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DOMINATING COUNTABLY MANY FORECASTS

BY M. J. SCHERVISH, TEDDY SEIDENFELD AND J. B. KADANE

Carnegie Mellon University

We investigate differences between a simple Dominance Principle ap-
plied to sums of fair prices for variables and dominance applied to sums of
forecasts for variables scored by proper scoring rules. In particular, we con-
sider differences when fair prices and forecasts correspond to finitely addi-
tive expectations and dominance is applied with infinitely many prices and/or
forecasts.

1. Introduction. The requirement that preferences are coherent aims to make
rigorous the idea that elementary restrictions on rational preferences entail that
personal probabilities satisfy the axioms of mathematical probability. This use
of coherence as a justification of personal probability is very well illustrated by
de Finetti’s (1974) approach to the foundations of probability. De Finetti distin-
guished two senses of coherence: coherence1 and coherence2. Coherence1 requires
that probabilistic forecasts for random variables (he calls them previsions) do not
lead to a finite set of fair contracts that, together, are uniformly dominated by
abstaining. Coherence2 requires that a finite set of probabilistic forecasts cannot
be uniformly dominated under Brier (squared error) score by a rival set of fore-
casts. He showed that these two senses of coherence are equivalent in the follow-
ing sense. Each version of coherence results in using the expectation of a random
variable as its forecast. Moreover, these expectations are based on a finitely addi-
tive probability without requiring that personal probability is countably additive.
[In Appendix A, we explain what we mean by expectations with respect to finitely
additive probabilities. These are similar in many ways, but not identical to integrals
in the sense of Dunford and Schwartz (1958), Chapter III.] Schervish, Seidenfeld
and Kadane (2009) extended this equivalence to include a large class of strictly
proper scoring rules (not just Brier score) but for events only. The correspond-
ing extension to general random variables is included in the supplemental article
[Schervish, Seidenfeld and Kadane (2014)]. Here, we refer to the extended sense
of coherence2 as coherence3.

We investigate asymmetries between coherence1 and coherence3 reflecting dif-
ferences between cases where personal probabilities are countably additive and
where personal probabilities are finitely (but not countably) additive. We give con-
ditions where coherence3 may be applied to assessing countably many forecasts
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at once, but where coherence1 cannot be applied to combining infinitely many fair
contracts. Also, we study conditional forecasts given elements of a partition π ,
where the conditional forecasts are based on the conditional probabilities given
elements of π . Each coherence criterion is violated by combining infinitely many
conditional forecasts when those conditional forecasts are not conglomerable (see
Definition 7) in the partition π . Neither criterion is violated by combining infinitely
many conditional forecasts when conditional expectations satisfy the law of total
previsions (see Definition 8) in π .

2. Results of de Finetti. Coherence of preference, as de Finetti [(1974),
Chapter 3] formulates it, is the criterion that a rational decision maker respects uni-
form (strict) dominance. In Section 2.1, we explain the version of the Dominance
Principle that de Finetti uses. In Section 2.2, we review de Finetti’s two versions of
coherence, with a focus on how preferences based on a finitely additive probability
are coherent.

2.1. Dominance. Let � be a set. The elements of � will be called states and
denoted ω. Random variables are real-valued functions with domain �, which we
denote with capital letters. Let I index a set of options. Consider a hypothetical
decision problem O specified by a set of exclusive options O = {Oi : i ∈ I }. Each
option Oi is a random variable with the following interpretation: If ω is the state
which occurs, then Oi(ω) denotes the decision maker’s loss (negative of cardinal
utility) for choosing option Oi . The values of Oi (for all i ∈ I ) are defined up to a
common positive affine transformation.

DEFINITION 1. Let Oi and Oj be two options from O. If there exists an
ε > 0 such that for each ω ∈ �, Oj(ω) > Oi(ω) + ε, then option Oi uniformly
strictly dominates Oj . If, for each ω, Oj(ω) > Oi(ω), we say that Oi simply dom-
inates Oj .

Uniform strict dominance is clearly stricter than simple dominance. As we ex-
plain, next, in order to permit preferences based on maximizing finitely (and not
necessarily countably) additive expectations, de Finetti used the following Dom-
inance Principle, rather than some other more familiar concepts of admissibility,
for example, simple dominance. There are additional ways to define dominance,
which we discuss further in Section 6.

DOMINANCE PRINCIPLE: Let Oi and Oj be options in O. If Oi uniformly
(strictly) dominates Oj , then Oj is an inadmissible choice from O.

2.2. Coherence1 and coherence2. De Finetti [(1974), Chapter 3] formulated
two criteria of coherence that are based on the Dominance Principle. Through-
out this paper, we follow the convention of identifying events with their indicator
functions.
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DEFINITION 2. A conditional prevision (or conditional forecast) P(X|H)

for a random variable X given a nonempty event H is a fair price for buying
and selling X in the sense that, for all real α, the option that costs the agent
αH [X−P(X|H)] is considered fair. [We call P(X|�) an unconditional prevision
and denote it P(X).] A collection {P(Xi |Hi) : i ∈ I } of such conditional forecasts
is coherent1 if, for every finite subset {i1, . . . , in} ⊆ I and all real α1, . . . , αn, there
exists no ε > 0 such that

n∑
j=1

αjHij (ω)
[
Xij (ω) − P(Xij |Hij )

] ≥ ε

for all ω ∈ �.
A collection of conditional forecasts is coherent2 if no sum of finitely many

(Brier score) penalties can be uniformly strictly dominated in the partition of states
by the sum of penalties from a rival set of forecasts for the same random variables.
That is, for every finite subset {i1, . . . , in} ⊆ I , all alternative forecasts qi1, . . . , qin ,
and all positive α1, . . . , αn, there is no ε > 0 such that

n∑
j=1

αjHij (ω)
[
Xij (ω) − P(Xij |Hij )

]2 ≥
n∑

j=1

αjHij (ω)
[
Xij (ω) − qij

]2 + ε

for all ω.

De Finetti [(1974), pages 88–89] proved that a decision maker who wishes to be
both coherent1 and coherent2 must choose the same forecasts for both purposes.
He also proved that the decision maker’s coherent1 forecasts are represented by a
finitely additive personal probability, P(·), in the sense of Definition 3 below.

If P(H) = 0, then coherence1 and coherence2 place no restrictions on P(X|H)

for bounded X. Nevertheless, it is possible and useful to make certain intuitive
assumptions about conditional forecasts given events with 0 probability. In par-
ticular, Theorems 3 and 4 of this paper assume that P(·|H) is a finitely additive
expectation (in the sense of Definition 10 in Appendix A) satisfying P(X|H) =
P(HX|H) for all H and X. This assumption holds whenever P(H) > 0, and
it captures the idea that P(·|H) is concentrated on H . De Finetti [(1975), Ap-
pendix 16] introduces an axiom that places a similar requirement on conditional
previsions. See Levi (1980), Section 5.6, and Regazzini (1987) for other ways to
augment the coherence criteria of Definition 2 in order to satisfy these added re-
quirements on conditional previsions given a null event. Rather than adding such
requirements to the definition of coherence, we prefer that individual agents who
wish to adopt them do so as explicit additional assumptions. Example 2 in the sup-
plemental article [Schervish, Seidenfeld and Kadane (2014)] illustrates our reason
for such a preference. In this way, our definition of coherence is slightly weaker
than that of de Finetti.
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As an aside, the meaning of conditional expected value in the finitely-additive
theory differs from its meaning in the countably-additive theory in this one ma-
jor regard: In the finitely-additive theory a conditional expectation can be speci-
fied given an arbitrary nonempty event, regardless of whether that event has pos-
itive probability. A conditional expectation of a bounded random variable given
an event with zero probability is not defined uniquely in terms of unconditional
expectations, but Dubins (1975) shows that, in the finitely additive theory, condi-
tional expectations can be defined on the set of bounded random variables so that
they are finitely additive expectations. In the countably-additive theory, conditional
expectation is defined twice: given events with positive probability and given σ -
fields. The two definitions match in a well-defined way, and both provide uniquely
defined conditional expectations in terms of unconditional expectations.

DEFINITION 3. A probability P(·) is finitely additive provided that, when
events F and G are disjoint, that is, when F ∩ G = ∅, then P(F ∪ G) = P(F) +
P(G). A probability is countably additive provided that when Fi (i = 1, . . .) is a
denumerable sequence of pairwise disjoint events, that is, when Fi ∩ Fj = ∅ if
i �= j , then P(

⋃∞
i=1 Fi) = ∑∞

i=1 P(Fi). We call a probability P merely finitely
additive when P is finitely but not countably additive. Likewise, then its P -
expectations are merely finitely additive.

For each pair X and Y of random variables with finite previsions (expec-
tations), P(X + Y) = P(X) + P(Y ). For countably additive expectations and
countably many random variables {Xi}∞i=1, conditions under which P(

∑∞
i=1 Xi) =∑∞

i=1 P(Xi) can be derived from various theorems such as the monotone con-
vergence theorem, the dominated convergence theorem, Fubini’s theorem and
Tonelli’s theorem.

