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ON THE MARČENKO–PASTUR LAW FOR LINEAR TIME SERIES

BY HAOYANG LIU∗, ALEXANDER AUE†,1 AND DEBASHIS PAUL†,2

University of California, Berkeley∗ and University of California, Davis†

This paper is concerned with extensions of the classical Marčenko–
Pastur law to time series. Specifically, p-dimensional linear processes are
considered which are built from innovation vectors with independent, iden-
tically distributed (real- or complex-valued) entries possessing zero mean,
unit variance and finite fourth moments. The coefficient matrices of the lin-
ear process are assumed to be simultaneously diagonalizable. In this setting,
the limiting behavior of the empirical spectral distribution of both sample co-
variance and symmetrized sample autocovariance matrices is determined in
the high-dimensional setting p/n → c ∈ (0,∞) for which dimension p and
sample size n diverge to infinity at the same rate. The results extend existing
contributions available in the literature for the covariance case and are one of
the first of their kind for the autocovariance case.

1. Introduction. One of the exciting developments in statistics during the last
decade has been the development of the theory and methodologies for dealing with
high-dimensional data. The term high dimension is primarily interpreted as mean-
ing that the dimensionality of the observed multivariate data is comparable to the
available number of replicates or subjects on which the measurements on the dif-
ferent variables are taken. This is often expressed in the asymptotic framework as
p/n → c > 0, where p denotes the dimension of the observation vectors (form-
ing a triangular array) and n the sample size. Much of this development centered
on understanding the behavior of the sample covariance matrix and especially its
eigenvalues and eigenvectors, due to their role in dimension reduction, in estima-
tion of population covariances and as building block of numerous inferential pro-
cedures for multivariate data. Comprehensive reviews of this topic can be found in
Johnstone [22] and Paul and Aue [30].

One most notable high-dimensional phenomena associated with sample covari-
ance matrices is that the sample eigenvalues do not converge to their population
counterparts if dimension and sample sizes remain comparable even as the sample
size increases. A formal way to express this phenomenon is through the use of
the empirical spectral distribution (ESD), that is, the empirical distribution of the
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eigenvalues of the sample covariance matrix. The celebrated work of Marčenko
and Pastur [26] shows that if one studies a triangular array of random vectors
X1, . . . ,Xn, whose components form independent, identically distributed (i.i.d.)
random variables with zero mean, unit variance and finite fourth moment, then
as p,n → ∞ such that p/n → c ∈ (0,∞), the ESD of S = n−1∑n

j=1 XjX
T
j

converges almost surely to a nonrandom probability distribution known as the
Marčenko–Pastur distribution. Since this highly influential discovery a large body
of literature under the banner of random matrix theory (RMT) has been developed
to explore the properties of the eigenvalues and eigenvectors of large random ma-
trices. One may refer to Anderson et al. [2], Bai and Silverstein [5] and Tao [34]
to study various aspects of this literature.

Many important classes of high-dimensional data, particularly those arising in
signal processing, economics and finance, have the feature that in addition to the
dimensional correlation, the observations are correlated in time. Classical mod-
els for time series often assume a stationary correlation structure and use spectral
analysis methods or methods built on the behavior of the sample autocovariance
matrices for inference and prediction purposes. In spite of this, to our knowledge,
no work exists that analyzes the behavior of the sample autocovariance matrices
of a time series from a random matrix perspective, even though Jin et al. [20] have
dealt recently covered autocovariance matrices in the independent case. A striking
observation is that, in the high-dimensional scenario, the distribution of the eigen-
values of the symmetrized sample autocovariance of a given lag order tends to
stabilize to a nondegenerate distribution even in the setting where the observations
are i.i.d. This raises questions about the applicability of sample autocovariance
matrices as diagnostic tools for determining the nature of temporal dependence in
high-dimensional settings. Thus a detailed study of the phenomena associated with
the behavior of the ESD of the sample autocovariance matrices when the observa-
tions have both dimensional and temporal correlation is of importance to gain a
better understanding of the ways in which the dimensionality affects the inference
for high-dimensional time series.

All the existing work on high-dimensional time series dealing with the limiting
behavior of the ESD focuses on the sample covariance matrix of the data when
X1, . . . ,Xn are p-dimensional observations recorded in time and p,n → ∞ such
that p/n → c ∈ (0,∞). This includes the works of Jin et al. [21], who assume
the process (Xt : t ∈ Z) has i.i.d. rows with each row following a causal ARMA
process. Pfaffel and Schlemm [32] and Yao [35] extend this framework to the
setting where the rows are arbitrary i.i.d. stationary processes with short-range
dependence. Zhang [36], Paul and Silverstein [31] and El Karoui [9], under slightly
different assumptions, consider the limiting behavior of the ESD of the sample
covariance when the data matrices are of the form A1/2ZB1/2 where A and B are
positive semidefinite matrices, and Z has i.i.d. entries with zero mean, unit variance
and finite fourth moment. This model is known as the separable covariance model,
since the covariance of the data matrix is the Kronecker product of A and B. If the
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rows indicate spatial coordinates and columns indicate time instances, then this
model implies that spatial (dimensional) and temporal dependencies in the data
are independent of each other. The work of this paper is also partly related to the
results of Hachem et al. [16], who prove the existence of the limiting ESD for
sample covariance of data matrices that are rectangular slices from a bistationary
Gaussian process on Z2.

In this paper, the focus is on a class of time series known as linear processes
[or MA(∞) processes]. The assumptions to be imposed in Section 2 imply that,
up to an unknown rotation, the coordinates of the linear process, say (Xt : t ∈ Z),
are uncorrelated stationary linear processes with short range dependence. Extend-
ing the work of Jin et al. [20] to the time series case, the goal is to relate the
behavior of the ESD of the lag-τ symmetrized sample autocovariances, defined as
Cτ = (2n)−1∑n−τ

t=1 (XtX
∗
t+τ + Xt+τX

∗
t ), with ∗ denoting complex conjugation, to

that of the spectra of the coefficient matrices of the linear process when p,n → ∞
such that p/n → c ∈ (0,∞). This requires assuming certain stability conditions
on the joint distribution of the eigenvalues of the coefficient matrices which are
described later. The class of models under study here includes the class of causal
autoregressive moving average (ARMA) processes of finite orders satisfying the
requirement that the coefficient matrices are simultaneously diagonalizable and the
joint empirical distribution of their eigenvalues (when diagonalized in the common
orthogonal or unitary basis), converges to a finite-dimensional distribution. The
results are expressed in terms of the Stieltjes transform of the ESD of the sample
autocovariances. Specifically, it is shown that the ESD of the symmetrized sam-
ple autocovariance matrix of any lag order converges to a nonrandom probability
distribution on the real line whose Stieltjes transform can be expressed in terms
a unique Stieltjes kernel. The definition of the Stieltjes kernel involves integration
with respect to the limiting joint empirical distribution of the eigenvalues of the co-
efficient matrices as well as the spectral density functions of the one-dimensional
processes that correspond to the coordinates of the process (Xt : t ∈ Z), after rota-
tion in the common unitary or orthogonal matrix that simultaneously diagonalizes
the coefficient matrices. Thus this result neatly ties the dimensional correlation,
captured by the eigenvalues of the coefficient matrices, with the temporal correla-
tion, captured by the spectral density of the coordinate processes.

The main contributions of this paper are the following: (i) A framework is pro-
vided for analyzing the behavior of symmetrized autocovariance matrices of lin-
ear processes; (ii) for linear processes satisfying appropriate regularity conditions,
a concrete description of the limiting Stieltjes transform is given in terms of the
limiting joint ESD of the coefficient matrices and the spectral density of the coor-
dinate processes after a rotation of the coordinates of the observation. Extensions
to these main results are (iii) the characterization of the behavior of the ESD of au-
tocovariances of linear filters applied to the observed process; (iv) the description
of the ESDs of a class of tapered estimates of the spectral density operator of the
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observed process that can be used to analyze the long-run variance and spectral co-
herence of the process. These contributions surpass the work in the existing litera-
ture dealing with high-dimensionality effects for time series in two different ways.
First, the class of time series models that are analyzed in detail encompasses the
setting of stationary i.i.d. rows studied by Jin et al. [21], Pfaffel and Schlemm [32]
and Yao [35], as well as the setting of separable covariance structure studied by
Zhang [36], Paul and Silverstein [31] and El Karoui [9]. The proofs of the main
results also require more involved arguments. They are partly related to the con-
structions in Hachem et al. [16], but additional technical arguments are needed to
go beyond Gaussanity. The results are also related to the work of Hachem et al.
[17], who studies limiting spectral distributions of covariance matrices for data
with a given variance profile. The connection is through the fact that after an ap-
proximation of lag operators by circulant shift matrices, and appropriate row and
column rotations, the data matrix in our setting can be equivalently expressed as a
matrix with independent entries and with a variance profile related to the spectral
densities of the different coordinates of the time series. Second, the framework
allows for a unified analysis of the ESD of symmetrized autocovariance matrices
of all lag orders as well as that of the tapered spectral density operator. None of
the existing works deals with the behavior of autocovariances for time series (note
again that Jin et al. [20] treat the i.i.d. case), and this analysis requires a nontrivial
variation of the arguments used for dealing with the Stieltjes transform of the sam-
ple covariance matrix. Moreover, even though we stick to the setting where the
coefficient matrices are Hermitian and simultaneously diagonalizable, the main
steps in the derivation, especially the construction of a “deterministic equivalent”
of the resolvent of the symmetrized autocovariance matrix, is very general and can
be applied to linear processes with structures that go beyond the settings studied
in this paper, for example, when the simultaneous diagonalizability of the coeffi-
cient matrices is replaced by a form of simultaneous block diagonalizability, even
though the latter is not pursued in this paper due to lack of clear statistical motiva-
tion. The existence and uniqueness of the limits of the resulting equations and their
solutions is the key to establishing the existence of liming ESDs of the autocovari-
ances. This step requires certain regularity conditions on the coefficient matrices
and is not pursued beyond the setting described in Section 2. A number of poten-
tial applications, for example, to problems in signal processing, and dynamic and
static factor models, are discussed in Section 3.

The remaining sections of the paper are organized as follows. Extensions of
the main results in Section 2 are discussed in Section 4. The outcomes of a small
simulation study are reported in Section 5, while the proofs of the main results are
provided in Sections 6–11. Several technical lemmas are collected in the online
Supplemental Material (SM) [24].

2. Main results. Let Z denote the set of integers. A sequence of random vec-
tors (Xt : t ∈ Z) with values in Cp is called a linear process or moving average
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process of order infinity, abbreviated by the acronym MA(∞), if it has the repre-
sentation

Xt =
∞∑

�=0

A�Zt−�, t ∈ Z,(2.1)

where (Zt : t ∈ Z) denotes a sequence of independent, identically distributed
p-dimensional random vectors whose entries are independent and satisfy
E[Zjt ] = 0, E[|Zjt |2] = 1 and E[|Zjt |4] < ∞, where Zjt denotes the j th co-
ordinate of Zt . In the complex-valued case this is meant as E[Re(Zjt )

2] =
E[Im(Zjt )

2] = 1/2. It is also assumed that real and imaginary parts are inde-
pendent. Let further A0 = I, the identity matrix. To ensure finite fourth moments
for (Xt : t ∈ Z) and a sufficiently fast decaying weak dependence structure, As-
sumption 2.1 below lists several additional conditions imposed on the coefficient
matrices A�.

The results presented in this paper are concerned with the behavior of the sym-
metrized lag-τ sample autocovariances

Cτ = 1

2n

n−τ∑
t=1

(
XtX

∗
t+τ + Xt+τX

∗
t

)
, τ ∈N0,

assuming observations for X1, . . . ,Xn are available. For τ = 0, this definition
gives the covariance matrix S = C0 discussed in the Introduction. Note that in or-
der to make predictions in the linear process setting, it is imperative to understand
the second-order dynamics which are captured in the population autocovariance
matrices �τ = E[Xt+τX

∗
t ], τ ∈ N0, as all of the popular prediction algorithms

such as the Durbin–Levinson and innovations algorithms are starting from there;
see, for example, Lütkepohl [25]. The set-up in (2.1) provides a (strictly) station-
ary process and consequently the definition of �τ does not depend on the value
of t . The main goal of this paper is to analyze the behavior of the matrices Cτ ,
which can be viewed as a special sample counterpart to the corresponding �τ , in
the high-dimensional setting for which p = p(n) is a function of the sample size
such that

lim
n→∞

p

n
= c ∈ (0,∞),(2.2)

thereby extending the above mentioned Marčenko–Pastur-type results to more
general time series models and to autocovariance matrices. We can weaken re-
quirement (2.2) to “p/n bounded away from zero and infinity,” in which case, the
asymptotic results hold for subsequences (pk, nk) satisfying pk/nk converging to
a positive constant ck , provided that the structural assumptions on the model con-
tinue to hold. Let then F̂τ denote the empirical spectral distribution (ESD) of Cτ

given by

F̂τ (σ ) = 1

p

p∑
j=1

I{σj≤σ },
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where σ1, . . . , σp are the eigenvalues of Cτ . The proof techniques for establishing
large-sample results about F̂τ are based on exploiting convergence properties of
Stieltjes transforms, which continue to play an important role in verifying theoret-
ical results in RMT; see, for example, Paul and Aue [30] for a recent summary.
The Stieltjes transform of a distribution function F on the real line is the function

sF :C+ →C+, z �→ sF (z) =
∫ 1

σ − z
dF (σ),

where C+ = {x + iy :x ∈ R, y > 0} denotes the upper complex half plane. It can be
shown that sF is analytic on C+ and that the distribution function F can be recon-
structed from sF using an inversion formula; see [30]. In order to make statements
about F̂τ , the following additional assumptions on the coefficient matrices A� are
needed. Let N and N0 denote the positive and nonnegative integers, respectively.

