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ESTIMATION AND MODEL SELECTION IN GENERALIZED
ADDITIVE PARTIAL LINEAR MODELS FOR CORRELATED DATA

WITH DIVERGING NUMBER OF COVARIATES1

BY LI WANG2, LAN XUE3, ANNIE QU4 AND HUA LIANG5

University of Georgia, Oregon State University, University of Illinois at
Urbana-Champaign and George Washington University

We propose generalized additive partial linear models for complex data
which allow one to capture nonlinear patterns of some covariates, in the pres-
ence of linear components. The proposed method improves estimation effi-
ciency and increases statistical power for correlated data through incorporat-
ing the correlation information. A unique feature of the proposed method is
its capability of handling model selection in cases where it is difficult to spec-
ify the likelihood function. We derive the quadratic inference function-based
estimators for the linear coefficients and the nonparametric functions when
the dimension of covariates diverges, and establish asymptotic normality for
the linear coefficient estimators and the rates of convergence for the nonpara-
metric functions estimators for both finite and high-dimensional cases. The
proposed method and theoretical development are quite challenging since the
numbers of linear covariates and nonlinear components both increase as the
sample size increases. We also propose a doubly penalized procedure for vari-
able selection which can simultaneously identify nonzero linear and nonpara-
metric components, and which has an asymptotic oracle property. Extensive
Monte Carlo studies have been conducted and show that the proposed proce-
dure works effectively even with moderate sample sizes. A pharmacokinetics
study on renal cancer data is illustrated using the proposed method.

1. Introduction. We encounter longitudinal data in many social and health
studies where observations from clustered data are measured over time, and can
often be discrete, such as binary or count data. Generalized additive partial linear
models (GAPLM) are developed to model partial linear additive components while
the remaining components are modeled nonparametrically [11] to combine the
strengths of both the GPLM and the GAM for interpretability and flexibility.
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Efficient estimation of linear and nonparametric function components is quite
challenging even for cross-sectional data. To solve the “curse of dimensionality”
problem in computing, [30] suggested a penalized regression splines approach
to utilize the practical benefits of smoothing spline methods and the computa-
tional advantages of local scoring backfitting [2]. In addition, [25] applied polyno-
mial splines to approximate the nonparametric components, and estimated coeffi-
cients through an efficient one-step procedure of maximizing the quasi-likelihood
function. This can reduce computational costs significantly compared to the lo-
cal scoring backfitting and marginal integration approaches. Another advantage of
the polynomial spline approach is that it can formulate a penalized function for
variable selection purposes, which cannot be easily implemented through other
iterative methods.

However, [25]’s approach is valid only for independent data and the case with
a fixed number of covariates for linear component model selection. In this paper,
we develop a general framework for estimation and variable selection using the
GAPLM. The proposed method can handle correlated categorical responses in ad-
dition to continuous ones, and allows both the number of covariates for linear and
nonlinear terms to diverge as the sample size increases. Note that the theoretical
development for model selection and estimation for diverging number of covari-
ates in nonlinear components are completely different from the setting with finite
dimension of covariates [33].

The GAPLM can be highly computationally intensive as it introduces high-
dimensional nuisance parameters associated with nonparametric forms. Incorpo-
rating correlation structure brings additional challenges to modeling and estima-
tion due to the additional correlation parameters involved. The extension of the
GAPLM for correlated data imposes more challenges computationally and theoret-
ically. However, it is well known that ignoring correlation could lead to inefficient
estimation and diminish statistical power in hypothesis testing and the selection
of correct models. Moreover, [28] and [36] indicate that in nonparametric settings
ignoring the correlation could also result in biased estimation since the selection
process is rather sensitive to small departures from the true correlation structure,
and likely to cause overfitting of the nonparametric estimator to compensate for
the overall bias. These problems could be more critical for the GAPLM since in
contrast to the parametric setting, the true model here might be more difficult to
verify. The proposed polynomial spline approach can efficiently take the within-
cluster correlation into account because of its nonlocal behavior in longitudinal
data [29]. This is substantially different from the kernel smoothing method, where
only local data points are used in the estimation and, therefore, it cannot incorpo-
rate correlation structure efficiently.

We propose variable selection and estimation simultaneously based on the pe-
nalized quadratic inference function for correlated data when the dimension of
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covariates in GAPLM increases as the sample size. The quadratic inference func-
tion (QIF) [23] utilizes within-cluster correlation into account without specify-
ing the likelihood function, and is less sensitive to the misspecification of work-
ing correlation matrices compared to the generalized estimating equation (GEE)
method [19], in general. In addition, we perform variable selection for the marginal
GAPLM to identify important variables, which is crucial to obtain efficient esti-
mators for the nonzero components. We show that the proposed model selection
for both parametric and nonparametric terms is consistent, the estimators of the
nonzero linear coefficients are asymptotically normal, and the estimators of the
nonzero nonparametric functions are L2-norm consistent with the optimal rate of
convergence if the dimension of nonparametric components is finite. However, the
asymptotic properties on the rate of convergence are no longer the same as in [25]
when the dimensions of covariates for parametric and nonparametric components
both diverge as the sample size increases.

The semiparametric model containing both linear and nonparametric functions
makes the estimation and model selection very different from the generalized ad-
ditive model [33], which involves only nonparametric components. The establish-
ment of the asymptotic normal distribution of the estimators for the parametric
terms is quite challenging given that the number of covariates for both parametric
and nonparametric terms diverge, and the convergence rate for the nonparametric
component estimators is slower than

√
n. Another difficulty here is that the co-

variates in the parametric components and those in the nonparametric components
could be dependent, in addition to dependent errors for repeated measurements,
so traditional nonparametric tools such as the backfitting algorithm [2] cannot be
applied here. In contrast, the proposed spline-based approach allows one to incor-
porate correlation effectively even when the number of covariates diverges.

In addition, the required techniques using the penalized quadratic distance func-
tion for the diverging numbers of linear and nonlinear covariates setting are very
different from existing approaches such as the penalized least-squares approach
for a finite dimension setting [20, 25, 31]; the generalized linear model selection
approach for the parametric term only with diverging number of covariates [5]; or
the GAPLM for a finite number of nonparametric functions [18], which does not
perform model selection for the nonparametric term. This motivates us to develop
new theoretical tools to derive large sample properties for linear and nonparametric
components estimation and model selection to incorporate the dependent nature of
the data for handling diverging numbers of covariates.

We organize the paper as follows. Section 2 presents the model framework,
describes estimation procedures, and establishes asymptotic properties of the
GAPLM for correlated data. Section 3 proposes a penalized QIF method for si-
multaneous estimation and variable selection when the dimension of covariates
increases as the sample size. The theoretical properties on model selection consis-
tency and rate of convergence for the nonparametric estimators are developed, in
addition to algorithm implementation and tuning parameter selection. Sections 4
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and 5 illustrate the performance of the proposed method through simulation stud-
ies and a pharmacokinetics study on renal cancer patients, respectively. We provide
concluding remarks and discussion in Section 6. The proofs of the theorems along
with technical lemmas are provided in the Appendix and supplementary mate-
rial [27].

2. Estimation procedures and theoretical results.

2.1. The GAPLM for correlated data. For the clustered data, let Yit be a re-
sponse variable, Xit = (X

(1)
it , . . . ,X

(dx)
it )T and Zit = (1,Z

(1)
it , . . . ,Z

(dz−1)
it )T be

the dx-vector and dz-vector of covariates corresponding to the nonparametric
and parametric components, respectively, where t is the t th (t = 1, . . . , Ti) ob-
servation for the ith (i = 1, . . . , n) cluster. Further denote Yi = (Yi1, . . . , YiTi

)T,
Xi = (Xi1, . . . ,XiTi

)T, and Zi = (Zi1, . . . ,ZiTi
)T. For presentation simplicity, we

assume each cluster has the same size with Ti = T < ∞. The procedure for data
with unequal cluster sizes can be adjusted following the same method of [33].

One of the advantages of marginal approaches is that we only need to specify
the first two moments by E(Yit |Xit ,Zit ) = μit , and Var(Yit |Xit ,Zit ) = φV (μit ),
where φ is a scale parameter and V (·) is a known variance function. Here, the
marginal mean μit associates with the covariates through the known link function
g(·) such that

ηit = g(μit ) =
dx∑
l=1

αl

(
X

(l)
it

)+ ZT
itβ,(2.1)

where β is dz-vector of unknown parameters, and {αl(·)}dx

l=1 are unknown smooth
functions. Model (2.1) is called the generalized additive partial linear model
(GAPLM), where ZT

itβ are the parametric components, and
∑dx

l=1 αl(X
(l)
it ) are the

nonparametric components. Here, the mean of Yit depends only on the covari-
ate vector for the t th observation [22], that is, E(Yit |Xi ,Zi) = E(Yit |Xit ,Zit ). In
addition, without loss of generality, we assume that each covariate {X(l)}dl=1 can
be rescaled into [0,1]; and each αl(·) is centered with

∫ 1
0 αl(x) dx = 0 to make

model (2.1) identifiable.

2.2. Spline approximation. We approximate smooth functions {αl(·)}dx

l=1
in (2.1) by polynomial splines for their simplicity in computation, and they of-
ten provide a good approximation of smooth functions with a limited number of
knots. For example, for each 1 ≤ l ≤ dx , let υl be a partition of [0,1], with Nn

interior knots υl = {0 = υl,0 < υl,1 < · · · < υl,Nn < υl,Nn+1 = 1}.
The polynomial splines of order p + 1 are functions with p-degree (or less) of

polynomials on intervals [υl,i , υl,i+1), i = 0, . . . ,Nn −1, and [υl,Nn, υl,Nn+1], and
have p − 1 continuous derivatives globally. Let ϕl = ϕp([0,1], υl) be the space of
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such polynomial splines, and ϕ0
l = {s ∈ ϕl :

∫ 1
0 s(x) dx = 0}. This ensures that the

spline functions are centered.
Let {Blj (·)}Jn

j=1 be a set of spline bases of ϕ0
l with the dimension of Jn = Nn+p.

We approximate the nonparametric component αl(·) by a polynomial spline, that
is αl(·) ≈ sl(·) = ∑Jn

j=1 γljBlj (·), with a set of coefficients γ l = (γl1, . . . , γlJn)
T.

Accordingly, ηit is approximated by

ηit (β,γ ) =
dx∑
l=1

Jn∑
j=1

γljBlj

(
X

(l)
it

)+ ZT
itβ,

where γ = (γ T
1 , . . . ,γ T

dx
)T. Therefore, the mean function μit in (2.1) can be ap-

proximated by

μit ≈ μit (β,γ ) = g−1

{
dx∑
l=1

Jn∑
j=1

γljBlj

(
X

(l)
it

)+ ZT
itβ

}
.

We denote μi (β,γ ) = {μi1(β,γ ), . . . ,μiT (β,γ )}T in matrix notation. To incor-
porate the within-cluster correlation, we apply the QIF to estimate β and γ for the
parametric and nonparametric parts, respectively.

