the precision matrix. Yuan and
Lin (2007) proposed to use the lasso penalty and studied its asymptotic proper-
ties when p is fixed. Ravikumar et al. (2011) derived the selection consistency
and related error bounds under an irrepresentability condition on the Hessian ten-
sor operator and a constraint on the matrix �1 norm of the precision matrix. See
also Rothman et al. (2008) for Frobenius-based error bounds and Lam and Fan
(2009) for concave penalized likelihood estimation without the irrepresentability
condition. The second approach, proposed earlier by Meinshausen and Bühlmann
(2006), is neighborhood-based. It estimates the precision matrix column by col-
umn by running the lasso or Dantzig selector for each variable against all the rest
of variables; see Yuan (2010), Cai, Liu and Luo (2011), Cai, Liu and Zhou (2012)
and Sun and Zhang (2013). The irrepresentability condition is no longer needed
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in Cai, Liu and Luo (2011) and Cai, Liu and Zhou (2012) for support recovery,
but the thresholding level for support recovery depends on the matrix �1 norm of
the precision matrix. The matrix �1 norm is unknown and large, which makes the
support recovery procedures there nonadaptive and thus less practical. In Sun and
Zhang (2013), optimal convergence rate in the spectral norm is achieved without
requiring the matrix �1 norm constraint or the irrepresentability condition. How-
ever, support recovery properties of the estimator were not analyzed.

In spite of an extensive literature on the topic, the fundamental limit of support
recovery in the Gaussian graphical model is still largely unknown, let alone an
adaptive procedure to achieve the limit.

Statistical inference of low-dimensional parameters at the n−1/2 rate has been
considered in the closely related linear regression model. Sun and Zhang (2012a)
proposed an efficient scaled lasso estimator of the noise level under the sample
size condition n � (s logp)2, where s is the �0 or capped-�1 measure of the size
of the unknown regression coefficient vector. Zhang and Zhang (2014) proposed
an asymptotically normal low-dimensional projection estimator (LDPE) for the
regression coefficients under the same sample size condition. Both estimators con-
verge at the n−1/2 rate, and their asymptotic efficiency can be understood from the
minimum Fisher information in a more general context [Zhang (2011)]. A proof of
the asymptotic efficiency of the LDPE was given in van de Geer et al. (2014) where
the generalized linear model was also considered. Alternative methods for testing
and estimation of regression coefficients were proposed in Belloni, Chernozhukov
and Hansen (2014), Bühlmann (2013), Javanmard and Montanari (2014) and Liu
(2013). However, the optimal rate of convergence is unclear from these papers
when the sample size condition n � (s logp)2 fails to hold. Please see Section 5.3
for more details of their connection with this paper.

This paper makes important advancements in the understanding of statistical in-
ference of low-dimensional parameters in the Gaussian graphical model in the fol-
lowing ways. Let s be the maximum degree of the graph or a certain more relaxed
capped-�1 measure of the complexity of the precision matrix. We prove that the
estimation of each ωij at the parametric n−1/2 convergence rate requires the spar-
sity condition s = O(n1/2/ logp) or equivalently a sample size of order (s logp)2.
We propose an adaptive estimator of individual ωij and prove its asymptotic nor-
mality and efficiency when n � (s logp)2. Moreover, we prove that the proposed
estimator achieves the optimal convergence rate when the sparsity condition is re-
laxed to s ≤ c0n/ logp for a certain positive constant c0. The efficient estimator
of the individual ωij is then used to construct fully data-driven procedures to re-
cover the support of � and to make statistical inference about latent variables in
the graphical model.

The methodology we are proposing is a novel regression approach briefly de-
scribed in Sun and Zhang (2012b). In this regression approach, the main task is not
to estimate the slope, as seen in Meinshausen and Bühlmann (2006), Yuan (2010),
Cai, Liu and Luo (2011), Cai, Liu and Zhou (2012) and Sun and Zhang (2012a),
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but to estimate the noise level. For a vector Z of length p and any index subset
A of {1,2, . . . , p}, we denote by ZA the sub-vector of Z with elements indexed
by A. Similarly for a matrix U and two index subsets A and B of {1,2, . . . , p},
we denote by UA,B the |A| × |B| sub-matrix of U with elements in rows in A

and columns in B . Consider A = {i, j} with i �= j , so that ZA = (Zi,Zj )
T and

�A,A = ( ωii

ωji

ωij

ωjj

)
. It is well known that

ZA|ZAc ∼ N
(−�−1

A,A�A,AcZAc,�−1
A,A

)
.

This observation motivates us to consider the estimation of individual entries of
�, ωii and ωij , by estimating the noise level in the regression of the two response
variables in A against the variables in Ac. The noise level �−1

A,A has only three
parameters. When � is sufficiently sparse, a penalized regression approach is pro-
posed in Section 2 to obtain an asymptotically efficient estimation of ωij in the
following sense: The estimator is asymptotically normal, and its asymptotic vari-
ance matches that of the maximum likelihood estimator in the classical setting
where the dimension p is a fixed constant. Consider the class of parameter spaces
modeling sparse precision matrices with at most kn,p nonzero elements in each
column,

G0(M,kn,p) =
⎧⎪⎨⎪⎩� = (ωij )1≤i,j≤p : max

1≤j≤p

p∑
i=1

1{ωij �= 0} ≤ kn,p,

and 1/M ≤ λmin(�) ≤ λmax(�) ≤ M

⎫⎪⎬⎪⎭ ,(1)

where 1{·} is the indicator function, and M is some constant greater than 1. The
following theorem shows that a necessary and sufficient condition to obtain a

n−1/2-consistent estimation of ωij is kn,p = O(
√

n
logp

), and when kn,p = o(
√

n
logp

)

the procedure to be proposed in Section 2 is asymptotically efficient.

THEOREM 1. Let X(i)i.i.d.∼ Np(μ,�), i = 1,2, . . . , n. Assume that 3 ≤ kn,p ≤
c0n/ logp with a sufficiently small constant c0 > 0 and p ≥ kν

n,p with some ν > 2.

(i) There exists a constant ε0 > 0 such that

inf
i,j

inf
ω̂ij

sup
G0(M,kn,p)

P
{|ω̂ij − ωij | ≥ ε0 max

{
n−1kn,p logp,n−1/2}}≥ ε0.

Moreover, the minimax risk of estimating ωij over the class G0(M,kn,p) satisfies

inf
ω̂ij

sup
G0(M,kn,p)

E|ω̂ij − ωij | 
 max
{
n−1kn,p logp,n−1/2}(2)

uniformly in (i, j), provided that n = O(pξ ) with some ξ > 0.
(ii) The estimator ω̂ij defined in (10) in Section 2 is rate optimal in the sense of

lim
(C,n)→(∞,∞)

max
i,j

sup
G0(M,kn,p)

P
{|ω̂ij − ωij | ≥ C max

{
n−1kn,p logp,n−1/2}}= 0.
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Furthermore, the estimator ω̂ij is asymptotically efficient when kn,p = o(
√

n
logp

),

that is, with Fij = (ωiiωjj + ω2
ij )

−1 being the Fisher information for estimating

ωij and F̂ij = (ω̂ii ω̂jj + ω̂2
ij )

−1 its estimate,√
nF̂ij (ω̂ij − ωij )

D→ N (0,1), F̂ij /Fij → 1.(3)

The lower bound is established through Le Cam’s lemma and a novel construc-
tion of a subset of sparse precision matrices. An important implication of the lower
bound is that the difficulty of support recovery for sparse precision matrices is dif-

ferent from that for sparse covariance matrices when kn,p � (
√

n
logp

), and when

kn,p = o(
√

n
logp

) the difficulty of support recovery for sparse precision matrices is
just the same as that for sparse covariance matrices.

It is worthwhile to point out that the asymptotic efficiency result is obtained
without the need to assume the irrepresentability condition or the �1 constraint of
the precision matrix which are commonly required in the literature. For precon-
ceived (i, j), two immediate consequences of (3) are efficient interval estimation
of ωij and efficient test for the existence of an edge between Vi and Vj in the graph-
ical model, that is, the hypotheses ωij = 0. However, the impact of Theorem 1 is
much broader. We derive fully adaptive thresholded versions of the estimator and
prove that the thresholded estimators achieve rate optimality in support recovery
without assuming the irrepresentability condition and in various matrix norms for
the estimation of the entire precision matrix � under weaker assumptions than the
requirements of existing results in the literature. In addition, we extend our infer-
ence and estimation framework to a class of latent variable graphical models. See
Section 3 for details.

Our work on optimal estimation of precision matrices given in the present pa-
per is closely connected to a growing literature on the estimation of large covari-
ance matrices. Many regularization methods have been proposed and studied. For
example, Bickel and Levina (2008a, 2008b) proposed banding and thresholding
estimators for estimating bandable and sparse covariance matrices, respectively,
and obtained rate of convergence for the two estimators. See also El Karoui (2008)
and Lam and Fan (2009). Cai, Zhang and Zhou (2010) established the optimal
rates of convergence for estimating bandable covariance matrices. Cai and Zhou
(2012) and Cai, Liu and Zhou (2012) obtained the minimax rate of convergence
for estimating sparse covariance and precision matrices under a range of losses in-
cluding the spectral norm loss. In particular, a new general lower bound technique
for matrix estimation was developed there. More recently, Sun and Zhang (2013)
proposed to apply a scaled lasso to estimate � and proved its rate optimality in
spectrum norm without imposing an �1 norm assumption on �.

The proposed estimator was briefly described in Sun and Zhang (2012b) along
with a statement of the efficiency of the estimator without proof under the spar-
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sity assumption kn,p = o(n−1/2 logp). While we are working on the delicate is-
sue of the necessity of the sparsity condition kn,p = o(n1/2/ logp) and the op-
timality of the method for support recovery and estimation under the general
sparsity condition kn,p = o(n/ logp), Liu (2013) developed p-values for testing
ωij = 0 and related FDR control methods under the stronger sparsity condition
kn,p = o(n1/2/ logp). However, his method cannot be directly converted into con-
fidence intervals, and the optimality of his method is unclear under either sparsity
conditions.

The paper is organized as follows. In Section 2, we introduce our methodology
and main results for statistical inference. Applications to the estimation under the
spectral norm, support recovery and the estimation of latent variable graphical
models are presented in Section 3. Results on linear regression are presented in
Section 4 to support the main theory. Section 5 discusses possible extensions of
our results and the connection between our and existing results. Numerical studies
are presented in Section 6. The proof for the novel lower bound result is given in
Section 7. Additional proofs are provided in Ren et al. (2015).