ASSUMPTION 2.1. (a) The matrices (A� :� ∈ N0) are simultaneously diago-
nalizable random Hermitian matrices, independent of (Zt : t ∈ Z) and satisfying
‖A�‖ ≤ λ̄A�

for all � ∈ N0 and large p with

∞∑
�=0

λ̄A�
≤ λ̄A < ∞ and

∞∑
�=0

�λ̄A�
≤ λ̄′

A < ∞.

Note that one can set λ̄A0 = 1.
(b) There are continuous functions f� :Rm →R, � ∈ N0, such that, for every p,

there is a set of points λ1, . . . , λp ∈ Rm, not necessarily distinct, and a unitary
p × p matrix U such that

U∗A�U = diag
(
f�(λ1), . . . , f�(λp)

)
, � ∈ N,

and f0(λ) = 1. [Note that the functions f� are allowed to depend on p = p(n) as
long as they converge to continuous functions as n → ∞ uniformly.]

(c) With probability one, F A
p , the ESD of {λ1, . . . , λp}, converges weakly to a

nonrandom probability distribution function F A on Rm as p → ∞.

Let A = [A0 : A1 : · · ·] denote the matrix collecting the coefficient matrices of
the linear process (Xt : t ∈ Z). Define the transfer functions

ψ(λ, ν) =
∞∑

�=0

ei�νf�(λ) and ψ(A, ν) =
∞∑

�=0

ei�νA�,(2.3)

as well as the power transfer functions

h(λ, ν) = ∣∣ψ(λ, ν)
∣∣2 and H(A, ν) = ψ(A, ν)ψ(A, ν)∗.

Note that the contribution of the temporal dependence of the underlying time se-
ries on the asymptotic behavior of F̂τ is quantified through h(λ, ν). Specifically,
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h(λj , ν) with λj as in part (b) of Assumption 2.1 is (up to normalization) the spec-
tral density of the j th coordinate of the process rotated with the help of the unitary
matrix U. With these definitions, the main results of this paper can be stated as
follows.

THEOREM 2.1. If a complex-valued linear process (Xt : t ∈ Z) with indepen-
dent, identically distributed Zjt , E[Zjt ] = 0, E[Re(Zjt )

2] = E[Im(Zjt )
2] = 1/2,

Re(Zjt ) and Im(Zjt ) are independent, and E[|Zjt |4] < ∞, satisfies Assump-
tion 2.1, then, with probability one and in the high-dimensional setting (2.2),
F̂τ converges to a nonrandom probability distribution Fτ with Stieltjes transform
sτ determined by the equation

sτ (z) =
∫ [ 1

2π

∫ 2π

0

cos(τν)h(λ, ν)

1 + c cos(τν)Kτ (z, ν)
dν − z

]−1
dF A(λ),(2.4)

where Kτ :C+ ×[0,2π ] → C+ is a Stieltjes kernel; that is, Kτ(·, ν) is the Stieltjes
transform of a measure with total mass mν = ∫

h(λ, ν) dF A(λ) for every fixed
ν ∈ [0,2π ], whenever mν > 0. Moreover, Kτ is the unique solution of

Kτ(z, ν)
(2.5)

=
∫ [ 1

2π

∫ 2π

0

cos(τν′)h(λ, ν′)
1 + c cos(τν′)Kτ (z, ν′)

dν′ − z

]−1
h(λ, ν) dF A(λ),

subject to the restriction that Kτ is a Stieltjes kernel. Otherwise, if mν = 0, then
Kτ(z, ν) is identically zero on C+ and so still satisfies (2.5).

THEOREM 2.2. If a real-valued linear process (Xt : t ∈ Z) with independent,

identically distributed real-valued Zjt , E[Zjt ] = 0, E[Z2
j t ] = 1 and E[Z4

j t ] < ∞,

satisfies Assumption 2.1 with real symmetric coefficient matrices (A� :� ∈ N0),
then the result of Theorem 2.1 is retained.

REMARK 2.1. When each coefficient matrix A� is a multiple of the identity
matrix, that is, A� = α�Ip where (α� :� ∈ N) is a sequence of real numbers satis-
fying

∑∞
�=1 �|α�| < ∞, the result of Theorem 2.1 reduces to the results obtained

in Pfaffel and Schlemm [32] and Yao [35].

REMARK 2.2. One can relax the assumption of simultaneous diagonalizabil-
ity of the coefficient matrices of the linear process to certain forms of near-simulta-
neous diagonalizability, so that the conclusions of Theorem 2.1 continue to hold
for linear processes where the MA coefficients are Toeplitz matrices whose en-
tries decay away from the diagonal at an appropriate rate. Specifically, if A� is
the Toeplitz matrix with j th row equaling (ak−j,� : 0 ≤ k < p), for the bi-infinite
sequence (ak,�) satisfying the condition

∞∑
�=0

∞∑
k=−∞

|k|β(� + 1)|ak,�| < ∞
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for some β > 0, which in particular implies Assumption 2.1(a) by the Gershgorin
theorem, then the existence of the limiting ESD of symmetrized autocovariance
matrices can be proved. For brevity, instead of giving a thorough technical argu-
ment, we only provide the main idea of proof. First, the MA(∞) series is approx-
imated by an MA(qp) series with qp = O(p1/3), using arguments along the line
of Section 6.3. Second, banding with bandwidth kp is applied to the coefficient
matrices A�. It can be shown through an application of norm inequality, that the
limiting spectral behavior is unchanged under the banding so long as kp → ∞ un-
der (2.2). Third, circulant matrices are constructed from the banded Toeplitz matri-
ces by periodization. The resulting matrices are therefore simultaneously diagonal-
izable, and the eigenvalues of the �th approximate coefficient matrix approximate
the transfer function of the sequence (ak,� :k ∈ Z). The limiting spectral behavior
is seen to be unchanged after the use of the rank inequality so long as kp/p → 0
under (2.2). The rest of the derivations follow the arguments in the proof of The-
orem 2.1. While this particular result is related to the work of Hachem et al. [16],
who study the convergence of the empirical distribution of the sample covariance
matrix of rectangular slices of bistationary Gaussian random fields, [16] does not
cover the transition to non-Gaussian processes or the spectral behavior of sample
autocovariance matrices.

Several extensions of Theorem 2.1 are discussed in Section 4 below. The proof
steps needed in order to verify the main result are outlined in Section 6, and the
details are in Sections 7–11. The online SM [24] contains additional technical
lemmas.

3. Examples and applications.

3.1. An ARMA(1,1) example. In this section, let (Xt : t ∈ Z) be the causal
ARMA(1,1) process given by the stochastic difference equations

�(L)Xt = �(L)Zt , t ∈ Z,

where �(L) = I −�1L and �(L) = I +�1L are, respectively, the matrix-valued
autoregressive and moving average polynomials in the lag operator L for which
it is assumed that ‖�1‖ ≤ φ̄ < 1 and ‖�1‖ ≤ θ̄ < ∞. Moreover, (Zt : t ∈ Z) ∼
IID(0, I ) with entries possessing finite fourth moments. Under these conditions
(Xt : t ∈ Z) admits the MA(∞) representation

Xt = A(L)Zt , t ∈ Z,

with A(L) =∑∞
�=0 A�L

� = �−1(L)�(L). Assume now further that �1 and �1
are simultaneously diagonalizable. Then �1 = U��U∗ and �1 = U��U∗, where
�� = diag(φ1, . . . , φp) and �� = diag(θ1, . . . , θp) such that maxj |φj | ≤ φ̄ and
maxj |θj | ≤ θ̄ . With regard to Assumption 2.1, let λj = (φj , θj )

′ ∈ R2. Part (c)
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of the assumption then requires almost sure weak convergence of the ESD of
{λ1, . . . , λp} to a nonrandom probability distribution function on R2. Moreover,
using that for each coordinate,

1 + θjL

1 − φjL
= (1 + θjL)

∞∑
�=0

(φjL)� = 1 + (θj + φj )

∞∑
�=1

φ�−1
j L�,

it follows that A� = U diag(f�(λ1), . . . , f�(λp))U∗ with f0(λj ) = 1 and f�(λj ) =
(θj + φj )φ

�−1
j for � ∈ N. This illustrates part (b) of Assumption 2.1. The summa-

bility conditions stated in part (a) are clearly satisfied. Generalization to arbitrary
causal ARMA models follows in a similar fashion.

3.2. Time series with independent rows. In this section, the situation of time
series with independent rows is considered. Our results describe the limiting ESD
of the symmetrized sample autocovariances in the setting where the j th row of the
time series, denoted {ξjt : t ∈ Z}, is given by

ξjt =
∞∑

�=0

f�(λj )Zj,t−�,(3.1)

where: (i) the Zjt ’s are independent, identically distributed real- or complex-
valued random variables with mean zero, unit variance and finite fourth moments;
(ii) the f�’s are continuous functions from Rm → R satisfying f0(λ) ≡ 1 and the
summability condition supλ∈supp(F A)

∑∞
�=0(� + 1)|f�(λ)| < ∞; (iii) the λj ’s are

i.i.d. realizations from an m-dimensional probability distribution denoted by F A.
If the supremum in condition (ii) is taken over Rm, condition (iii) can be weakened
to require that the empirical distribution of the λj ’s converges almost surely to a
nonrandom distribution F A.

Let h(λ, ν) = |∑∞
�=0 ei�νf�(λ)|2. Then the empirical distributions of the eigen-

values of the lag-τ symmetrized autocovariance matrices converge almost surely
to a nonrandom probability distribution Fτ with Stieltjes transform sτ determined
by equations (2.4) and (2.5), where Kτ(z, ν) is as in Theorem 2.1. This is in the
spirit of the works of Jin et al. [21], Pfaffel and Schlemm [32] and Yao [35], who
studied the sample covariance case with f�(λ) ≡ f̄� for all � ≥ 0, Hachem et al.
[16], who considered the sample covariance case for stationary Gaussian fields
and Jin et al. [20], who studied the symmetrized sample autocovariance case with
f1(λ) ≡ 1 and f�(λ) ≡ 0 for � ≥ 1 (i.e., when the ξjt ’s are i.i.d. with zero mean
and unit variance).

3.3. Signal processing and diagnostic checks. The results derived here can be
useful in dealing with a number of important statistical questions. Signal detection
in a noisy background is one of the most important problems in signal processing
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and communications theory. Often the observations are taken in time, and the stan-
dard assumption is that the noise is i.i.d. in time, referred to as white noise. How-
ever, in spatio-temporal signal processing, it is quite apt to formulate the noise as
“colored” or correlated in time, as well as in the spatial dimension. The proposed
model for the time series is a good prototype for such a noise structure. Thus
the problem of detecting a low-dimensional signal embedded in high-dimensional
noise, for example, through a factor model framework, can be effectively addressed
by making use of the behavior of the ESDs of autocovariances of the noise. An-
other potential application of the results is in building diagnostic tools for high-
dimensional time series. By focusing on the ESDs of the autocovariances for vari-
ous lag orders, or that of a tapered estimate of the spectral density operator, one can
infer about the nature of dependence, provided the model assumptions hold. The
proposed model also provides a broad class of alternatives for the hypothesis of in-
dependence of observations in settings where those observations are measured in
time. Finally, in practical applications, it is of interest whether the spectrum of the
coefficient matrices of the linear process can be estimated from the data. The equa-
tions for the limiting Stieltjes kernel and its relation to the Stieltjes transform of
the autocovariance matrices provide a tool for attacking this problem. This aspect
has been explored in the Ph.D. thesis of the first author [23] and the methodology
will be reported elsewhere.