De Finetti (1981) recognized that coherence2 (but not coherence1) provided an
incentive compatible solution to the problem of mechanism design for eliciting a
coherent set of personal probabilities. Specifically, Brier score is a strictly proper
scoring rule, as defined here.

DEFINITION 4. A scoring rule for coherent forecasts of a random variable X

is a real-valued loss function g with two real arguments: a value of the random
variable and a forecast q . Let Pg be the collection of probability distributions such
that P(X) is finite and P [g(X,q)] is finite for at least one q . We say that g is
proper if, for every probability P ∈ Pg , P [g(X,q)] is minimized (as a function of
q) by q = P(X). If, in addition, only the quantity q = P(X) minimizes expected
score, then the scoring rule is strictly proper.

The following trivial result connects proper scoring rules with conditional dis-
tributions.
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PROPOSITION 1. If H is a nonempty event and P(·|H) is a probability distri-
bution then P [g(X,q)|H ] is (uniquely) minimized by q = P(X|H) if g is (strictly)
proper.

Some authors reserve the qualification strictly proper for scoring rules that are
designed to elicit an entire distribution, rather than just the mean of a distribution.
[See Gneiting (2011a), who calls the latter kind strictly consistent.] For the re-
mainder of this paper, we follow the language of Definition 4, which matches the
usage in Gneiting (2011b).

We present some background on strictly proper scoring rules in Section 3. Sec-
tion 4 gives our main results. We discuss propriety of scoring rules for infinitely
many forecasts in Section 5.

3. Background on strictly proper scoring rules. In this section, we intro-
duce a large class of strictly proper scoring rules that we use as generalizations of
Brier score. Associated with this class, we introduce a third coherence concept that
generalizes coherence2.

DEFINITION 5. Let C be a class of strictly proper scoring rules. Let {(Xi,

Hi) : i ∈ I } be a collection of random variable/nonempty event pairs with corre-
sponding conditional forecasts {pi : i ∈ I }. The forecasts are coherent3 relative
to C if, for every finite subset {ij : j = 1, . . . , n} ⊆ I , every set of scoring rules
{gj }nj=1 ⊆ C, and every set {qj }nj=1 of alternative forecasts, there is no ε > 0 such
that

n∑
j=1

Hij (ω)gj

(
Xij (ω),pij

) ≥
n∑

j=1

Hij (ω)gj

(
Xij (ω), qj

) + ε

for all ω. That is, no sum of finitely many scores can be uniformly strictly domi-
nated by the sum of scores from rival forecasts.

Coherence2 is the special case of coherence3 in which C consists solely of Brier
score. The supplemental article [Schervish, Seidenfeld and Kadane (2014)] in-
cludes a proof that, if C consists of strictly proper scoring rules of the form (1)
below, then coherence3 relative to C is equivalent to coherence1.

The general form of scoring rule that we will consider is

g(x, q) =

⎧⎪⎪⎨
⎪⎪⎩

∫ q

x
(v − x)dλ(v), if x ≤ q,∫ x

q
(x − v) dλ(v), if x > q,

(1)

where λ is a measure that is mutually absolutely continuous with Lebesgue mea-
sure and is finite on every bounded interval. It is helpful to rewrite (1) as

g(x, q) =
∫ x

q
(x − v) dλ(v),(2)
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using the convention that an integral whose limits are in the wrong order equals
the negative of the integral with the limits in the correct order. Another interesting
way to rewrite (1), using the same convention, is

g(x, q) = λ
(
(q, x)

)[
x − r(x, q, λ)

]
,(3)

where, for all a and b,

r(a, b, λ) =
∫ b
a v dλ(v)

λ((a, b))
.(4)

An immediate consequence of (3) is that, if p and q are real numbers, then

g(x, q) − g(x,p) = λ
(
(q,p)

)[
x − r(q,p,λ)

]
.(5)

The form (1) is suggested by equation (4.3) of Savage (1971). Each such scoring
rule is finite, nonnegative and continuous as a function of (x, q). If we wanted to
consider only countably additive distributions, we could use a larger class of scor-
ing rules by allowing λ to be an infinite measure supported on a bounded interval
(c1, c2). But this relaxation would allow functions g that are not strictly proper for
natural classes of finitely additive distributions. Example 1 below illustrates this
point. Lemma 1 justifies the use of (1) as the form of our scoring rules. The proofs
of all results in the body of the paper are given in Appendix B.

LEMMA 1. Let g be a scoring rule of the form (1). Then g is strictly proper.

It follows from (3) that, if λ is a probability measure with finite mean, then Pg

from Definition 4 is the class of all finitely additive distributions with finite mean
because λ((q, x)) and λ((q, x))r(q, x, λ) are both bounded functions of q and x.
Even if λ is not a finite measure, (5) implies that, if P [g(X,q0)] is finite, then
h(x,p) = g(x,p) − g(x, q0) is linear in x so that h(x,p) is also strictly proper
with Ph equal to the class of all probabilities with finite mean. For example, if
g(x,p) = (x − p)2, namely Brier score, then Pg is the set of distributions with
finite second moment. However, h(x,p) = (x −p)2 −x2 has Ph equal to the class
of all probabilities with finite mean.

Let f (·) denote the Radon–Nikodym derivative of λ with respect to Lebesgue
measure. Some familiar examples of strictly proper scoring rules are recovered by
setting f equal to specific functions. Brier score corresponds to f (v) ≡ 2. Log-
arithmic score on the interval (c1, c2) corresponds to f (v) = (c2 − c1)/[(c2 −
v)(v − c1)], but the corresponding measure is infinite on (c1, c2). Hence, logarith-
mic score is not of the form (1). In addition, if g is this logarithmic score, then Pg

does not include all finitely additive distributions that take values in the bounded
interval (c1, c2), as the following example illustrates.



734 M. J. SCHERVISH, T. SEIDENFELD AND J. B. KADANE

EXAMPLE 1. Let X be a random variable whose entire distribution is agglu-
tinated at c1 from above. That is, let P(X > c1) = 1 and P(X < c1 + ε) = 1 for
all ε > 0. Let g be the logarithmic scoring rule that uses f (v) from above. Then
P(X) = c1, but g(X(ω), c1) = ∞ for all ω, which could not have finite mean
even if we tried to extend the definition of random variables to allow them to as-
sume infinite values. On the other hand, for c1 < q < c2, the mean of g(X,q) is
log[(c2 − c1)/(c2 − q)] > 0, which decreases to 0 as q decreases to c1, and is
always finite. So, Pg is nonempty but does not contain P .

Some of our results rely on one or another condition that prevents the λ mea-
sures that determine the scoring rules from either being too heavily concentrated
on small sets or from being too different from each other.

DEFINITION 6. Let C = {gi : i ∈ I } be a collection of strictly proper scoring
rules of the form (1) with corresponding measures {λi : i ∈ I }.

(i) Suppose that, for every ε ≥ 0, there exists δε > 0 such that for all i ∈ I and
all real a < b, λi((a, b)) > ε implies a + δε ≤ r(a, b, λi) ≤ b − δε . Then we say
that the collection C satisfies the uniform spread condition.

(ii) Suppose that, for every ε > 0 and every i ∈ I , there exists γi,ε > 0 such that
for all j ∈ I and all real a < b, λi((a, b)) ≥ ε implies λj ((a, b)) ≥ γi,ε . Then we
say that the collection C satisfies the uniform similarity condition.

The r(a, b, λ) in (4) can be thought of as the mean of the probability measure on
the interval (a, b) obtained by normalizing λ on the interval. The uniform spread
condition insures that, the λ measures are spread out enough to keep the means of
the normalized measures on intervals far enough away from both endpoints.

The next result gives sufficient conditions for both the uniform similarity and
uniform spread conditions. It is easy to see that the conditions are logically inde-
pendent of each other.

LEMMA 2. Let C = {gi : i ∈ I } be a collection of strictly proper scoring
rules of the form (1) with corresponding measures {λi : i ∈ I } and corresponding
Radon–Nikodym derivatives {fi : i ∈ i} with respect to Lebesgue measure.

(i) Assume that there exists U < ∞ such that fi(v) ≤ U , for all v and all i ∈ I .
Then C satisfies the uniform spread condition.

(ii) Assume that for every i ∈ I , there exists Li > 0 such that fj (v)/fi(v) ≥ Li ,
for all v and all j ∈ I . Then C satisfies the uniform similarity condition.

As an example, suppose that each λi is αi > 0 times Lebesgue measure. If the
αi are bounded above, then C satisfies the uniform spread condition. If the αi are
bounded away from 0, then C satisfies the uniform similarity condition. These
sets of measures correspond to multiples of Brier score. There are collections that
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satisfy the uniform spread condition without satisfying the conditions of part (i)
of Lemma 2. For example, let f (v) = |v|−1/2/2 which is not bounded above. For
this f , we have λ((a, b)) = |√|b| − √|a|| if 0 /∈ (a, b), and λ((a, b)) = √|a| +√|b| if 0 ∈ (a, b). So λ((a, b))2 is no larger than two times the distance between a

and b. Also, r(a, b, λ) is always at least 1/3 of the way from both a and b. We can
add the corresponding scoring rule to any class that already satisfies the uniform
spread condition by (if necessary) lowering δε to ε2/6.