Notation. We summarize here some notation to be used throughout the paper.
For 1 ≤ w ≤ ∞, we use ‖u‖w and ‖A‖w to denote the usual vector �w norm,
given a vector u ∈ Rp and a matrix A = (aij )p×p , respectively. In particular, ‖A‖∞
denote the entry-wise maximum maxij |aij |. We shall write ‖·‖ without a subscript
for the vector �2 norm. The matrix �w operator norm of a matrix A is defined by
|||A|||w = max‖x‖w=1 ‖Ax‖w . The commonly used spectral norm ||| · ||| coincides
with the matrix �2 operator norm ||| · |||2.

2. Methodology and statistical inference. In this section we introduce our
methodology for estimating each entry and more generally, a smooth functional
of any square submatrix of fixed size. Asymptotic efficiency results are stated in
Section 2.3 under a sparseness assumption. The lower bound in Section 2.4 shows
that the sparseness condition is sharp for the asymptotic efficiency proved in Sec-
tion 2.3.

2.1. Methodology. We will first introduce the methodology to estimate each
entry ωij , and discuss its extension to the estimation of functionals of a submatrix
of the precision matrix.

The methodology is motivated by the following simple observation with A =
{i, j}:

Z{i,j}|Z{i,j}c ∼N
(−�−1

A,A�A,AcZ{i,j}c ,�−1
A,A

)
.(4)

Equivalently we write a bivariate linear model

(Zi,Zj ) = ZT{i,j}cβ + (ηi, ηj ),(5)

where the coefficients and error distributions are

β = βAc,A = −�Ac,A�−1
A,A, (ηi, ηj )

T ∼ N
(
0,�−1

A,A

)
.(6)
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Denote the covariance matrix of (ηi, ηj )
T by

A,A = �−1
A,A =

(
θii θij

θji θjj

)
.

We will estimate A,A and expect that an efficient estimator of A,A yields an
efficient estimation of the entries of �A,A by inverting the estimator of A,A.

Denote the n by p-dimensional data matrix by X. The ith row of the data ma-
trix is the ith sample X(i). Let XA be the sub-matrix of X composed of columns
indexed by A. Based on the regression interpretation (5), we have the following
data version of the multivariate regression model

XA = XAcβ + εA.(7)

Here each row of (7) is a sample of the linear model (5). Note that β = βAc,A is a
p − 2 by 2-dimensional coefficient matrix. Denote a sample version of A,A by

ora
A,A = (

θora
ij

)
i∈A,j∈A = εT

AεA/n,(8)

which is an oracle MLE of A,A based on the extra knowledge of β . The oracle
MLE of �A,A is

�ora
A,A = (

ωora
ij

)
i∈A,j∈A = (

ora
A,A

)−1
.(9)

Of course β is unknown, and we will need to estimate β and plug in its estimator
to estimate εA. This general scheme can be formally written as

�̂A,A = (ω̂ij )i∈A,j∈A = ̂−1
A,A, ̂A,A = (θ̂ij )i,j∈A = ε̂T

Aε̂A/n,(10)

where ε̂A is the estimated residual corresponding to a suitable estimator of βAc,A,
that is,

ε̂A = XA − XAc β̂Ac,A.(11)

Now we introduce specific estimators of β̂ = β̂Ac,A = (β̂i , β̂j ). For each m ∈
A = {i, j}, we apply a scaled lasso estimator to the univariate linear regression of
Xm against XAc as follows:

{
β̂m, θ̂1/2

mm

}= arg min
b∈Rp−2,σ∈R+

{‖Xm − XAcb‖2

2nσ
+ σ

2
+ λ

∑
k∈Ac

‖Xk‖√
n

|bk|
}
,(12)

with a weighted �1 penalty, where the vector b is indexed by Ac. This is equivalent
to standardizing the design vector to length

√
n and then applying the �1 penalty to

the new coefficients (‖Xk‖/√n)bk . The penalty level λ will be specified explicitly
later. It can be shown that the definition of θ̂mm in (10) is consistent with the θ̂mm

obtained from the scaled lasso (12) for each m ∈ A and each A. We also consider
the following least squares estimator (LSE) in the model Ŝmm selected in (12):

{
β̂m, θ̂1/2

mm

}= arg min
b∈Rp−2,σ∈R+

{‖Xm − XAcb‖2

2nσ
+ σ

2
: supp(b) ⊆ Ŝmm

}
,(13)
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where supp(b) denotes the support of vector b.
Different versions of scaled lasso, in the sense of scale-free simultaneous es-

timation of the regression coefficients and noise level, have been considered in
Städler, Bühlmann and van de Geer (2010), Antoniadis (2010) and Sun and Zhang
(2010, 2012a) among others. The β̂m in (12) is equivalent to the square-root lasso
in Belloni, Chernozhukov and Wang (2011). Theoretical properties of the LSE
after model selection, given in (13), were studied in Sun and Zhang (2012a, 2013).

Our methodology can be routinely extended into a more general form. For any
subset B ⊂ {1,2, . . . , p} with a bounded size, the conditional distribution of ZB

given ZBc is

ZB |ZBc = N
(−�−1

B,B�B,BcZBc,�−1
B,B

)
,(14)

so that the associated multivariate linear regression model is XB = XBcβB,Bc +
εB with βBc,B = −�Bc,B�−1

B,B and εB ∼ N (0,�−1
B,B). Consider a more general

problem of estimating a smooth functional of �−1
B,B , denoted by

ζ = ζ
(
�−1

B,B

)
.

When βBc,B is known, εB is sufficient for �−1
B,B due to the independence of εB

and XBc , so that an oracle maximum likelihood estimator of ζ can be defined as

ζ ora = ζ
(
εT

BεB/n
)
.

We apply an adaptive regularized estimator β̂Bc,B by regressing XB against XBc ,
for example, a penalized LSE or the LSE after model selection. We estimate the
residual matrix by ε̂B = XB − XBc β̂Bc,B , and ζ(�−1

B,B) by

ζ̂ = ζ
(
ε̂T

B ε̂B/n
)
.(15)

2.2. Computational complexity. For statistical inference about a single entry
ωij of the precision matrix � with preconceived i and j , the computational cost
of the estimator (10) is of the same order as that of a single run of the scaled
lasso (12).

For the estimation of the entire precision matrix �, the definition of (10) re-
quires the computation of ω̂ij for

(p
2

)
different A = {i, j}, i < j . However, the

computational cost for these
(p

2

)
different ω̂ij is no greater than that of (1 + s̄)p

runs of (12) where s̄ is the average size of the selected model for regressing a sin-
gle Xj against the other p − 1 variables. This can be seen as follows. Define the
“one-versus-rest” estimator as{

β̂
(1)

−i,i ,

√
θ̂

(1)
ii

}
= arg min

b∈Rp−1,σ∈R+

{‖Xi − X{i}cb‖2

2nσ
+ σ

2
+ λ

∑
k �=i

‖Xk‖√
n

|bk|
}
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and Ŝ
(1)
i = supp(β̂

(1)

−i,i). For j /∈ {i} ∪ Ŝ
(1)
i , the “two-versus-rest” estimator (12)

satisfies {β̂m, θ̂
1/2
mm} = {β̂(1)

{i,j}c,i ,
√

θ̂
(1)
ii } when m = i and A = {i, j}. Thus we only

need to carry out 1 + |Ŝ(1)
i | runs of (12) to compute the two-versus-rest estimator

{β̂m, θ̂
1/2
mm} for all m = i and A = {i, j}, j �= i, where |Ŝ(1)

i | denotes the cardinality

of the set Ŝ
(1)
i . Consequently, the total required runs of the scaled lasso (12) is∑p

i=1(1 + |Ŝ(1)
i |) = (1 + s̄)p. It follows from Theorem 11 below that (1 + s̄)p is

of the order #{(i, j) :ωij �= 0}. Thus for the computation of the estimator (10) for
the entire precision matrix �, the order of the total number of runs of (12) is the
total number of edges of the graphical model corresponding to �.

2.3. Statistical inference. Our analysis can be outlined as follows. We prove
that estimators in the form of (10) possess the asymptotic normality and efficiency
properties claimed in Theorem 1 when the following conditions hold for certain
fixed constant C0, ε� → 0 and all δ ≥ 1:

max
A:A={i,j}P

{∥∥XAc(β̂Ac,A − βAc,A)
∥∥2 ≥ C0sδ logp

}≤ p−δ+1ε�,(16)

max
A:A={i,j}P

{∥∥D1/2
Ac (β̂Ac,A − βAc,A)

∥∥
1 ≥ C0s

√
δ(logp)/n

}≤ p−δ+1ε�,(17)

with D = diag(XT X/n), and for θora
ii = ‖Xi − XAcβAc,i‖2/n,

max
A:A={i,j}P

{∣∣∣∣ θ̂ii

θora
ii

− 1
∣∣∣∣≥ C0sδ(logp)/n

}
≤ p−δ+1ε�,(18)

with a certain complexity measure s of the precision matrix �, provided that the
spectrum of � is bounded, and the sample size n is no smaller than (s logp)2/c0
for a sufficiently small c0 > 0. This is carried out by comparing the estimator
in (10) with the oracle MLE in (8) and (9) and proving

κora
ij = √

n
ωora

ij − ωij√
ωiiωjj + ω2

ij

→ N (0,1),

or equivalently the asymptotic normality of the oracle MLE in (9) with mean ωij

and variance n−1(ωiiωjj + ω2
ij ). We then prove (16), (17) and (18) for both the

scaled lasso estimator (12) and the LSE after the scaled lasso selection (13). More-
over, we prove that certain thresholded versions of the proposed estimator pos-
sesses global optimality properties, as discussed below Theorem 1, under the same
boundedness condition on the spectrum of � and a more relaxed condition on the
sample size.

For the �0 class G0(M,kn,p) in (1), the complexity measure for the precision
matrix � is the maximum degree s = kn,p of the corresponding graph. The �0
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complexity measure can be relaxed to a capped-�1 measure as follows. For λ > 0,
define capped-�1 balls as

G∗(M, s, λ) = {
� : sλ(�) ≤ s,1/M ≤ λmin(�) ≤ λmax(�) ≤ M

}
,(19)

where sλ = sλ(�) = maxj

∑p
i=1 min{1, |ωij |/λ} for � = (ωij )1≤i,j≤p . In this pa-

per, λ is of the order
√

(logp)/n. We omit the subscript λ from s when it is clear
from the context. When |ωij | is either 0 or larger than λ, sλ is the maximum
node degree of the graph. In general, maximum node degree is an upper bound
of the capped-�1 measure sλ. The spectrum of � is bounded in the matrix class
G∗(M, s, λ) as in the �0 ball (1). The following theorem bounds the difference
between our estimator and the oracle estimators and the difference between the
standardized oracle estimator and a standard normal variable.