3.4. Dynamic factor models. Forni and Lippi [13] describe a class of time
series models that captures the subject specific variations of microeconomic ac-
tivities. This class of models, referred to as Dynamic Factor Models (DFM), has
proved immensely popular in the econometrics community and beyond. DFMs
have, for example, been used for describing the stock returns in [28], forecasting
national accounts in [3], modeling portfolio allocation in [1] and modeling psy-
chological development in [27], as well as in many other applications. Important
theoretical and inferential questions regarding DFMs have been investigated in a
series of papers by Forni and Lippi [14], Forni et al. [10–12] and Stock and Watson
[33], to name a few. DFMs have also shown early promise for applications to other
interesting multivariate time series problems such as the study of fMRI data.

A DFM can be described as follows. As in [13], let Yjt be the response corre-
sponding to the j th individual/agent at time t , modeled as

Yjt = bj1(L)U1t + · · · + bjM(L)UMt + ξjt , j = 1, . . . , p.(3.2)

The model specifies that Yjt is determined by a small, fixed number of underlying
common factors Ukt and their lags, determined by the polynomials bjk(L) in the
lag-operator L, plus an idiosyncratic component ξjt assumed independent across
individuals. Typically, (ξjt : t ∈ Z) is taken to be a stationary linear processes, in-
dependent across j .

One of the key questions pertaining to DFM is the determination of the number
of dynamic factors. This question has been investigated by Bai and Ng [4], Stock
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and Watson [33] and Hallin and Liška [18]. Unlike in PCA, here one has to deal
with the additional problem of detecting the lag orders of the dynamic factors. This
can be approached through the study of the behavior of the extreme eigenvalues
of the sample autocovariance matrices as in Jin et al. [20]. The issue becomes
even more challenging when the dimensionality of the problem increases. In such
settings, one expects that a form of phase transition phenomenon, well known in
the context of a high-dimensional static factor model (or spiked covariance model)
with i.i.d. observations (see, e.g., Baik and Silverstein [6]), will set in. In particular,
as Jin et al. [20] argue, a dynamic factor will be detectable from the data only if
the corresponding total signal intensity, as measured, for example, by the sum of
the variances of the factor loadings, is above a threshold. Moreover, the number of
eigenvalues that lie outside the bulk of the eigenvalues of the symmetrized sample
autocovariance of a certain lag order provide information about the lag order of the
DFM. Driven by the analogy with the static factor model with i.i.d. observations, it
is expected that the detection thresholds will depend on the dimension-to-sample
size ratio, as well as the behavior of the bulk spectrum of the autocovariances of
the idiosyncratic terms at specific lag orders, including the support of the limiting
ESD. Equation (3.1) in Section 3.2 constitutes the “null” model for the DFM in
which the dynamic common factors are absent. Therefore follow-up studies on the
different aspects of the ESD of the symmetrized sample autocovariances of such
processes will be helpful in determining the detection thresholds and estimation
characteristics of high-dimensional DFMs.

3.5. An idealized production model. Onatski [29] describes a model for pro-
duction Yt , at time t , involving p different industries in an economy that is given
by the equations

Yt = W−1

(
M∑

k=1

ukt fk + ξt

)
.(3.3)

Model (3.3) is a static factor model in which p × 1 vectors fk denote the (unob-
served) common static factors, ukt denote the (unobserved) factor scores consisting
of independent time series corresponding to different factors k and ξt denote the
p × 1 vectors of idiosyncratic components. The entries of the matrix W indicate
the interactions among the different industries. In the following an enhanced ver-
sion of the model is considered where the economy is thought to be divided into
a finite number of distinct sectors for which the interaction across the sectors is
assumed “weak” in a suitable sense to be described. In addition, the assumption
of separable covariance structure of the ξt made in [29] is relaxed by requiring
instead that the temporal variation in ξt for all the industrial units within a sector is
the same and is stationary in time. This assumption means that the component of
the vector ξt corresponding to a particular sector has a separable covariance struc-
ture with stationary time variation, and the components corresponding to different
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sectors are independent. Specifically, if there are K sectors, we can divide W into
K × K block matrices

W =
⎡⎣ W11 W12 · · · W1K

· · · · · ·
WK1 WK2 · · · WKK

⎤⎦= W̃ + �,

where W̃ = diag(W11, . . . ,WKK). If the sectors have no interaction at all, that
is, if Wjk = 0 for all j 
= k, then the corresponding data model is an instance
of a blockwise separable covariance model. “Weak interaction” means that the
norms of the off-diagonal blocks in the matrix W are small. More precisely, if
p−1‖�‖2

F → 0 as p → ∞, then the limiting ESD of the symmetrized autocovari-
ances for the data matrix Y is the same as that of Ỹ obtained by replacing W by W̃
in (3.3). Under the assumption of a linear process structure on the different compo-
nents of ξt , and a natural requirement on the stability of the singular values of W̃,
the existence and characterization of the limiting ESDs of the symmetrized auto-
covariances of Ỹ can be dealt within the framework studied in Section 2. These
limiting ESDs will help in determining the detection thresholds for the static fac-
tors, or even dynamic factors, if the model were to be enhanced further.

4. Extensions of the main results. This section discusses three different ex-
tensions of the main result. The arguments for the proof are similar to that of the
proof of Theorem 2.1 and hence only a brief outline is provided. Moreover, the re-
sults stated here apply to both real- and complex-valued cases, the only difference
being that, in the former case, the relevant matrices are real symmetric while, in
the latter case, they are Hermitian.

The first extension involves a rescaling of the process defined in (2.1). Thus it
is assumed that

Xt = B1/2
∞∑

�=0

A�Zt−�, t ∈ Z,(4.1)

where the processes (Zt : t ∈ Z) and matrices (A� :� ∈ N0) satisfy Assumption 2.1,
and the matrix B1/2 is the square root of a p × p positive semidefinite Hermitian
(or symmetric) matrix B satisfying the following assumption.

ASSUMPTION 4.1. Let U be as in Assumption 2.1. Then

U∗BU = diag
(
gB(λ1), . . . , gB(λp)

)
,

where gB :Rm → R+ is continuous and bounded on Rm, and {λ :gB(λ) > 0} ∩
supp(F A) is nonempty.

As before, F̂τ is defined to be the ESD of the symmetrized autocovariance Cτ

of lag order τ . If the linear process (Xt : t ∈ Z) defined through (4.1) satisfies As-
sumptions 2.1 and 4.1, then the statement of Theorem 2.1 holds with the function
h(λ, ν) replaced by gB(λ)h(λ, ν).
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The second extension is about the existence and description of the limiting
ESD of the autocovariances of linear filters of the process (Xt : t ∈ Z) defined
through (4.1). A linear filter of this process is of the form

Yt =
∞∑

k=0

bkXt−k, t ∈ Z,(4.2)

where (bk :k ∈ N0) is a sequence of real numbers for which the following summa-
bility condition is needed.

ASSUMPTION 4.2. The sequence (bk :k ≥ 0) satisfies
∑∞

k=0 k|bk| < ∞.

If the linear process (Xt : t ∈ Z) defined through (4.1) satisfies Assumptions 2.1
and 4.1, then the statement of Theorem 2.1 holds with the function h(λ, ν) replaced
by ζ(ν)gB(λ)h(λ, ν), where ζ(ν) = |∑∞

k=0 eikνbk|2, ν ∈ [0,2π ]. This result fol-
lows using the properties of convolution and Fourier transform.

The third extension is about estimation of the spectral density operator

�(η) =
∞∑

τ=−∞
eiτηE

[
XtX

∗
t+τ

]
, η ∈ [0,2π ].(4.3)

It is well known from classical multivariate time series analysis (see, e.g., Chap-
ter 10 of Hamilton [19]) that the “natural” estimator that replaces the population
autocovariance E[XtX

∗
t+τ ] by the corresponding sample autocovariance may not

be positive definite. In order to obtain positive definite estimators and a better
bias-variance trade-off, it is therefore standard in the literature to consider certain
tapered estimators with standard choices given, for example, by the Bartlett and
Parzen kernels as described in [19]. In the following, the behavior of a class of
tapered estimators of �(η), which are given by

�̂n(η) =
∞∑

τ=−∞
Tn(τ )eiτη 1

n

n−τ∑
t=1

XtX
∗
t+τ , η ∈ [0,2π ],(4.4)

is studied, where Tn(·) is a sequence of even functions and the quantities Tn(τ ) are
known as tapering weights for which the following restriction is imposed.

ASSUMPTION 4.3. (i) The even functions Tn(·) are such that Tn(τ ) = 0 for
τ ≥ n; (ii) there exists an even function T (x) such that Tn(x) → T (x) as n → ∞
and |Tn(x)| ≤ C|T (x)| for some C > 0, for all x; (iii)

∑∞
τ=0(1 + |τ |)|T (τ)| < ∞.

An implication of this assumption is that the function fT (η) defined by

fT (η) = 1 + 2
∞∑

τ=1

T (τ) cos(τη)(4.5)
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is well defined and is uniformly Lipschitz, and fTn(η) = 1 +∑∞
τ=1 Tn(τ ) cos(τη)

converges to fT (η) uniformly in η. Examples of kernels Tn are Tn(x) = (1 +
|x|)−αI(|x| < n) for α > 2 and Tn(x) = β |x|I(|x| < n) for β ∈ (0,1). It can be
seen from Assumption 4.3 that in the high-dimensional setting under consideration
here, standard choices for tapering weights, such as those given by the Bartlett and
Parzen kernels, are ruled out. Now the following generalization of Theorem 2.1 is
obtained.

THEOREM 4.1. Suppose that the linear process (Xt : t ∈ Z) defined through
(4.1) satisfies Assumptions 2.1 and 4.1, and that the estimated spectral density
operators (�̂n(η) :η ∈ [0,2π ]) are defined by (4.4) with tapering weights satisfy-
ing Assumption 4.3. Then, with probability one and in the high-dimensional set-
ting (2.2), for every η ∈ [0,2π ], the ESD of �̂n(η) converges weakly to a probabil-
ity distribution FT,η with Stieltjes transform sT ,η determined by the equation

sT ,η(z) =
∫ [ 1

2π

∫ 2π

0

fT (η − ν)gB(λ)h(λ, ν)

1 + cfT (η − ν)KT,η(z, ν)
dν − z

]−1

dF A(λ),

where KT,η :C+ × [0,2π ] → C+ is a Stieltjes kernel; that is, KT,η(·, ν) is the
Stieltjes transform of a measure with total mass mν = ∫

gB(λ)h(λ, ν) dF A(λ) for
every fixed ν ∈ [0,2π ], whenever mν > 0. Moreover, KT,η is the unique solution
to

KT,η(z, ν)

=
∫ [ 1

2π

∫ 2π

0

fT (η − ν′)gB(λ)h(λ, ν′)
1 + cfT (η − ν′)KT,η(z, ν′)

dν′ − z

]−1

× gB(λ)h(λ, ν) dF A(λ),

subject to the restriction that KT,η is a Stieltjes kernel. Else, if mν = 0, KT,η(z, ν)

is identically zero on C+ and so still satisfies the latter equation.

Section 6.5 outlines the main argument needed to prove Theorem 4.1.

5. Simulations. In this section, a small simulation study is conducted to illus-
trate the behavior of the LSD (limiting ESD) of the symmetrized sample autoco-
variances Cτ for different lag orders τ when the observations are i.i.d. (Xt = Zt )
versus when they come from an MA(1) process (Xt = Zt + A1Zt−1) with a sym-
metric coefficient matrix A1. In this study, two different sets of (n,p) are cho-
sen such that p/n = 0.5 and p/n = 1, respectively, for p = 20 and 50. Also, for
the MA(1) case, the ESD of A1 is chosen to be 0.5δ0.2 + 0.5δ0.8, where δb de-
notes the degenerate distribution at b. The distribution of the Zjt ’s is chosen to
be i.i.d. N(0,1). In Figure 1, the ESD of Cτ is plotted for the lags τ = 0,1,2,
for one random realization corresponding to each setting. The theoretical limits
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FIG. 1. ESDs and LSDs of the sample autocovariances for i.i.d. and MA(1) observations. Left
panel: p/n = 0.5; right panel: p/n = 1. Top panel: τ = 0; middle panel: τ = 1; bottom panel:
τ = 2. Red curve: LSD for i.i.d.; black curve: LSD for MA(1). ESDs are corresponding to p = 20
[deep blue for i.i.d., light green for MA(1)] and p = 50 [light blue for i.i.d., orange for MA(1)].
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(c.d.f.) for all cases are plotted as solid smooth curves [red for i.i.d. and black
for MA(1)]. These c.d.f.’s are obtained through numerically inverting the Stieltjes
transform sτ of the LSD of Cτ using the inversion formula for Stieltjes transforms;
cf. [5], [30]. Here sτ is obtained from equations (2.4) and (2.5) where c = p/n and
h(λ, ν) = 1 + 2 cos(ν)λ + λ2. Given F A = 0.5δ0.2 + 0.5δ0.8, the Stieltjes kernel
Kτ(z, ν) for the MA(1) case is solved numerically by using calculus of residues.
The computational algorithm can be found in the first author’s Ph.D. thesis [23].