2.3. Quadratic inference functions. To estimate β and γ , one may use the
GEE method [18], that is, using a working correlation matrix R which depends
on fewer nuisance parameters. The estimates of regression parameters are consis-
tent even when R is misspecified. However, one has to find a consistent estima-
tor of R to obtain an efficient estimator of β . The QIF approach [23] considers
the approximation of R−1 with a linear combination of basis matrices of form
R−1 ≈ a1M1 + · · · + aKMK . For example, if R has an exchangeable structure
with correlation ρ, then R−1 can be represented as a1I + a2M2 with I being the
identity matrix and M2 being a matrix with 0 on the diagonal and 1 off the diago-
nal. The corresponding coefficients are a1 = −{(T − 2)ρ + 1}/k1, and a2 = ρ/k1,
where k1 = (T − 1)ρ2 − (n − 2)ρ − 1 and T is the dimension of R. The basis ma-
trices are also available to approximate R−1 of other structure such as, AR-1 and
the block diagonal correlation structures. If the candidate basis matrices represent
a sufficiently rich class for the true structure, [35] show that the correlation struc-
ture can be selected consistently by minimizing the penalized difference between
two estimating functions generated from the empirical correlation information and
the model-based approximation, respectively. The penalization on the basis matri-
ces ensures that an optimal number of basis matrices K will be selected to capture
correlation information, yet not be burdened by too many moment conditions.

The quadratic inference function is established under the same principle as the
generalized method of moments [10], and is shown to be the most efficient among
estimators given the same class of estimating functions as the asymptotic variance
reaches the minimum in the sense of Loewner ordering. This is especially useful
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under misspecified working correlation structures, since the true correlation struc-
ture is seldom known. For example, the QIF estimator is shown to be more efficient
than the GEE estimator for diverging number of covariates under the generalized
linear model framework [5]. Another advantage of the QIF is that the estimation
of the linear coefficients ai ’s is not required. In nonparametric modeling with di-
verging number of covariates, it is even more beneficial if we can avoid estimating
the nuisance parameters associated with the correlations, since we are dealing with
high-dimensional parameters involved in nonparametric components.

2.4. Estimation procedure. For any x ∈ Rdx , z ∈ Rdz , let BT(x) = (B11(x1),

. . . ,B1Jn(x1), . . . ,Bdx1(xdx ), . . . ,BdxJn(xdx )), DT(x, z) = (zT,BT(x)) be vec-
tors of dimensions dxJn and dxJn + dz, respectively. In addition, we denote
matrices Bi = {(B(Xi1), . . . ,B(XiT ))T}T ×dxJn , Di = {(D(Xi1,Zi1), . . . ,D(XiT ,

ZiT ))T}T ×(dxJn+dz).
For θ = (βT,γ T)T, we define K(dxJn +dz)-dim extended scores to incorporate

correlation for correlated data as follows:

gi (θ) =

⎛⎜⎜⎝
DT

i �iA
−1/2
i M1A−1/2

i

{
Yi − μi (θ)

}
...

DT
i �iA

−1/2
i MKA−1/2

i

{
Yi − μi (θ)

}
⎞⎟⎟⎠ ,(2.2)

where �i = diag{μ̇i1, . . . , μ̇i} and μ̇it is the first order derivative of g−1 evaluated
at BT(Xit )γ + ZT

itβ; and Ai = diag{V (μi1), . . . , V (μi)}. We define the sample
mean and sample variance of the moment conditions as

Gn(θ) = 1

n

n∑
i=1

gi (θ), Cn(θ) = 1

n

n∑
i=1

gi (θ)gT
i (θ).(2.3)

If we set Gn(θ) = 0 as our estimating equations, there are more equations than the
number of unknown parameters, and the parameters are over-identified. The QIF
approach estimates αl(·) and β by making Gn as close to zero as possible, in the
sense of minimizing the QIF Qn(θ), that is,

θ̂
QIF = ((

β̂
QIF)T

,
(
γ̂ QIF)T)T

(2.4)
= arg min

θ
Qn(θ) = arg min

θ

{
nGT

n(θ)C−1
n (θ)Gn(θ)

}
.

Consequently, for any x ∈ [0,1]dx and l = 1, . . . , dx , the estimators of the non-
parametric components in (2.1) are provided as

α̂
QIF
l

(
x(l)) =

Jn∑
j=1

γ̂
QIF
lj Blj

(
x(l)) and α̂QIF(x) =

dx∑
l=1

α̂
QIF
l

(
x(l)).(2.5)



598 WANG, XUE, QU AND LIANG

The advantages of the spline basis approach lie not only in its computation effi-
ciency, but also in the ease of implementation. Using the spline basis approxima-
tion, we can easily convert a problem with infinite-dimensional parameters to one
with a finite number of parameters [17]. In the following Theorem 1, we also show
that the proposed estimators of the nonparametric components using polynomial
spline achieve the optimal rate of convergence. This result is useful for provid-
ing an initial consistent estimator for later development in simultaneous variable
selection and estimation for both parametric and nonparametric functions.

2.5. Asymptotic properties. We establish the asymptotic properties of the QIF
estimators, summarize the main results in the following theorems and provide de-
tailed proofs in the Appendices. Note that the asymptotic results still hold for un-
equal cluster size data.

In the following, denote the true nonparametric components by α0,l , 1 ≤ l ≤ dx

and the true parameters for the parametric components by β0. Let μ0,it be the true
marginal means. In addition, let μ0,i = (μ0,i1, . . . ,μ0,iT )T and ei = Yi −μ0,i . Let

�
(k)
0,i = �0,iV

(k)
0,i�0,i , where V(k)

0,i = A−1/2
0,i MkA−1/2

0,i and �0,i , A0,i are evaluated

at μ0,i . Similarly, define μ0, e, �
(k)
0 as the generic versions of μ0,i , ei and �

(k)
0,i ,

respectively, for (Y,X,Z). Let dn = dxJn + dz, and ρn = ((1 − δ)/2)(dx−1)/2, for
some constant δ ∈ (0,1). Further, we denote a � b, if there exist constants c ≥
c∗ > 0 such that c∗b ≤ a ≤ cb.

THEOREM 1. Under conditions (C1)–(C3), (C5)–(C8) in Appendix A.2, if
dx/ log(n) → 0, n−1/4dz → 0, Jn � nb, for some 1/(4r) ≤ b < 1/4 with the
smoothing parameter r > 1 defined in condition (C1), the estimators α̂

QIF
l (x(l)),

1 ≤ l ≤ dx , defined in (2.5) satisfy

1

n

dx∑
l=1

n∑
i=1

T∑
t=1

{
α̂

QIF
l

(
x

(l)
it

)− α0,l

(
x

(l)
it

)}2 = OP

(
n−1dn + J−2r

n dx

)
,

where r determines the smoothness of the nonparametric functions. In particular,
if Jn � n1/(2r+1) and dz = O(Jndx), then

1

n

dx∑
l=1

n∑
i=1

T∑
t=1

{
α̂

QIF
l

(
x

(l)
it

)− α0,l

(
x

(l)
it

)}2 = OP

(
n−2r/(2r+1)dx

)
.

REMARK 1. Note that dn = dxJn + dz, so if the number of nonparametric
functions, dx , is finite, and Jn � n1/(2r+1), then we obtain an optimal convergence
rate n−2r/(2r+1). In addition, for a cluster size of 1, this reduces to a special case
where the responses are independent, and is the same as in [14] and [31] for inde-
pendent data.
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Next, we establish the asymptotic normal distribution for the parametric esti-
mator. We denote g0,i = (gT

0,i1, . . . ,gT
0,iK)T with g0,ik = DT

i �0,iV
(k)
0,i ei , the value

of gi in (2.2) at μi = μ0,i . Similarly, let

G0
n = 1

n

n∑
i=1

g0,i , C0
n = 1

n

n∑
i=1

g0,igT
0,i , Q0

n = n
(
G0

n

)T(C0
n

)−1G0
n(2.6)

be the corresponding values of Gn, Cn and Qn defined in (2.3) and (2.4) at
μi = μ0,i . Next, denote Ẑi = Zi − Proj
n

Zi , where Proj
n
is the projection onto

the empirically centered additive spline space. See (S.17) for the exact formula
of Ẑi . Further denote

Ĵ(k)
DZ = 1

n

n∑
i=1

DT
i �

(k)
0,i Ẑi , ĴDZ = {(̂

J(1)
DZ

)T
, . . . ,

(̂
J(K)

DZ
)T}T

,(2.7)

W(k)
i = DT

i �0,iV
(k)
0,i�

1/2
i , Wi = {(

W(1)
i

)T
, . . . ,

(
W(K)

i

)T}T
.(2.8)

In what follows, A⊗2 and A⊗2
B stand for AAT and ABAT for any matrix/vector A

and square matrix B, respectively.

THEOREM 2. Assume that conditions (C1)–(C3), (C5)–(C9) in Appendix A.2
are satisfied, if dx/ log(n) → 0, n−1/5dz → 0, and Jn � nb, for some 1/(2r + 1) ≤
b < 1/5, where the smoothing parameter r > 2, then the estimator β̂

QIF
of β0 is

consistent and
√

nAn�
−1/2
n (β̂

QIF − β0)→D N(0,�A), where An is any q × dz

matrix with a finite q such that A⊗2
n converges to a q × q nonnegative symmetric

�A, and �n = �̂
−1
n 	̂n�̂

−1
n with

�̂n = ĴT
DZ

(
C0

n

)−1ĴDZ and 	̂n = 1

n

n∑
i=1

{̂
JT

DZ
(
C0

n

)−1Wi

}⊗2
.(2.9)

To establish the asymptotic properties of the QIF estimators for diverging num-
ber of covariates, a crucial step is to obtain the upper and lower bounds of the
eigenvalues of the matrix C−1

n (θ) in (2.3) and (2.4). Note that Cn(θ) is a ran-
dom matrix with increasing dimension of linear and nonlinear components as n

increases. The derivation of its bounds relies heavily on Lemma 1 of [24]; see [25,
33]. When dx is finite, the term ρn = ((1 − δ)/2)(dx−1)/2 in Lemma 1 of [24]
is a constant, which makes the derivation of the bounds relatively easy. How-
ever, this is no longer true in the diverging case since ρn goes to zero as dx goes
to infinity, and it requires special techniques for asymptotic derivations. Another
major difficulty in the derivation of Theorem 2 is to resolve the dependence be-
tween X and Z in addition to establishing the convergence results for the first- and
second-order partial derivatives of the quadratic inference function, which could
be infinite-dimensional.
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3. Penalized QIF for marginal GAPLM. In this section, we define predic-
tor variables Xl and Zk as redundant in model (2.1), if and only if αl(Xl) = 0 and
βk = 0. Suppose there is only an unknown subset of predictor variables which is
relevant in model (2.1) with nonzero components, we are interested in identify-
ing such subsets of relevant predictors consistently while estimating the nonzero
parameters and functions in (2.1) simultaneously.