THEOREM 2. Let ora
A,A and �ora

A,A be the oracle MLE defined in (8) and (9),

respectively, and ̂A,A and �̂A,A be estimators of A,A and �A,A defined in (10).
Let δ ≥ 1. Suppose s ≤ c0n/ logp for a sufficiently small constant c0 > 0.

(i) Suppose that conditions (16), (17) and (18) hold with C0 and ε�. Then

max
A:A={i,j}P

{∥∥̂A,A − ora
A,A

∥∥∞ > C1s
δ logp

n

}
≤ 6ε�p−δ+1 + 4p−δ+1

√
2 logp

(20)

with a positive constant C1 depending on {C0,maxm∈A={i,j} θmm} only, and

max
A:A={i,j}P

{∥∥�̂A,A − �ora
A,A

∥∥∞ > C′
1s

δ logp

n

}
≤ 6ε�p−δ+1 + 4p−δ+1

√
2 logp

(21)

with a constant C′
1 > 0 depending on {c0C1,maxm∈A={i,j}{ωmm, θmm}} only.

(ii) Let λ = (1 + ε)

√
2δ logp

n
with ε > 0 in (12), β̂Ac,A be the scaled lasso

estimator (12) or the LSE after the scaled lasso selection (13). Then (16), (17)
and (18), and thus (20) and (21), hold for all � ∈ G∗(M, s, λ) with a certain con-
stant C0 depending on {ε, c0,M} only and

max
�∈G∗(M,s,λ)

ε� = o(1).(22)

(iii) Let κora
ij = √

n(ωora
ij − ωij )/

√
ωiiωjj + ω2

ij . There exist constants D1 and

ϑ ∈ (0,∞), and four marginally standard normal random variables Z′, Zkl , where
kl = ii, ij, jj , such that whenever |Zkl| ≤ ϑ

√
n for all kl, we have∣∣κora

ij − Z′∣∣≤ D1√
n

(
1 + Z2

ii + Z2
ij + Z2

jj

)
.(23)

Moreover, Z′ can be defined as a linear combination of Zkl , kl = ii, ij, jj .

Theorem 2 immediately yields the following results of estimation and inference
for ωij .
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THEOREM 3. Let �̂A,A be the estimator of �A,A in (10) with the components

of ε̂A being the estimated residuals (11) of (12) or (13). Set λ = (1 + ε)

√
2δ logp

n
in (12) with certain δ ≥ 1 and ε > 0. Suppose s ≤ c0n/ logp for a sufficiently
small constant c0 > 0. For any small constant ε0 > 0, there exists a constant C2 =
C2(ε0, ε, c0,M) such that

max
�∈G∗(M,s,λ)

max
1≤i≤j≤p

P

{
|ω̂ij − ωij | > C2 max

{
s

logp

n
,

√
1

n

}}
≤ ε0.(24)

Moreover, there exists a constant C3 = C3(δ, ε, c0,M) such that

max
�∈G∗(M,s,λ)

P

{
‖�̂ − �‖∞ > C3 max

{
s

logp

n
,

√
logp

n

}}
= o

(
p−δ+3).(25)

Furthermore, ω̂ij is asymptotically efficient with a consistent variance estimate√
nFij (ω̂ij − ωij )

D→ N (0,1), F̂ij /Fij → 1,(26)

uniformly for all i, j and � ∈ G∗(M, s, λ), provided that s = o(
√

n/ logp), where

Fij = (
ωiiωjj + ω2

ij

)−1
, F̂ij = (

ω̂ii ω̂jj + ω̂2
ij

)−1
.

REMARK 1. The upper bounds max{s logp
n

,
√

1
n
} and max{s logp

n
,

√
logp

n
} in

equations (24) and (25), respectively, are shown to be rate-optimal in Section 2.4.

REMARK 2. The choice of λ = (1 + ε)

√
2δ logp

n
is common in the literature,

but can be too big and too conservative, which usually leads to some estimation
bias in practice. Let Ln(t) be the negative quantile function of N (0,1/n), which
satisfies Ln(t) ≈ √

(2/n) logp. In Sections 4 and 5.1 we show the value of λ can
be reduced to (1 + ε)Ln(k/p) when δ ∨ k = o(

√
n/ logp).

REMARK 3. In Theorems 2 and 3, our goal is to estimate each entry ωij of the
precision matrix �. Sometimes it is more natural to consider estimating the partial
correlation rij = −ωij /(ωiiωjj )

1/2 between Zi and Zj . Let �̂A,A be estimator of
�A,A defined in (10). Our estimator of partial correlation rij is defined as r̂ij =
−ω̂ij /(ω̂ii ω̂jj )

1/2. Then the results above can be easily extended to the case of
estimating rij . In particular, under the assumptions of Theorem 3, the estimator

r̂ij is asymptotically efficient:
√

n(1 − r2
ij )

−2(r̂ij − rij ) converges to N (0,1) when

s = o(
√

n/ logp). This asymptotic normality result was stated as Corollary 1 in
Sun and Zhang (2012b) without proof.

The following theorem extends Theorems 2 and 3 to the estimation of ζ(�−1
B,B),

a smooth functional of �−1
B,B for a fixed size subset B . Assume that ζ :R|B|×|B| →
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R is a unit Lipschitz function in a neighborhood {G : |||G − �−1
B,B ||| ≤ κ}, that is,∣∣ζ(G) − ζ

(
�−1

B,B

)∣∣≤ ∣∣∣∣∣∣G − �−1
B,B

∣∣∣∣∣∣.(27)

THEOREM 4. Let ζ̂ be the estimator of ζ defined in (15) with the components
of ε̂B being the estimated residuals (11) of the estimators (12) or (13). Set the

penalty level λ = (1 + ε)

√
2δ logp

n
in (12) with certain δ ≥ 1 and ε > 0. Suppose

s ≤ c0n/ logp for a sufficiently small constant c0 > 0. Then

max
�∈G∗(M,s,λ)

P

{∣∣ζ̂ − ζ ora∣∣> C1s
logp

n

}
= o

(|B|p−δ+1),(28)

with a constant C1 = C1(ε, c0,M, |B|). Furthermore, ζ̂ is asymptotically efficient√
nFζ (ζ̂ − ζ )

D→ N (0,1),(29)

when � ∈ G∗(M, s, λ) and s = o(
√

n/ logp), where Fζ is the Fisher information
of estimating ζ for the Gaussian model N (0,�−1

B,B).

The results in this section can be easily extended to the weak �q ball with 0 <

q < 1 to model the sparsity of the precision matrix. A weak �q ball of radius c in
Rp is defined as follows:

Bq(c) = {
ξ ∈Rp : |ξ(j)|q ≤ cj−1, for all j = 1, . . . , p

}
,

where |ξ(1)| ≥ |ξ(2)| ≥ · · · ≥ |ξ(p)|. Let

Gq(M,kn,p) =
{

� = (ωij )1≤i,j≤p :ω·j ∈ Bq(kn,p),

and 1/M ≤ λmin(�) ≤ λmax(�) ≤ M

}
.(30)

Since ξ ∈ Bq(k) implies
∑

j min{1, |ξj |/λ} ≤ �k/λq� + {q/(1 − q)}k1/q ×
�k/λq�1−1/q/λ,

Gq(M,kn,p) ⊆ G∗(M, s, λ), 0 ≤ q < 1,(31)

when Cqkn,p/λq ≤ s, where Cq = 1 + q21/q−1/(1 − q) for 0 < q < 1 and C0 = 1.
We state the extension in the following corollary.

COROLLARY 1. The conclusions of Theorems 2, 3 and 4 hold with G∗(M,

s, λ) replaced by Gq(M,kn,p) and s by kn,p(n/ logp)q/2, 0 ≤ q < 1.

2.4. Lower bound. In this section, we derive a lower bound for estimating ωij

over the matrix class G0(M,kn,p) defined in (1). Assume that

p ≥ kν
n,p with ν > 2(32)
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and

3 ≤ kn,p ≤ C0
n

logp
(33)

for some C0 > 0. Theorem 5 below implies that the assumption kn,p
logp

n
→ 0 is

necessary for consistent estimation of any single entry of �.
We carefully construct a finite collection of distributions G0 ⊂ G0(M,kn,p) and

apply Le Cam’s method to show that for any estimator ω̂ij ,

sup
G0

P

{
|ω̂ij − ωij | > C1kn,p

logp

n

}
→1,(34)

for some constant C1 > 0. It is relatively easy to establish the parametric lower

bound
√

1
n

. These two lower bounds together immediately yield Theorem 5 below.

THEOREM 5. Suppose we observe independent and identically distributed p-
variate Gaussian random variables X(1),X(2), . . . ,X(n) with zero mean and pre-
cision matrix � = (ωkl)p×p ∈ G0(M,kn,p). Under assumptions (32) and (33), we
have the following minimax lower bounds:

inf
ω̂ij

sup
G0(M,kn,p)

P

{
|ω̂ij − ωij | > max

{
C1

kn,p logp

n
,C2

√
1

n

}}
> c1 > 0(35)

and

inf
�̂

sup
G0(M,kn,p)

P

{
‖�̂ − �‖∞ > max

{
C′

1
kn,p logp

n
,C′

2

√
logp

n

}}
> c2 > 0,(36)

where c1, c2,C1, C2, C′
1 and C′

2 are positive constants depending on M , ν and C0
only.

REMARK 4. The lower bound kn,p logp

n
in Theorem 5 shows that estimation of

sparse precision matrix can be very different from estimation of sparse covariance
matrix. The sample covariance always gives a parametric rate of estimation for

every entry σij . But for estimation of sparse precision matrix, when kn,p �
√

n
logp

,
Theorem 5 implies that it is impossible to obtain the parametric rate.