The graphs clearly show the distinction in behavior of ESD of symmetrized
sample autocovariances between the i.i.d. and the MA(1) processes. The LSDs of
Cτ for the i.i.d. case for τ = 1 and 2 are the same, which follows immediately
from equations (2.4) and (2.5) that reduce to a single equation since the i.i.d. case
corresponds to F A = δ0. The behavior of the LSDs in the MA(1) case is distinctly
different. It can be shown that LSDs of Cτ in the MA(1) case converge to the
LSD for C1 in the i.i.d. case as τ becomes larger. Owing to space constraints, the
graphical displays for higher lags are omitted. Another important feature is that
the LSDs approximate the ESDs quite well even for p as small as 20, indicating a
fast convergence.

6. The structure of the proof.

6.1. Developing intuition for the Gaussian MA(1) case.

OUTLINE. In this section, the overall proof strategy is briefly outlined, and the
intuition behind the individual steps is developed for simpler first-order moving
average, MA(1), time series. The key ideas in the proof of Theorem 2.1 consist of
showing that:

• there is a unique Stieltjes kernel solution Kτ to equation (2.5);
• almost surely, the Stieltjes transform of F̂τ , say, sp,τ converges pointwise to a

Stieltjes transform sτ which will be identified with Fτ ;
• F̂τ is tight.

To achieve the second item, one can argue as follows. First, replace the original
linear process observations X1, . . . ,Xn with transformed vectors X̃1, . . . , X̃n that
are serially independent. Second, replace the symmetrized lag-τ autocovariance
matrix Cτ by a transformed version C̃τ built from X̃1, . . . , X̃n. A heuristic formu-
lation for the simpler Gaussian MA(1) case is given below in some detail. Once
these two steps have been achieved, the proof proceeds by verifying some tech-
nical conditions with the help of classical RMT results, available, for example, in
the monograph Bai and Silverstein [5]. In the following, let (Xt : t ∈ Z) denote the
p-dimensional MA(1) process given by the equations

Xt = Zt + A1Zt−1, t ∈ Z,(6.1)
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where (Zt : t ∈ Z) are assumed complex Gaussian in addition to the requirements
of Section 2. For this time series, the conditions imposed through Assumption 2.1
simplify considerably with part (a) reducing to the condition that the eigenval-
ues of A1 be uniformly bounded and part (b) being satisfied by choosing f1 as
the identity. Moreover, A = [I : A1], ψ(λ, ν) = 1 + eiνλ, ψ(A, ν) = I + eiνA1,
h(λ, ν) = 1 + 2 cos(ν)λ + λ2 and H(A, ν) = I + 2 cos(ν)A1 + A2

1, implying for
each λ, h(λ, ν) is the spectral density (up to normalization) of a univariate MA(1)

process with parameter λ.

TRANSFORMATION TO SERIAL INDEPENDENCE. The transformation to se-
rial independence requires two steps, the first consisting of an approximation of the
lag operator by a circulant matrix and the second of a rotation using the complex
Fourier basis to achieve independence. Accordingly, let

L = [o : e1 : · · · : en−1] and L̃ = [en : e1 : · · · : en−1]
be the n × n lag operator and its approximating circulant matrix, respectively,
where o denotes the n-dimensional zero vector and ej the j th canonical unit vec-
tor in Rn taking the value 1 in the j th component and 0 elsewhere. Since L̃ is
a circulant matrix, its spectral decomposition is L̃ut = ηtut , t = 1, . . . , n, where
ηt = eiνt , νt = 2πt/n and ut the vector whose j th entry is η

j
t . It follows that L̃

diagonalizes in the complex Fourier basis with the usual Fourier frequencies. Let
�L̃ = diag(η1, . . . , ηn) and UL̃ = [u1 : · · · :un] denote the corresponding eigen-

value and eigenvector matrices, so that L̃ = UL̃�L̃U∗
L̃

. Using X = [X1 : · · · :Xn]
and Z = [Z1 : · · · :Zn], the MA(1) process (6.1) can be transformed into

X1 = Z + A1ZL̃,

where X1 constitutes a redefinition of X such that the first column is changed to
Z1 +A1Zn, while all other columns are as in the original data matrix X. Rotating in
the complex Fourier basis, the observations are transformed again into the vectors
X̃1, . . . , X̃n given by

X̃ = [X̃1 : · · · : X̃n] = X1UL̃.

Observe that X̃ has independent columns. To see this, note first that Z̃ = ZUL̃
possesses the same distribution as Z, since Z has (complex) Gaussian entries and
UL̃ is a unitary matrix. Write then

X̃ = Z̃ + A1Z̃�L̃ = [
(I + η1A1)Z̃1 : · · · : (I + ηnA1)Z̃n

]
,

where Z̃ = [Z̃1 : · · · : Z̃n], and independence of the columns (and thus serial in-
dependence) follows. Note also that I + ηtA1 = ψ(A, νt ) and consequently X̃ =
ψ(A, νt )Z̃, using the transfer function ψ defined in (2.3).
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TRANSFORMATION OF Cτ . The vectors X̃1, . . . , X̃n give rise to approxima-
tions C̃τ to the lag-τ symmetrized autocovariance matrices Cτ ; in particular C̃τ

and Cτ will be shown to have the same large-sample spectral behavior, irrespec-
tive of the distribution of the entries. So let

C̃τ ≡ 1

2n
X1
(
L̃τ + [L̃∗]τ )X∗

1 = 1

n

n∑
t=1

cos(τνt )X̃t X̃
∗
t ,

where the latter equality follows from several small computations using the quan-
tities introduced in the preceding paragraph. Now,

Cτ − C̃τ =
(

Cτ − 1

2n
X1
(
Lτ + [

L∗]τ )X∗
1

)
+
(

1

2n
X1
(
Lτ + [

L∗]τ )X∗
1 − 1

2n
X1
(
L̃τ + [L̃∗]τ )X∗

1

)
.

The rank of the first difference on the right-hand side of the last display is at most 2,
since X and X1 differ only in the first column. The rank of the second difference
is at most 2τ . The rank of Cτ − C̃τ is therefore at most 2(1 + τ). Defining the
resolvents

Rτ (z) = (Cτ − zI)−1 and R̃τ (z) = (C̃τ − zI)−1,

the Stieltjes transforms corresponding to the ESDs of Cτ and C̃τ are, respectively,
given by

sτ,p(z) = 1

p
tr
[
Rτ (z)

]
and s̃τ,p(z) = 1

p
tr
[
R̃τ (z)

]
.

It follows from Lemma S.2 that with probability one, the ESDs of Cτ and C̃τ

converge to the same limit, provided the limits exist. We conclude from Lemma S.3
that the ESD of C̃τ converges a.s. to a nonrandom distribution by showing that s̃τ,p
converge pointwise a.s. to the Stieltjes transform of a probability measure, thus
establishing a.s. convergence of the ESD of Cτ .

APPROXIMATING EQUATIONS FOR THE STIELTJES KERNEL Kτ . In order to
derive limiting equation (2.5), a finite sample counterpart is needed. This can be
derived as follows. The transformed data X̃ gives rise to the transformed Stieltjes
kernel K̃τ :C+ × [0,2π ] → C+ given by

K̃τ (z, ν) = 1

p
tr
[
R̃τ (z)H(A, ν)

]
.

Following arguments typically used to establish the deterministic equivalent of
a resolvent matrix, p × p matrix-valued function solutions (Hτ,p(z) :p ∈ N) are
needed such that, for sufficiently large p,

1

p
tr
[((

I + Hτ,p(z)
)−1 + zR̃τ (z)

)
Dp

]≈ 0(6.2)
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for all z ∈ C+ and all p × p Hermitian matrix sequences (Dp :p ∈ N) with uni-
formly bounded norms ‖Dp‖. If one uses Dp = H(A, ν) and the definition of K̃τ ,
the latter approximate equation becomes

K̃τ (z, ν) ≈ − 1

pz
tr
[(

I + Hτ,p(z)
)−1H(A, ν)

]
.

Section 7 below is devoted to making precise the use of ≈ in the above equations
and to showing that choosing

Hτ,p(z) = − 1

zn

n∑
t=1

cos(τνt )H(A, νt )

1 + cn cos(τνt )K̃τ (z, νt )
,(6.3)

with νt = 2πt/n and cn = p/n, is appropriate.

6.2. Extension to the non-Gaussian case. In order to verify the statement of
Theorem 2.1 for non-Gaussian innovations (Zt : t ∈ Z), two key ideas are invoked,
namely showing that:

• for any z ∈ C+, the Stieltjes transform sp(z) concentrates around E[sp(z)] re-
gardless of the underlying distributional assumption;

• the difference between the expectations E[sp(z)] under the Gaussian model and
the non-Gaussian model is asymptotically negligible.

To establish the concentration property of the first item, McDiarmid’s inequality
is used to bound probabilities of the type P(|sp(z) − E[sp(z)]| ≥ ε) for arbitrary
ε > 0. These probabilities are then shown to converge to zero exponentially fast
under (2.2). To establish the second item, the generalized Lindeberg principle of
Chatterjee [8] is applied. To this end, the argument z is viewed as a parameter
and sp(z) as a function of the real parts ZR

jt and the imaginary parts ZI
jt of the

innovation entries Zjt , for j = 1, . . . , p and t = 1, . . . , n. The difference between
Gaussian Zt and non-Gaussian Zt can then be analyzed by consecutively chang-
ing one pair (ZR

jt ,Z
I
jt ) from Gaussian to non-Gaussian, thereby expressing the

respective differences in the expected Stieltjes transforms as a sum of these en-
trywise changes. These differences will be evaluated through a Taylor series ex-
pansion, bounding certain third-order partial derivatives of sp . Details are given in
Section 9.

6.3. Extension to the linear process case. While the arguments established so
far work in the same fashion also for MA(q) processes, certain difficulties arise
when making the transition to the MA(∞) or linear process case. First, if one
constructs the data matrix X not from MA(1) observations as above but from the
linear process Xt =∑∞

�=0 A�Zt−�, then every column of X is different from the
corresponding column in the transformed matrix X∞ =∑∞

�=0 A�ZL̃� and not only
the first column [or the first q columns for the MA(q) case]. Second, for the MA(1)

case one can write the Stieltjes transform sp(z) as a function of 2p(n+1) variables
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ZR
jt and ZI

jt [or 2p(n + q) variables for the MA(q) case], but for linear processes,

even for finite p, sp(z) is a function of infinitely many ZR
jt and ZI

jt . This makes
their study substantially harder.

Linear processes are thus, for the purposes of this paper, approached through
truncation, that is, by approximation through finite-order MA processes Xt =∑q(p)

�=0 A�Zt−� whose order q(p) is a function of the dimension p and therefore
grows with the sample size under (2.2). Obviously q(p) → ∞ is a necessary con-
dition to make this approximation work. However, q(p) cannot grow too fast (lead-
ing to the same difficulties in transitioning from the Gaussian to the non-Gaussian
case as for the linear process itself) or too slow (showing that the LSDs of the
linear process and its truncated version are identical becomes an issue). It turns
out in Section 10 that q(p) = �p1/3�, with �·� denoting the ceiling function, is an
appropriate choice.

6.4. Including the real-valued case. To address the statements of Theo-
rem 2.2, the arguments presented thus far have to be adjusted for real-valued inno-
vations (Zt : t ∈ Z). This is done using the eigen-decomposition of the coefficient
matrices in the real Fourier basis, after which arguments already developed for the
complex case apply. Detailed steps are given in Section 11.