3.1. Model selection. To perform model selection for the GAPLM, we pro-
pose the penalized quadratic inference function in (2.4) which shrinks small com-
ponents of estimated functions to zero. Through consistent model selection, we
are able to improve the efficiency of estimators for the nonzero components since
the correlation within clusters is taken into account. We define the penalized QIF
(PQIF) estimator as((

β̂
PQIF)T

,
(
γ̂ PQIF)T)T

= arg min
β,γ

{
Qn(β,γ ) + n

dx∑
l=1

pλ1,n

(‖γ l‖Kl

)+ n

dz∑
l=1

pλ2,n

(|βl|)
}
,

where pλ•,n(·) are given penalty functions of tuning parameters λ•,n, and ‖γ l‖2
Kl

=
γ T

l Klγ l , in which Kl = 1
n

∑n
i=1

1
T

∑T
t=1 Bl(X

(l)
it )BT

l (X(l)
it ), and Bl(·) = (Bl1(·),

. . . ,BlJn(·))T. The empirical norm of the spline function sl is

‖γ l‖Kl
=

{
1

n

n∑
i=1

1

T

T∑
t=1

s2
l

(
X(l)

it

)}1/2

= ‖sl‖n.

The advantage of choosing the penalization using ‖sl‖n is that it no longer relies
on a particular choice of spline bases. This type of penalization ensures that the co-
efficients within the same nonparametric component are treated as an entire group
in model selection and, therefore, it achieves the same effect as the group-wise
model selection approach [34].

The penalty function pλn(·) can be the L1-penalty with pλn(| · |) = λn| · | which
provides a LASSO estimator, or the L2 penalty pλn(| · |) = λn| · |2 which produces
a ridge-type estimator. However, we do not apply the L0 penalty here as it is highly
computationally intensive and unstable. The smoothly clipped absolute deviation
(SCAD) [7] penalty is considered here, where the derivative is defined as

p′
λn

(θ) = λn

{
I (θ ≤ λn) + (aλn − θ)+

(a − 1)λn

I (θ > λn)

}
,

here the constant a is chosen to be 3.7 as in [7], and λn > 0 is a tuning param-
eter, whose selection is described in Section 3.3. The SCAD penalty has several
advantages such as unbiasedness, sparsity and continuity.



GENERALIZED ADDITIVE PARTIAL LINEAR MODELS 601

The penalized estimator γ̂ PQIF is obtained by minimizing the penalized objec-
tive function in (3.1). Then for any x ∈ [0,1]dx , the estimator of the nonparametric
functions in (2.1) is calculated by

α̂
PQIF
l

(
x(l)) =

Jn∑
j=1

γ̂
PQIF
lj Blj

(
x(l)), l = 1, . . . , dx.

We establish the asymptotic properties of the penalized parametric and nonpara-
metric components estimators for the marginal GAPLM in the following theorems.
We assume that in the true model only the first sz (0 ≤ sz ≤ dz) linear components
and the first sx (0 ≤ sx ≤ dx) nonlinear components are nonzero, and the remain-
ing components are all zeros. Let α0(xit ) = ∑dx

l=1 α0,l(x
(l)
it ) = ∑sx

l=1 α0,l(x
(l)
it ) +∑dx

l=sx+1 α0,l(x
(l)
it ), with α0,l = 0 almost surely for l = sx + 1, . . . , dx , where sx

is the number of nonzero nonlinear components. Similarly, let sz be the number
of nonzero components of β0. Let β0 = (β0,1, . . . , β0,dz)

T = (βT
S0,β

T
N0)

T, where
βS0 consists of all sz nonzero components of β0, and βN0 = 0 without loss of

generality. In a similar fashion to β0, denote β̂
PQIF = {(β̂PQIF

S )T, (β̂
PQIF
N )T}T.

We first derive the convergence rate of the penalized QIF estimators β̂
PQIF

and {α̂PQIF
l }dx

l=1. In particular, if dx is finite, we show that this convergence rate

is the same as the rate of convergence for the unpenalized estimators β̂
QIF

and
{α̂QIF

l }dx

l=1 in Theorem 3. Furthermore, we prove that the penalized estimators

β̂
PQIF

, {α̂PQIF}dx

l=1 possess the sparsity property as in Theorem 4. That is, α̂PQIF
l = 0

almost surely for l = sx + 1, . . . , dx , and β̂
QIF
N = 0. The sparsity property implies

that the model selection procedure is consistent, that is, the selected model con-
verges to the corrected model with probability tending to one. We define

an = max
1≤l≤dz

{∣∣p′
λ2,l

(|β0,l|)∣∣, β0,l �= 0
}
,

(3.1)
bn = max

1≤l≤dz

{∣∣p′′
λ2,l

(|β0,l|)∣∣, βl0 �= 0
}
.

THEOREM 3. Under conditions (C1)–(C9) and (P2) in Appendix A.2, if
dx/ log(n) → 0, n−1/4dz → 0, Jn � nb, for some 1/(4r) ≤ b < 1/4 with smooth-
ing parameter r > 1 defined in condition (C1), and the tuning parameters λjn →
0, j = 1,2, n → ∞, then there exists a local solution β̂

PQIF
in (3.1) such that its

rate of convergence is OP {ρ−3
n d

1/2
n (n−1/2 + an)}, and there exists a local mini-

mizer of (3.1) such that

1

n

dx∑
l=1

n∑
i=1

T∑
t=1

{
α̂

PQIF
l

(
x

(l)
it

)− α0,l

(
x

(l)
it

)}2 = OP

{
ρ−6

n dn

(
n−1/2 + an

)2}
.
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REMARK 2. If the number of nonparametric functions, dx , is finite, then ρn

is a fixed constant. Further if Jn � n1/(2r+1) and an = O(n−1/2), we obtain the
optimal nonparametric convergence rate n−2r/(2r+1) as in [33]. For the parametric
terms, if dx is finite, and n1/(4r) � Jn � dz � n1/4, then we obtain the same
parametric convergence rate as in [5].

THEOREM 4. Assume that conditions (C1)–(C9), (P1)–(P2) in Appendix A.2
hold. If dx/ log(n) → 0, n−1/5dz → 0, Jn � nb, for some 1/(4r) ≤ b < 1/5 with
smoothing parameter r > 1 defined in condition (C1), and the tuning parameters
λjn → 0, and ρ−1

n d
−1/2
n n1/2λjn → ∞, j = 1,2, n → ∞, then with probability

approaching 1, α̂l = 0 almost surely for l = sx +1, . . . , dx , and the estimator β̂
PQIF

has the sparsity property, that is, P(β̂
PQIF
N = 0) → 1 as n → ∞.

Theorem 4 indicates that the proposed selection method possesses model selec-
tion consistency. Theorems 3 and 4 provide similar results for the nonparametric
components as those for the penalized generalized additive models in [33] when
dx is finite. However, the theoretical proof is very different from the penalized
generalized additive model approach and is much more challenging, due to the in-
volvement of both parametric and nonparametric components, where two sets of
covariates could be dependent, and the dimensions of linear and nonlinear terms
increase along with the sample size.

We also investigate the asymptotic distribution of the estimators for the para-
metric term. Define a vector κS = {p′

λ2,n
(|β0,1|) sgn(β0,1), . . . , p

′
λ2,n

(|β0,sz |) ×
sgn(β0,sz )}T and a diagonal matrix �S = diag{p′′

λ2,n
(|β0,1|), . . . , p′′

λ2n
(|β0,sz |)}.

In a similar fashion to β , we write the collections of all components, Xi =
(XT

Si ,XT
N i)

T, Zi = (ZT
Si ,ZT

N i)
T, Ẑi = (ẐT

Si , ẐT
N i)

T. Further denote ĴT
DZS

=
{(̂J(1)

DZS
)T, . . . , (̂J(K)

DZS
)T}T, where Ĵ(k)

DZS
= 1

n

∑n
i=1 DT

i �
(k)
0,i ẐSi . Next, let �̂S,n =

ĴT
DZS

(C0
n)

−1ĴDZS , 	̂S,n = 1
n

∑n
i=1{̂JT

DZS
(C0

n)
−1Wi}⊗2 with Wi in (2.8).

THEOREM 5. Assume conditions (C1)–(C9), (P1)–(P2) in Appendix A.2 hold.
If dx/ log(n) → 0, n−1/5dz → 0, Jn � nb, for some 1/(2r + 1) ≤ b < 1/5 with
smoothing parameter r > 2 in condition (C1), and the tuning parameters λjn → 0,

ρ−1
n d

−1/2
n n1/2λjn → +∞, j = 1,2, as n → ∞, then

√
nAn�

−1/2
S,n (�̂S,n + �S)

{(
β̂

PQIF
S − βS0

)+ (�̂S,n + �S)−1κS
} D→N(0,�A),

where An is any q × dz matrix with a finite q such that �A = limn→∞ A⊗2
n , and

�S,n = �̂
−1
S,n	̂S,n�̂

−1
S,n.
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3.2. An algorithm. To minimize the PQIF in (3.1), we develop an algorithm
based on the local quadratic approximation [7]. To obtain an initial estimator
(β0,γ 0) which is sufficiently close to the true minimizer of (3.1), we could choose

the unpenalized QIF estimator θ̂
QIF = {(β̂QIF

)T, (γ̂ QIF)T}T as the initial value. Let
βk = (βk

1 , . . . , βk
dz

)T and γ k = (γ kT
1 , . . . ,γ kT

dx
)T be the values at the kth iteration.

If βk
l (or γ k

l′) is close to zero, such that |βk
l | ≤ ε (or ‖γ k

l′‖Kl′ ≤ ε) with some small

threshold value ε, then βk+1
l (or γ k+1

l′ ) is set to 0. We consider ε = 10−6 in our
numerical examples.

Suppose βk+1
l = 0, for l = bk + 1, . . . , dz, and γ k+1

l = 0, for l = b′
k + 1, . . . , dx ,

and θk+1 = (βk+1
1 , . . . , βk+1

bk
, βk+1

bk+1, . . . , β
k+1
dz , (γ k+1

1 )T, . . . , (γ k+1
b′
k

)T, (γ k+1
b′
k+1)

T,

. . . , (γ k+1
dx

)T)T = {(βk+1
S )T, (βk+1

N )T, (γ k+1
S )T, (γ k+1

N )T}T, in which βk+1
N = 0,

γ k+1
N = 0. Let θ = (βT

S,βT
N ,γ T

S,γ T
N )T be the partition of any θ .

The local quadratic approximation is implemented for obtaining the nonzero
components θk+1

S = {(βk+1
S )T, (γ k+1

S )T}T. Specifically, for |βk
l | > ε, the penalty

for the parametric term is approximated by

pλn

(|βl|) ≈ pλn

(∣∣βk
l

∣∣)+ p′
λn

(∣∣βk
l

∣∣)(|βl| −
∣∣βk

l

∣∣)
≈ pλn

(∣∣βk
l

∣∣)+ 1
2p′

λn

(∣∣βk
l

∣∣)∣∣βk
l

∣∣−1{
β2

l − (
βk

l

)2}
.