REMARK 5. Since G0(M,kn,p) ⊆ G∗(M,kn,p, λ) by the definitions in (1)
and (19), Theorem 5 also provides the lower bound for the larger class. Simi-
larly, Theorem 5 can be easily extended to the weak �q ball, 0 < q < 1, defined
in (30) and the capped-�1 ball defined in (19). For these parameter spaces, in the
proof of Theorem 5 we only need to define H as the collection of all p × p sym-
metric matrices with exactly (kn,p( n

logp
)q/2 − 1) rather than (kn,p − 1) elements

equal to 1 between the third and the last elements on the first row (column) and the
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rest all zeros. Then it is easy to check that the sub-parameter space G0 in (77) is
indeed in Gq(M,kn,p). Now under assumptions p ≥ (kn,p( n

logp
)q/2)v with ν > 2

and kn,p ≤ C0(
n

logp
)1−q/2, we have the following minimax lower bounds:

inf
ω̂ij

sup
Gq (M,kn,p)

P

{
|ω̂ij − ωij | > max

{
C1kn,p

(
logp

n

)1−q/2

,C2

√
1

n

}}
> c1 > 0

and

inf
�̂

sup
Gq (M,kn,p)

P

{
‖�̂ − �‖∞ > max

{
C′

1kn,p

(
logp

n

)1−q/2

,C′
2

√
logp

n

}}
> c2 > 0.

These lower bounds match the upper bounds in Corollary 1 for the proposed esti-
mator.

3. Applications. The asymptotic normality result is applied to obtain rate-
optimal estimation of the precision matrix under various matrix �w norms, to re-
cover the support of � adaptively and to estimate latent graphical models without
the need of the irrepresentability condition or the �1 constraint of the precision ma-
trix commonly required in literature. In our procedure, we first obtain an asymp-
totically normal estimation and then thresholding. We thus call it ANT.

3.1. ANT for adaptive support recovery. The support recovery of precision
matrix has been studied by several papers. See, for example, Friedman, Hastie and
Tibshirani (2008), d’Aspremont, Banerjee and El Ghaoui (2008), Rothman et al.
(2008), Ravikumar et al. (2011), Cai, Liu and Luo (2011) and Cai, Liu and Zhou
(2012). In these works, the theoretical properties of the graphical lasso (GLasso),
CLIME and ACLIME on the support recovery were obtained. Ravikumar et al.
(2011) studied the theoretical properties of GLasso, and showed that GLasso can
correctly recover the support under a strong irrepresentability condition and a

uniform signal strength condition min(i,j) : ωij �=0 |ωij | ≥ c

√
logp

n
for some c > 0.

Cai, Liu and Luo (2011) do not require irrepresentability conditions, but need

to assume that min(i,j) : ωij �=0 |ωij | ≥ CM2
n,p

√
logp

n
, where Mn,p is the matrix

�1 norm of �. In Cai, Liu and Zhou (2012), they weakened the condition to

min(i,j) : ωij �=0 |ωij | ≥ CMn,p

√
logp

n
, but the threshold level there is C

2 Mn,p

√
logp

n
,

where C is unknown and Mn,p can be very large, which makes the support recov-
ery procedure there impractical.

In this section we introduce an adaptive support recovery procedure based on the
variance of the oracle estimator of each entry ωij to recover the sign of nonzero en-
tries of � with high probability. The lower bound condition for min(i,j) : ωij �=0 |ωij |
is significantly weakened. In particular, we remove the unpleasant matrix �1 norm
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Mn,p . In Theorem 3, when the precision matrix is sparse enough s = o(
√

n
logp

), we
have the asymptotic normality result for each entry ωij , i �= j , that is,√

nFij (ω̂ij − ωij )
D→ N (0,1),

where Fij = (ωiiωjj +ω2
ij )

−1 is the Fisher information of estimating ωij . The total
number of edges is p(p − 1)/2. We may apply thresholding to ω̂ij to correctly
distinguish zero and nonzero entries. However, the variance ωiiωjj + ω2

ij needs to
be estimated. We define the adaptive support recovery procedure as follows:

�̂thr = (
ω̂thr

ij

)
p×p,(37)

where ω̂thr
ii = ω̂ii and ω̂thr

ij = ω̂ij 1{|ω̂ij | ≥ τ̂ij } for i �= j with

τ̂ij =
√

2ξ0(ω̂ii ω̂jj + ω̂2
ij ) logp

n
.(38)

Here ω̂ii ω̂jj + ω̂2
ij is the natural estimate of the asymptotic variance of ω̂ij defined

in (10), and ξ0 is a tuning parameter which can be taken as fixed at any ξ0 > 2. This
thresholding estimator is adaptive. The sufficient conditions in Theorem 6 below
for support recovery are much weaker than other results in literature.

Define a thresholded population precision matrix as

�thr = (
ωthr

ij

)
p×p,(39)

where ωthr
ii = ωii and ωthr

ij = ωij 1{|ωij | ≥
√

8ξ(ωiiωjj + ω2
ij )(logp)/n}, with a

certain ξ > ξ0. Recall that E = E(�) = {(i, j) :ωij �= 0} is the edge set of the
Gauss–Markov graph associated with the precision matrix �. Since �thr is com-
posed of relatively large components of �, (V ,E(�thr)) can be viewed as a graph
of strong edges. Define

S(�) = {
sgn(ωij ),1 ≤ i, j ≤ p

}
.

The following theorem shows that with high probability, ANT recovers all the
strong edges without false recovery. Moreover, under the uniform signal strength
condition,

|ωij | ≥ 2

√
2ξ(ωiiωjj + ω2

ij ) logp

n
∀ωij �= 0;(40)

that is, �thr = �, and the ANT also recovers the sign matrix S(�).

THEOREM 6. Let λ = (1+ ε)

√
2δ logp

n
for any δ ≥ 3 and ε > 0. Let �̂thr be the

ANT estimator defined in (37) with ξ0 > 2 in the thresholding level (38). Suppose
� ∈ G∗(M, s, λ) with s = o(

√
n/ logp). Then

lim
n→∞P

(
E(�thr) ⊆ E(�̂thr) ⊆ E(�)

)= 1,(41)
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where �thr is defined in (39) with ξ > ξ0. If in addition (40) holds, then

lim
n→∞P

(
S(�̂thr) = S(�)

)= 1.(42)

3.2. ANT for adaptive estimation under the matrix �w norm. In this section,
we consider the rate of convergence under the matrix �w norm. To control the im-
pact of extremely small tail probability of near singularity of the low-dimensional
estimator ̂A,A, we define a truncated version of the estimator �̂thr defined in (37),

�̆thr =
(
ω̂thr

ij min
{

1,
logp

|ω̂ij |
})

p×p

.(43)

Theorem 7 below follows mainly from the convergence rate under element-wise
norm and the fact that the upper bound holds for the matrix �1 norm. This argument
uses the inequality |||M|||w ≤ |||M|||1 for symmetric matrices M and 1 ≤ w ≤ ∞,
which follows from the Riesz–Thorin interpolation theorem; see, for example,
Thorin (1948). Note that under the assumption s2 = O(n/ logp), it can be seen
from the equations (21) and (23) in Theorem 2 that with high probability the

‖�̂ − �‖∞ is dominated by ‖�ora − �‖∞ = Op(

√
logp

n
). From there the details

of the proof is similar in nature to those of Theorem 3 in Cai and Zhou (2012) and
thus will be omitted due to the limit of space.

THEOREM 7. Under the assumptions s2 = O(n/ logp) and n = O(pξ ) with

some ξ > 0, the �̆thr defined in (43) with λ = (1 + ε)

√
2δ logp

n
for sufficiently large

δ ≥ 3+ 2ξ and ε > 0 satisfies, for all 1 ≤ w ≤ ∞ and kn,p ≤ s,

sup
G0(M,kn,p)

E|||�̆thr − �|||2w ≤ sup
G∗(M,kn,p,λ)

E|||�̆thr − �|||2w ≤ Cs2 logp

n
.(44)

REMARK 6. It follows from equation (31) that result (44) also holds for
the classes of weak �p balls Gq(M,kn,p) defined in equation (30), with s =
Cqkn,p( n

logp
)q/2,

sup
Gq (M,kn,p)

E|||�̆thr − �|||2w ≤ Ck2
n,p

(
logp

n

)1−q

.(45)

REMARK 7. Cai, Liu and Zhou (2012) showed that the rates obtained in
equations (44) and (45) are optimal when p ≥ cnα0 for some α0 > 1 and kn,p =
o(n1/2(logp)−3/2).

REMARK 8. Although the estimator �̆thr is symmetric, it is not guaranteed
to be positive definite. It follows from Theorem 7 that �̆thr is positive definite
with high probability. When it is not positive definite, we can always pick the
smallest ca ≥ 0 such that caI + �̆thr is positive semidefinite. It is trivial to see
that (ca + 1/n)I + �̆thr is positive definite, sparse and enjoys the same rate of
convergence as �̆thr for the loss functions considered in this paper.
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3.3. Estimation and inference for latent variable graphical model. Chandra-
sekaran, Parrilo and Willsky (2012) first proposed a very natural penalized estima-
tion approach and studied its theoretical properties. Their work has been discussed
and appreciated by several researchers, but it has never been clear if the conditions
in their paper are necessary and the results optimal. Ren and Zhou (2012) observed
that the support recovery boundary can be significantly improved from an order of√

p
n

to
√

logp
n

under certain conditions including a bounded �1 norm constraint
for the precision matrix. In this section we extend the methodology and results in
Section 2 to study latent variable graphical models. The results in Ren and Zhou
(2012) are significantly improved under weaker assumptions.