6.5. Dealing with the spectral density operator. The key step toward proving
Theorem 4.1 is to express �̂n(η) as

�̂n(η) =
∞∑

τ=−∞
Tn(τ )eiτη 1

n
XL−τ X∗

= 1

n
X

(
Ip +

∞∑
τ=1

Tn(τ )
(
eiτηL−τ + e−iτηLτ ))X∗,

and then noticing that the matrix Ip +∑∞
τ=1 Tn(τ )(eiτηL̃τ + e−iτηL̃−τ ) diago-

nalizes in the (real or complex) Fourier basis with eigenvalues fTn(η − νt ), for
t = 1, . . . , n, so that the ESD of �̂n(η) can be approximated by the ESD of the
matrix �̃n(η) = n−1∑n

t=1 fTn(η − νt )X̃t X̃
∗
t , where X̃∗

t is the t th column of the
matrix XF∗

n, and Fn denotes the n × n Fourier rotation matrix. We give the main
steps of the arguments leading to this result. First, suppose that mn → ∞ such that
mn/n → 0 as n → ∞. Then we can write

�̂n(η) = �̃(1)
n,mn

(η) + (�̂(1)
n,mn

(η) − �̃(1)
n,mn

(η)
)+ �̂(2)

n,mn
(η),(6.4)

where

�̃(1)
n,mn

(η) = 1

n
X

(
Ip +

mn∑
τ=1

Tn(τ )
(
eiτηL̃−τ + e−iτηL̃τ ))X∗

= 1

n

n∑
t=1

fTn,mn(η − νt )X̃t X̃
∗
t ,
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with fTn,mn(θ) = 1 + 2
∑mn

τ=1 cos(τθ),

�̂(1)
n,mn

(η) = 1

n
X

(
Ip +

mn∑
τ=1

Tn(τ )
(
eiτηL−τ + e−iτηLτ ))X∗

and

�̂(2)
n,mn

(η) = 1

n
X

(
n∑

τ=mn+1

Tn(τ )
(
eiτηL−τ + e−iτηLτ ))X∗.

Now, the following facts together with representation (6.4) and Theorem A.43 of
Bai and Silverstein [5] (rank inequality) and Lemma S.1 (norm inequality) prove
the assertion:

(i) supθ∈[0,2π ] max{|fTn,mn(θ) − fTn(θ)|, |fTn(θ) − fT (θ)|} → 0, as n → ∞;

(ii) rank(�̂
(1)
n,mn(η) − �̃

(1)
n,mn(η)) ≤ 2mn = o(p);

(iii)

p−1∥∥�̂(2)
n,mn

(η)
∥∥2
F ≤ ∥∥�̂(2)

n,mn
(η)
∥∥2

and ∥∥�̂(2)
n,mn

(η)
∥∥≤ ∥∥n−1XX∗∥∥ ∞∑

τ=mn+1

∣∣Tn(τ )
∣∣→ 0 a.s.

7. Proof for the complex Gaussian MA(q) case. Throughout, (A� :� ∈ N)

is treated as a sequence of nonrandom matrices, and all the arguments are valid
conditionally on this sequence. In this section, the result of Theorem 2.1 is first
verified for the MA(q) process Xt = ∑q

�=0 A�Zt−� when Zjt ’s are i.i.d. stan-
dard complex Gaussian; that is, real and imaginary parts of Zjt are indepen-
dent normals with mean zero and variance one half. Following the outline in
Section 6.1, the data matrix X = [X1 : · · · :Xn] is transformed into the matrix
X̃ = [X̃1 : · · · : X̃n], with each column satisfying X̃t = ψ(A, νt )Z̃t . Then, since the
rank of X − (Z +∑q

�=1 A�ZL̃�) is at most q , by Lemma S.2, it follows that the
ESDs of Cτ and C̃τ have the same limit, if the latter exists. For simplicity, let
ψ t = ψ(A, νt ). To keep notation more compact, the extra subscripts p and τ (in-
dicating the lag of the autocovariance matrix under consideration) are often sup-
pressed when no confusion can arise. For example, in (6.2) the notation H(z) will
be preferred over the more complex Hτ,p(z). The proof is given in several steps.
First, a bound on the approximation error is derived if the Stieltjes kernel K in (2.5)
is replaced with its finite sample counterpart K̃ . Second, existence, convergence
and continuity of the solution to (6.2) are verified. Third, tightness of the ESDs F̂p

and convergence of the corresponding Stieltjes transforms sp is shown.

7.1. Bound on the approximation error. The goal is to provide a rigorous for-
mulation of (6.2) and a bound on the resulting approximation error. The first step
consists of giving a heuristic argument for the definition of H(z) in (6.3). To this
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end, note that(
I + H(z)

)−1 + zR̃(z)

= R̃(z)R̃(z)−1(I + H(z)
)−1 − R̃(z)

(
I + H(z)

)(
I + H(z)

)−1(7.1)

= R̃(z)
(
C̃τ + zH(z)

)(
I + H(z)

)−1
.

It follows that, to achieve (6.2), it is sufficient to solve R̃(z)C̃τ ≈ −zR̃(z)H(z).
(The use of ≈ will be clarified below.) Let

γτ,t = cos(τνt ),

and define the rank-one perturbation and its corresponding resolvent, respectively,
given by

C̃τ,t = C̃τ − 1

n
γτ,t X̃t X̃

∗
t and R̃t (z) = (C̃τ,t − zI)−1.

Using R̃(z) = ([C̃τ,t − zI] + 1
n
γτ,tXtX

∗
t )

−1 and defining

Ht =H(A, νt ),

the Sherman–Morrison formula and some matrix algebra lead to

R̃(z)C̃τ = 1

n

n∑
t=1

(
R̃t (z) − (1/n)γτ,t R̃t (z)X̃t X̃

∗
t R̃t (z)

1 + (1/n)γτ,t X̃
∗
t R̃t (z)X̃t

)
γτ,t X̃t X̃

∗
t

= 1

n

n∑
t=1

R̃t (z)
γτ,t X̃t X̃

∗
t

1 + (1/n)γτ,t X̃
∗
t R̃t (z)X̃t

= 1

n

n∑
t=1

R̃t (z)
γτ,tψ t Z̃t Z̃

∗
t ψ∗

t

1 + (1/n)γτ,t Z̃
∗
t ψ∗

t R̃t (z)ψ t Z̃t

(7.2)

≈ R̃(z)
1

n

n∑
t=1

γτ,tHt

1 + (1/n)γτ,t tr[R̃(z)Ht ]

= R̃(z)
1

n

n∑
t=1

γτ,tHt

1 + cnγτ,t K̃(z, νt )
,

thus validating the choice of H(z) as given in (6.3). The ≈ sign is due to substitut-
ing R̃t (z), Z̃t Z̃

∗
t , Z̃∗

t ψ∗
t R̃t (z)ψ t Z̃t with R̃(z), I, tr[ψ∗

t R̃(z)ψ t ], respectively. The
arguments are made precise in the following theorem.

THEOREM 7.1. Let D be a Hermitian matrix such that ‖D‖ ≤ λ̄D and z ∈ C+.
If the assumptions of Theorem 2.1 are satisfied, then

1

zp
tr
[((

I + H(z)
)−1 + zR̃(z)

)
D
]→ 0 a.s.(7.3)
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under (2.2), where H is defined in (6.3), and R̃(z) = (C̃τ − zI)−1 is the re-
solvent of the symmetrized autocvariance matrix C̃τ = 1

n

∑n
t=1 γτ,t X̃t X̃

∗
t with

γτ,t = cos(τνt ).

PROOF. Observe that using (7.1), (7.2) and the definition of H in (6.3), the a.s.
convergence in (7.3) is shown to be equivalent to

d̄(n)
τ = 1

n

n∑
t=1

dτ,t → 0 a.s.,

where

dτ,t = 1

zp
tr
[
γτ,t

(
β̃τ,t R̃t (z)H̃t − βτ,t R̃(z)Ht

)(
I + H(z)

)−1D
]
,

with H̃t = ψ t Z̃t Z̃
∗
t ψ∗

t = X̃t X̃
∗
t ,

β̃τ,t =
(

1 + 1

n
γτ,t X̃

∗
t R̃t (z)X̃t

)−1

,

(7.4)

βτ,t =
(

1 + 1

n
γτ,t tr

[
R̃(z)Ht

])−1

.

Decomposing further, write next dτ,t = d
(1)
τ,t + · · · + d

(5)
τ,t , where

d
(1)
τ,t = 1

zp
tr
[
γτ,t β̃τ,t R̃t (z)H̃t

((
I + H(z)

)−1 − (I + Ht (z)
)−1)D],

d
(2)
τ,t = 1

zp
tr
[
γτ,t β̃τ,t R̃t (z)(H̃t −Ht )

(
I + Ht (z)

)−1D
]
,

d
(3)
τ,t = 1

zp
tr
[
γτ,t β̃τ,t R̃t (z)Ht

((
I + Ht (z)

)−1 − (I + H(z)
)−1)D],

d
(4)
τ,t = 1

zp
tr
[
γτ,t β̃τ,t

(
R̃t (z) − R̃(z)

)
Ht

(
I + H(z)

)−1D
]
,

d
(5)
τ,t = 1

zp
tr
[
γτ,t (β̃τ,t − βτ,t )R̃(z)Ht

(
I + H(z)

)−1D
]
,

with

Ht = − 1

zn

n∑
t=1

β̄τ,t γτ,tHt , β̄τ,t =
(

1 + 1

n
γτ,t tr

[
R̃t (z)Ht

])−1

,(7.5)

thus exhibiting the various approximations being made in the proof.

The Borel–Cantelli lemma provides that d̄
(n)
τ → 0 almost surely is implied if

P(maxt≤n |dτ,t | > ε) → 0 faster than 1
n

for all ε > 0. Since P(maxt≤n |dτ,t | > ε) ≤∑5
�=1 P(maxt≤n |d(�)

τ,t | > ε
5), in order to verify (7.3), it is sufficient to show that
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P(maxt≤n |d(�)
τ,t | > ε) goes to zero faster than 1

n
for all ε > 0 and � = 1, . . . ,5. The

corresponding arguments are detailed in Section S1.1 of the online SM. �

7.2. Existence and uniqueness of the solution. In this section, the proof of
Theorem 2.1 is completed for the complex Gaussian innovation model. In what
follows, A is without loss of generality assumed to be nonrandom, thereby re-
stricting randomness to the innovations Z = [Z1 : · · · :Zn]. For a fixed ω in the
underlying sample space �, notation such as Z(ω) will be utilized to indicate re-
alizations of the respective random quantities.

Noticing first that Theorem 2.1 makes an almost sure convergence statement,
a suitable subset �0 ⊂ � with P(�0) = 1 is determined. This subset is used for all
subsequent arguments. To this end, observe that since the matrix Z̃ = [Z̃1 : · · · : Z̃n]
has i.i.d. entries with zero mean and unit variance the norm of n−1Z̃Z̃∗ converges
almost surely to a number not exceeding (1 + √

c)2 + 1. Let FZ̃ denote the ESD

of n−1Z̃Z̃∗, and define

�1 = {
ω ∈ � :FZ̃(ω)

< (1 + √
c)2 + 1 for p ≥ p0(ω)

}
,

with suitably chosen p0(ω). Then P(�1) = 1. Define next

d̄(z, ν,ω) = 1

zp
tr
[((

I + H(z)
)−1 + zR̃(z,ω)

)
H(A, ν)

]
,

d̄I(z,ω) = 1

zp
tr
[(

I + H(z)
)−1 + zR̃(z,ω)

]
.

Let C+
Q denote the set of complex numbers with rational real part and positive

rational imaginary part and [0,2π ]Q = [0,2π ] ∩Q. Define the set

�2 = {
ω ∈ � : d̄(z, ν,ω) → 0, d̄I(z,ω) → 0, z ∈ C+

Q, ν ∈ [0,2π ]Q}.
In view of Theorem 7.1, it follows that d̄(z, ν, ·) → 0 a.s. and d̄I(z, ·) → 0 a.s. for
all fixed z ∈ C+

Q and ν ∈ [0,2π ]Q. Thus P(�2) = 1. Henceforth only ω ∈ �0 =
�1 ∩ �2, so that P(�0) = 1, are considered.

Recall that K̃τ (z, ν,ω) = p−1 tr[R̃(z,ω)H(A, ν)]. The following theorem es-
tablishes existence of a Stieltjes kernel solution to the equations in (2.5) along a
subsequence.

THEOREM 7.2 (Existence). Suppose that the assumptions of Theorem 2.1 are
satisfied:

(a) For all ω ∈ �0 and for all subsequences of {p}, there exists another subse-
quence {p�} along which K̃τ (z, ν,ω) converges pointwise in z ∈ C+ and uniformly
in ν ∈ [0,2π ] to a limit Kτ (z, ν,ω) analytic in z and continuous in ν.