4. Extensions to countably many options. In Section 4.1, we investigate
when each sense of coherence can be extended to allow combining countably
many forecasts into a single act by summing together their individual outcomes. In
Section 4.2, we introduce the concept of conditional forecasts and present results
about the combination of countably many coherent conditional forecasts.

4.1. Dominance for countably many forecasts. Let {Xi}∞i=1 be a countable
set of random variables with corresponding coherent1 unconditional previsions
{pi}∞i=1. Let {αi}∞i=1 be a sequence of real numbers. The decision maker’s net loss
in state ω, from adding the individual losses from the fair options αi[Xi(ω) − pi]
is

∞∑
i=1

αi

[
Xi(ω) − pi

]
.(6)

Similarly, if the agent’s prevision pi for Xi is scored by the strictly proper scoring
rule gi for each i, the total score in each state ω equals

∞∑
i=1

gi

(
Xi(ω),pi

)
.

We assume that each of the two series above are convergent for all ω ∈ �.

EXAMPLE 2 (Combining countably many forecasts). De Finetti [(1972),
page 91] noted that when the decision maker’s personal probability is merely
finitely additive, she/he cannot always accept as fair the countable sum (6) de-
termined by coherent1 forecasts. That sum may be uniformly dominated by ab-
staining. Let � = {ωi}∞i=1 be a countable state space. Let Wi be the indicator
function for state ωi :Wi(ω) = 1 if ω = ωi and Wi(ω) = 0 if ω �= ωi . Consider
a collection of merely finitely additive coherent1 forecasts P(Wi) = pi ≥ 0 where∑∞

i=1 pi = c < 1. So P(·) is not countably additive. With αi = 1, for all i, the loss
from combining these infinitely many forecasts into a single option is uniformly
positive,

∞∑
i=1

αi

[
Wi(ω) − pi

] = (1 − c) > 0.
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Hence, the decision maker’s alternative to abstain, with constant loss 0, uniformly
strictly dominates this infinite combination of fair options.

If, on the other hand, the decision maker’s personal probability P is countably
additive, then c = 1. For arbitrary {αi}∞i=1 such that d = ∑∞

i=1 αipi is defined and
finite, the sum of losses is

∞∑
i=1

αi

[
Wi(ω) − pi

] = αi(ω) − d,(7)

where i(ω) is the unique i such that Wi(ω) = 1. Because c = 1, there is at least
one αi ≤ d and at least one αi ≥ d , hence (7) must be nonpositive for at least one i,
and abstaining does not uniformly strictly dominate.

Next, we focus on the parallel question whether a coherent3 set of forecasts
remains undominated when strictly proper scores for countably many forecasts are
summed together. Some conditions will be needed in order to avoid ∞−∞ arising
in the calculations, and these are stated precisely in the theorems. The principal
difference between dominance for infinite sums of forecasts and dominance for
infinite sums of strictly proper scores is expressed by the following result.

THEOREM 1. Let C be a collection of strictly proper scoring rules of the
form (1) that satisfies the uniform spread condition. Let P be a coherent3 pre-
vision defined over a collection D of random variables that contains all of the
random variables mentioned in the statement of this theorem. Let {Xi}∞i=1 be ran-
dom variables in D with coherent3 forecasts P(Xi) = pi for i = 1,2, . . . . Assume
that the forecast for Xi will be scored by a scoring rule gi ∈ C for each i. Finally,
assume that

P

[ ∞∑
i=1

|Xi − pi |
]

= V < ∞ and(8)

P

[ ∞∑
i=1

gi(Xi,pi)

]
= W < ∞.(9)

There does not exist a rival set of forecasts {qi}∞i=1 such that, for all ω ∈ �,

∞∑
i=1

gi

(
Xi(ω),pi

)
>

∞∑
i=1

gi

(
Xi(ω), qi

)
.(10)

Theorem 1 asserts conditions under which infinite sums of strictly proper scores,
with coherent3 forecasts {pi}∞i=1 for {Xi}∞i=1, have no rival forecasts that simply
dominate, let alone uniformly strictly dominate {pi}∞i=1. That is, even countably
many unconditional coherent3 forecasts cannot be simply dominated under the
conditions of Theorem 1.
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EXAMPLE 3 (Example 2 continued). Recall that � = {ωi : i = 1, . . .} is a
countable space. Consider the special case in which P is a purely finitely addi-
tive probability satisfying P({ωi}) = pi = 0, for all i. So,

∑∞
i=1 pi = 0 < 1, and

c = 0 in the notation of Example 2. As before, let Wi (i = 1, . . .) be the indica-
tor functions for the states in �. So P(Wi) = pi = 0 and combining the losses
Wi − pi = Wi , for i = 1, . . . results in a uniform sure-loss of 1. But this example,
with each gi equal to Brier score times αi > 0, satisfies the conditions of Theo-
rem 1, if the αi are bounded above. That is, there are no rival forecasts {qi}∞i=1 for
the {Wi}∞i=1 that simply dominate the forecasts {pi}∞i=1 by weighted sum of Brier
scores, let alone uniformly strictly dominating these forecasts. We can illustrate
the conclusion of Theorem 1 directly in this example. The weighted sum of Brier
scores for the pi forecasts is

S(ω) =
∞∑
i=1

αiWi(ω)2 ≤ sup
i

αi .

Let {qi}∞i=1 be a rival set of forecasts with qi �= pi for at least one i. The corre-
sponding weighted sum of Brier scores is

∞∑
i=1

αi

[
Wi(ω) − qi

]2 = S(ω) − 2
∞∑
i=1

αiqiWi(ω) +
∞∑
i=1

αiq
2
i .(11)

Let d = ∑∞
i=1 αiq

2
i , which must be strictly greater than 0. Define i(ω) to be the

unique value of i such that Wi(ω) = 1. The right-hand side of (11) can then be
written as S(ω) − 2αi(ω)qi(ω) + d . If d = ∞, then the rival forecasts clearly fail to
dominate the original forecasts. If d < ∞, then limi→∞

√
αiqi = 0. Because the

αi themselves are bounded, it follows that all but finitely many αi |qi | are less than
d/2. For each ω such that αi(ω)|qi(ω)| < d/2, we have the weighted sum of Brier
scores displayed in (11) strictly greater than S(ω), hence the rival forecasts do not
dominate the original forecasts.

Theorem 1, as illustrated by Example 3, shows that the modified decision prob-
lem in de Finetti’s prevision game—modified to include infinite sums of betting
outcomes—is not isomorphic to the modified forecasting problem under strictly
proper scoring rules—modified to include infinite sums of scores. In particular, ab-
staining from betting, which is the alternative that uniformly dominates the losses
for coherence1, is not an available alternative under forecasting with strictly proper
scores. In summary, the two criteria, coherence1 and coherence3 behave differently
when probability is merely finitely additive and we try to combine countably many
forecasts.

We conclude this section with an example to show why we assume that the class
of scoring rules satisfies the uniform spread condition in Theorem 1.
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EXAMPLE 4. This example satisfies all of the conditions of Theorem 1 except
that the class of scoring rules fails the uniform spread condition. We show that the
conclusion to Theorem 1 also fails. For each integer i ≥ 1, let αi = 2−i−1, and
define

fi(v) =
⎧⎨
⎩

2, if v ≤ αi ,
2

αi

, if v > αi .

Let λi be the measure whose Radon–Nikodym derivative with respect to Lebesgue
measure is fi , and define gi by (1) using λ = λi . The form of gi is as follows:

gi(x, q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x − q)2, if x, q ≤ αi ,

(x − αi)
2 + 1

αi

(q − αi)
2 + 2

αi

(q − αi)(αi − x), if x ≤ αi ≤ q,

1

αi

(x − αi)
2 + (q − αi)

2 + 2(αi − q)(x − αi), if q ≤ αi ≤ x,

1

αi

(x − q)2, if αi ≤ x, q.

These scoring rules fail the uniform spread condition because arbitrarily short in-
tervals with both endpoints positive have arbitrarily large λi measure as i increases.
Let {Ai}∞i=1 be a partition of the real line, and let P(·) be a finitely additive prob-
ability such that P(Ai) = 0 for all i. For each integer i ≥ 1, let pi = 2−i and
qi = 2−i−1, and define

Xi(ω) =
{

pi, if ω ∈ AC
i ,

qi − 1, if ω ∈ Ai .

It follows that P(Xi) = pi for all i, and

P

[ ∞∑
i=1

|Xi − pi |
]

= P

[ ∞∑
i=1

Ai |qi − 1 − pi |
]

= 1,

so that (8) holds. Next, compute the various scores:

gi

(
Xi(ω),pi

)
= Ai(ω)

{
(qi − 1 − αi)

2 + 1

αi

(pi − αi)
2 + 2

αi

(pi − αi)(αi − qi + 1)

}

= Ai(ω)
[
3 + 2−i−1]

,

gi

(
Xi(ω), qi

)
= AC

i (ω)
1

αi

(pi − qi)
2 + Ai(ω)(qi − 1 − qi)

2

= AC
i (ω)2−i−1 + Ai(ω).
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Define i(ω) = i for that unique i such that ω ∈ Ai . When we sum up the scores for
the forecasts {pi}∞i=1, we get

∞∑
i=1

gi

(
Xi(ω),pi

) =
∞∑
i=1

Ai(ω)
[
3 + 2−i−1] = 3 + 2−i(ω)−1.