Let O and H be two subsets of {1,2, . . . , p + h} with Card(O) = p,
Card(H) = h and O ∪ H = {1,2, . . . , p + h}. Assume that (X

(i)
O ,X

(i)
H ), i =

1, . . . , n, are i.i.d. (p + h)-variate Gaussian random vectors with a positive co-
variance matrix �(p+h)×(p+h). Denote the corresponding precision matrix by

�̄(p+h)×(p+h) = �−1
(p+h)×(p+h). We only have access to {X(1)

O ,X
(2)
O , . . . ,X

(n)
O },

while {X(1)
H ,X

(2)
H , . . . ,X

(n)
H } are hidden and the number of latent components is

unknown. Write �(p+h)×(p+h) and �̄(p+h)×(p+h) as follows:

�(p+h)×(p+h) =
(

�O,O �O,H

�H,O �H,H

)
and �̄(p+h)×(p+h) =

(
�̄O,O �̄O,H

�̄H,O �̄H,H

)
,

where �O,O and �H,H are covariance matrices of X
(i)
O and X

(i)
H , respectively, and

from the Schur complement we have

�−1
O,O = �̄O,O − �̄O,H �̄−1

H,H �̄H,O;(46)

see, for example, Horn and Johnson (1990). Define

S = �̄O,O, L = �̄O,H �̄−1
H,H �̄H,O,

and h′ = rank(L). We note that h′ = rank(�̄O,H ) ≤ h.
We focus on the estimation of �−1

O,O and S, as the estimation of L can be nat-
urally carried out based on our results as in Chandrasekaran, Parrilo and Willsky
(2012) and Ren and Zhou (2012). To make the problem identifiable we assume
that S is sparse, and the observed and latent variables are weakly correlated in the
following sense:

S = (sij )1≤i,j≤p, max
1≤j≤p

p∑
i=1

1{sij �= 0} ≤ kn,p,(47)

and that for certain an → 0

L = (lij )1≤i,j≤p, max
j

∑
i

l2
ij ≤ (an/n) logp.(48)
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The sparseness of S = �̄O,O can be seen as inherited from that of the full precision
matrix �̄(p+h)×(p+h). It is particularly interesting for us to identify the support of
S = �̄O,O and make inference for each entry of S. The �2 condition (48) on L is
of a weaker form than the �1 and �∞ conditions imposed in Ren and Zhou (2012).
In addition, we assume that for some universal constant M ,

1/M ≤ λmin(�(p+h)×(p+h)) ≤ λmax(�(p+h)×(p+h)) ≤ M,(49)

which implies that both the covariance �O,O of observations X
(i)
O and the sparse

component S = �̄O,O have bounded spectrum.
With a slight abuse of notation, we denote the precision matrix �−1

O,O of X
(i)
O

by � and its inverse by . We propose the application of the methodology in
Section 2 to i.i.d. observations X(i) from N (0,�O,O) with � = (sij − lij )1≤i,j≤p

by considering the following regression:

XA = XO\Aβ + εA(50)

for A = {i, j} ⊂ O with β = �O\A,A�−1
A,A and εA

i.i.d.∼ N (0,�−1
A,A).

To obtain the asymptotic normality result, condition (19) of Theorem 2 requires

max
j

p∑
i=1

min
{

1,
|sij − lij |

λ

}
= o

( √
n

logp

)
= o

(
1

λ
√

logp

)
with λ 
 √

(logp)/n. However, when L is coherent [Candès and Recht (2009)] in
the sense of {maxj

∑
i |lij |}2 
 p maxi

∑
j l2

ij 
 p(an/n) logp,

max
j

p∑
i=1

min
{

1,
|sij − lij |

λ

}
≥ max

j

∑
sij=0

|lij |
λ



√

p −√kn,p

λ

(
an logp

n

)1/2


 √
anp.

Thus the conditions of Theorem 2 are not satisfied for the latent variable graphical
model when anp(logp)2 ≥ n. We overcome the difficulty through a new analysis.

THEOREM 8. Let �̂A,A be the estimator of �A,A defined in (10) with A =
{i, j} for the regression (50), where the components of ε̂A are the estimated resid-

uals of (12) or (13). Let λ = (1 + ε)

√
2δ logp

n
for certain δ ≥ 1 and ε > 0. Under

assumptions (47)–(49) and kn,p ≤ c0n/ logp with a small c0, we have

P
{|ω̂ij − ωij | > C3 max

{
kn,pn−1 logp,n−1/2}}= o

(
p−δ+1)

for a certain constant C3, and

P
{|ω̂ij − sij | > C3 max

{
kn,pn−1 logp,n−1/2,

√
(an/n) logp

}}= o
(
p−δ+1).
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If the condition on kn,p is strengthened to kn,p = o(
√

n
logp

), then√
n

ωiiωjj + ω2
ij

(ω̂ij − ωij )
D→ N (0,1).(51)

REMARK 9. If, in addition, �ij = o(n−1/2), then (51) implies√
n

ωiiωjj + ω2
ij

(ω̂ij − sij )
D→ N (0,1).(52)

Define the adaptive thresholded estimator �̂thr = (ω̂thr
ij )p×p as in (37) and (38).

Following the proof of Theorems 6 and 7, we are able to obtain the following
results. We shall omit the proof due to the limit of space.

THEOREM 9. Let λ = (1 + ε)

√
2δ logp

n
for some δ ≥ 3 and ε > 0 in (12). As-

sume assumptions (47)–(49) hold. Then:

(i) Under the assumptions kn,p = o(
√

n
logp

) and

|sij | ≥ 2

√
2ξ0(ωiiωjj + ω2

ij ) logp

n
∀sij �= 0

for some ξ0 > 2, we have

lim
n→∞P

(
S(�̂thr) = S(S)

)= 1.

(ii) Under the assumption k2
n,p = O(n/ logp) and n = O(pξ ) with some ξ > 0,

the �̆thr defined in (43) with sufficiently large δ ≥ 3+ 2ξ satisfies, for all 1 ≤ w ≤
∞,

E|||�̆thr − S|||2w ≤ Ck2
n,p

logp

n
.

4. Regression revisited. The key element of our analysis is to establish (16),
(17) and (18) for the scaled lasso estimator (12) and the LSE after the scaled
lasso selection (13). The existing literature has provided theorems and arguments
to carry out this task. However, several issues still require extension of existing
results or explanation and modification of existing proofs. For example, the LSE
after model selection is not as well understood as the lasso, and biased regression
models are typically studied inexplicably, if at all. Another issue is that the penalty
level used in theorems in previous sections could be too large for good numerical
performance, especially for δ ≥ 3 in (25) of Theorems 3 and Theorems 6, 7 and 9.
These issues were addressed in previous versions of this paper (arXiv:1309.6024)

http://arxiv.org/abs/arXiv:1309.6024
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in separate lemmas. In this section, we provide a streamlined presentation of these
regression results required in our analysis.

Let X̃ = (X̃1, . . . , X̃p̃) be an n × p̃ standardized design matrix with ‖X̃k‖2 = n

for all k = 1, . . . , p̃, and Ỹ be a response vector satisfying

Ỹ|X̃ ∼N
(
X̃γ , σ 2In×n

)
.(53)

For the scaled lasso {β̂m, θ̂
1/2
mm} in (12), {D1/2

Ac β̂m, θ̂
1/2
mm} can be written as

{γ̂ , σ̂ } = arg min
{γ ,σ }

{‖Ỹ − X̃γ ‖2

2nσ
+ σ

2
+ λ0‖γ ‖1

}
,(54)

with m ∈ A = {i, j}, X̃ = XAcD
−1/2
Ac , D = diag(XT X/n), Ỹ = Xm and γ =

D
1/2
Ac βm. For the LSE after model selection in (13), {D1/2

Ac β̂m, θ̂
1/2
mm} can be writ-

ten as {
γ̂ lse

, σ̂ lse}= arg min
{γ ,σ }

{‖Ỹ − X̃γ ‖2

2nσ
+ σ

2
: supp(γ ) ⊆ supp(γ̂ )

}
.(55)

Moreover, for both estimators, conditions (16), (17) and (18) are consequences of

P
{∥∥X̃(γ̂ − γ target)∥∥2 ≤ C0s

(
σ ora)2δ log p̃

}≥ 1 − p̃1−δε̃0,(56)

P
{∥∥γ̂ − γ target∥∥

1 ≤ C0sσ
ora
√

δ(log p̃)/n
}≥ 1 − p̃1−δε̃0(57)

and

P

{∣∣∣∣ σ̂

σ ora − 1
∣∣∣∣≤ C0sδ(log p̃)/n ≤ 1/2

}
≥ 1 − p̃1−δε̃0,(58)

with σ ora = ‖Ỹ − X̃γ target‖/√n, γ target = γ and δ ≥ 1, provided that C0 is fixed
and ε̃0 → 0 uniformly in m ∈ A = {i, j} and � in the class in (19); see Proposi-
tion 1. In the latent variable graphical model, Theorems 8 and 9 require (56), (57)
and (58) for a certain sparse γ target in a biased linear model when (53) does not
provide a sufficiently sparse γ . We note that both γ and γ target are allowed to be
random variables here.

To carry out an analysis of the lasso, one has to make a choice among different
ways of controlling the correlations between the design and noise vectors in (53),

Z̃ = (Z̃1, . . . , Z̃p̃) = X̃T (Ỹ − X̃γ )√
n‖Ỹ − X̃γ ‖ .(59)

A popular choice is to bound Z̃ with the �∞ norm as it is the dual of the �1 penalty.
This has led to the sparse Riesz [Zhang and Huang (2008)], restricted eigenvalue
[Bickel, Ritov and Tsybakov (2009), Koltchinskii (2009)], compatibility [van de
Geer and Bühlmann (2009)], cone invertibility [Ye and Zhang (2010), Zhang and
Zhang (2012)] and other similar conditions on the design matrix. Sun and Zhang
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(2012a) took this approach to analyze (54) and (55) with the compatibility and
cone invertibility factors. Another approach is to control the sparse �2 norm of Z̃
to allow smaller penalty levels in the analysis; See Zhang (2009) and Ye and Zhang
(2010) for analyses of the lasso and Sun and Zhang (2013) for an analysis of the
scaled estimators (54) and (55).

Here we take a different approach by using two threshold levels, a smaller one
to bound an overwhelming majority of the components of Z̃ and a larger one to
bound its �∞ norm. This allows us to use both a small penalty level associated
with the smaller threshold level and the compatibility condition.

For α ≥ 0 and index sets K , the compatibility constant is defined as

φcomp(α,K, X̃) = inf
{ |K|1/2‖X̃u‖

n1/2‖uK‖1
:u ∈ C(α,K),u �= 0

}
,

where |K| is the cardinality of K and C(α,K) = {u ∈ Rp̃ :‖uKc‖1 ≤ α‖uK‖1}. We
may want to control the size of selected models with the upper sparse eigenvalue,
defined as

κ∗(m, X̃) = max‖u‖=1,‖u‖0≤m
‖X̃u‖2/n.

We impose the following conditions on the target coefficient vector and the
design:

P{Cond1} ≥ 1 − ε̃1, Cond1 =
{
|K| + ∑

k /∈K

|γ target
k /σ ora|√
(2/n) log p̃

≤ s1

}
(60)

for a certain index set K , and

P{Cond2} ≥ 1 − ε̃1, Cond2 =
{

max|J\K|≤s2
φ−2

comp(α, J, X̃) ≤ C2

}
.(61)

For small penalty levels and the LSE after model selection, we also need

P{Cond3} ≥ 1 − ε̃1, Cond3 = {
κ∗(s3, X̃) ≤ C3

}
.(62)

Finally, for γ target �= γ , we need the condition

P{Cond4} ≥ 1 − ε̃1,
(63)

Cond4 = {
C4
∥∥X̃(γ target − γ

)∥∥≤ σ ora
√

log(p̃/̃ε1)
}
.