(b) For every subsequence {p�} satisfying (a), Kτ (z, ν,ω) satisfies (2.5) for any
z ∈ C+. Moreover, Kτ (z, ν,ω) is the Stieltjes transform of a measure with mass
mν = ∫

h(λ, ν) dF A(λ), provided that mν > 0.
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PROOF. (a) Let z = w+ iv. Then for a compact subset S ⊂ C+, K̃τ (z, ν,ω) ≤
λ̄2

A(minz∈S v)−1 for all ν ∈ [0,2π ] and z ∈ S. Enumerate [0,2π ]Q = {ν� :� ∈
N}. Let {pj

� (ω)} ⊂ {pj−1
� (ω)} mean that {pj

� (ω)} is a further subsequence of

{pj−1
� (ω)}, and let {p} denote the original sequence. An application of Lemma 3

in Geronimo and Hill [15] yields that, for any fixed ω ∈ �0, there is a sequence of
subsequences {

p
j
� (ω)

}⊂ {
p

j−1
� (ω)

}⊂ · · · ⊂ {
p1

�(ω)
}⊂ {p},

so that K
(p

j
� )

τ (z, ν,ω) converges to an analytic function of z on {ν� :� = 1, . . . , �}.
A standard diagonal argument implies that K

(p�
�)

τ (z, ν,ω) converges to an analytic
function of z on [0,2π ]Q. To simplify notation, write K

(p�)
τ (z, ν,ω) in place of

K
(p�

�)
τ (z, ν,ω). Observe that the thus obtained limit, which will be denoted by

Kτ (z, ν,ω), is so far defined only on C+ × [0,2π ]Q. It remains to obtain the
extension of the limit to C+ × [0,2π ]. Note that Lemma S.10 implies that, for
any z ∈ C+, K

(p�)
τ (z, ν,ω) are equicontinuous in ν and converge pointwise to

Kτ (z, ν,ω) on the dense subset [0,2π ]Q of [0,2π ]. By the Arzela–Ascoli theo-

rem, K(p�)
τ (z, ν,ω) converges therefore uniformly to a continuous function of ν on

C+ × [0,2π ]. This limit, denoted again by Kτ (z, ν,ω), is also analytic on C+. To
see this, pick ν0 ∈ [0,2π ] \Q and a sequence {νp} ⊂ [0,2π ]Q such that νp → ν0.
Then {Kτ (z, νp,ω)} satisfies the conditions of Lemma 3 in [15], and consequently
there is a subsequence of {Kτ (z, νp,ω)} that converges to an analytic function.
The limit of this subsequence has to coincide with Kτ (z, ν0,ω) by continuity on
[0,2π ]. It follows that Kτ (z, ν,ω) analytic.

(b) By Lemma S.11 and the definition of �0, for all ω ∈ �0, Kτ (z, ν,ω) satis-
fies (2.5) for all z ∈ C+

Q. So, by analyticity in z, it holds for all C+.

Suppose first that mν = 0. Then |Kτ(z, ν,ω)| ≤ v−1 ∫ h(λ, ν) dF A
p (λ) →

v−1 ∫ h(λ, ν) dF A(λ) = 0. Thus K(z, ν,ω) = 0 for all z ∈ C+, and the claim is
verified.

For the remainder, suppose that mν > 0. Showing that Kτ (z, ν,ω) is a Stielt-
jes transform of a measure with mass mν = ∫

h(λ, ν) dF A(λ) is equivalent to
showing that m−1

ν Kτ (z, ν,ω) is Stieltjes transform of a Borel probability mea-
sure. Let �C̃ and UC̃ denote the eigenvalue and eigenvector matrices of C̃τ . Then

K̃
(p�)
τ (z, ν,ω) = p−1

� tr[(�C̃ − zI)−1U∗
C̃
h(A, ν)UC̃] is the Stieltjes transform of a

measure with mass m
(p�)
ν = p−1

� tr[h(A, ν)]. By the weak convergence of F A
p�

to

F A, m
(p�)
ν → mν > 0 as p� → ∞. This shows that m

(p�)
ν ≥ m̄ν > 0 for all p�.

Since the diagonal entries of U∗
C̃
h(A, ν)UC̃ are bounded from above by λ̄2

A, it

follows that (m
(p�)
ν )−1K̃

(p�)
τ (z, ν,ω) is the Stieltjes transform of a measure μp�

,
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say, such that, for all real x, μp�
((x,∞)) ≤ λ̄2

Am̄−1
ν F C̃τ ((x,∞)), where F C̃τ de-

notes the ESD of C̃τ . It follows from Lemma S.12 that {F C̃τ } is a tight sequence.
Therefore (m

(p�)
ν )−1K̃

(p�)
τ (z, ν,ω) are the Stieltjes transforms of a tight sequence

of Borel measures. An application of Lemma S.13 yields that Kτ(z, ν,ω) is the
Stieltjes transform of a measure with mass mν , completing the proof. �

THEOREM 7.3 (Uniqueness). If the assumptions of Theorem 2.1 are satisfied,
then there is a unique solution Kτ(z, ν) to (2.5) that is analytic in z ∈ C+ and
continuous in ν ∈ [0,2π ] with Kτ(z, ν) being a Stieltjes transform of a measure
with mass

∫
h(λ, ν) dF A(λ).

PROOF. Suppose there are two solutions Kτ,1(z, ν) and Kτ,2(z, ν) to (2.5).
Let γτ (ν) = cos(τν) and βτ,j (z, ν) = (1 + cγτ (ν)Kτ,j (z, ν))−1. Define then
Uτ,j (z, λ) = (2π)−1 ∫ 2π

0 βτ,j (z, λ)γτ (ν)h(λ, ν) dν, j = 1,2. Note that Uτ,1(z, λ)

and Uτ,2(z, λ) have nonpositive imaginary parts. Now

Uτ,1(z, λ) − Uτ,2(z, λ)

= c

2π

∫ 2π

0
βτ,1(z, ν)βτ,2(z, ν)γ 2

τ (ν)
(
Kτ,1(z, ν) − Kτ,2(z, ν)

)
h(λ, ν) dν

and thus

Kτ,1(z, ν) − Kτ,2(z, ν)

= −
∫

(Uτ,1(z, λ) − Uτ,2(z, λ))h(λ, ν)

(Uτ,1(z, λ) − z)(Uτ,2(z, λ) − z)
dF A(λ)

= −
∫

c

2π

∫ 2π

0

2∏
j=1

βτ,j (z, ν
′)

Uτ,j (z, λ) − z
γ 2
τ

(
ν′)

× (
Kτ,1

(
z, ν′)− Kτ,2

(
z, ν′))h(λ, ν′)dν′h(λ, ν) dF A(λ).

Using the fact that Kτ,j (z, ν) is a Stieltjes transform with mass bounded from
above by λ̄2

A, it follows that
∏2

j=1 βτ,j (z, ν
′)(Uτ,j (z, λ) − z)−1 is bounded by

C(v) = max{64c2λ̄4
Av−4,4v−2}. Thus∫ 2π

0

∣∣Kτ,1(z, ν) − Kτ,2(z, ν)
∣∣dν

≤ 4C(v)cλ̄4
A

∫ 2π

0

∣∣Kτ,1
(
z, ν′)− Kτ,2

(
z, ν′)∣∣dν′.

If v > 4λ̄2
A max{c3/4,

√
c}, then 4C(v)cλ̄4

A < 1 and thus∫ 2π

0

∣∣Kτ,1(z, ν) − Kτ,2(z, ν)
∣∣dν = 0,
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which by continuity in ν implies that Kτ,1(z, ν) = Kτ,2(z, ν) for any fixed z ∈ C+.
Since both solutions are analytic, the equality holds indeed for all z ∈ C+. This
proves uniqueness. �

In the remainder of this section, the proof of Theorem 2.1 is completed for the
Gaussian MA(q) case. This is done by establishing that (a) the convergence along
subsequences as stated in Theorem 7.2 holds indeed for the whole sequence and
(b) the relevant ESDs converge.

Toward (a), it is necessary to prove that, for every ω ∈ �0, K̃τ (z, ν,ω) con-
verges to Kτ(z, ν) pointwise in z ∈ C+ and uniformly for ν ∈ [0,2π ] under (2.2).
Assume the contrary, and suppose that there are z0 ∈ C+, ν0 ∈ [0,2π ] and
ω0 ∈ �0 such that K̃τ (z0, ν0,ω0) does not converge to Kτ(z0, ν0). By bounded-
ness of K̃τ (z0, ν0,ω0), there is a subsequence {p�} along which K̃τ (z0, ν0,ω0)

converges to a limit different from Kτ(z0, ν0). Invoking Theorems 7.2 and 7.3,
there is a further subsequence {p�′ } of {p�} along which K̃τ (z0, ν,ω0) con-
verges to Kτ(z0, ν) uniformly in ν ∈ [0,2π ]. This is a contradiction. It follows
that for every ω ∈ �0, K̃τ (z, ν,ω) converges to Kτ(z, ν) pointwise in z ∈ C+
and ν ∈ [0,2π ]. An application of Theorem 7.2 and the Arzela–Ascoli theorem
shows that the convergence is uniform on [0,2π ]. Note that, for any z ∈ C+,
Kτ,p(z, ν,ω) = p−1 tr[R(z)H(A, ν)] converges to Kτ(z, ν) uniformly on [0,2π ].
Since we have |K̃τ (z, ν,ω) − Kτ,p(z, ν,ω)| < λ̄2

A(vp)−1, assertion (a) follows.
Toward (b), let ω ∈ �0. It needs to be shown that sτ,p(z,ω) → sτ (z) on C+.

By arguments as in the proof of Lemma S.11, it is already established that
s̃τ,p(z,ω) → sτ (z) on C+

Q. Now, for any compact S ⊂C+ and z1, z2 ∈ S,

∣∣s̃τ,p(z1,ω) − s̃τ,p(z2,ω)
∣∣= 1

p

∣∣tr[R̃(z1,ω) − R̃(z2,ω)
]∣∣

= 1

p

∣∣tr[(z1 − z2)R̃(z1,ω)R̃(z2,ω)
]∣∣

≤ |z1 − z2|
(
min
z∈S

v
)2

.

Thus {s̃τ,p(z,ω)} are equicontinuous in z (with p and ω as parameters) on S. By
Arzela–Ascoli, s̃τ,p(z,ω) thus converges uniformly to sτ (z) on S. Consequently
s̃τ,p(z,ω) → sτ (z) on C+. Since F̃τ , the ESD of C̃τ , is tight (by Lemma S.12), it
follows from Lemmas S.13 and S.3 that sτ (z) is a Stieltjes transform of a (nonran-
dom) probability measure, and F̃τ converges a.s. to the distribution whose Stieltjes
transform is given by sτ . Since, by Lemma S.2, supσ |F̃τ (σ ) − F̂τ (σ )| → 0 a.s., it
follows that F̂τ converges a.s. to the same limit, and hence sτ,p(z) converges a.s.
to sτ (z). The proof for the Gaussian MA(q) case is complete. It can be checked
that all the statements remain valid even if q = q(p) → ∞ sufficiently slowly
under (2.2), for example, if q(p) = o(p1/2).
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8. Truncation, centering and rescaling. The extension of the result to non-
Gaussian innovations requires in its first step, a truncation argument, followed by
a centering and rescaling of the innovations. This section justifies that the sym-
metrized autocovariance matrices obtained from Gaussian innovations and from
their truncated, centered and rescaled counterparts have the same LSD. The exten-
sion to the non-Gaussian case is then completed in Section 9.

Since the underlying process is an MA(q) series, the observations X1, . . . ,Xn

are functions of the innovations Z1−q, . . . ,Zn. For j = 1, . . . , p and t = 1 −
q, . . . , n, define the quantities

Z̄R
jt = ZR

jtI
(∣∣ZR

jt

∣∣< √
p
)
, ŽR

jt = Z̄R
jt −E

[
Z̄R

jt

]
,

Z̄I
j t = ZI

jtI
(∣∣ZI

jt

∣∣< √
p
)
, ŽI

j t = Z̄R
jt −E

[
Z̄I

j t

]
,

where Zjt = ZR
jt + iZI

jt and I the indicator function. Correspondingly define C̄τ

and Čτ to be the autocovariance matrices obtained from Z̄R
jt , Z̄

I
j t and ŽR

jt , ŽI
j t ,

respectively.

PROPOSITION 8.1. If the assumptions of Theorem 2.1 are satisfied, then a.s.
under (2.2),

sup
λ

∣∣F Cτ − F C̄τ
∣∣→ 0 and sup

λ

∣∣F C̄τ − F Čτ
∣∣→ 0,

where F Cτ , F C̄τ and F Čτ denote the ESDs of Cτ , C̄τ and Čτ , respectively.

PROOF. Let ηR
jt = 1 − I(|ZR

jt | >
√

p) and ηI
jt = 1 − I(|ZI

jt | >
√

p). Let fur-

ther δR = P(|ZR
jt | >

√
p) and δI = P(|ZI

jt | >
√

p), and note that these quanti-
ties are independent due to the assumed i.i.d. structure on Zjt . Since the fourth
moments of the latter random variables are assumed finite, it also follows that
δR < p−2E[ZR

11|4] < ∞ and δI < p−2E[ZI
11|4] < ∞.