It follows that P(
∑∞

i=1 gi(Xi,pi)) = 3, so (9) holds. The sum of the {qi}∞i=1 scores
is

∞∑
i=1

gi

(
Xi(ω), qi

) =
∞∑
i=1

[
AC

i (ω)2−i−1 + Ai(ω)
] = 1.5 − 2−i(ω)−1.

Finally, compute the difference in total scores:

∞∑
i=1

gi

(
Xi(ω),pi

) −
∞∑
i=1

gi

(
Xi(ω), qi

) = 1.5 + 2−i(ω) > 1.5,

hence the scores of the {pi}∞i=1 forecasts are uniformly strictly dominated by the
scores of a set of rival forecasts.

4.2. Dominance for countable sums of conditional forecasts. Definition 2
allows mixing conditional forecasts with unconditional forecasts by setting
P(X|H) = P(X) whenever H = �. De Finetti showed that, if P(X), P(X|H)

and P(HX) are all specified, a necessary condition for coherence1 is that

P(HX) = P(H)P (X|H),(12)

so that P(X|H) is the usual conditional expected value of X given H whenever
P(H) > 0. For this reason, conditional forecasts are often called conditional ex-
pectations.

The concept of conglomerability plays a central role in our results about coher-
ence for combining countably many conditional forecasts. Conglomerability in a
partition π = {Hj : j ∈ J } of conditional expectations P(·|Hj) over a class D of
random variables X is the requirement that the unconditional expectation of each
X ∈D lies within the range of its conditional expectations given elements of π .

DEFINITION 7. Let P be a finitely additive prevision on a set D of random
variables, and let π = {Hj : j ∈ J } be a partition of � such that conditional previ-
sion P(·|Hj) has been defined for all j . If, for each X ∈ D,

inf
j∈J

P (X|Hj) ≤ P(X) ≤ sup
j∈J

P (X|Hj),

then P is conglomerable in the partition π with respect to D. Otherwise, P is
nonconglomerable in π with respect to D.
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If a decision maker’s coherent1 or coherent3 forecasts fail conglomerability in
a partition π , Theorem 2 below shows there exist countably many conditional
forecasts that are uniformly strictly dominated.

On the other hand, if the decision maker’s previsions for random variables sat-
isfy a condition (see Definition 8) similar to being conglomerable in π , Theorem 3
below establishes that no countable set of forecasts, conditional on elements of π ,
can be uniformly strictly dominated. What we mean by “similar” is explained in
Section 4.3 below.

THEOREM 2. Let P be a finitely additive prevision, and let D be a set of
random variables. Let π = {Hj }∞j=1 be a denumerable partition and let P(·|Hj) be
the corresponding conditional previsions associated with P . Let C be a collection
of strictly proper scoring rules of the form (1) that satisfies the uniform similarity
condition. Assume that the conditional previsions P(·|Hj) are nonconglomerable
in π with respect to D. Then there exists a random variable X ∈ D with pX =
P(X) and pj = P(X|Hj) for all j such that

(2.1) the countable sum

α0(X − pX) +
∞∑

j=1

αjHj (X − pj ),

of individually fair options is uniformly strictly dominated by abstaining, and
(2.2) if the forecast for X is scored by g0 ∈ C and the conditional forecast for X

given Hj is scored by gj ∈ C for j = 1,2, . . . , then the sum of the scores,

g0
(
X(ω),pX

) +
∞∑

j=1

Hj(ω)gj

(
X(ω),pj

)
,

is uniformly strictly dominated by the sum of scores from a rival set of forecasts.

We illustrate Theorem 2 with an example of nonconglomerability due to
Dubins (1975). This example is illuminating as the conditional probabilities do
not involve conditioning on null events.

EXAMPLE 5. Let � = {ωij : i = 1,2; j = 1, . . .}. Let F = {ω2j , j = 1, . . .}
and let Hj = {ω1j ,ω2j }. Define a merely finitely additive probability P so that
P({ω1j }) = 0,P ({ω2j }) = 2−(j+1) for j = 1, . . . , and let P(F) = pF = 1/2.
Note that P(Hj ) = 2−(j+1) > 0, so P(F |Hj) = 1 = pj is well defined by the
multiplication rule for conditional probability. Evidently, the conditional prob-
abilities {P(F |Hj)}∞j=1 are nonconglomerable in π since P(F) = 1/2 whereas
P(F |Hj) = 1 for all j .
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For (2.1), Consider the fair options αjHj (F − pj ) for j = 1, . . . and αF (F −
pF ). Choose αj = 1 and αF = −1. Then[

−(
F(ω) − pF

) +
∞∑

j=1

Hj(ω)
[
F(ω) − pj

]]

=
{

0.5 − 1.0 = −0.5, if ω /∈ F ,
−0.5 + 0.0 = −0.5, if ω ∈ F .

Hence, these infinitely many individually fair options are not collectively fair
when taken together. Their sum is uniformly strictly dominated by 0 in �, corre-
sponding to the option to abstain from betting.

Regarding (2.2), unlike the situation with Theorem 1 involving countably many
unconditional forecasts, the sum of Brier scores from these conditional forecasts
are uniformly strictly dominated. In particular, the sum of Brier scores for these
forecasts is

(
F(ω) − pF

)2 +
∞∑

j=1

Hj(ω)
[
F(ω) − pj

]2

=
{

0.25 + 1.00 = 1.25, if ω /∈ F ,
0.25 + 0.00 = 0.25, if ω ∈ F .

Consider the rival forecasts Q(F |Hj) = 0.75 = qj and Q(F) = 0.75 = qF . These
correspond to the countably additive probability Q({ω1j }) = 0.25 × 2−j and
Q({ω2j }) = 0.75 × 2−j for j = 1, . . . . Then the combined Brier score from these
countably many rival forecasts is

(
F(ω) − qF

)2 +
∞∑

j=1

Hj(ω)
[
F(ω) − qj

]2

=
{

9/16 + 9/16 = 1.125, if ω /∈ F ,
1/16 + 1/16 = 0.125, if ω ∈ F ,

which is 0.125 less than the sum of the Brier scores of the original forecasts.

We offer one more example to show why we assume that the class of scoring
rules satisfies the uniform similarity condition in Theorem 2.

EXAMPLE 6 (Example 5 continued). Recall that we have a partition π =
{Hj }∞j=1 and an event F with pF = P(F) = 0.5 and pj = P(F |Hj) = 1 for all j .
Let the unconditional forecast for F be scored by Brier score, and let the condi-
tional forecast for F given Hj be scored by 2−j−1 times Brier score. These scoring
rules fail the uniform similarity condition. We show that the conclusion to Theo-
rem 2 fails. Specifically, we show that there is no rival set of forecasts qF for F



742 M. J. SCHERVISH, T. SEIDENFELD AND J. B. KADANE

and qj for Hj (j = 1,2, . . .) whose sum of scores uniformly strictly dominates the
original forecasts.

The total of the scores for the original forecasts is

1

4
+

∞∑
j=1

Hj(ω)2−j−1[
1 − F(ω)

]2
.(13)

Consider an arbitrary rival set of forecasts with qF for F and qj for F conditional
on Hj . The sum of the scores for the rival forecasts is

[
qF − F(ω)

]2 +
∞∑

j=1

Hj(ω)2−j−1[
qj − F(ω)

]2
.(14)

Let i(ω) = j when ω ∈ Hj . Then the difference (13) minus (14) is

1
4 − [

qF − F(ω)
]2 + 2−i(ω)−1([

1 − F(ω)
]2 − [

qj − F(ω)
]2)

.(15)

If qF = 0.5, then (15) becomes

2−i(ω)(1 − qi(ω))

[
1 + qi(ω)

2
− F(ω)

]
.(16)

If there exists ω such that qi(ω) ≥ 1, (16) is nonpositive, and the rival forecasts do
not strictly dominate. If all qi(ω) < 1, (16) is negative for all ω ∈ F , and there is no
dominance. If qF �= 0.5, then (15) is at most

1
4 − [

qF − F(ω)
]2 + 2−i(ω).(17)

No matter what qF �= 0.5 we pick, either (qF − 1)2 or (qF − 0)2 is greater than
1/4. Let δ = 1/4 − max{[qF − 1]2, q2

F }. For j > − log2(δ), (17) is negative either
for all ω ∈ F ∩ Hj or all ω ∈ FC ∩ Hj . So, there is no dominance.

Last, we establish conditions under which combining strictly proper scores from
countably many conditional forecasts given elements of a partition, or combining
the losses from countably many fair options based on those forecasts, does not
result in a uniform sure loss. A definition is useful first.