In (60), (61), (62) and (63), sj are allowed to change with {n, p̃}, while α and
Cj are fixed constants. These conditions also make sense for deterministic designs
with ε̃1 = 0 for deterministic conditions.

Let k and ε be positive real numbers and λ0 be a penalty level satisfying

λ0 ≥ (1 + ε)Ln−3/2(k/p̃),(64)



1012 REN, SUN, ZHANG AND ZHOU

where Ln(t) = n−1/2�−1(1 − t) is the N (0,1/n) negative quantile function. Let

ε1 ≥ e1/(4n−6)2
4k/s2

L4
1(k/p̃) + 2L2

1(k/p̃)
+
(

L1(̃ε1/p̃)

L1(k/p̃)
+ e1/(4n−6)2

/
√

2π

L1(k/p̃)

)√
C3

s2
.(65)

We note that Ln(t) = n−1/2L1(t) ≤ √
(2/n) log(1/t) for t ≤ 1/2, so that the right-

hand side of (65) is of the order k/{s2(logp)2} + √
δ/s2. Thus condition (65) is

easily satisfied even when ε1 is a small positive number and k is a moderately large
number. Moreover, λ depends on δ only through

√
δ/s2 in (65).

THEOREM 10. Let {γ̂ , σ̂ } be as in (54) with data in (53) and a penalty level
in (64). Let ε̃1 < 1 and λ∗ = Ln−3/2(̃ε1/p̃). Suppose λ∗ ≤ 1 and δs(log p̃)/n ≤ c0.

(i) Let γ target = γ , s ≥ s1, s2 = 0, k ≤ ε̃1 in (64), α = 1 + 2/ε and 4̃ε1 ≤
p̃1−δε̃0. Then there exists a constant C0 depending on {α,C2} only such that when
C0c0 ≤ 1/2, (60) and (61) imply (56), (57) and (58).

(ii) Let γ target = γ , s ≥ s1 + s2, 1 ≤ s2 ≤ s3, k ≥ 1 and ε1 < ε in (64) and (65),
α ≥ √

2(ε − ε1)
−1+ {1 + ε + L1(̃ε1/p̃)/L1(k/p̃)} and (5 + e1/(4n−6)2

)̃ε1 ≤ p̃1−δε̃0.
Then there exists a constant C0 depending on {α, ε, ε1,C2} only such that when
C0c0 ≤ 1/2, (60), (61) and (62) imply (56), (57) and (58).

(iii) Let s ≥ s1 +s2, 1 ≤ s2 ≤ s3, k ≥ 1 and ε1 < ε in (64) and (65), ε1 < ε2 < ε,
α ≥ 2(ε − ε2)

−1+ {1 + ε + L1(̃ε1/p̃)/L1(k/p̃)}, (6 + e1/(4n−6)2
)̃ε1 ≤ p̃1−δε̃0 and

C4 ≥
√

(4/L2
1(k/p̃)) log(p̃/̃ε1)/min(

√
2−1, ε2 −ε1). Then there exists a constant

C0 depending on {α, ε, ε2,C2} only such that when C0c0 ≤ 1/2, (60), (61), (62)
and (63) imply (56), (57) and (58).

In Theorem 10, s1 in (60) represents the complexity or the size of the coefficient
vector, and s2 represents the number of false positives we are willing to accept with
the penalty level in (64). Thus s is an upper bound for the total number of estimated
coefficients, true or false. We summarize parallel results for the LSE after model
selection as follows.

THEOREM 11. Let {γ̂ , σ̂ } be as in (54) and {γ̂ lse
, σ̂ lse} as in (55).

(i) The following bounds always hold:

σ̂ 2 − (σ̂ lse)2 = ∥∥X̃(γ̂ lse − γ̂
)∥∥2

/n ≤ (σ̂λ0)
2|Ŝ|

φ2
comp(0, Ŝ, X̃)

(66)

with Ŝ = supp(γ̂ ) and

∥∥γ̂ lse − γ̂
∥∥

1 ≤ σ̂ λ0|Ŝ|
φ2

comp(0, Ŝ, X̃)
.(67)
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(ii) Let λ0 be a penalty level satisfying (64) and ε1 < ε2 < ε3 < ε. Suppose
the conditions of Theorem 10 hold and that the constant factor C0 in Theorem 10
satisfies

C0sδ(log p̃)/n ≤ ε − ε3

1 + ε
,

C0sδ(log p̃)

(ε3 − ε2)2L2
1(k/p̃)

≤ s3

C3
.

Then, for the parameters defined in the respective parts of Theorem 10,

P
{|Ŝ| < s3 + s

}≥ 1 − p̃1−δε̃0.(68)

If in addition, condition (61) is strengthened to

P
{(

max|J\K|≤s2
φ−2

comp(α, J, X̃)
)

∨
(

max|J |≤s3+s
φ−2

comp(0, J, X̃)
)

> C2

}
≤ ε̃1,(69)

then the conclusions of Theorem 10 hold with {γ̂ , σ̂ } replaced by {γ̂ lse
, σ̂ lse}.

We collect some probability bounds for the regularity conditions in the follow-
ing proposition. Consider deterministic coefficient vectors β target satisfying

|K| + ∑
j /∈K

C1|β target
j |√

(2/n) log p̃
≤ s1.(70)

PROPOSITION 1. Let X be a n × p matrix with i.i.d. N (0,�) rows, Ac ⊂
{1, . . . , p} with |Ac| = p̃, D = diag(XT X/n), X̃ = XAcD

−1/2
Ac , γ = D

1/2
Ac βAc and

γ target = D
1/2
Ac β

target
Ac . Suppose 1/M ≤ λmin(�) ≤ λmax(�) ≤ M with a fixed M .

Let λ1 = √
(2/n) log(p̃/̃ε1). Then, for a certain constant C∗ depending on M

only,

(70) ⇒ (60) when C1 ≥√M(1 + λ1),(71)

C2 ≥ C∗
{
1 + max

{|K| + s2, s + s3
}
λ2

1
}⇒ (69) ⇒ (61),(72)

C3 ≥ C∗
{
1 + s3λ

2
1
}⇒ (62),(73)

and for λ2 = √
(2/n) log(1/̃ε1) and any coefficient vectors β target and β ,

C4C∗(1 + λ2)
∥∥β target − β

∥∥≤ λ1 ⇒ (63).(74)

Moreover, when λ2 ≤ 1/2, σ ora can be replaced by
√
E(σ ora)2 or C∗ in (56)

and (57).
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5. Discussion.

5.1. Alternative choice of penalty level for finite sample performance. In The-
orem 2 and nearly all consequent results in Theorems 3–4 and 6–9, we have picked
the penalty level λ = (1 + ε)

√
(2δ/n) logp for δ ≥ 1 (δ ≥ 3 for support recov-

ery) and ε > 0. This choice of λ can be too conservative and may cause some
finite sample estimation bias. However, in view of Theorem 10(ii) and (iii), the
results in these theorems in Sections 2 and 3 still hold for penalty levels no smaller
than λ = (1 + ε)Ln(k/p) ≈ (1 + ε)

√
(2/n) log(p/k), which weakly depends on δ

through (65) and the requirement of ε > ε1.
Condition (65), with ε < ε1, ε̃1 = p̃1−δ and p̃ = p − 2 for the estimation of

precision matrix, is the key for the choice of the smaller penalty level λ = (1 +
ε)Ln(k/p). It provides theoretical justifications for the choice of k ∈ [1, n] or even
up to k 
 n logp for the theory to work. Let smax = c0n/ logp with a sufficiently
small constant c0 > 0, which can be viewed as the largest possible s ≥ s1 + s2
in our theory. Suppose n ≤ pt0 for some fixed t0 < 1 and the bound C3 for the
upper sparse eigenvalue can be treated as fixed in (62) for s2 ≤ smax. For λ =
(1 + ε)

√
(2/n) log(p/k) with k ≤ n logp and s2 ≤ smax, condition (65) can be

written as

ε > ε1 ≥ (1 + o(1))(k/n)smax/(c0s2)

(1 − t0)(1 + (1 − t0) logp)
+ (√δ + o(1)

)√
C3/s2,

which holds for sufficiently small ksmax/(ns2 logp). This allows k 
 n logp for
s2 = smax. For the asymptotic normality, we need s2 = o(

√
n/ logp), so that k =

o(n1/2 logp) is sufficient.

5.2. Statistical inference under unbounded condition number. The main re-
sults in this paper assume that the spectrum of the precision matrix � is bounded
below and above by a universal constant M in (1). Then the dependency of the key
result (20) on M is hidden in the constant C1 in front of the rate s

logp
n

for bound-

ing ‖θ̂A,A − θora
A,A‖∞ in Theorem 2. The inference result in (26) follows as long

as this bound C1s
logp

n
is dominated by the parametric square-root rate of θora

A,A,
or equivalently s = o(

√
n/ logp). In fact, following the proof of Theorem 2, the

requirement can be somewhat weakened to λmax(�) ≤ M and maxj σjj ≤ M .
It would be interesting to consider a slightly more general case, where we as-

sume maxj σjj ≤ C and λmax(�) ≤ Mn,p with absolute constant C and possibly
a large constant Mp,n → ∞ as (n,p)→ ∞. In this setting, the condition number
of � may not be bounded. Suppose we would like to make inference for ω12 and
assume max{ω11,ω22} ≤ C to make its inverse Fisher information bounded. We
are able to show that (26) holds as long as s = o(

√
n/(Mn,p logp)) under this

setting. In fact, the regression model (4) is still valid with bounded noise level
θmm ≤ σmm ≤ C for m ∈ A = {1,2}. However, the compatibility condition (61)
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may not hold with absolute constant because the smallest eigenvalue of the pop-
ulation Gram matrix λmin(�AcAc) is possibly as small as M−1

n,p . Taking this pos-

sible compatibility constant M−1
n,p into account, we can obtain ‖θ̂A,A − θora

A,A‖∞ =
Op(sMn,p

logp
n

) while the sufficient statistics θora
A,A still has square-root rate. As a

consequence, the inference result in (26) holds as long as s = o(
√

n/(Mn,p logp)).
We would like to point out that to guarantee compatibility condition (61) indeed
holds at the level C2 
 Mn,p , an extra condition

√
s(logp)/n = o(M−1

n,p) is re-
quired; see Corollary 1 in Raskutti, Wainwright and Yu (2010). However, when
s = o(

√
n/(Mn,p logp)), this condition is automatically satisfied. The argument

above can be made rigorous.