Observe next that the rank of a matrix does not exceed the number of its nonzero
columns and that each nonzero Zjt causes at most 2(q + 1) nonzero columns.
Recalling that Cτ = (2n)−1X(L + L∗)X∗, Theorem A.44 of [5] (using F = 0 and
D = L + L∗) implies that, for any ε > 0,

P
(
sup
λ

∣∣F Cτ (λ) − F C̄τ (λ)
∣∣> ε

)
≤ P

(
2(q + 1)

p

∑
j t

(
ηR

jt + ηI
jt

)
> ε

)

≤ P

(∑
j t

ηR
jt >

εp

4(q + 1)

)
+ P

(∑
j t

ηI
j t >

εp

4(q + 1)

)
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= P

(∑
j t

ηR
jt − p(q + n)δR >

εp

4(q + 1)
− p(q + n)δR

)

+ P

(∑
j t

ηI
j t − p(q + n)δR >

εp

4(q + 1)
− p(q + n)δI

)
.

Let ε(p, q) = εp[4(q +1)]−1. For p large enough so that 2p(q +n)min{δR, δI } <

ε(p,q), Hoeffding’s inequality yields

P

(∑
j t

ηR
jt − p(q + n)δR > ε(p, q) − p(q + n)δR

)

≤ 2 exp
(−(ε(p, q) − p(q + n)δR)2(p(q + n)δR + ε(p, q)

)−1)
≤ 2 exp

(
−
(

ε(p, q)

2

)2(3ε(p, q)

2

)−1)
= 2 exp

(
− εp

24(q + 1)

)
as well as

P

(∑
j t

ηI
j t − p(q + n)δI > ε(p, q) − p(q + n)δR

)
≤ 2 exp

(
− εp

24(q + 1)

)
.

The Borel–Cantelli lemma now implies that supσ |F Cτ (σ ) − F C̄τ (σ )| → 0 a.s.,
which is the first claim of the proposition.

To verify the second, note that the equality
q∑

�=0

A�Z̄t−� −
q∑

�=0

A�Žt−� =
q∑

�=0

A�

(
E
[
Z̄R

11
]+ iE

[
Z̄I

11
])

1,

with 1 being the vector with all entries equal to 1, shows that
∑q

�=0 A�Z̄t−� −∑q
�=0 A�Žt−� is independent of t . Thus an application of Lemma S.1 leads to

sup
σ

∣∣F C̄τ (σ ) − F Čτ (σ )
∣∣≤ 1

p
,

which converges to 0 a.s. under (2.2). This is the second assertion. �

After truncation and centering, it does not necessarily follow that E[|Ž11|2] =
E[|ŽR

11 + iŽI
11|2] is equal to 1. However, rescaling ŽR

11 + iŽI
11 by dividing with

(E[|ŽR
11 + iŽI

11|2])1/2 (in order to obtain unit variance) does not affect the LSD
because E[|Ž11|2] → 1 under (2.2). The detailed arguments follow as in Sec-
tion 3.1.1 of Bai and Silverstein [5]. This shows that the symmetrized autocovari-
ances from Zjt and their truncated, centered and rescaled counterparts have the
same LSD. Thus to simplify the argument, it can be assumed that the recentered
process has variance one.
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9. Extension to the non-Gaussian case. In this section, the results for the
Gaussian MA(q) case are extended to general innovation sequences (Wt : t ∈ Z)

satisfying the same moment conditions as their Gaussian counterparts (Zt : t ∈ Z).
The processes of interest are then the two MA(q) processes

Xt =
q∑

�=0

A�Zt−� and X̄t =
q∑

�=0

A�Wt−�.

Define the symmetrized autocovariance matrix C̄τ = (2n)−1∑n−τ
t=1 (X̄t X̄

∗
t+τ +

X̄t+τ X̄
∗
t ), the resolvent R̄(z) = (C̄τ − zI)−1 and the Stieltjes transform s̄p(z) =

p−1 tr[R̄(z)]. In the following, it will be shown that the ESDs of Cτ and C̄τ con-
verge to the same limit. This is done via verifying that, for all z ∈ C+, s̄p(z) and
sp(z) converge to the same limit s(z) under (2.2), which in turn requires us to show
that:

(a) E[s̄p(z) − sp(z)] → 0 under (2.2) for all z ∈C+;
(b) P[|s̄p(z) −E[s̄p(z)]| ≥ ε] → 0 under (2.2) for all z ∈C+ and ε > 0.

Part (a) requires the use of the Lindeberg principle, and part (b) is achieved via an
application of McDiarmid’s inequality.

9.1. Showing that E[s̄p(z) − sp(z)] → 0. For the use in this section, redefine
Z = [Z1−q : · · · :Zn], define W = [W1−q : · · · :Wn] and let ZR , WR and ZI , WI be
the corresponding matrices of real and imaginary parts. Claim (a) will be verified
via the Lindeberg principle developed in Chatterjee [8]. This involves successive
replacements of Gaussian variables with non-Gaussian counterparts in a telescop-
ing sum. To this end, define an order on the index set {(j, t) : j = 1, . . . , p, t =
1 − q, . . . , n} by letting (j, t) < (j ′, t ′) if either (1) t < t ′ or (2) t = t ′ and j < j ′,
so that one successively moves columnwise through the entries of a matrix. More-
over, let

(j, t) − 1 =
⎧⎨⎩

(j − 1, t), if j > 1 and t ≥ 1 − q,
(p, t − 1), if j = 1 and t > 1 − q,
(0,−q), if j = 1 and t = 1 − q.

Let VR
j,t denote the p × (q + n) matrix given by the entries

(
VR

jt

)
j ′t ′ =

⎧⎨⎩ZR
j ′t ′, if

(
j ′, t ′

)≤ (j, t),

WR
j ′t ′, if

(
j ′, t ′

)
> (j, t).

Further let the p × (q + n) matrix V̄R
jt be equal to VR

jt for all entries but the

(j, t)th one, which is set to equal 0, and define analogously the matrices VI
j t and

V̄I
j t . These matrices determine how many of the original Gaussian Zjt ’s have been
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replaced by the non-Gaussian Wjt . In the following, sp(z) will be viewed as a func-
tion of ZR and ZI , fixing z and p as parameters, that is, sz

p(ZR,ZI ) = sp(z). Sim-
ilarly, let sz

p(WR,WI ) = s̄p(z). Utilizing this notation, the quantity to be bounded
in expectation can be written as

sz
p

(
ZR,ZI )− sz

p

(
WR,WI )

= sz
p

(
VR

pn,VI
pn

)− sz
p

(
VR

0,−q,VI
0,−q

)
=

(p,n)∑
(j,t)=(1,1−q)

[
sz
p

(
VR

jt ,VI
pn

)− sz
p

(
VR

(j,t)−1,VI
pn

)]

+
(p,n)∑

(j,t)=(1,1−q)

[
sz
p

(
VR

0,−q,VI
j t

)− sz
p

(
VR

0,−q,VI
(j,t)−1

)]
= �1 + �2,

where �1 = ∑(p,n)
(j,t)=(1,1−q) �

(1)
j,t and �2 = ∑(p,n)

(j,t)=(1,1−q) �
(2)
j,t are the real and

imaginary part of the difference with �
(1)
j,t = sz

p(VR
jt ,VI

pn)− sz
p(VR

(j,t)−1,VI
pn) and

�
(2)
j,t = sz

p(VR
0,−q,VI

j t ) − sz
p(VR

0,−q,VI
(j,t)−1). In the following only the telescop-

ing real parts will be discussed, as the imaginary parts can be estimated along the
same lines. Inserting V̄R

jt , one obtains

�
(1)
j,t = [

sz
p

(
VR

j,t ,VI
p,n

)− sz
p

(
V̄R

j,t ,VI
p,n

)]+ [sz
p

(
V̄R

j,t ,VI
p,n

)− sz
p

(
VR

(j,t)−1,VI
p,n

)]
= �

(1,1)
j,t + �

(1,2)
j,t .

Let ∂
(k)
j,t,1s

z
p denote the kth-order partial derivative of sz

p with respect to ZR
jt . A Tay-

lor series expansion gives∣∣∣∣�(1,1)
j,t − ZR

jt∂
(1)
j,t,1s

z
p

(
V̄R

jt ,VI
pn

)− 1

2

(
ZR

jt

)2
∂

(2)
j,t,1s

z
p

(
V̄R

jt ,VI
pn

)∣∣∣∣
≤ 1

6

∣∣ZR
jt

∣∣3 max
α∈[0,1]

∣∣∂(3)
j,t,1s

z
p

(
αVR

jt + (1 − α)V̄R
jt ,VI

pn

)∣∣
and ∣∣∣∣�(1,2)

j,t + WR
jt∂

(1)
j,t,1s

z
p

(
V̄R

jt ,VI
pn

)+ 1

2

(
WR

jt

)2
∂

(2)
j,t,1s

z
p

(
V̄R

jt ,VI
pn

)∣∣∣∣
≤ 1

6

∣∣WR
jt

∣∣3 max
α∈[0,1]

∣∣∂(3)
j,t,1s

z
p

(
αVR

(j,t)−1 + (1 − α)V̄R
jt ,VI

pn

)∣∣.
The entries of the matrices ZR , ZI , WR and WI are all independent of each other
and the first and second moments of the various real parts (and imaginary parts)
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coincide, so that the bound in the last two inequalities also hold for higher-order
terms (HOT). This leads to∣∣E[�(1)

j,t

]∣∣= ∣∣∣∣E[(ZR
jt − WR

jt

)
∂

(1)
j,t,1s

z
p

(
V̄R

jt ,VI
pn

)
+ 1

2

[(
ZR

jt

)2 − (WR
jt

)2]
∂

(2)
j,t,1s

z
p

(
V̄R

jt ,VI
pn

)± HOT
]∣∣∣∣

(9.1)

≤ 1

6
E
[∣∣ZR

jt

∣∣3 max
α∈[0,1]

∣∣∂(3)
j,t,1s

z
p

(
αVR

jt + (1 − α)V̄R
jt ,VI

pn

)∣∣]
+ 1

6
E
[∣∣WR

jt

∣∣3 max
α∈[0,1]

∣∣∂(3)
j,t,1s

z
p

(
αVR

(j,t)−1 + (1 − α)V̄R
jt ,VI

pn

)∣∣].
Dealing with the right-hand side of (9.1) requires the computation and estimation

of the third-order derivatives ∂
(3)
j,t,1s

z
p(ZR,ZI ) = p−1 tr[∂(3)

j,t,1R(z)]. Focusing only
on the first term of the right-hand side of (9.1) (the second can be handled simi-
larly), Lemma S.14 shows that this term converges to zero under (2.2) if, almost
surely under (2.2),

q + 1

n3p

(p,n)∑
(j,t)=(1,1−q)

E

[∣∣ZR
t,j

∣∣3 max
α∈[0,1]

( ∑
�∈I+(t)

‖A�‖
∥∥X̃α

t+τ+�

∥∥
(9.2)

+ ∑
�∈I−(t)

∥∥X̃α
t−τ+�

∥∥‖A�‖
)3]

→ 0,

q + 1

n2p

(p,n)∑
(j,t)=(1,1−q)

E

[∣∣ZR
t,j

∣∣3 max
α∈[0,1]

( ∑
�∈I+(t)

‖A�‖
∥∥X̃α

t+τ+�

∥∥
(9.3)

+ ∑
�∈I−(t)

∥∥X̃α
t−τ+�

∥∥‖A�‖
)]

→ 0,

where I+(t) = {� : max{0,1 − t − τ } ≤ � ≤ min{q,n − t − τ }}, I−(t) = {� :
max{0,1 − t + τ } ≤ � ≤ min{q,n − t}}, X̃α = [X̃α

1 : · · · : X̃α
n ] =∑q

�=0 A�VαL�F,
Vα = αVR

jt + (1 − α)V̄R
jt + iZI and F = [0n×q : In]′ being an (n + q) × n ma-

trix. The choice of α ∈ [0,1] only affects the value of the j th entry of V α
t . For

t 
= t ′, the notation Vt ′ = V α
t ′ is therefore preferred. By definition, V 0

t is the vec-
tor whose j th entry has a real part of zero. Let J±(t, �) = {�′ ∈ {0, . . . , q} :�′ 
=
τ ± �, t ± τ + � − �′ ≥ 1}. Then

max
α∈[0,1]

∥∥X̃α
t±τ+�

∥∥
≤ ∑

�′∈J±(t,�)

λ̄A�′ ‖Zt±τ+�−�′‖ + λ̄A�±τ

(∥∥V 0
t

∥∥+ ∣∣ZR
j,t

∣∣).
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Hence, setting λ̄rem
� = (

∑q

�′=|�| λ̄
2
A�′ )

1/2,

max
α∈[0,1]

∑
�∈J±(t)

‖A�‖
∥∥X̃α

t±τ+�

∥∥
≤ λ̄A

q∑
�=−q,� 
=∓τ

λ̄rem
� ‖Zt±τ+�‖ + λ̄Aλ̄rem±τ

(∥∥V 0
t

∥∥+ ∣∣ZR
j,t

∣∣).
Using this, it follows from Lemma S.15 that the left-hand sides of (9.2) and (9.3)
converge to zero a.s., thus establishing that E[s̄p(z) − sp(z)] → 0.