DEFINITION 8. Let P be a finitely additive prevision on a set D of random
variables, and let π = {Hj : j ∈ J } be a partition of � such that conditional previ-
sion P(·|Hj) has been defined for all j . For each random variable X ∈ D, we let
P(X|π) denote the random variable Y defined by Y(ω) = P(X|Hj) for all ω ∈ Hj

and all j . We say that P satisfies the law of total previsions in π with respect to D
provided that for each random variable X ∈ D, P(X) = P [P(X|π)].
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THEOREM 3. Let P be a finitely additive prevision, and let D be a set of ran-
dom variables such that P satisfies the law of total previsions in π = {Hj }∞j=1 with
respect to D. Let X ∈ D be a random variable with finite prevision pX = P(X) and
finite conditional prevision pj = P(X|Hj) given each Hj . Assume that P(·|Hj)

is a finitely additive expectation (in the sense of Definition 10) that satisfies
P(X|Hj) = P(HjX|Hj) for every j . Let C be a collection of strictly proper scor-
ing rules.

(3.1) Let {αj }∞j=0 be real numbers. The sum of losses

α0
(
X(ω) − pX

) +
∞∑

j=1

αjHj (ω)
[
X(ω) − pj

]
,(18)

is not uniformly strictly dominated by abstaining.
(3.2) Let g0, g1, . . . be elements of C. There is no rival set of forecasts that

uniformly strictly dominates the sum of scores

g0
(
X(ω),pX

) +
∞∑

j=1

Hj(ω)gj

(
X(ω),pj

)
.(19)

4.3. Conglomerability, disintegrability and the law of total previsions. We
claimed earlier that the law of total previsions in a partition π is similar to con-
glomerability in π . The claim begins with a result of Dubins (1975). Dubins de-
fines conglomerability in partition π of a finitely additive prevision P by the re-
quirement that, for all bounded random variables X,

if ∀H ∈ πP (X|H) ≥ 0, then P(X) ≥ 0.

Dubins’ definition of conglomerability in π is equivalent to Definition 7 with re-
spect to the set of all bounded random variables. However, for a set D that in-
cludes unbounded random variables and/or does not include all bounded random
variables, the two definitions are not equivalent without further assumptions. Def-
inition 7 is based on the definition given by de Finetti [(1974), Section 4.7], which
generalizes to unbounded random variables more easily.

Dubins (1975) also defines disintegrability of P in partition π by the require-
ment that, for every bounded random variable X,

P(X) =
∫

P(X|h)dP (h),

where the finitely additive integral is as developed by Dunford and Schwartz
[(1958), Chapter III]. Moreover, he establishes that conglomerability and disin-
tegrability in π are equivalent for the class of bounded random variables.

The law of total previsions in Definition 8, with respect to the set of all bounded
random variables, is equivalent to disintegrability in Dubins’ sense, but not nec-
essarily for sets that either include some unbounded random variables or fail to
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include some bounded random variables. In addition, not all real-valued coherent1
previsions admit an integral representation in the sense of Dunford and Schwartz
for sets that include unbounded random variables. For discussion of the prob-
lem and related issues, see Berti, Regazzini and Rigo (2001); Berti and Rigo
(1992, 2000, 2002); Schervish, Seidenfeld, and Kadane (2008b) and Seidenfeld,
Schervish and Kadane (2009). As described in Appendix A, we use a definition
of finitely additive integral that is a natural extension of coherent1 prevision. In
this way, the law of total previsions extends Dubins’ definition of disintegrability
from bounded to unbounded random variables without introducing the technical
details of Dunford and Schwartz. Finally, Theorem 1 of Schervish, Seidenfeld and
Kadane (2008b) gives conditions under which conglomerability (Definition 7) is
equivalent to the law of total previsions. The following is a translation of that result
into the notation and terminology of the present paper.

THEOREM 4. Let P be a finitely additive prevision on a set D of random
variables. Let π = {Hj }∞j=1 be a denumerable partition and let P(·|Hj) be the
corresponding conditional previsions associated with P . Assume that, for all j ,
P(·|Hj) is a finitely additive expectation on D. Also assume that, for all X ∈ D:

• P(X) is finite,
• P(X|Hj) is finite for all j ,
• HjX ∈ D for all j ,
• P(HjX|Hj) = P(X|Hj) for all j , and
• X − Y ∈ D, where Y is defined (in terms of X) in Definition 8.

Then P is conglomerable in π with respect to D if and only if P satisfies the law
of total previsions in π with respect to D.

Under the conditions of Theorem 4, Theorems 2 and 3 show that, when the con-
ditioning events form a countable partition π , coherence1 and coherence3 behave
the same when extended to include, respectively, the countable sum of individu-
ally fair options, and the total of strictly proper scores from the forecasts. If and
only if these coherent quantities are based on conditional expectations that are con-
glomerable in π , then no failures of the Dominance Principle result by combining
infinitely many of them.

Schervish, Seidenfeld and Kadane (1984) show that each merely finitely addi-
tive probability fails to be conglomerable in some countable partition. But each
countably additive probability has expectations that are conglomerable in each
countable partition. Thus, the conjunction of Theorems 1, 2 and 3 identifies where
the debate whether personal probability may be merely finitely additive runs up
against the debate whether to extend either coherence criterion in order to apply it
with countable combinations of quantities. We arrive at the following conclusions:
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• Unless unconditional coherent1 forecasts arise from a countably additive prob-
ability, combining countably many unconditional coherent1 forecasts into a sin-
gle option may be dominated by abstaining.

• However, under the conditions of Theorem 1, strictly proper scoring rules are
not similarly affected. The scores from countably many coherent3 unconditional
forecasts may be summed together without leading to a violation of the Domi-
nance Principle.

• Unless conditional forecasts arise from a set of conglomerable conditional prob-
abilities, the Dominance Principle does not allow combining countably many of
these quantities into a single option. Hence, only countably additive conditional
probabilities satisfy the Dominance Principle when an arbitrary countable set of
conditional quantities are summed together.

5. Incentive compatible elicitation of infinitely many forecasts using strictly
proper scoring rules. Scoring an agent based on the values of the fair gam-
bles constructed from coherent1 forecasts, is not proper. Because of the pres-
ence of the opponent in the game, who gets to choose whether to buy or to
sell the random variable X at the decision maker’s announced price, the deci-
sion maker faces a strategic choice of pricing. For example, if the decision maker
suspects that the opponent’s fair price, Q(X), is greater than his own, P(X), then
it pays to inflate the announced price and to offer the opponent, for example,
R(X) = [P(X) + Q(X)]/2, rather than offering P(X). Thus, the forecast-game
as de Finetti defined it for coherence1 is not incentive compatible for eliciting the
decision maker’s fair prices.

With a finite set of forecasts and a strictly proper scoring rule for each one,
using the finite sum of the scores as the score for the finite set preserves strict
propriety. That is, with the sum of strictly proper scores as the score for the finite
set, a coherent forecaster minimizes the expected sum of scores by minimizing
each one, and this solution is unique.

Here, we report what happens to the propriety of strictly proper scores in each
of the three settings of the three theorems presented in Section 4. That is, we an-
swer the question whether or not, in each of these three settings, the coherent
forecaster minimizes expected score for the infinite sum of strictly proper scores
by announcing her/his coherent forecast for each of the infinitely many variables.
These findings are corollaries to the respective theorems.

COROLLARY 1. Under the assumptions of Theorem 1, the infinite sum of
scores applied to the infinite set of forecasts {pi}∞i=1 is a strictly proper scoring
rule.

COROLLARY 2. Under the assumptions used for (2.2) of Theorem 2, namely
when the conditional probabilities P(F |Hj) = pj are nonconglomerable in π ,
then the infinite sum of strictly proper scores applied to the infinite set of condi-
tional forecasts {pj }∞j=1 is not proper.
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COROLLARY 3. Under the assumptions used to establish (3.2) of Theorem 3,
namely that P satisfies the law of total previsions in π , the infinite sum of strictly
proper scores applied to the infinite set of conditional forecasts {pj }∞j=1 is a proper
scoring rule.

Thus, these results about the propriety of infinite sums of strictly proper scores
parallel the respective results about extending coherence3 to allow infinite sums of
scores.

6. Summary. We study how two different coherence criteria behave with re-
spect to a Dominance Principle when countable collections of random variables are
included. Theorem 1 shows that, in contrast with fair prices for coherence1, when
strictly proper scores from infinitely many unconditional forecasts are summed to-
gether there are no new failures of the Dominance Principle for coherence3. That
is, if an infinite set of probabilistic forecasts {pi}∞i=1 are even simply dominated
by some rival forecast scheme {qi}∞i=1 in total score, then the {pi}∞i=1 are not
coherent3, that is, some finite subset of them is uniformly strictly dominated in
total score. However, because each merely finitely additive probability fails to be
conglomerable in some denumerable partition, in the light of Theorem 2, neither
of the two coherence criteria discussed here may be relaxed in order to apply the
Dominance Principle with infinite combinations of conditional options. Merely
finitely additive probabilities then would become incoherent.