For ‖γ k
l′‖Kl′ > ε, the penalty function for the nonparametric part is approximated

by

pλn

(‖γ l′‖Kl′
)

≈ pλn

(∥∥γ k
l′
∥∥

Kl′
)+ p′

λn

(∥∥γ k
l′
∥∥

Kl′
)∥∥γ k

l′
∥∥−1

Kl′ γ
kT
l′ Kl′

(
γ l′ − γ k

l′
)

≈ pλn

(∥∥γ k
l′
∥∥

Kl′
)+ 1

2p′
λn

(∥∥γ k
l′
∥∥

Kl′
)∥∥γ k

l′
∥∥−1

Kl′
(
γ T

l′Kl′γ l′ − γ kT
l′ Kl′γ

k
l′
)
,

where p′
λn

is the first-order derivative of pλn .
This leads to the local approximation of the objective function in (3.1) by a

quadratic function:

Qn

(
θk)+ Q̇n

(
θk)T

(
βS − βk

S
γ S − γ k

S

)
+ 1

2

(
βS − βk

S
γ S − γ k

S

)T

Q̈n

(
θk)(βS − βk

S
γ S − γ k

S

)

+ 1

2
n

(
βS
γ S

)T

�
(
θk)(βS

γ S

)
,

where Q̇n(θ
k) = ∂Qn(θk)

∂θS
, Q̈n(β

k) = ∂2Qn(θk)

∂θS ∂θT
S

with θS = (βT
S,γ T

S)T, and

�
(
θk) = diag

{∣∣βk
1

∣∣−1
p′

λn

(∣∣βk
1

∣∣), . . . , ∣∣βk
bk

∣∣−1
p′

λn

(∣∣βk
bk

∣∣),
(3.2) ∥∥γ k

1

∥∥−1
K1p

′
λn

(∥∥γ k
1

∥∥
K1

)
K1, . . . ,

∥∥γ k
b′
k

∥∥−1
Kb′

k

p′
λn

(∥∥γ k
b′
k

∥∥
Kb′

k

)
Kb′

k

}
.
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We minimize the above quadratic function to get θk+1
S . The corresponding

Newton–Raphson algorithm provides

θk+1
S = θk

S − {
Q̈n

(
θk)+ n�

(
θk)}−1{

Q̇n

(
θk)+ n�

(
θk)θk

S
}
.

The above iteration process is repeated until convergence is reached, where the
convergence criterion is based on ‖θk+1 − θk‖ ≤ 10−6. The proposed algorithm
is quite stable and converges quickly. However, in general, the computational time
increases as the dimension of covariates increases.

3.3. Tuning parameter and knots selection. Tuning parameter and knots se-
lections play important roles in the performance of model selection. The spline
approximation for the nonparametric components requires an appropriate selec-
tion of the knot sequences {υl}dx

l=1 in Section 2.2. For the penalized QIF method in
Section 3.1, in addition to knots selection, we also need to address how to choose
tuning parameters λ1,n and λ2,n in the SCAD penalty function. To reduce com-
putational complexity, we consider λ1,n = λ2,n = λn and select only λn. This is
justified by Theorems 3, 4 and 5 in Section 3.

Although selecting the number and position of spline knots is important in curve
smoothing, in our simulation study we found that knot selection seems to be less
critical for the estimation of the parametric coefficients and model selection than
for the estimation of the nonparametric components. For convenience, we choose
equally spaced knots and the number of interior knots is selected as the integer part
of Nn = n1/(2p+3), where n is the sample size and p is the order of the polynomial
spline. This approach is also adopted in [16, 33] and [32]. Furthermore, we use
the same knot sequences selected in the unpenalized procedure for the penalized
QIF estimation. Therefore, we only need to determine the tuning parameter for
the penalization part. For any given tuning parameter λn, the estimator minimiz-
ing (3.1) is denoted as θ̂λn . We propose to use the extended Bayesian Information
Criterion (EBIC) to select the optimal tuning parameters based on [3] and [13].
Because the QIF Qn is analog to minus twice the log-likelihood function [23], we
define the EBIC in the PQIF procedure as

EBIC(λn) = Qn(̂θλn) + log(n)d̂z(λn) + log
(
νz(λn)

)
(3.3)

+ log(n)Nnd̂x(λn) + Nn log
(
νx(λn)

)
,

where d̂z(λn) and d̂x(λn) are the nonzero parametric and nonparametric terms in
θ̂λn , respectively, and νz(λn) = ( dz

d̂z(λn)

)
, which is a combination operator and repre-

sents the number of choices for selecting d̂z(λn) terms out of dz parametric terms.
Similarly, define νx(λn) = ( dx

d̂x(λn)

)
. See [3] for details. However, when the full

likelihood is available, it is more accurate to use minus twice the log-likelihood
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function instead of Qn as the first term in (3.3). That is,

EBIC(λn) = −2 logL(̂θλn) + log(n)d̂z(λn) + log
(
νz(λn)

)
+ log(n)Nnd̂x(λn) + Nn log

(
νx(λn)

)
,

where L(·) is the full likelihood function. As indicated in [26], the one using the
full likelihood, if it is available, has better finite sample performance when the
sample size is small. The optimal λn is chosen such that the EBIC value reaches
the minimum, or equivalently, λ̂n = arg minλn

EBIC(λn).

4. Simulation studies. In this section, we assess the numerical performance
of the proposed methods through simulation studies. To assess estimation accuracy
and efficiency, define the model error (ME) as

1

n∗T

n∗∑
i=1

T∑
t=1

{
g−1

(
dx∑
l=1

α̂l

(
x

(l)
it

)+ zT
it β̂

)
− g−1

(
dx∑
l=1

αl

(
x

(l)
it

)+ zT
itβ

)}2

,

where (xit , zit )
n∗,T
i=1,t=1 are independently generated test data and follow the same

distribution as the training data. In our simulations, we take n∗ = 1000. Further-
more, g−1 is the identity link function for continuous outcomes and the logit link
function for binary outcomes. The model error measures the prediction perfor-
mance of different methods. Denote the index sets of the selected and true models
by Ŝ and S0, respectively. If Ŝ = S0, then Ŝ is a correct selection; if S0 ⊂ Ŝ and
S0 �= Ŝ , then we call Ŝ over selection; otherwise, if S0 �⊂ Ŝ , then Ŝ under selection.
The number of replications is 500 in the following simulation studies.

4.1. Example 1: Continuous response. The continuous responses {Yit } are
generated from

Yit =
dx∑
l=1

αl

(
X

(l)
it

)+ ZT
itβ + εit , i = 1, . . . , n, t = 1, . . . ,5,(4.1)

where n = 100,200, or 500, and dx = dz = 2n1/4 which is rounded to the nearest
integer and takes values of 6,8 and 10, respectively, for n = 100,200 and 500. We
take α1(x) = sin(2πx), α2(x) = 8x(1 − x)− 4/3, and αl(x) = 0 for l = 3, . . . , dx ,
and β1 = 1, β2 = 2, and βl = 0 for l = 3, . . . , dz. Therefore, only the first two vari-
ables in Xit and Zit are relevant and the rest are null variables. The covariates
Xit = (X

(1)
it , . . . ,X

(dx)
it )T are generated by X

(l)
it = (2W

(l)
it + Uit )/3, where Wit =

(W
(1)
it , . . . ,W

(dx)
it ) and Uit are independently generated from Uniform([0,1]dx )

and Uniform([0,1]), respectively. Therefore, the covariates Xit have an exchange-
able correlation structure. In addition, Zit = (Z

(1)
it , . . . ,Z

(dz)
it )T are generated with

Z
(1)
it = 1 and (Z

(2)
it , . . . ,Z

(dz)
it ) being generated from a zero mean multivariate nor-

mal distribution with a marginal variance of 1 and an AR-1 correlation with pa-
rameter ρ = 0.7. The errors εi = (εi1, . . . , εi5)

T follows a zero mean multivariate
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TABLE 1
Example 1: The simulation results using the SCAD penalty with exchangeable (EC), AR-1 or

independent (IND) working correlation and linear or cubic splines. The columns of C, O and U
provide the percentage of correct selection, over selection and under selection, and MME provides

the averaged model errors from 500 replications

Linear spline Cubic spline

Method n C O U MME C O U MME

EC 100 0.936 0.050 0.014 0.0461 0.842 0.006 0.098 0.1337
200 0.992 0.008 0.000 0.0258 1.000 0.000 0.000 0.0175
500 1.000 0.000 0.000 0.0089 1.000 0.000 0.000 0.0054

AR-1 100 0.930 0.012 0.058 0.0660 0.766 0.012 0.222 0.2312
200 0.994 0.00 0.006 0.0268 1.000 0.000 0.000 0.0206
500 1.000 0.000 0.000 0.0097 1.000 0.000 0.000 0.0062

IND 100 0.836 0.008 0.156 0.1046 0.648 0.002 0.350 0.2707
200 0.986 0.012 0.002 0.0322 0.994 0.006 0.000 0.0259
500 1.000 0.000 0.000 0.0128 1.000 0.000 0.000 0.0091

normal with a marginal variance of σ 2 = 1.5 and an exchangeable correlation with
correlation ρ = 0.7.

The proposed penalized QIF method with the SCAD penalty is considered. In
spline approximation, we use both the linear splines and cubic splines. Further-
more, we consider basis matrices from three different working correlation struc-
tures: exchangeable (EC), AR-1 and independent (IND), and compare their estima-
tion efficiencies to illustrate the effect on efficiency gain of incorporating within-
cluster correlation.

Table 1 presents the variable selection and estimation results. It summarizes the
percentages of correct selection (C), over selection (O) and under selection (U). It
also gives the mean model errors (MME) from 500 replications. Table 1 indicates
that the probability of recovering the correct model increases to 1 quickly and the
MME decreases as the sample size increases. This confirms the consistency the-
orems of variable selection and estimation provided in Section 3.1. It also shows
that the procedures with a correct EC working correlation always have the small-
est MMEs and, therefore, the estimators are more efficient than their counterparts
with IND structure, which ignore within-cluster correlation. The method with a
misspecified AR-1 correlation is less efficient than the one using the true EC struc-
ture, but is still more efficient than assuming independent structure. Furthermore, it
also shows that the percentage of correct model-fitting using EC structure is higher
than the one using IND when the sample size is small (n = 100).

4.2. Example 2: Continuous response with randomly generated correlation
structure. To assess our method in a more challenging scenario, we consider a
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model similar to (4.1), but with randomly generated correlation structures. In par-
ticular, we assume that the dimensions of X and Z are dx = 9, dz = 5, respectively.
As in (4.1), only X

(1)
it , X

(2)
it , Z

(1)
it and Z

(2)
it are relevant and take the same forms

as in Example 1. Furthermore, we consider the number of clusters n = 25 or 250,
and cluster size 3. The set-up of n = 25 mimics the real data analyzed in Sec-
tion 5. The errors {εi = (εi1, . . . , εi3)

T}25
i=1 independently follow a multivariate

normal distribution as in Example 1, but with a randomly generated correlation
matrix �r for each replication r . Let �1 be a matrix with diagonals being 1 and all
the off-diagonals with value 0.5, and �r2 = Qr�rQT

r with Qr being a randomly
generated orthogonal matrix and �r = diag(λr1, λr2, λr3) with {λrj }3

j=1 being ran-
domly generated from Uniform[0.2,2]. Let �r = �1 +�r2 and σr1, . . . , σr3 be the
diagonal elements of �r . Let �r = diag{σ−1/2

r1 , . . . , σ
−1/2
r3 }. Then the randomly

generated correlation structure for the r th replication is �r = �r�r�r . We use
this example to investigate the performance of the QIF method in approximating
the randomly generated correlation structures.