5.3. Related works. Our methodology in this paper is related to Zhang and
Zhang (2014) who proposed a LDPE approach for making inference in a high-
dimensional linear model. Since ε̂A can be viewed as an approximate projection
of XA to the direction of εA in (10), the estimator in (10) can be viewed as an LDPE
as Zhang and Zhang (2014) discussed in the regression context. See also van de
Geer et al. (2014) and Javanmard and Montanari (2014). When appropriately ap-
plying their approach to our setting, their result is asymptotically equivalent to ours
and also obtains the asymptotic normality. In this section, we briefly discuss their
approach in the large graphical model setting.

Consider A = {1,2}. While our method regresses two nodes XA against all other
nodes XAc and focuses on the estimation of the two by two dimensional covariance
matrix �−1

A,A of the noise, their approach consists of the following two steps. First,
one node X1 is regressed against all other nodes X1c using scaled lasso with coef-
ficient β̂(init). As equation (4) suggests, the noise level is ω−1

11 , and the coefficient
for the column X2 is β2 = −ω12ω

−1
11 . Then in the second step, to correct the bias

of the initial estimator β̂
(init)
2 obtained in the first step for the coefficient vector β2,

a score vector z is picked and applied to obtain the final estimator of β2 as follows:

β̂2 = β̂
(init)
2 + zT (X1 − X1c β̂

(init)
2

)
/zT X2,

where z is the residue after regressing X2 against all remaining columns in step one
XAc using scaled lasso again. To obtain the final estimator of ω12, the estimator
β̂2 of −ω12ω

−1
11 should be scaled by an accurate estimator of ω−1

11 , which uses
the variance component of the scaled lasso estimator in the first step. It seems
that two approaches are quite different. However, both approaches do the same
thing: they try to estimate the partial correlation of node Z1 and Z2 and hence
are asymptotically equivalent. Compared with their approach, our method enjoys
simper form and clearer interpretation. It is worthwhile to point out that the main
contribution of this paper is understanding the fundamental limit of the Gaussian
graphical model in making statistical inference, which is not covered by other
works.
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5.4. Unknown mean μ. In the Introduction, we assume Z ∼ N (μ,�) and
μ = 0 without loss of generality. This can be seen as follows. Suppose we observe
an n × p data matrix X with i.i.d. rows from N (μ,�). Let u(i), i = 1, . . . , n, be
n-dimensional orthonormal row vectors with u(n) = (1, . . . ,1)/

√
n. Then u(i)X

are i.i.d. p-dimensional row vectors from N (0,�). Thus we can simply apply our
methods and theory to the sample {u(i)X, i = 1, . . . , n − 1}.

6. Numerical studies. In this section, we present some numerical results for
both asymptotic distribution and support recovery. We generate the data from p×p

precision matrices with three blocks. Two cases are considered: p = 200,800. The
ratio of block sizes is 2 : 1 : 1; that is, for a 200 × 200 matrix, the block sizes are
100×100, 50×50 and 50×50, respectively. The diagonal entries are α1, α2, α3 in
three blocks, respectively, where (α1, α2, α3) = (1,2,4). When the entry is in the
kth block, ωj−1,j = ωj,j−1 = 0.5αk , and ωj−2,j = ωj,j−2 = 0.4αk , k = 1,2,3.
The asymptotic variance for estimating each entry can be very different. Thus a
simple procedure with a single threshold level for all entries is not likely to perform
well.

We first estimate the entries in the precision matrix and partial correlations as
discussed in Remark 3, and consider the distributions of these estimators. We gen-
erate a random sample of size n = 400 from a multivariate Gaussian distribution
N (0,�) with � = �−1. For the proposed estimators defined through (10) and
(11) with the scaled lasso (12) or the LSE after model selection (13), we pick
λ = n−1/2Ln(1/p) ≈ √

(2/n) logp; that is, k = 1 in (64) with small adjustment
in n and p ignored. This is justified by our theoretical results as discussed in Sec-
tion 5.1.

Table 1 reports the mean and standard error of our estimators for four entries in
the precision matrices and the corresponding correlations. In addition, we report
the point estimates by the GLasso [Friedman, Hastie and Tibshirani (2008)] and
CLIME [Cai, Liu and Luo (2011)] for comparison. For p = 800, the results for the
GLasso are based on 10 replications, while all other entries in the table are based on
100 replications. The GLasso is computed by the R package “glasso” with penal-
ized diagonal (default option), while the CLIME estimators are computed by the R
package “fastclime” [Pang, Liu and Vanderbei (2014)]. As the GLasso and CLIME
are designed for estimating precision matrices as high-dimensional objects, it is
not surprising that the proposed estimator outperforms them in estimation accu-
racy for individual entries. Figures 1 and 2 show the histograms of the proposed
estimates with the theoretical Gaussian density in Theorem 3 super-imposed. They
demonstrated that the histograms match pretty well to the asymptotic distribution,
especially for the LSE after model selection. The asymptotic normality leads to
the following (1 − α) confidence intervals for ωij and rij :(

ω̂ij − zα/2

√(
ω̂i,i ω̂j,j + ω̂2

i,j

)
/n,ωij + zα/2

√(
ω̂i,i ω̂j,j + ω̂2

i,j

)
/n
)
,(

r̂i,j − zα/2
(
1 − r̂2

i,j

)
/
√

n, r̂i,j + zα/2
(
1 − r̂2

i,j

)
/
√

n
)
,
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TABLE 1
Mean and standard error of GLasso, CLIME and proposed estimators

p ω1,2 = 0.5 ω1,3 = 0.4 ω1,4 = 0 ω1,10 = 0

200 GLasso 0.368 ± 0.039 0.282 ± 0.038 −0.056 ± 0.03 −0.001 ± 0.01
CLIME 0.776 ± 0.479 0.789 ± 0.556 0.482 ± 1.181 0.002 ± 0.017

ω̂i,j 0.459 ± 0.05 0.372 ± 0.052 −0.049 ± 0.041 −0.003 ± 0.044

ω̂LSE
i,j 0.503 ± 0.059 0.401 ± 0.061 −0.006 ± 0.049 −0.002 ± 0.052

800 GLasso 0.801 ± 0.039 0.258 ± 0.031 0.19 ± 0.014 −0.063 ± 0.028
CLIME 1.006 ± 0.255 0.046 ± 0.140 0.022 ± 0.071 0.018 ± 0.099

ω̂i,j 0.436 ± 0.049 0.361 ± 0.047 −0.057 ± 0.044 0.001 ± 0.044

ω̂LSE
i,j 0.491 ± 0.059 0.396 ± 0.058 0 ± 0.052 −0.003 ± 0.05

p r1,2 = −0.5 r1,3 = −0.4 r1,4 = 0 r1,10 = 0

200 r̂i,j −0.477 ± 0.037 −0.391 ± 0.043 0.051 ± 0.043 0.003 ± 0.046

r̂LSE
i,j −0.485 ± 0.04 −0.386 ± 0.046 0.006 ± 0.047 0.002 ± 0.049

800 r̂i,j −0.468 ± 0.039 −0.392 ± 0.041 0.06 ± 0.045 −0.001 ± 0.048

r̂LSE
i,j −0.475 ± 0.041 −0.382 ± 0.044 0 ± 0.049 0.002 ± 0.048

where zα/2 is the z-score such that P(N (0,1) > zα/2) = α/2. Table 2 reports the
empirical coverage probabilities for 95% confidence intervals, which matches well
to the assigned confidence level.

Support recovery of a precision matrix is of great interest. We compare our
selection results with the GLasso and CLIME. In addition to the training sam-
ple, we generate an independent sample of size 400 from the same distribution
for validating the tuning parameter for the GLasso and CLIME. These estimators
are computed based on the entire training sample with a range of penalty lev-
els and a proper penalty level is chosen by minimizing the negative likelihood
{trace(��̂) − log det(�̂)} on the validation sample, where � is the sample covari-
ance matrix. The proposed ANT estimators are computed based on the training
sample only with ξ0 = 2 in the thresholding step as in (38). Tables 3 and 4 present
the average selection performances as measured in the true positive, false positive
and the corresponding rates. In addition to the overall performance, the summary
statistics are reported for each block. The results demonstrate the selection consis-
tency property of both ANT methods and substantial false positive for the GLasso
and CLIME. It should be pointed out that the ANT takes the advantage of an addi-
tional thresholding step, while the GLasso and CLIME do not. A possible expla-
nation of the false positive for the GLasso is a tendency for the likelihood criterion
with the validation sample to pick a small penalty level. However, such an expla-
nation seems not to hold for the CLIME, which demonstrated much lower false
positive than the GLasso, as the true positive rate of the CLIME is consistently
maintained at about 95% for p = 200 and 85% for p = 800.
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FIG. 1. Histograms of estimated entries for p = 200. The first row: scaled lasso for entries ω1,2
and ω1,3 in the precision matrix; the second row: scaled lasso for entries ω1,4 and ω1,10; the third
and fourth rows: LSE after scaled lasso selection.

Moreover, we compare the ANT with the GLasso and CLIME in a range of
penalty levels. Figure 3 plots the ROC curves for the GLasso and CLIME with
various penalty levels and the ANT with various thresholding levels in the follow-
up procedure. It demonstrates that the CLIME outperforms the GLasso, but the
two methods perform significantly more poorly than the ANT in the experiment.
In addition, the circle in the plot represents the performance of the ANT with the
selected threshold level as in (38). The triangle and diamond in the plot repre-
sents the performance of the GLasso and CLIME with the penalty level chosen by
cross-validation, respectively. This again indicates that our method simultaneously
achieves a very high true positive rate and a very low false positive rate.