Specifically, the conjunction of Theorems 1–4 shows that it matters only in
cases that involve nonconglomerability whether incoherence3 is established using
scores from a finite rather than from an infinite combination of forecasts. In that
one respect, we think coherence3 constitutes an improved version of the concept
of coherence. Coherence1 applied to a merely finitely additive probability leads
to failures of the Dominance Principle both with infinite combinations of uncon-
ditional and infinite combinations of nonconglomerable conditional probabilities.
Coherence3 leads to failures of the Dominance Principle only with infinite combi-
nations of nonconglomerable conditional probabilities.

A referee suggested that de Finetti might have been working with a different
Dominance Principle, here denoted Dominance*.

Dominance*: Let Oi and Oj be two options in O. If Oi uniformly (strictly) domi-
nances Oj and there exists an option Ok in O that is not itself dominated by some Ot

in O, then Oj is an inadmissible choice from O.

Dominance* requires that some option from O is undominated if dominance sig-
nals inadmissibility. With respect to the decision problems considered in this paper,
each of our results formulated with respect to the Dominance Principle obtains also
with Dominance*. Because Dominance* implies Dominance as we have defined
it, the only result that needs to be checked is Theorem 2. In that case, so long as
O contains options that correspond to a probability that satisfies the law of to-
tal previsions in π (as will all countably additive probabilities) then Theorem 3
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says that such options will be undominated. So, we could replace Dominance by
Dominance* in the results of this paper.

APPENDIX A: FINITELY ADDITIVE EXPECTATIONS

This appendix gives the definitions of infinite prevision and finitely additive
expectation along with brief motivation for these definitions. Details are given in
the supplemental article [Schervish, Seidenfeld and Kadane (2014)].

A.1. Infinite previsions. Our theorems assume that various random variables
have finite previsions. In the proof of Theorem 1, the possibility arises that some
other random variable has infinite prevision. Definition 2 makes no sense if infi-
nite previsions are possible. Fortunately, we can extend the concept of coherent1
(conditional) prevision to handle infinite values, which correspond to expressing a
willingness either to buy or to sell a gamble, but not both.

DEFINITION 9. Let {P(Xi |Bi) : i ∈ I } be a collection of conditional previ-
sions. The previsions are coherent1 if, for every finite n, every {i1, . . . , in} ⊆ I , all
real α1, . . . , αn such that αj ≤ 0 for all j with P(Xij |Bij ) = ∞ and αj ≥ 0 for all
j with P(Xij |Bij ) = −∞, and all real c1, . . . , cn such that cj = P(Xij |Bij ) for
each j such that P(Xij |Bij ) is finite, we have

inf
ω∈�

n∑
j=1

αjBij (ω)
[
Xij (ω) − cj

] ≤ 0.(20)

That is, no linear combination of gambles may be uniformly strictly dominated by
the alternative option of abstaining.

Notice the restrictions on the signs of coefficients in Definition 9, namely that
for each infinite prevision, αj has the opposite sign as the prevision. These restric-
tions express the meaning of infinite previsions as being one-sided in the sense
that they merely specify that all real numbers are either acceptable buy prices (for
∞ previsions) or acceptable sell prices (for −∞ previsions) but not fair prices
for both transactions. Crisma, Gigante and Millossovich (1997) and Crisma and
Gigante (2001) give alternate definitions of coherence for infinite previsions and
conditional previsions. But their definition does not make clear the connection to
gambling. However, the definition of Crisma, Gigante and Millossovich (1997)
and Definition 9 are equivalent for unconditional previsions, as shown in the sup-
plemental article [Schervish, Seidenfeld and Kadane (2014)].

A.2. Prevision and expectation. Throughout this paper, an expectation with
respect to a finitely additive probability will be defined as a special type of linear
functional on a space of random variables. [See Heath and Sudderth (1978) for the
case of bounded random variables.] Infinite previsions are allowed in the sense of
Section A.1.
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DEFINITION 10. Let L be a linear space of real-valued functions defined on �

that contains all constant functions, and let L be an extended-real-valued functional
defined on L. If (X,Y ∈ L and X ≤ Y ) implies L(X) ≤ L(Y ), we say that L is
nonnegative. We call L an extended-linear functional on L, if, for all real α,β and
all X,Y ∈ L,

L(αX + βY) = αL(X) + βL(Y ),(21)

whenever the arithmetic on the right-hand side of (21) is well defined (i.e., not
∞−∞) and where 0×±∞ = 0 in (21). A nonnegative extended-linear functional
is called a finitely additive Daniell integral. [See Schervish, Seidenfeld and Kadane
(2008a).] If L(1) = 1, we say that L is normalized. A normalized finitely additive
Daniell integral is called a finitely additive expectation.

Note that, if ∞ − ∞ appears on the right-hand side of (21), L(αX + βY) still
has a value, but the value cannot be determined from (21). Finitely additive ex-
pectations are essentially equivalent to coherent1 previsions, as we prove in the
supplemental article. Finitely additive expectations also behave like integrals in
many ways, as we explain in more detail in the supplemental article. In partic-
ular, when the finitely additive expectation defined here is restricted to bounded
functions, it is the same as the definition of integral developed by Dunford and
Schwartz (1958), and it is the same as the integral used by Dubins (1975) in his
results about disintegrability. Hence, Definition 10 is an extension of the definition
of integral from sets of bounded functions to arbitrary linear spaces of functions.

APPENDIX B: PROOFS OF RESULTS

B.1. Proof of Lemma 1. Let g be of the form (1). Let P be such that p =
P(X) is finite, and let q0 be such that P [g(X,q0)] is finite. If q �= p, then

P
[
g(X,q) − g(X,p)

] = λ
(
(q,p)

)[
p − r(q,p,λ)

]
,(22)

according to (5). Because Lebesgue measure is absolutely continuous with respect
to λ, neither λ((q,p)) nor p − r(q,p,λ) equals 0 and they have the same sign. It
follows that (22) is strictly positive. Since p is finite, (22) is finite with q = q0, so
that P [g(X,p)] is also finite and so q = p provides the unique minimum value of
P [g(X,q)].

B.2. Proof of Lemma 2. Since r(b, a, λ) = r(a, b, λ), it suffices to assume
that a < b. Let ε > 0.

(i) If λi((a, b)) ≥ ε and b0 < b is such that λi((a, b0)) = ε, then the prob-
ability obtained by normalizing λi on the interval (a, b) stochastically domi-
nates the probability obtained by normalizing λi on the interval (a, b0). Hence,
r(a.b, λi) ≥ r(a, b0, λi). So, it suffices to find a δ that implies r(a, b, λi) − a ≥ δ

for all i ∈ I and all a < b such that λi((a, b)) = ε. For the remainder of the proof,
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let a < b with λi((a, b)) = ε, and let Q be the probability obtained by normalizing
λi on (a, b). Let λ0 be U times Lebesgue measure. Then λ0((a, a + ε/U)) = ε,
and r(a, a + ε/U,λ0) = a + ε/(2U). Because fi ≤ U , it follows that Q stochasti-
cally dominates the probability obtained by normalizing λ0 on (a, a+ε/U), hence
r(a, b, λi) ≥ a+ε/(2U), and r(a, b, λi)−a ≥ ε/(2U). The proof b−r(a, b, λi) ≥
ε/(2U) is similar, so δε can be taken equal to ε/(2U).

(ii) Let i ∈ I , and assume that λi((a, b)) ≥ ε. Since fj (v) > Lifi(v) for all v,
we have λj ((a, b)) ≥ Liε, so γi,ε can be taken to be Liε.

B.3. Proofs of Theorem 1 and Corollary 1. Because a larger random vari-
able has a larger prevision than a smaller random variable, a necessary condition
for (10) is that

Z = P

[ ∞∑
i=1

gi(Xi, qi)

]
≤ P

[ ∞∑
i=1

gi(Xi,pi)

]
< ∞.(23)

Hence, we will assume that Z < ∞ from now on. Also, it is necessary for (10) that
qi �= pi for at least one i, so we will assume this also.

In light of (5), we can write, for each finite k > 0,

∞ > Z − W = P

[ ∞∑
i=1

gi(Xi, qi) −
∞∑
i=1

gi(Xi,pi)

]

=
k∑

i=1

λi

(
(qi,pi)

)[pi − ri] + P

[ ∞∑
i=k+1

gi(Xi, qi) −
∞∑

i=k+1

gi(Xi,pi)

]

≥
k∑

i=1

λi

(
(qi,pi)

)[pi − ri] − W,

where the inequality follows because gi is nonnegative for each i and where
ri = r(qi,pi, λi) from (4). Since Z − W does not depend on k, it follows that∑∞

i=1 λi((qi,pi))[pi − ri] is finite.
Because of (9) and (23), the two series

∑∞
i=1 gi(Xi(ω), qi) and

∑∞
i=1 gi(Xi(ω),

pi) are simultaneously finite with probability 1. Let B be the event that at least one
of the two series is finite. On BC , both series sum to ∞, hence (10) fails unless
BC = ∅. Hence, we can assume that B = � for the rest of the proof. It now follows
that, for all ω,

∞∑
i=1

gi

(
Xi(ω), qi

) −
∞∑
i=1

gi

(
Xi(ω),pi

)
(24)

=
∞∑
i=1

[
gi

(
Xi(ω), qi

) − gi

(
Xi(ω),pi

)]
.
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We complete the proof by showing that

P

[ ∞∑
i=1

gi(Xi, qi) −
∞∑
i=1

gi(Xi,pi)

]
> 0.(25)

Because a nonpositive random variable has nonpositive forecast, (25) implies
that (10) cannot hold for all ω. In light of (24), it suffices to show that

P

( ∞∑
i=1

[
gi(Xi, qi) − gi(Xi,pi)

])
> 0.(26)

For each k,

P

(
k∑

i=1

[
gi(Xi, qi) − gi(Xi,pi)

]) =
k∑

i=1

λi

(
(qi,pi)

)
(pi − ri) ≥ 0.(27)

Next, in light of (5) and (27), write

P

( ∞∑
i=1

[
gi(Xi, qi) − gi(Xi,pi)

])

(28)

=
k∑

i=1

λi

(
(qi,pi)

)
(pi − ri) + P

[ ∞∑
i=k+1

λi

(
(qi,pi)

)
(Xi − ri)

]
.