9.2. Showing that P[|s̄p(z) − E[s̄p(z)]| ≥ ε] → 0. For a fixed z, s̄p(z) is a
function of the n + q vectors W1−q, . . . ,Wn. Letting m = �q−1(n + q)�, these
are now segmented into the groups W(k−1)q+1, . . . ,Wkq , k = 0,1, . . . ,m, possibly
adding additional vectors to the last group to ensure all groups have the same length
[even though the value s̄p(z) does not depend on the additions]. To satisfy the
conditions needed in order to apply McDiarmid’s inequality, note that a change of
the values W(k−1)q+1, . . . ,Wkq in one group to, say, W ′

(k−1)q+1, . . . ,W
′
kq , causes

the values of X̄(k−1)q+1, . . . , X̄(k+1)q to change to, say, X̄′
(k−1)q+1, . . . , X̄

′
(k+1)q .

In the following, the focus is on changes applied to the first group of innovations
W1, . . . ,Wq . Consider the case τ ≤ 2q and let

C̄′
τ = 1

2n

2q∑
t=1

(
X̄′

t X̄
∗
t+τ + X̄t+τ X̄

′,∗
t

)+ 1

2n

n−τ∑
t=2q+1

(
X̄t X̄

∗
t+τ + X̄t+τ X̄

∗
t

)
,

R̄′
τ (z) = (C̄′

τ − zI)−1 and s̄′
p(z) = p−1 tr[R̄′

τ (z)]. The goal is now to represent

C̄′
τ as a finite rank perturbation of C̄τ in the form

∑J
j=1 rj r

∗
j with appropriate rj

and J . Write

C̄′
τ − C̄τ = 1

2n

2q∑
t=1

(
X̄′

t X̄
∗
t+τ + X̄t+τ X̄

′,∗
t − X̄t X̄

∗
t+τ − X̄t+τ X̄

∗
t

)

= 1

2n

2q∑
t=1

[(
X̄′

t + X̄t+τ

)(
X̄′

t + X̄t+τ

)∗
− (X̄t + X̄t+τ )(X̄t + X̄t+τ )

∗ − X̄′
t X̄

′,∗
t + X̄t X̄

∗
t

]
.

Choosing J = 8q and repeatedly utilizing (S.3) with Ht replaced by Ip , it follows
that |s̄p(z) − s̄′

p(z)| ≤ C1q(vp)−1 for some appropriately chosen constant C1 > 0.
This bound holds for any of the m groups of innovations. McDiarmid’s inequality
consequently implies, for any ε > 0 and a suitable constant C2 > 0,

P
(∣∣s̄p(z) −E

[
s̄p(z)

]∣∣≥ ε
)≤ 4 exp

(
−C2

ε2v2p2

mq2

)
∼ 4 exp

(
−C2

ε2v2c

q
p

)
.
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The right-hand side converges to zero at a rate faster than qp−1 and concentration
of the Stieltjes transform around its mean is established, since the case τ > 2q

can be handled in a similar fashion. Note that the last argument remains valid if
q = q(p) → ∞ as p → ∞ at a sufficiently slow rate, for example, if q = o(p1/2).

10. Extension to the linear process case. Let (Xt : t ∈ Z) now denote a linear
process. To complete the proof of Theorem 2.1, a truncation argument is invoked.
Let (Xtr

t :Z) denote the truncated process given by Xtr
t = ∑q(p)

�=0 A�Zt−�, t ∈ Z,
where q(p) depends on the dimension. Let (X̌t : t ∈ Z) be the process given by
X̌t = Xt − Xtr

t , t ∈ Z, and denote by L(F,G) the Lévy distance between distribu-
tion functions F and G.

LEMMA 10.1. If the assumptions of Theorem 2.1 are satisfied and if q(p) =
�p�1/3, then

L
(
F Cτ , F Ctr

τ
)→ 0 a.s.

under (2.2), where Ctr
τ = (2n)−1∑n−τ

τ=1(X
tr
t (Xtr

t+τ )
∗ + Xtr

t+τ (X
tr
t )∗).

PROOF. By Lemma S.1, it suffices to show that p−1 tr[(C̃τ − C̃tr
τ )2] → 0 a.s.

Write X = Xtr + X̌ and Dτ = (Lτ + L∗
τ )/2. Then

C̃τ − C̃tr
τ = 1

n
XtrDτ X̌∗ + 1

n
X̌Dτ

(
Xtr)∗ + 1

n
X̌Dτ X̌∗ = P + P∗ + Q,

say. From repeated applications of the Cauchy–Schwarz inequality, we have

tr
[(

C̃τ − C̃tr
τ

)2]= 2 tr
(
P2)+ tr

(
Q2)+ 2 tr

(
PP∗)+ 4 tr(PQ)

≤ 4 tr
(
PP∗)+ tr

(
Q2)+ 4

√
tr
(
PP∗)√tr

(
Q2
)
.

Since ‖Dτ‖ ≤ 1, tr(Q2) ≤ n−2 tr[(X̌X̌∗)2], and by another application of Cauchy–
Schwarz,

tr
(
PP∗)≤ ( 1

n2 tr
[(

Xtr(Xtr)∗)2])1/2( 1

n2 tr
[(

X̌X̌∗)2])1/2

.

Since it is easy to see that (pn2)−1 tr[(Xtr(Xtr)∗)2] is stochastically bounded
(e.g., by showing that the expectation is finite), it is enough to show that
(pn2)−1 tr[(X̌X̌∗)2] → 0 a.s. This is established by showing that the sum∑∞

p=1(pn2)−1E[tr[(X̌X̌∗)2]] < ∞, and then applying the Borel–Cantelli lemma.
To this end, note that

E
[
tr
[(

X̌X̌∗)2]]
=

n∑
t=1

n∑
s=1

E
[∣∣X̌∗

t X̌s

∣∣2]
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=
n∑

t=1

n∑
s=1

∞∑
�=q+1

∞∑
�′=q+1

∞∑
m=q+1

∞∑
m′=q+1

E
[
tr
(
Zt−�′Z∗

t−�A�Am

× Zs−mZs−m′A�′Am′
)]

.

It is clear from the independence of Zt ’s that the summands are nonzero only if
the indices of Z’s pair up. Direct calculation shows that the total contribution of
all four types of pairings: (i) t − � = t − �′ 
= s − m = s − m′; (ii) t − � = s − m 
=
s − m′ = t − �′; (iii) t − � = s − m′ 
= s − m = t − �′ and (iv) t − � = t − �′ =
s − m = s − m′ can be bounded by C(p2n2)(

∑∞
�=q λ̄2

A�
)2 for some C > 0, using

the fact that p and n are of the same order. Thus since q = q(p) = �p�1/3,

∞∑
p=1

p

( ∞∑
�=q

λ̄2
A�

)2

≤ 2
∞∑

p=1

p

∞∑
�=q

(
λ̄2

A�

∑
j≥�

λ̄2
Aj

)

= 2
∞∑

�=1

(
λ̄2

A�

∑
j≥�

λ̄2
Aj

) ∞∑
p=1

p1
{
p : �p�1/3 ≤ �

}

≤ 2
∞∑

�=1

(
λ̄2

A�

∑
j≥�

λ̄2
Aj

) �3∑
p=1

p

≤ 2
∞∑

�=1

�4λ̄2
A�

∑
j≥�

λ̄2
Aj

≤ 2
∞∑

�=1

�2λ̄2
A�

∑
j≥�

j2λ̄2
Aj

≤ 2

( ∞∑
�=1

�λ̄A�

)4

.

This proves the result. �

Using Gaussian innovations (Zt : t ∈ Z), let X̃tr = [Xtr
1 : · · · :Xtr

n ] =∑q
�=0 A�ZL̃�UL̃ be the corresponding transformed data matrix. Then define

ψ tr(λ, ν) =∑q(p)
�=0 ei�νf�(λ), ψ tr(A, ν) =∑q(p)

�=0 ei�νA�, C̃tr
τ = γτ,t X̃

tr
t (X̃tr

t )∗, R̃tr
τ =

(C̃tr
τ − zI)−1, s̃tr(z) = p−1 tr[R̃tr

τ (z)], K̃ tr
p(z, ν) = p−1 tr[R̃tr

τ (z)ψ tr(A, ν)],
htr(λ, ν) = |ψ tr(λ, ν)|2 and Htr(A, ν) = ψ tr(A, ν)ψ tr(A, ν)∗. Then one verifies
in a similar vein, as in the proofs of Theorems 7.2 and 7.3, that for all ω ∈ �0 with
�0 defined in the beginning of Section 7.2, under (2.2),

K̃ tr
p�

(z, ν,ω) −
∫ [

U tr
p�

(z, λ) − z
]−1

htr(λ, ν) dF A
p�

(λ) → 0,

where U tr
p�

(z, λ) = (n(p�))
−1∑n(p�)

t=1 [1 + cp�
γτ,t K̃

tr
p�

(z, νtj ,ω)]−1htr(λ, νtj ). This
is done by exploiting the convergence htr(λ, ν) → h(λ, ν), which is uniform in ν
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and λ, and U tr
p�

(z, λ) → U(z,λ,ω) = (2π)−1 ∫ 2π
0 βτ (z, λ)γτ (ν)h(λ, ν) dν, which

is uniform in λ. Therein, βτ (z, ν) = [1 + cγτ (ν)Kτ (z, ν)]−1. From these facts it
follows that the limiting version of the truncated version satisfies the defining equa-
tions for the Stieltjes kernel (2.5). Therefore the results for the complex Gaussian
innovation model with fixed order q are, subject to minor modifications, still ap-
plicable when orders q(p) grow at a suitable rate.

11. The real-valued case. The idea of the proof of Theorem 2.2 is motivated
by focusing on the MA(1) case. The derivation for the MA(q) and finally MA(∞)

cases follows the from the corresponding transformations and subsequent con-
structions analogous to the complex case. So, let X = Z + A1ZL be the data
matrix obtained from a Gaussian MA(1) time series, and suppose that A1 pos-
sesses an eigendecomposition A1 = UA1�A1U∗

A1
with UA1 orthogonal. Let U de-

note the real Fourier basis (see, e.g., Chapter 10 of [7]), and let for the real case
X̃ = UA1(Z + A1ZL̃)U. Since ZU and ZL̃U have independent columns, it follows
that X̃ has independent columns. Moreover, X̃ has also independent rows. To see
this, note that the transpose of the j th row of X̃ is(

UA1(Z + A1ZL̃)U
)T

ej = UT (I + λj L̃)Zj ,

where Zj is the j th column of UA1ZU and λj the j th eigenvalue of A1. The
covariance of the j th column is

E
[
UT (I + λj L̃)ZjZ

T
j (I + λj L̃)T U

]= UT (I + λj

(
L̃ + L̃T )+ λ2

j L̃L̃T )U.

Since I+λj (L̃+ L̃T )+λ2
j L̃L̃T = (1+λ2

j )I+λj (L̃+ L̃T ) is a symmetric circulant
matrix, it diagonalizes in the real Fourier basis, and hence the covariance matrix of
the last display is diagonal. From the same display it follows also that the variance
of the (j, t)th entry is h(λj , νt ), so that the rest of the proof follows as in the
complex case (Theorem 2.1).

SUPPLEMENTARY MATERIAL

Supplement to “On the Marčenko–Pastur law for linear time series” (DOI:
10.1214/14-AOS1294SUPP; .pdf). The supplementary material provides addi-
tional technical lemmas and their proofs.
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[3] ANGELINI, M., BAŃBURA, M. and RÜNSTLER, G. (2010). Estimating and forecasting the
Euro area monthly national accounts from a dynamic factor model. J. Bus. Cycle Meas.
Anal. 2010 1–22.

http://dx.doi.org/10.1214/14-AOS1294SUPP
http://www.ams.org/mathscinet-getitem?mr=2760897
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