We estimate the model using the proposed penalized QIF method with linear
spline and SCAD penalty, and assume IND, EC or AR-1 working correlation struc-
ture. We also consider linear spline QIF estimations of a full model (FULL) and an
oracle model (ORACLE), where the full model contains all 14 variables while the
oracle one has only the four nonzero variables. The oracle model is not available
in real data analysis where the underlying data-generating process is unknown.

Table 2 summarizes variable selection performance on correct, over and under
selection percentages of the SCAD approach with IND, EC and AR-1 working
correlations and reports the mean model error (MME) for FULL, ORACLE and
SCAD when the sample size n = 25 and 250, respectively. Table 2 clearly indicates
that, for a randomly generated correlation, SCAD with an EC working correlation
still performs better than the one with IND working structure. Furthermore, when

TABLE 2
Example 2: Continuous response with randomly generated correlation. The percentage of correct
selection (C), over selection (O) and under selection (U) are provided using linear spline with the
SCAD penalty for three working correlation: exchangeable (EC), AR-1 or independent (IND). The

columns of SCAD, ORACLE and FULL report the mean model error (MME) of the SCAD approach
and a standard linear spline estimation of the oracle model (ORACLE), and the full model (FULL)

from 500 replications

n Method C O U SCAD ORACLE FULL

250 EC 0.998 0.002 0.000 0.0242 0.0223 0.0656
AR1 0.990 0.002 0.008 0.0245 0.0233 0.0704
IND 0.986 0.006 0.008 0.0256 0.0250 0.0713

25 EC 0.616 0.194 0.190 0.5081 0.3858 1.6886
AR1 0.566 0.212 0.222 0.5281 0.3723 1.7528
IND 0.536 0.256 0.208 0.5546 0.3518 0.7729
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FIG. 1. Example 2: Plots of the first three estimated functions from SCAD (dot–dash), Oracle (dot-
ted) and Full (dashed) approaches with the true functions (line). For α3, both SCAD and Oracle give
exactly zero estimates. The cluster size is n = 250.

the sample size is large (n = 250), the estimation using EC always yield a smaller
MME than the one with IND working structure. It indicates that although EC is
a misspecified correlation structure, it can still improve estimation and inference
performances by incorporating some correlation in the data into the estimation.
When the sample size is small (n = 25), the estimation using EC or AR1 working
correlations of FULL and ORACLE is worse due to the extra noise in modeling
within-cluster correlation. However, the SCAD with EC or AR1 working correla-
tions still give smaller MMEs than SCAD with IND correlation, due to their better
performances in recovering the correct model. Finally, Table 2 also shows that the
penalized procedure dramatically improves estimation accuracy compared to the
un-penalized approach, with MMEs from the SCAD being very close to the MMEs
from the ORACLE model, and much smaller than the FULL model.

From one selected data set, Figure 1 plots the first three estimated functional
components from the SCAD, FULL and ORACLE models using linear spline and
exchangeable working correlation for cluster size n = 250. Note that for the third
variable, both the true and estimated functions from SCAD are zero. It shows that
the proposed SCAD method estimates unknown functions reasonably well.

4.3. Example 3: Binary response. A random sample of 250 clusters is gen-
erated in each simulation run. Within each cluster, binary responses {Yit }20

t=1 are
generated from a marginal logit model

logitP(Yit = 1|Xit = xit ,Zit = zit ) =
5∑

l=1

αl

(
x

(l)
it

)+ zT
itβ,

where α1(x) = cos(2πx)/4, αl(x) = 0, for l = 2, . . . ,5, and β = (β1, . . . , β10)
T

with β1 = 1 and βl = 0 for l = 2, . . . ,10. The covariates Xit = {X(l)
it }5

l=1 and

Zit = {Z(l)
it }10

l=1 are generated in the same way as in Example 1. The covariates
Xit have an exchangeable correlation structure, and Zit have an AR-1 correlation
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TABLE 3
Example 3: Binary response. The percentages of correct selection (C), over selection (O) and under
selection (U) are provided using linear spline with the SCAD penalty for three working correlation:

exchangeable (EC), AR-1 or independent (IND). The columns of SCAD, ORACLE and FULL
provide the mean model error (×103) of the SCAD approach and a standard linear spline

estimation of the oracle model (ORACLE), and the full model (FULL). The number of replications
is 500

C O U SCAD ORACLE FULL

EC 0.868 0.084 0.048 0.1102 0.0547 1.6820
AR1 0.692 0.012 0.292 0.1264 0.0586 1.8489
IND 0.684 0.006 0.208 0.1484 0.0616 1.9057

structure with ρ = 0.7. We use the algorithm described in [21] to generate the cor-
related binary data. It has an exchangeable correlation structure with a correlation
coefficient of 0.3.

We conduct variable selection using the proposed penalization method with lin-
ear spline (SCAD). We also consider estimation of the full (FULL) and oracle (OR-
ACLE) models using the unpenalized QIF with linear spline. We minimize (2.4)
and (3.1) using AR-1 and independent working structures, in addition to the true
exchangeable correlation structure.

Table 3 summarizes the MMEs for the SCAD, ORACLE and FULL with three
different working correlations. Table 4 also reports the sample means and sample
standard deviations (SD) of the estimators of the nonzero regression coefficient
β̂1 from 500 replications. It again shows that estimation based on correctly spec-
ified exchangeable correlation structure is the most efficient, having the smallest
MMEs and SDs. Estimation with a misspecified AR-1 correlation results in some
efficiency loss compared to using the true structure, but it is still much more ef-
ficient than assuming independent structure. However, for GEE, estimation using
a misspecified AR-1 correlation structure could be less efficient than assuming
independence, since the GEE requires the estimation of the correlation ρ for mis-
specified AR-1, and the estimator of ρ may not be valid.

TABLE 4
Example 3: Binary response. The sample mean and standard deviation (in parenthesis) of β̂ from

the SCAD, ORACLE and FULL model approaches

SCAD ORACLE FULL

EC 1.0258 (0.0461) 1.0115 (0.0436) 1.0945 (0.0598)
AR1 0.9969 (0.0558) 1.0177 (0.0537) 1.0748 (0.0738)
IND 0.9932 (0.0792) 1.0543 (0.0758) 1.0801 (0.0893)
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Furthermore, similar to the previous study, MMEs calculated based on the
SCAD approach are very close to the ones from ORACLE, and much smaller
than the MMEs from the FULL model. The MMEs of the FULL model are close
to 4 times the MMEs of SCAD. This shows that the SCAD penalization improves
estimation accuracy significantly by effectively removing the redundant variables.
Table 3 also gives the frequency of correct, over and under selection for the SCAD
approach. Overall, the SCAD procedure works reasonably well, and the SCAD
with a correct EC working correlation structure provides noticeably better variable
selection results than the SCAD with IND working structure.

5. Real data analysis. In this section, the proposed methods are applied to an-
alyze a pharmacokinetics study for investigating CCI-779 effects on renal cancer
patients [1]. CCI-779 is an anticancer agent with demonstrated inhibitory effects
on tumor growth. In this study, patients with advanced renal cell carcinoma re-
ceived CCI-779 treatment weekly until demonstrated evidence of disease progres-
sion. One goal of the study is to identify transcripts in peripheral blood mononu-
clear cells (PBMCs) which are useful for predicting the temporal pharmacoge-
nomic profile of CCI-799, after initiation of CCI-779 therapy. The data consists
of expression levels of 12,626 genes from 33 patients on three scheduled visits:
baseline, week 8 and week 16. However, not all patients have measurements at all
three visits. We have unbalanced data with a total of only 54 observations. To ac-
count for the cumulative-dose drug exposure, CCI-779 cumulative AUC was used
to quantify the pharmacogenomic measure of CCI-799 for each patient at each
visit. The AUC is of popular use in estimating bioavailability of drugs in pharma-
cology. Since the response variable CCI-779 cumulative AUC is continuous, we
consider our model (2.1) with an identity link function.

With a total of 12,626 genes as covariates and only 54 observations, we first
apply the nonparametric independence screening method (NIS) described in [6]
to reduce the dimensionality to a moderate size. We ranked the genes according
to their empirical marginal function norms, and kept only the first 205 genes with
marginal function norms larger than the 99th% quantile of the empirical norms
of randomly permuted data. After variable screening, we then applied the penal-
ized polynomial splines [13, 32] for high-dimensional additive model selection.
We used the linear spline with a LASSO penalty function and selected the tuning
parameters with a five-fold cross-validation procedure. This procedure further re-
duced dimensionality and selected only 14 genes. Out of the selected 14 genes, we
then applied our proposed methods for more refined variable selection and estima-
tion.

We first considered a generalized additive model (GAM), which is a special case
of a GAPLM model with Zit in (2.1) consisting of an intercept term only. We ap-
plied the linear spline QIF method to estimate the function components. The plots
of the estimated functions in Figure 2 suggested that the function forms of the five
variables (1198_at, 290_s_at, 32463_at, 33344_ at, 34100_at) are almost linear.
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TABLE 5
Real data. The mean squared estimation error (MSEE), EBIC values and averaged mean squared

prediction error (AMSPE) of different methods

Method MSEE EBIC Model size AMSPE

GAM 0.0127 0.1902 14 0.4618
GAPLM 0.0162 −0.6275 14 0.3496
GAM-SCAD 0.0132 0.2285 14 0.2949
GAPLM-SCAD 0.0205 −0.8969 11 0.2398
GAPLM-Linear 0.0191 −0.7774 11 0.4069
GLM 0.2801 0.2772 14 0.6760
GLM-LASSO 0.0989 0.9716 31 0.8530

Therefore, we further considered a GAPLM model with these five terms as linear
terms, and the rest as additive terms. For both models, we applied our proposed pe-
nalized QIF method for more refined variable selection. For the GAPLM, we also
considered the variable selection method of [25]. However, it can only select lin-
ear terms and keeps all additive terms. We refer to this method as GAPLM-Linear.
Finally, as a benchmark, we also considered two linear models; one contains only
the 14 genes selected in the high-dimensional additive model and is referred as
GLM, the other one begins with 205 genes, and variable selection in this high-
dimensional linear model is then conducted using LASSO, which is referred as
GLM-LASSO.