Since the left-hand side of (28) does not depend on k and the first sum on the right
side is nondecreasing in k, it follows that the second sum on the right-hand side
is nonincreasing in k, and hence, has a limit. Let T = ∑∞

i=1 λi((qi,pi))(pi − ri),
which is finite and strictly positive (because qi �= pi for at least one i). Then, the
right-hand side of (28) becomes

T + lim
k→∞P

[ ∞∑
i=k+1

λi

(
(qi,pi)

)
(Xi − pi)

]
.(29)

The proof will be complete if we can show that the limit in (29) is 0.
First, we show that limi→∞ λi((qi,pi)) = 0. If lim supi→∞ |λi((qi,pi))| =

� > 0, then there must exist a subsequence {ij }∞j=1 with |λij ((qij , pij ))| > �/2
for all j . For such a subsequence, the uniform spread condition implies that there
is δ�/2 > 0 such that |pij − rij | ≥ δ�/2. This would make T = ∞, a contradiction.

It now follows that∣∣∣∣∣P
[ ∞∑

i=k+1

λi

(
(qi,pi)

)
(Xi − pi)

]∣∣∣∣∣ ≤ max
i≥k+1

∣∣λi

(
(qi,pi)

)∣∣P
( ∞∑

i=1

|Xi − pi |
)

= V max
i≥k+1

∣∣λi

(
(qi,pi)

)∣∣,
which can be made arbitrarily small by increasing k, and (26) follows.

Corollary 1 is equivalent to equation (25), which is established in the proof of
Theorem 1.
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B.4. Proofs of Theorem 2 and Corollary 2. Let π = {Hj }∞j=1 be a denumer-
able partition. Nononglomerability means that there exists a random variable X

such that either

inf
j

P (X|Hj) − P(X) > 0 or

sup
j

P (X|Hj) − P(X) < 0.

Clearly, if X satisfies one of the above inequalities, −X satisfies the other, hence
we will assume that the first inequality holds. Specifically, let pX = P(X) and
pj = P(X|Hj) for all j , and assume that

ε = inf
j

pj − pX > 0.

Also, for each ω ∈ �, let i(ω) be the unique integer such that ω ∈ Hi(ω). Hence
Hj(ω) = 1 if and only if j = i(ω).

(2.1) Consider the following sum of individually fair options: X(ω) − pX and
the countably many options −Hj(ω)[X(ω) − pj ] for j = 1,2, . . . . Then, for
each ω,

X(ω) − pX +
∞∑

j=1

−Hj(ω)
[
X(ω) − pj

]

= X(ω) − pX − X(ω) + pi(ω) = −pX + pi(ω) ≥ ε.

Thus, the countable sum of the conditional forecasts for X given Hj , combined
with the forecast for X results in a loss that is uniformly strictly dominated by 0.

(2.2) For an arbitrary set of forecasts sX for X and sj for X given Hj (for
j = 1, . . .), the sum of the scores in state ω equals

g0
(
X(ω), sX

) +
∞∑

j=1

Hj(ω)gj

(
X(ω), sj

)

= g0
(
X(ω), sX

) + gi(ω)

(
X(ω), si(ω)

)
(30)

=
∫ X(ω)

sX

[
X(ω) − v

]
dλ0(v) +

∫ X(ω)

si(ω)

[
X(ω) − v

]
dλi(ω)(v).

We can substitute the original forecasts sX = pX and sj = pj , j = 1, . . .

into (30) to obtain the total score for each ω ∈ �. We can also identify domi-
nating rival forecasts qX and qj , j = 1, . . . , so that (30) is uniformly larger, for
each state ω ∈ � with sX = pX and sj = pj than with sX = qX and sj = qj .

Let w0 = λ0((pX,pX + ε))/2, and let w1 = γw0 , where γw0 is from part (ii) of
Lemma 2. Let q ′ be such that λ0((q

′,pX + ε)) = w0. This makes λj ((q
′,pX +

ε)) ≥ w1 for all j . For each j , pj ≥ pX + ε, so that λj ((q
′,pj )) ≥ w1. Let w2 =
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0.9 min{w0,w1}, and let qj be such that λj ((qj ,pj )) = w2 for all j . This makes
qj > q ′ for all j . Let qX be such that λ0((pX, qX)) = w2. This makes qX < q ′.

We now form the difference between the scores for the original forecasts and
the rival forecasts. Subtracting (30) with s = qX and sj = qj (for all j ) from (30)
with s = pX and sj = pj (for all j ) yields∫ qX

pX

[
X(ω) − v

]
dλ0(v) −

∫ pi(ω)

qi(ω)

[
X(ω) − v

]
dλi(ω)(v).(31)

We need to find a positive number δ such that (31) is strictly greater than δ for
all ω. The difference in (31) is greater than[

X(ω) − qX

]
λ0

(
(pX, qX)

) − [
X(ω) − qi(ω)

]
λi(ω)

(
(qi(ω),pi(ω))

)
= w2(qi(ω) − qX) > w2

(
q ′ − qX

)
> 0.

So, we set δ = w2(q
′ − qX) > 0, which completes the proof.

Corollary 2 is immediate from (2.2) of Theorem 2, as the existence of the ri-
val set of dominating forecasts, {qj }∞j=1, establishes that the forecaster does not
minimize the infinite sum of expected scores by giving the forecast pX and the
conditional forecasts {pj }∞j=1.

B.5. Proofs of Theorem 3 and Corollary 3. (3.1) In order to show that (18)
cannot be uniformly strictly positive, it is sufficient to show

P

[
α0(X − pX) +

∞∑
j=1

αjHj (X − pj )

]
= 0.(32)

Of course,

P

[
α0(X−pX)+

∞∑
j=1

αjHj (X−pj )

]
= P

[
α0(X−pX)

]+P

[ ∞∑
j=1

αjHj (X−pj )

]
.

Trivially,

P
[
α0(X − pX)

] = 0.(33)

Since P satisfies the law of total previsions in π ,

P

[ ∞∑
j=1

αjHj (X − pj )

]
= P

[
P

[ ∞∑
j=1

αjHj (X − pi)
∣∣∣π

]]
.

For each i,
∑

j �=i αjHj (ω)[X(ω) − pj ] = 0 for all ω ∈ Hi . It follows that, for
every i,

P

[ ∞∑
j=1

αjHj (X − pj )
∣∣∣Hi

]
= P

[
αiHi(X − pi)|Hi

]
,
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and trivially, P [αiHi(X − pi)|Hi] = 0.
Thus,

P

[ ∞∑
j=1

αjHj (X − pi)
∣∣∣π

]
= 0

for all ω, and it follows by the law of total previsions that

P

[ ∞∑
j=1

αjHj (X − pj )

]
= 0.(34)

Equations (33) and (34) establish (32).
(3.2) We must establish that there is no rival set of forecasts qX , and {qj }∞j=1

whose total score uniformly dominates (19). That is, there is no rival set of fore-
casts such that for some ε > 0 and every ω,

g0
(
X(ω),pX

) +
∞∑

j=1

Hj(ω)gj

(
X(ω),pj

)

≥ g0
(
X(ω), qX

) +
∞∑

j=1

Hj(ω)gj

(
X(ω), qj

) + ε.

It is sufficient to show that

P

{
g0(X,qX) +

∞∑
j=1

Hjgj (X,qj ) −
[
g0(X,pX) +

∞∑
j=1

Hjgj (X,pj )

]}

(35)
≥ 0.