7. Proof of Theorem 5. In this section we show that the upper bound given
in Section 2.3 is indeed rate optimal. We will only establish equation (35). Equa-
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FIG. 2. Histograms of estimated entries for p = 800. The first row: scaled lasso for entries ω1,2
and ω1,3 in the precision matrix; the second row: scaled lasso for entries ω1,4 and ω1,10; the third
and fourth rows: LSE after scaled lasso selection.

tion (36) is an immediate consequence of equation (35) and the lower bound
√

logp
n

for estimation of diagonal covariance matrices in Cai, Zhang and Zhou (2010).
The lower bound is established by Le Cam’s method. To introduce Le Cam’s

method we first introduce some notation. Consider a finite parameter set G0 =
{�0,�1, . . . ,�m∗} ⊂ G0(M,kn,p). Let P�m denote the joint distribution of inde-
pendent observations X(1), X(2), . . . ,X(n) with each X(i) ∼ N (0,�−1

m ), 0 ≤ m ≤
m∗ and fm denoting the corresponding joint density, and we define

P̄ = 1

m∗

m∗∑
m=1

P�m.(75)

For two distributions P and Q with densities p and q with respect to any common
dominating measure μ, we denote the total variation affinity by ‖P∧Q‖ = ∫

p ∧
q dμ. The following lemma is a version of Le Cam’s method; cf. Le Cam (1973),
Yu (1997).
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TABLE 2
Empirical coverage probabilities of the 95% confidence intervals

p (i, j) (1, 2) (1, 3) (1, 4) (1, 10)

200 ω̂i,j 0.87 0.89 0.87 0.98

ω̂LSE
i,j 0.96 0.91 0.94 0.98
r̂i,j 0.94 0.94 0.87 0.98

r̂LSE
i,j 0.93 0.94 0.94 0.97

800 ω̂i,j 0.74 0.88 0.84 0.95

ω̂LSE
i,j 0.93 0.93 0.96 0.96
r̂i,j 0.89 0.98 0.83 0.95

r̂LSE
i,j 0.90 0.94 0.96 0.96

LEMMA 1. Let X(i) be i.i.d. N (0,�−1), i = 1,2, . . . , n, with � ∈ G0. Let
�̂ = (ω̂kl)p×p be an estimator of �m = (ω

(m)
kl )p×p , then

sup
0≤m≤m∗

P�m

{∣∣ω̂ij − ω
(m)
ij

∣∣> α

2

}
≥ 1

2
‖P�0 ∧ P̄‖,

where α = inf1≤m≤m∗ |ω(m)
ij − ω

(0)
ij |.

TABLE 3
The performance of support recovery (p = 200, 100 replications)

Block Method TP TPR FP FPR

Overall GLasso 391 1 5322.24 0.2728
CLIME 372.61 0.953 588.34 0.0302

ANT 391 1 0.04 0
ANT-LSE 390.97 0.9999 0.01 0

Block 1 GLasso 197 1 1981.1 0.4168
CLIME 188.47 0.9567 205.58 0.0433

ANT 197 1 0 0
ANT-LSE 196.98 0.9999 0 0

Block 2 GLasso 97 1 293.93 0.2606
CLIME 92.29 0.9514 72.89 0.0646

ANT 97 1 0 0
ANT-LSE 96.99 0.9999 0 0

Block 3 GLasso 97 1 160.93 0.1427
CLIME 91.85 0.9469 72.94 0.0647

ANT 97 1 0 0
ANT-LSE 97 1 0 0
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TABLE 4
The performance of support recovery (p = 800, 10 replications)

Block Method TP TPR FP FPR

Overall GLasso 1590.7 0.9998 44785.6 0.1408
CLIME 1365.9 0.8585 134.6 4e–04

ANT 1589 0.9987 0 0
ANT-LSE 1586.2 0.997 0 0

Block 1 GLasso 797 1 19694.5 0.2493
CLIME 687.5 0.8626 71.4 9e–04

ANT 795.8 0.9985 0 0
ANT-LSE 794.8 0.9972 0 0

Block 2 GLasso 397 1 2133.4 0.1094
CLIME 339.4 0.8549 29.6 0.0015

ANT 396.7 0.9992 0 0
ANT-LSE 395.8 0.997 0 0

Block 3 GLasso 396.7 0.9992 664.7 0.0341
CLIME 339 0.8539 32.6 0.0017

ANT 396.5 0.9987 0 0
ANT-LSE 395.6 0.9965 0 0

PROOF OF THEOREM 5. We shall divide the proof into three steps. Without
loss of generality, consider only the cases (i, j) = (1,1) and (i, j) = (1,2). For the
general case ωii or ωij with i �= j , we could always permute the coordinates and

FIG. 3. The ROC curves. Circle: ANT with the proposed thresholding. Triangle: GLasso with
penalty level by CV. Diamond: CLIME with penalty level by CV.



1022 REN, SUN, ZHANG AND ZHOU

rearrange them to the special case ω11 or ω12.
Step 1: Constructing the parameter set. We first define �0,

�0 =

⎛⎜⎜⎜⎜⎜⎜⎝

1 b 0 · · · 0
b 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ and

(76)

�0 = �−1
0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1 − b2

−b

1 − b2 0 · · · 0

−b

1 − b2

1

1 − b2 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
;

that is, �0 = (σ
(0)
kl )p×p is a matrix with all diagonal entries equal to 1, σ

(0)
12 =

σ
(0)
21 = b and the rest all zeros. Here the constant 0 < b < 1 is to be determined

later. For �m,1 ≤ m ≤ m∗, the construction is as follows. Without loss of gen-
erality we assume kn,p ≥ 3. Denote by H the collection of all p × p symmetric
matrices with exactly (kn,p − 2) elements equal to 1 between the third and the last
elements on the first row (column) and the rest all zeros. Define

G0 = {
� :� = �0 or � = (�0 + aH)−1, for some H ∈ H

}
,(77)

where a =
√

τ1 logp
n

for some constant τ1 which is determined later. The cardinality
of G0 \ {�0} is

m∗ = Card(G0) − 1 = Card(H) =
(

p − 2
kn,p − 2

)
.

We pick the constant b = 1
2(1 − 1/M) and

0 < τ1 < min
{
(1 − 1/M)2 − b2

C0
,

(1 − b2)2

2C0(1 + b2)
,

(1 − b2)2

4ν(1 + b2)

}
,

and prove that G0 ⊂ G0(M,kn,p).
First we show that for all �i ,

1/M ≤ λmin(�i) < λmax(�i) ≤ M.(78)

For any matrix �m, 1 ≤ m ≤ m∗, some elementary calculations yield that

λ1
(
�−1

m

)= 1 +
√

b2 + (kn,p − 2)a2, λp

(
�−1

m

)= 1 −
√

b2 + (kn,p − 2)a2,

λ2
(
�−1

m

)= λ3
(
�−1

m

)= · · · = λp−1
(
�−1

m

)= 1.
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Since b = 1
2(1 − 1/M) and 0 < τ1 <

(1−1/M)2−b2

C0
, we have

1 −
√

b2 + (kn,p − 2)a2 ≥ 1 −
√

b2 + τ1C0 > 1/M,
(79)

1 +
√

b2 + (kn,p − 2)a2 < 2 − 1/M < M,

which imply

1/M ≤ λ−1
1

(
�−1

m

)= λmin(�m) < λmax(�m) = λ−1
p

(
�−1

m

)≤ M.

As for matrix �0, similarly we have

λ1
(
�−1

0

)= 1 + b,λp

(
�−1

0

)= 1 − b,

λ2
(
�−1

0

)= λ3
(
�−1

0

)= · · · = λp−1
(
�−1

0

)= 1,

and thus 1/M ≤ λmin(�0) < λmax(�0) ≤ M for the choice of b = 1
2(1 − 1/M).

Now we show that the number of nonzero elements in �m, 0 ≤ m ≤ m∗ is
no more than kn,p per row/column. From the construction of �−1

m , there exists
some permutation matrix Pπ such that Pπ�−1

m P T
π is a two-block diagonal matrix

with dimensions kn,p and (p − kn,p), of which the second block is an identity
matrix. Then (Pπ�−1

m P T
π )−1 = Pπ�mP T

π has the same blocking structure with the
first block of dimension kn,p and the second block being an identity matrix. Thus
the number of nonzero elements is no more than kn,p per row/column for �m.
Therefore, we have G0 ⊂ G0(M,kn,p) from equation (78).

Step 2: Bounding α. From the construction of �−1
m and the matrix inverse for-

mula, we have that for any precision matrix �m,

ω
(m)
11 = 1

1 − b2 − (kn,p − 2)a2 and ω
(m)
12 = −b

1 − b2 − (kn,p − 2)a2

for 1 ≤ m ≤ m∗, and for the precision matrix �0,

ω
(0)
11 = 1

1 − b2 , ω
(0)
12 = −b

1 − b2 .

Since b2 + (kn,p − 2)a2 < (1 − 1/M)2 < 1 in equation (79), we have

inf
1≤m≤m∗

∣∣ω(m)
11 − ω

(0)
11

∣∣= (kn,p − 2)a2

(1 − b2)(1 − b2 − (kn,p − 2)a2)
≥ C3kn,pa2,

(80)

inf
1≤m≤m∗

∣∣ω(m)
12 − ω

(0)
12

∣∣= b(kn,p − 2)a2

(1 − b2)(1 − b2 − (kn,p − 2)a2)
≥ C4kn,pa2,

for some constants C3,C4 > 0.
Step 3: Bounding the affinity. The following lemma is proved in Ren et al.

(2015).
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LEMMA 2. Let P̄ be defined in (75). We have

‖P�0 ∧ P̄‖ ≥ C5(81)

for some constant C5 > 0.

Lemma 1, together with equations (80), (81) and a =
√

τ1 logp
n

, imply

sup
0≤m≤m∗

P

{∣∣ω̂11 − ω
(m)
11

∣∣> 1

2
· C3τ1kn,p logp

n

}
≥ C5/2,

sup
0≤m≤m∗

P

{∣∣ω̂12 − ω
(m)
12

∣∣> 1

2
· C4τ1kn,p logp

n

}
≥ C5/2,

which match the lower bound in (35) by setting C1 = min{C3τ1/2,C4τ1/2} and
c1 = C5/2. �

REMARK 10. Note that |||�m|||1 is of the order kn,p

√
logp

n
, which implies

kn,p logp

n
= kn,p

√
logp

n
·
√

logp
n


 |||�m|||1
√

logp
n

. This observation partially explains
why in the literature we need to assume the bounded matrix �1 norm of � to derive

the lower bound rate
√

logp
n

. For the least favorable parameter space, the matrix �1
norm of � cannot be avoided in the upper bound. However, the methodology pro-
posed in this paper improves the upper bounds in the literature by replacing the
matrix �1 norm for every � by only matrix �1 norm bound of � in the least favor-
able parameter space.

SUPPLEMENTARY MATERIAL

Supplement to “Asymptotic normality and optimalities in estimation of
large Gaussian graphical model” (DOI: 10.1214/14-AOS1286SUPP; .pdf). In
this supplement we collect proofs of Theorems 1–3 in Section 2, proofs of Theo-
rems 6, 8 in Section 3 and proofs of Theorems 10–11 as well as Proposition 1 in
Section 4.
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