For the GAM, we kept all 14 variables, while both GAPLM and GAPLM-
Linear selected 11 variables. In Table 5, we report their mean squared estima-
tion errors (MSEE) and EBIC values. With the response being continuous, let
Ŷit = ∑dx

l=1 α̂l(x
(l)
it ) + zt

it β̂ be the estimator of Yit from any method. Then define

MSEE = 1
Nt

∑n
i=1

∑Ti

t=1(Yit − Ŷit )
2, with Nt being the total number of observa-

tions and Ti being the size of cluster i. Equation (3.4) with a Gaussian likelihood
was used to compute the EBIC, since the response variable is continuous and a
working independent structure is used here. It is not surprising that the GAM gave
the smallest MSEE since it has the most complicated model; while the GAPLM-
SCAD gives the most parsimonious model with the smallest EBIC value. This
suggests that with a simpler model, one may be able to make more efficient esti-
mation and inference. For the two linear models, their much larger MSEEs suggest
that the data contains nonlinear dynamics which cannot be fully incorporated by
linear models.

Furthermore, as suggested by one referee, we also compared the above methods
by their prediction performances. We randomly selected 28 patients for estimation
and left the remaining 5 patients for prediction. We calculated the mean squared
prediction errors (MSPE) for each method for 100 replications. Table 5 reports the
averaged MSPEs from 100 replications. It shows that the GAPLM-SCAD gives
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FIG. 2. Real data: Plots of the estimated components of GAM (line) and GAPLM-SCAD (dashed)
with 95% point-wise bootstrap confidence intervals from the GAM.

the smallest prediction error, and all non or semiparametric methods give smaller
prediction errors than the linear models. It again suggests that the data contains
a nonlinear structure. Those findings are consistent with the ones observed from
EBICs. In the above, we have used an independent correlation structure in all pro-
cedures. Using other types of correlation structure (e.g., exchangeable, AR-1) in
the estimation of GAM, GAPLM and GLM, which are not reported here, always
gives larger MSEEs due to the extra noise in modeling within-cluster correlation
when the sample size is rather small.

6. Discussion. In this paper, we provide new statistical theory for model se-
lection and estimation with diverging numbers of linear covariates and nonlinear
components for generalized partial linear additive models. Our work differs from
existing works in three major aspects. First, we consider model selection for both
the parametric and nonparametric parts simultaneously, while most of the literature
focuses on selection for either the parametric or the nonparametric part. Second,
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we allow the numbers of linear covariates and nonlinear components to increase
with the sample size. Theoretical development for model selection and estimation
for diverging number of covariates in nonparametric components is completely
different from finite dimension settings. Third, we allow dependence between the
covariates in the nonparametric and parametric part, and also dependence between
the longitudinal responses. All of these impose significant challenges in develop-
ing asymptotic theory and oracle properties.

Note that the growing dimensions of the nonparametric part are smaller than the
parametric part, since the nonparametric components involve many more parame-
ters than the parametric part. The order of the parametric dimension is comparable
to that in the existing literature for parametric model selection with diverging num-
ber of covariates [5, 9, 18]. To establish the asymptotic properties of the QIF esti-
mators, a crucial step is to obtain the upper and lower bounds of the eigenvalues of
the matrix Cn in the QIF equation. These bounds are assumed for the parametric
models [8] or can be derived for independent observations [31] using Lemma 1
of [24]. However, neither of these are valid in our setting. Instead, we develop an
alternative strategy through proving Lemma S.4, which is essential in establishing
bounds for the eigenvalues of a large random matrix. The result in Lemma S.4 can
also be used for verifying the second-order KKT condition on demand of bounds
of random matrix with diverging dimension.

It is worth noting that the GEE estimator under the generalized partial linear
additive model framework is semiparametric efficient under the correct correla-
tion structure [4]. Since the GEE and QIF are asymptotically equivalent when the
correlation structure is correctly specified, the proposed QIF estimator for the gen-
eralized partial linear additive model is also semiparametric efficient under the
correct correlation structure.

APPENDIX: ASSUMPTIONS AND PROOFS

A.1. Notation and definitions. For any functions s1, s2 ∈ L2([0,1]), define

〈s1, s2〉 =
∫ 1

0
s1(x)s2(x) dx and ‖s‖2

2 =
∫ 1

0
s2(x) dx.(A.1)

Let H0 be the space of constant functions on [0,1], and let H⊥
0 = {s : 〈s,1〉 =

0, s ∈ L2} and 1 is the constant function on [0,1]. Define the additive model space
M and the space of additive polynomial spline functions Mn as

M =
{
s(x) =

dx∑
l=1

sl(xl); sl ∈H⊥
0

}
, Mn =

{
s(x) =

dx∑
l=1

sl(xl); sl ∈ ϕ
0,n
l

}
,

where ϕ
0,n
l = {sl(·) : sl ∈ ϕl, 〈sl,1〉 = 0} is the centered polynomial spline space.

Let s(X) = (s(X1), . . . , s(XT ))T, for any s ∈ M and X = (XT
1 , . . . ,XT

T )T. We de-
fine the theoretical and empirical norms of s: ‖s‖2 = E{sT(X)s(X)} and ‖s‖2

n =
1
n

∑n
i=1 sT(Xi )s(Xi).



614 WANG, XUE, QU AND LIANG

For θ = (βT,γ T)T, denote a dn vector and a dn × dn matrix

Sn(θ) = ĠT
n(θ)C−1

n (θ)Gn(θ), Hn(θ) = ĠT
n(θ)C−1

n (θ)Ġn(θ),(A.2)

where the (Kdn) × dn matrix

Ġn(θ) ≡ ∂

∂θ
Gn(θ) =

(
∂

∂β
Gn(θ),

∂

∂γ
Gn(θ)

)
≡ (

Ġβ(θ), Ġγ (θ)
)
.(A.3)

By [23] and Lemma S.4, the estimating equation for θ is

n−1Q̇n(θ) ≡ n−1 ∂

∂θ
Qn(θ) = 2Sn(θ) + OP

(
ρ−1

n n−1dn

) = 0,(A.4)

and the second derivative of Qn(θ) in θ

n−1Q̈n(θ) ≡ n−1 ∂2

∂θ ∂θT Qn(θ) = 2Hn(θ) + oP (1).(A.5)

To facilitate technical arguments in the following proofs, we write

Sn(θ) =
(

ĠT
β(θ)C−1

n (θ)Gn(θ)

ĠT
γ (θ)C−1

n (θ)Gn(θ)

)
,(A.6)

Hn(θ) =
(

ĠT
β(θ)C−1

n (θ)Ġβ(θ) ĠT
β(θ)C−1

n (θ)Ġγ (θ)

ĠT
γ (θ)C−1

n (θ)Ġβ(θ) ĠT
γ (θ)C−1

n (θ)Ġγ (θ)

)
.(A.7)

A.2. Assumptions. We denote (Yi ,Xi ,Zi ), i = 1, . . . , n which are i.i.d. sam-
ples from population (Y,X,Z) with Y = (Y1, . . . , YT )T, X = (X1, . . . ,XT )T, and
Z = (Z1, . . . ,ZT )T for correlated data with cluster size T . Denote C(r)([0,1]) =
{f : f has continuous derivatives up to order r on [0,1]} as the space of the r th or-
der smooth functions on [0,1]. For any vector a, let ‖a‖ be the usual Euclidean
norm. For any matrix A, let ‖A‖ be the modulus of the largest singular value of A.
We provide the regularity conditions to obtain Theorems 1–5.

(C1) For some r ≥ 2, α0,l ∈ C(r)([0,1]) l = 1, . . . , d.

(C2) The covariance matrix � = EeeT is positive definite, and E‖e‖2+δ <

+∞ for some δ > 0.
(C3) For each Xt , t = 1, . . . , T , its density function ft (x) is absolutely contin-

uous and bounded away from zero and ∞ on a compact support χ = [0,1]dx .
(C4) The number of nonzero components in the nonparametric part sx is fixed;

there exists cα > 0 such that min1≤l≤sx ‖α0,l‖ > cα . The nonzero coefficients in the
linear part satisfy that min1≤k≤sz ‖β0k‖/λ2n → ∞.

(C5) The eigenvalues of E(�
(k)
0 ) are bounded away from 0 and ∞, uniformly

in k = 1, . . . ,K , for sufficiently large n.
(C6) The second derivative of g−1(·) exists and is bounded; function V (·) has

a bounded second derivative, and is bounded away from 0 and ∞.
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(C7) The modular of the singular value of M = (MT
1 , . . . ,MT

K)T is bounded
away from 0 and ∞.

(C8) The eigenvalues of E(XtXT
t |Zt ) are bounded away from 0 and ∞, uni-

formly in 1 ≤ t ≤ T .
(C9) There is a large enough open subset �̃n ∈ Rdn which contains θ̃0 =

(βT
0 , γ̃ T)T, for γ̃ in Section A.3, such that supθ∈�̃n

|n−1 ∂3Qn(θ)
∂θj ∂θk ∂θl

| = OP (ρ−1
n ).

(P1) lim infn→∞ lim infθ→0+ pλj,n
(θ)/λj,n > 0, j = 1,2.

(P2) an = o(1/
√

ndn), bn = o(d
−1/2
n ), where an and bn are defined in (3.1).

Conditions (C1)–(C3) are quite standard in the spline smoothing literature. As-
sumptions similar to (C1)–(C3) can be found in [14, 15, 31] and [33]. The smooth-
ness condition in (C1) controls the rate of convergence of the spline estimators α̂l ,
l = 1, . . . , dx , and α̂. Conditions (C5) and (C6) are similar to assumptions (A3) and
(A4) in [12], which can be verified for other distributions as well. The boundedness
condition in condition (C7) is essentially a requirement that the matrix Cn in (2.5)
is asymptotically positive definite. This assumption is clearly satisfied if the basis
matrices are exchangeable or AR-1 correlation structures as discussed previously.
The condition on eigenvalues in (C8) is to ensure that we do not have a multicol-
inear problem. Condition (C9) controls the magnitude of the third-order derivative
of the quadratic inference function. Similar conditions have been assumed in [5]
and [9]. Here, we require a slightly stronger condition. Instead of assuming bound-
edness, we require it be of the order OP (ρ−1

n ), where ρn = ((1 − δ)/2)(dx−1)/2 to
facilitate the technical derivation for the nonparametric components in a GAPLM
model, while both [5] and [9] consider pure parametric models.

A.3. Proof of Theorem 1. According to Lemma A.7 of [33], for any function
α ∈ M with αl ∈ C(r)([0,1]), l = 1, . . . , dx , there exists an additive spline function
α̃ = γ̃ TB ∈ Mn and a constant C such that

‖α̃ − α‖∞ ≤ CdxJ
−r
n .(A.8)

From the results of Lemma S.10 in the online supplementary material [27] and
Lemma A.6 in the online supplement of [33], we have

∥∥BT(γ̂ QIF − γ̃
)∥∥2

n = 1

n

dx∑
l=1

n∑
i=1

T∑
t=1

[
BT

l

(
x

(l)
it

)(
γ̂

QIF
l − γ̃ l

)]2
(A.9)

= OP

(
n−1dn

)
.