Write the left-hand side of (35) as

P
[
g0(X,qX) − g0(X,pX)

] + P

[ ∞∑
j=1

Hjgj (X,qj ) −
∞∑

j=1

Hjgj (X,pj )

]
.(36)

That the first expectation in (36) is nonnegative follows from the fact that g is
strictly proper. From the assumption that P satisfies the law of total previsions
in π ,

P

[ ∞∑
j=1

Hjgj (X,qj ) −
∞∑

j=1

Hjgj (X,pj )

]

= P

[
P

[ ∞∑
j=1

Hjgj (X,qj ) −
∞∑

j=1

Hjgj (X,pi)
∣∣∣π

]]
.
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Using equation (5) and the same logic as in part (3.1), we obtain, for each i,

P

[ ∞∑
j=1

Hjgj (X,qj ) −
∞∑

j=1

Hjgj (X,pj )
∣∣∣Hi

]

= P
[
Hi

{
gi(X,qi) − gi(X,pi)

}|Hi

]
= P

[
gi(X,qi)|Hi

] − P
[
gi(X,pi)|Hi

]
≥ 0,

where the final inequality follows because gi is a proper scoring rule and P(·|Hi)

is a finitely additive expectation for all i.
Therefore, since P satisfies the law of total previsions in π ,

P

[ ∞∑
j=1

Hjgj (X,qi) −
∞∑

j=1

Hjgj (X,pi)

]
≥ 0,

which completes the proof of (36).
Corollary 3 is equivalent to the claim that for each set of rival forecasts, qX and

{qj }∞j=1, the second prevision in (36) is nonnegative, which was established in the
proof of (3.2).
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SUPPLEMENTARY MATERIAL

Infinite previsions and finitely additive expectations (DOI: 10.1214/14-
AOS1203SUPP; .pdf). The expectation of a random variable X defined on � is
usually defined as the integral of X over the set � with respect to the underly-
ing probability measure defined on subsets of �. In the countably additive setting,
such integrals can be defined (except for certain cases involving ∞−∞) uniquely
from a probability measure on �. Dunford and Schwartz [(1958), Chapter III] give
a detailed analysis of integration with respect to finitely additive measures that at-
tempts to replicate the uniqueness of integrals. Their analysis requires additional
assumptions if one wishes to integrate unbounded random variables. We choose
the alternative of defining integrals as special types of linear functionals. This is
the approach used in the study of the Daniell integral. [See Royden (1963), Chap-
ter 13.] Then the measure of a set becomes the integral of its indicator function.
De Finetti’s concept of prevision turns out to be a finitely additive generalization
of the Daniell integral. (See Definition 10 in Appendix A.2.) We provide details
on the finitely additive Daniell integral along with details about the meaning of
infinite previsions and how to extend coherence1 and coherence3 to deal with ran-

http://dx.doi.org/10.1214/14-AOS1203SUPP
http://dx.doi.org/10.1214/14-AOS1203SUPP
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dom variables having infinite previsions. Infinite previsions invariably arise when
dealing with general sets of unbounded random variables.

REFERENCES

BERTI, P., REGAZZINI, E. and RIGO, P. (2001). Strong previsions of random elements. Statistical
Methods and Applications 10 11–28.

BERTI, P. and RIGO, P. (1992). Weak disintegrability as a form of preservation of coherence. Journal
of the Italian Statistical Society 1 161–181.

BERTI, P. and RIGO, P. (2000). Integral representation of linear functionals on spaces of unbounded
functions. Proc. Amer. Math. Soc. 128 3251–3258. MR1694449

BERTI, P. and RIGO, P. (2002). On coherent conditional probabilities and disintegrations. Ann. Math.
Artif. Intell. 35 71–82. MR1899945

CRISMA, L. and GIGANTE, P. (2001). A notion of coherent conditional prevision for arbitrary ran-
dom quantities. Stat. Methods Appl. 10 29–40.

CRISMA, L., GIGANTE, P. and MILLOSSOVICH, P. (1997). A notion of coherent prevision for arbi-
trary random quantities. Journal of the Italian Statistical Society 6 233–243.

DE FINETTI, B. (1972). Probability, Induction, and Statistics. The Art of Guessing. Wiley, New York.
MR0440638

DE FINETTI, B. (1974). Theory of Probability: A Critical Introductory Treatment, Vol. 1. Wiley, New
York. MR0440640

DE FINETTI, B. (1975). Theory of Probability: A Critical Introductory Treatment, Vol. 2. Wiley, New
York. MR0440641

DE FINETTI, B. (1981). The role of “Dutch Books” and of “proper scoring rules”. British J. Philos.
Sci. 32 55–56. MR0618153

DUBINS, L. E. (1975). Finitely additive conditional probabilities, conglomerability and disintegra-
tions. Ann. Probab. 3 89–99. MR0358891

DUNFORD, N. and SCHWARTZ, J. (1958). Linear Operators. Wiley, New York.
GNEITING, T. (2011a). Making and evaluating point forecasts. J. Amer. Statist. Assoc. 106 746–762.

MR2847988
GNEITING, T. (2011b). Quantiles as optimal point forecasts. International Journal of Forecasting 27

197–207.
HEATH, D. and SUDDERTH, W. (1978). On finitely additive priors, coherence, and extended admis-

sibility. Ann. Statist. 6 333–345. MR0464450
LEVI, I. (1980). The Enterprise of Knowledge. MIT Press, Cambridge, MA.
REGAZZINI, E. (1987). de Finetti’s coherence and statistical inference. Ann. Statist. 15 845–864.

MR0888444
ROYDEN, H. L. (1963). Real Analysis. Macmillan, New York. MR0151555
SAVAGE, L. J. (1971). Elicitation of personal probabilities and expectations. J. Amer. Statist. Assoc.

66 783–801. MR0331571
SCHERVISH, M. J., SEIDENFELD, T. and KADANE, J. B. (1984). The extent of nonconglomerability

of finitely additive probabilities. Z. Wahrsch. Verw. Gebiete 66 205–226. MR0749222
SCHERVISH, M., SEIDENFELD, T. and KADANE, J. (2008a). On the equivalence of conglomerabil-

ity and disintegrability for unbounded random variables. Technical Report 864, Carnegie Mellon
Univ., Pittsburgh, PA.

SCHERVISH, M. J., SEIDENFELD, T. and KADANE, J. B. (2008b). The fundamental theorems of
prevision and asset pricing. Internat. J. Approx. Reason. 49 148–158. MR2454836

SCHERVISH, M., SEIDENFELD, T. and KADANE, J. (2009). Proper scoring rules, dominated fore-
casts, and coherence. Decis. Anal. 6 202–221.

SCHERVISH, M., SEIDENFELD, T. and KADANE, J. (2014). Supplement to “Dominating countably
many forecasts.” DOI:10.1214/14-AOS1203SUPP.

http://www.ams.org/mathscinet-getitem?mr=1694449
http://www.ams.org/mathscinet-getitem?mr=1899945
http://www.ams.org/mathscinet-getitem?mr=0440638
http://www.ams.org/mathscinet-getitem?mr=0440640
http://www.ams.org/mathscinet-getitem?mr=0440641
http://www.ams.org/mathscinet-getitem?mr=0618153
http://www.ams.org/mathscinet-getitem?mr=0358891
http://www.ams.org/mathscinet-getitem?mr=2847988
http://www.ams.org/mathscinet-getitem?mr=0464450
http://www.ams.org/mathscinet-getitem?mr=0888444
http://www.ams.org/mathscinet-getitem?mr=0151555
http://www.ams.org/mathscinet-getitem?mr=0331571
http://www.ams.org/mathscinet-getitem?mr=0749222
http://www.ams.org/mathscinet-getitem?mr=2454836
http://dx.doi.org/10.1214/14-AOS1203SUPP


756 M. J. SCHERVISH, T. SEIDENFELD AND J. B. KADANE

SEIDENFELD, T., SCHERVISH, M. J. and KADANE, J. B. (2009). Preference for equivalent random
variables: A price for unbounded utilities. J. Math. Econom. 45 329–340. MR2522457

M. J. SCHERVISH

J. B. KADANE

DEPARTMENT OF STATISTICS

CARNEGIE MELLON UNIVERSITY

PITTSBURGH, PENNSYLVANIA 15213
USA
E-MAIL: mark@cmu.edu

kadane@stat.cmu.edu

T. SEIDENFELD

DEPARTMENT OF STATISTICS

AND DEPARTMENT OF PHILOSOPHY

CARNEGIE MELLON UNIVERSITY

PITTSBURGH, PENNSYLVANIA 15213
USA
E-MAIL: teddy@stat.cmu.edu

http://www.ams.org/mathscinet-getitem?mr=2522457
mailto:mark@cmu.edu
mailto:kadane@stat.cmu.edu
mailto:teddy@stat.cmu.edu

	Introduction
	Results of de Finetti
	Dominance
	Coherence1 and coherence2

	Background on strictly proper scoring rules
	Extensions to countably many options
	Dominance for countably many forecasts
	Dominance for countable sums of conditional forecasts
	Conglomerability, disintegrability and the law of total previsions

	Incentive compatible elicitation of inﬁnitely many forecasts using strictly proper scoring rules
	Summary
	Appendix A: Finitely additive expectations
	Inﬁnite previsions
	Prevision and expectation

	Appendix B: Proofs of results
	Proof of Lemma 1
	Proof of Lemma 2
	Proofs of Theorem 1 and Corollary 1
	Proofs of Theorem 2 and Corollary 2
	Proofs of Theorem 3 and Corollary 3

	Acknowledgments
	Supplementary Material
	References
	Author's Addresses