The triangular inequality implies that, for each l = 1, . . . , dx ,

1

n

dx∑
l=1

n∑
i=1

T∑
t=1

[
α̂l

(
x

(l)
it

)− α0,l

(
x

(l)
it

)]2 ≤ 2

n

dx∑
l=1

n∑
i=1

T∑
t=1

[
BT

l

(
x

(l)
it

)(
γ̂

QIF
l − γ̃ l

)]2
+ CdxJ

−2r
n .

This completes the proof.



616 WANG, XUE, QU AND LIANG

A.4. Proof of Theorem 2. To study the asymptotic properties of β̂
QIF

, we
consider the case that α0 in (2.1) can be estimated at reasonable accuracy, for
example, we can approximate α0 by the spline smoother α̃ in (A.8). We begin our
proof by replacing α0 with α̃ and defining an intermediate QIF estimator for β0.

For any fixed β and i = 1, . . . , n, we denote η̃i (β) = α̃(Xi ) + ZT
itβ and

μ̃i (β) = g−1{̃ηi (β)}. Let ˙̃μit (β) be the first-order derivative of g−1(η) evaluated at
η = η̃i (β). Define �̃i (β) = diag{ ˙̃μi1(β), . . . , ˙̃μiT (β)} and Ãi = diag{V (μ̃i1), . . . ,

V (μ̃iT )}. Let

g̃i (β) = gi (β,γ̃ ) =

⎛⎜⎜⎝
DT

i �̃iÃ
−1/2
i M1Ã−1/2

i

(
Yi − μ̃i (β)

)
...

DT
i �̃iÃ

−1/2
i MKÃ−1/2

i

(
Yi − μ̃i (β)

)
⎞⎟⎟⎠ .(A.10)

Define G̃n(β) = 1
n

∑n
i=1 g̃i (β). In a similar way, we define C̃n(β), and Q̃n(β).

Let β̃QIF = arg minβ n−1Q̃n(β) = arg minβ{G̃T
n(β)C̃−1

n (β)G̃n(β)}. The asymp-

totic properties of β̃QIF are given in the supplementary material [27]. Let θ̂
QIF =

(β̂
T
QIF, γ̂ T

QIF)T, θ̃0 = (βT
0 , γ̃ T)T and θ̃

QIF = (β̃
T
QIF, γ̃ T)T.

PROOF OF THEOREM 2. By Taylor expansion,

Q̇n

(̂
θ

QIF)− Q̇n(̃θ0)

= Q̈n(̃θ0)
(̂
θ

QIF − θ̃0
)+ 1

2

(̂
θ

QIF − θ̃0
)T ∂Q̇n(θ)

∂θ ∂θT

∣∣∣∣
θ=θ∗

(̂
θ

QIF − θ̃0
)
,

where θ∗ = t θ̂
QIF + (1 − t )̃θ0, for some t ∈ [0,1]. Since Q̇n(̂θ

QIF
) = 0,

−Q̇n(̃θ0) = Q̈n(̃θ0)
(̂
θ

QIF − θ̃0
)+ 1

2

(̂
θ

QIF − θ̃0
)T ∂Q̇n(θ)

∂θ ∂θT

∣∣∣∣
θ=θ∗

(̂
θ

QIF − θ̃0
)
.

According to the Cauchy–Schwarz inequality, one has∥∥∥∥1

n

(̂
θ

QIF − θ̃0
)T ∂Q̇n(θ)

∂θ ∂θT

(̂
θ

QIF − θ̃0
)∥∥∥∥2

≤ ∥∥θ̂QIF − θ̃0
∥∥4 1

n

dn∑
j,k,l=1

{
∂3Qn(θ)

∂θj ∂θk ∂θl

}2

.

Lemma S.10 and condition (C9) implies that∥∥∥∥1

n

(̂
θ

QIF − θ̃0
)T ∂Q̇n(θ)

∂θ ∂θT

(̂
θ

QIF − θ̃0
)∥∥∥∥2

≤ ∥∥θ̂QIF − θ̃0
∥∥4 × OP

(
ρ−1

n d3
n

)
= OP

(
n−2d2

n

)× OP

(
ρ−1

n d3
n

) = oP

(
n−1).

Next by (A.4) and (A.5), we have

−{
2Sn(̃θ0) + OP

(
ρ−1

n n−1dn

)} = {
2Hn(̃θ0) + oP (1)

}(̂
θ

QIF − θ̃0
)

+ oP

(
n−1/2),
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where Sn(θ) and Hn(θ) are defined in (A.2). Thus,(
β̂

QIF − β0

γ̂ QIF − γ̃

)
= −

[
2
(

Hββ Hβγ

Hγβ Hγ γ

)
+ oP (1)

]−1

× [
2Sn(̃θ0) + OP

(
ρ−1

n n−1dn

)]+ oP

(
n−1/2),

which leads to

β̂
QIF − β0 = {

Hββ − Hβγ H−1
γ γ Hγβ

}−1(I,Hβγ H−1
γ γ

)
Sn(̃θ0)

+ OP

(
ρ−1

n n−1dn

)+ oP

(
n−1/2).

According to (A.6),(
I,Hβγ (θ)H−1

γ γ (θ)
)
Sn(θ)

= (
I,Hβγ (θ)H−1

γ γ (θ)
)(

Ġβ(θ), Ġγ (θ)
)TC−1

n (θ)Gn(θ)

= {
ĠT

β(θ) − Hβγ (θ)H−1
γ γ (θ)ĠT

γ (θ)
}
C−1

n (θ)Gn(θ).

Hence, the asymptotic distribution of
√

nAn�
−1/2
n (β̂

QIF − β0) is the same as that
of

√
nAn�

−1/2
n

{
Hββ (̃θ0) − Hβγ (̃θ0)H−1

γ γ (̃θ0)Hγβ (̃θ0)
}−1

×{(
ĠT

β (̃θ0) − Hβγ H−1
γ γ ĠT

γ (̃θ0)
)
C−1

n (̃θ0)Gn(̃θ0)
}
.

The desired result follows from Lemmas S.11 and S.12. �

A.5. Proof of Theorem 3. In the following, let Ln(θ) = Qn(θ) +
n
∑dx

l=1 pλ1,n
(‖γ l‖Kl

) + ∑dz

l=1 pλ2,n
(|β l|) be the object function in (3.1). Let

�A = {θ = (βT,γ T)T :βsz+1 = · · · = βdz = 0,γ sx+1 = · · · = γ dx
= 0} and de-

fine θ̂A = (β̂
T
A, γ̂ T

A)T = arg minθ∈�A Qn(θ), which leads to the spline QIF esti-
mator of the nonzero components, given that the rest terms are zero. Note that
‖BT(γ̂A − γ̃ )‖n = OP (n−1/2d

1/2
n ) and ‖β̂A −β0‖ = OP (n−1/2d

1/2
n ) from the re-

sults of Theorems 1 and 2. It is sufficient to show that for large n and any ε > 0,
there exists a sufficient large constant C such that

P
{

inf
‖θ−θ̂A‖=Cρ−3

n d
1/2
n (n−1/2+an)

Ln(θ) > Ln(̂θA)
}

≥ 1 − ε.(A.11)

Equation (A.11) implies that Ln(·) has a local minimum in the set �∗(C) =
{θ :‖θ − θ̂A‖ ≤ Cρ−3

n d
1/2
n (n−1/2 + an)}. Thus, one has ‖θ̂QIF − θ̂A‖ =

OP {ρ−3
n d

1/2
n (n−1/2 + an)}. Further, the triangular inequality yields that ‖θ̂QIF −

θ0‖ ≤ ‖θ̂QIF − θ̂A‖ + ‖θ̂A − θ0‖ = OP {ρ−3
n d

1/2
n (n−1/2 + an)}. The theorem fol-

lows from condition (C4).
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In the following, we show that (A.11) holds. Observing that pλn(0) = 0 and
pλn(·) ≥ 0, one has

Ln(θ) − Ln(̂θA) ≥ Qn(θ) − Qn(̂θA) +
sx∑

l=1

n
{
pλ1,n

(‖γ l‖Kl

)− pλ1,n

(‖γ̂A‖Kl

)}

+
sz∑

l=1

n
{
pλ2n

(|βl|)− pλ2,n

(|β̂A,l|)}.
Note that

Qn(θ) − Qn(̂θA) = (θ − θ̂A)TQ̇n(̂θA) + 1
2(θ − θ̂A)TQ̈n(̂θA)(θ − θ̂A) + R∗

n,

where

∣∣R∗
n

∣∣ = C3

6

∣∣∣∣∣
dn∑

i,j,k=1

∂Qn(θ
∗)

∂θi ∂θj ∂θk

(θi − θ̂A,i)(θj − θ̂A,j )(θk − θ̂A,k)

∣∣∣∣∣,
θ∗ = t θ̂A + (1 − t)θ for some t ∈ [0,1].

Following [23] and Lemma S.4, for any θ ∈ �∗(C), one has

(θ − θ̂A)TQ̇n(̂θA)

= n(θ − θ̂A)TĠT
n (̂θA)C−1

n (̂θA)Gn(̂θA)
{
1 + oP (1)

}
≤ Cρ−4

n n1/2dn

(
n−1/2 + an

)
,

(θ − θ̂A)TQ̈n(̂θA)(θ − θ̂A)

= n(θ − θ̂A)TĠT
n (̂θA)C−1

n (̂θA)Ġn(̂θA)(θ − θ̂A)
{
1 + oP (1)

}
≥ C2ρ−4

n ndn

(
n−1/2 + an

)2
.

By the Cauchy–Schwarz inequality, |R∗
n| ≤ C3

6 {∑dn

i,j,k=1(
∂3Qn(θ∗)
∂θi ∂θj ∂θk

)2}1/2 × ‖θ −
θ̂A‖3. According to assumption n−1d4

n = o(1), one has

Qn(θ) − Qn(̂θA)
(A.12)

= (θ − θ̂A)TQ̇n(̂θA) + 1
2(θ − θ̂A)TQ̈n(̂θA)(θ − θ̂A)

{
1 + oP (1)

}
.

Thus, for sufficiently large C, the first term (θ − θ̂A)TQ̇n(̂θA) is dominated by the
second term 1

2(θ − θ̂A)TQ̈n(̂θA)(θ − θ̂A).
Following the proof of Theorem 2 in [31], if λ1n → 0, then for any γ with

‖BT(γ − γ̂A)‖n = C2ρ
−3
n n−1/2d

1/2
n , one has ‖γ l‖Kl

≥ aλ1,n, and ‖γ̂A,l‖Kl
≥

aλ1,n for each l = 1, . . . , sx , when n is large enough. By the definition of the
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SCAD penalty,
∑sx

l=1{pλ1,n
(‖γ l‖Kl

) − pλ1,n
(‖γ̂A,l‖Kl

)} = 0 for large n. Further-

more, for any β with ‖β − β̂A‖ ≤ Cρ−3
n d

1/2
n (n−1/2 + an),

sz∑
l=1

n
{
pλ2,n

(|βl|)− pλ2,n

(|β̂A,l|)}

=
sz∑

l=1

np′
λ2,n

(|β̂A,l|)(βl − β̂A,l) sgn(β̂A,l)

+
sz∑

l=1

np′′
λ2,n

(|β̂A,l|)(βl − β̂A,l)
2 sgn(β̂A,l)

{
1 + o(1)

}
,

p′
λ2,n

(|β̂A,l|) − p′
λ2n

(|β0,l |) = p′′
λ2,n

(|β0,l|)(β̂A,l − β0,l) sgn(β0,l){1 + o(1)}. Thus,

sz∑
l=1

p′
λ2,n

(|β̂0,l |)(βl − β̂A,l) sgn(β̂A,l)

=
sz∑

l=1

{
p′

λ2n

(|β0,l|)}(βl − β̂A,l) sgn(β̂A,l)

≤ Cρ−3
n s1/2

z and
1/2
n

(
n−1/2 + an

) ≤ Cρ−3
n dn

(
n−1/2 + an

)2
.

Meanwhile,
sz∑

l=1

np′′
λ2,n

(|β̂0,l |)(βl − β̂A,l)
2 sgn(β̂A,l) ≤ C2ρ−6

n nbndn

(
n−1/2 + an

)2
.

Hence,
∑sz

l=1 n{pλ2,n
(|βl|) − pλ2,n

(|β̂A,l|)} is also dominated by the second term
of (A.12). Hence, by choosing a sufficiently large C, (A.11) holds for large n. The
proof of Theorem 3 is completed.

A.6. Proof of Theorem 4. Let �n,d = ρ−3
n n−1/2d

1/2
n , and define �1 = {θ : θ ∈

�A,‖β − β0‖ = OP (�n,d),‖BT(γ − γ̃ )‖n = OP (�n,d)}, �l = {(βT
1 ,βT

2 ,γ T)T :
β1 = β2 = 0,γ = (0, . . . ,0,γ T

l ,0, . . . ,0)T,‖BTγ ‖n = OP (�n,d)} for l = sx +
1, . . . , dx and �l = {(βT

1 ,βT
2 ,γ T)T :β2 = 0,γ = 0,‖β1‖ = OP (�n,d)} for l =

dx + 1. It suffices to show that uniformly for any θ ∈ �1 and θ∗
l ∈ �l , Ln(θ) ≤

Ln(θ + θ∗
l ), with probability 1 as n → ∞ for any sx + 1 ≤ l ≤ dx + 1. Observe

that, for l = sx + 1, . . . , dx ,

Ln

(
θ + θ∗

l

)− Ln(θ)

= Qn

(
θ + θ∗

l

)− Qn(θ) + np′
λ1,n

(wl)
(∥∥γ ∗

l

∥∥
Kl

)
= γ ∗T

l

∂

∂γ l

Qn(θ) + 1

2
γ ∗T

l

∂

∂γ l ∂γ T
l

Qn(θ)γ ∗
l

{
1 + oP (1)

}
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+ np′
λ1,n

(wl)
(∥∥γ ∗

l

∥∥
Kl

)
= nλ1,n

∥∥BTγ l

∥∥
n

{
Rn

λ1,n

+ p′
λ1n

(wl)

λ1,n

}{
1 + oP (1)

}
,

where wl is a value between 0 and ‖γ ∗
l ‖Kl

and

Rn = n−1∥∥BTγ l

∥∥−1
n

{
γ ∗T

l

∂

∂γ l

Qn(θ) + 1

2
γ ∗T

l

∂

∂γ l ∂γ T
l

Qn(θ)γ ∗
l

{
1 + oP (1)

}}
= OP

(
ρ−4

n n−1/2d1/2
n

)
.

Noting that Rn/λ1,n = oP (1), and lim infn→∞ lim infw→0+ p′
λ1n

(w)/λ1,n = 1,
thus, uniformly for any θ ∈ �1 and θ∗

l ∈ �l , Ln(θ) ≤ Ln(θ + θ∗
l ), with proba-

bility tending to 1 as n → ∞ for any l = sx + 1, . . . , dx . On the other hand, for
l = dx + 1,

Ln

(
θ + θ∗

l

)− Ln(θ)

= β∗T
1

∂

∂β1
Qn(θ) + 1

2
β∗T

1
∂2

∂β1 ∂βT
1

Q(θ)β∗
1
{
1 + oP (1)

}
+ n

sz∑
q=1

p′
λ2,n

(|wl,q |)β∗
q sgn

(
β∗

q

)
.

Similar arguments show that uniformly for any θ ∈ �1 and θ∗
dx+1 ∈ �dx+1,

Ln(θ) ≤ Ln(θ + θ∗
dx+1), with probability tending to 1 as n → ∞. This establishes

the desired result.

A.7. Proof of Theorem 5. Let βS = (β1, . . . , βsz)
T, γ S = (γ T

1 , . . . ,γ T
sx

)T.
Denote θS = (βT

S,γ T
S)T. In a similar way, define θ̃S0 = (βT

S0, γ̃
T
S)T, in which

βS0 = (β10, . . . , βsz0)
T and γ̃ S = (γ̃ T

1 , . . . , γ̃ T
sx

)T. It can be shown easily that there
exist β̂S and γ̂ S minimizing Ln((β

T
S,0T)T, (γ T

S,0T)T), that is,

∂

∂θS
Ln(θ)

∣∣∣∣
β=(β̂

T
S ,0T)T,γ=(γ̂ T

S ,0T)T
= 0.

In the following, we consider Ln(·) as a function of θS , and denote L̇n and L̈n

the gradient vector and Hessian matrix of Ln(·) with respect to θS . The rest of the
proof follows similarly as that of Theorem 2. Using Taylor expansion, one has

L̇n

(̂
θ

PQIF
S

)− L̇n(̃θS0) = L̈n

(
θ∗
S
)(̂

θ
PQIF
S − θ̃S0

)
+ 1

2

(̂
θ

PQIF
S − θ̃S0

)T ∂L̇n(θS)

∂θS ∂θT
S

∣∣∣∣
θS=θ∗

S

(̂
θ

PQIF
S − θ̃S0

)
,
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where θ∗
S = t θ̂

PQIF
S + (1 − t )̃θS0, for some t ∈ [0,1]. Thus, we have

−n−1Q̇n(̃θS0) − κn(̃θS0)

= n−1{Q̈n(θS0) + �(θS0)
}(̂

θ
PQIF
S − θ̃S0

)
+ 1

2
n−1(̂θPQIF

S − θ̃S0
)T ∂Q̇n(θS)

∂θS ∂θT
S

∣∣∣∣
θS=θ∗

S

(̂
θ

PQIF
S − θ̃S0

)
,

where κT
n (̃θS0) = ({p′

λ2,n
(|β0,k|) sgn(β0,k)}szk=1, { ∂

∂γ l
pλ1,n

(‖γ l‖Kl
)|γ l=γ̃ l

}sxl=1) and

�(θS0) = diag({p′′
λ2,n

(|β0,k|)}szk=1, { ∂2

∂γ l ∂γ T
l

pλ1,n
(‖γ l‖Kl

)|γ l=γ̃ l
}sxl=1). Note that

∂

∂γ l

pλ1,n

(‖γ l‖Kl

) = p′
λ1,n

(‖γ l‖Kl

)‖γ l‖−1
Kl

Klγ l ,

∂2

∂γ l ∂γ T
l

pλ1,n

(‖γ l‖Kl

)
= p′

λ1,n

(‖γ l‖Kl

)‖γ l‖−1
Kl

Kl

+ {
p′′

λ1,n

(‖γ l‖Kl

)‖γ l‖−2
Kl

− p′
λ1,n

(‖γ l‖Kl

)‖γ l‖−3
Kl

}
Klγ lγ

T
l Kl ,

Jn → ∞ and λ1,n → 0, as n → ∞, so ‖γ̃ l‖Kl
≥ aλ1,n for n large enough and for

each l = 1, . . . , sx . Thus, p′
λ1,n

(‖γ̃ l‖Kl
) = 0 and p′′

λ1,n
(‖γ̃ l‖Kl

) = 0.
Similar to the proof of Theorem 2, one has

β̂
PQIF
S − βS0 = {(

Hββ(θS0) + �S0
)− Hβγ (θS0)

(
Hγ γ (θS0)

)−1Hγβ(θS0)
}−1

× (
I,Hγβ

(
θ∗
S
)(

Hγ γ
(
θ∗
S
))−1){Sn(̃θS0) + κn(̃θS0)

}
+ OP

(
ρ−1

n n−1dn

)+ oP

(
n−1/2).

Note that(
I,Hβγ (̃θS0)H−1

γ γ (̃θS0)
){

Sn(̃θS0) + κn(̃θ0)
}

= {
ĠT

β (̃θS0) − Hβγ (̃θS0)H−1
γ γ (̃θS0)ĠT

γ (̃θS0)
}
C−1

n (̃θS0)Gn(̃θS0) + κS .

The asymptotic distribution of
√

nAn�
−1/2
S,n (β̂

PQIF
S − βS0) is the same as that of

√
nAn�

−1/2
S,n

{
Hββ (̃θS0) − Hβγ (̃θS0)H−1

γ γ (̃θS0)Hγβ (̃θS0) + �S0
}−1

× {(
ĠT

β (̃θS0) − Hβγ (̃θS0)H−1
γ γ (̃θS0)(̃θS0)ĠT

γ (̃θS0)
)
C−1

n (̃θS0)Gn(̃θS0)

+ κS
}
.

Next, write ĴT
DZS

= {(̂J(1)
DZS

)T, . . . , (̂J(K)
DZS

)T}T, where Ĵ(k)
DZS

= 1
n

∑n
i=1 DT

i �
(k)
0,i ẐSi

and ẐSi = ZSi −BSi{JT
DBS

(C0
n)

−1JDBS}−1JT
DBS

(C0
n)

−1JDZS . Then we can express

Hββ (̃θS0) − Hβγ (̃θS0)H−1
γ γ (̃θS0)Hγβ (̃θS0) = ĴT

DZS

(
C0

n

)−1ĴT
DZS

{
1 + oP (1)

}
.
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Using similar arguments as given in Lemma S.11, we know

An�
−1/2
S,n

{
Hββ (̃θS0) − Hβγ (̃θS0)H−1

γ γ (̃θS0)Hγβ (̃θS0) + �S0
}−1

× (
ĠT

β (̃θS0) − Hβγ (̃θS0)H−1
γ γ (̃θS0)ĠT

γ (̃θS0)
)
C−1

n (̃θS0)Gn(̃θS0)

= An�
−1/2
S,n

{
Hββ (̃θS0) − Hβγ (̃θS0)H−1

γ γ (̃θS0)Hγβ (̃θS0) + �S0
}−1

× ĴT
DZS

(
C0

n

)−1G0
n + oP

(
n−1/2).

Thus, the desired result follows.
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SUPPLEMENTARY MATERIAL

Supplement to “Estimation and model selection in generalized additive
partial linear models for correlated data with diverging number of covari-
ates” (DOI: 10.1214/13-AOS1194SUPP; .pdf). The supplementary material pro-
vides a number of technical lemmas and their proofs. The technical lemmas are
used in the proofs of Theorems 1–5 in the paper.
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