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QUASI-BAYESIAN ANALYSIS OF NONPARAMETRIC
INSTRUMENTAL VARIABLES MODELS1

BY KENGO KATO

University of Tokyo

This paper aims at developing a quasi-Bayesian analysis of the nonpara-
metric instrumental variables model, with a focus on the asymptotic prop-
erties of quasi-posterior distributions. In this paper, instead of assuming a
distributional assumption on the data generating process, we consider a quasi-
likelihood induced from the conditional moment restriction, and put priors on
the function-valued parameter. We call the resulting posterior quasi-posterior,
which corresponds to “Gibbs posterior” in the literature. Here we focus on
priors constructed on slowly growing finite-dimensional sieves. We derive
rates of contraction and a nonparametric Bernstein–von Mises type result
for the quasi-posterior distribution, and rates of convergence for the quasi-
Bayes estimator defined by the posterior expectation. We show that, with
priors suitably chosen, the quasi-posterior distribution (the quasi-Bayes es-
timator) attains the minimax optimal rate of contraction (convergence, resp.).
These results greatly sharpen the previous related work.

1. Introduction.

1.1. Overview. Let (Y,X,W) be a triplet of scalar random variables, where
Y is a dependent variable, X is an endogenous variable and W is an instrumental
variable. Without loosing much generality, we assume that the support of (X,W)

is contained in [0,1]2. The support of Y may be unbounded. We consider the
nonparametric instrumental variables (NPIV) model of the form

E[Y | W ] = E
[
g0(X) | W ]

,(1)

where g0 : [0,1] → R is an unknown structural function of interest. Alternatively,
we can write the model in a more conventional form

Y = g0(X) + U,E[U | W ] = 0,

where X is potentially correlated with U and hence E[U | X] �= 0.
A model of the form (1) is of principal importance in econometrics (see

[28, 31]). From a statistical perspective, the problem of recovering the structural
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function g0 is challenging since it is an ill-posed inverse problem with an addi-
tional difficulty of unknown operator [K in (2) ahead]. Statistical inverse problems,
including the current problem, have attracted considerable interests in statistics and
econometrics (see, e.g., [8, 9]). For mathematical background of inverse problems,
we refer to [43].

To see that the problem of recovering the structural function g0 is an ill-
posed inverse problem, suppose that (X,W) has a square-integrable joint density
fX,W (x,w) on [0,1]2 and denote by fW(w) the marginal density of W . Define the
linear operator K :L2[0,1] → L2[0,1] by

(Kg)(w) = E
[
g(X) | W = w

]
fW(w) =

∫
g(x)fX,W (x,w)dx.

Then the NPIV model (1) is equivalent to the operator equation

Kg0 = h,(2)

where h(w) = E[Y | W = w]fW(w). Suppose that K is injective to guarantee
identification of g0.2 The problem is that, even though K is injective, its inverse
K−1 is not L2-continuous since K is Hilbert–Schmidt (as fX,W (x,w) is square
integrable on [0,1]2) and hence the lth largest singular value, denoted by κl , is ap-
proaching zero as l → ∞ (see, e.g., [56]). In this sense, the problem of recovering
g0 from h is ill-posed.

Approaches to estimating the structural function g0 are roughly classified into
two types: the method involving the Tikhonov regularization [16, 28] and the sieve-
based method [2, 5, 32, 45].3 The minimax optimal rates of convergence in esti-
mating g0 are established in [11, 28], and they are achieved by the estimators
proposed in [5, 28] under their respective assumptions. All the above mentioned
studies are, however, from a purely frequentist perspective. Little is known about
the theoretical properties of Bayes or quasi-Bayes analysis of the NPIV model.
Exceptions are [18–20, 44].

This paper aims at developing a quasi-Bayesian analysis of the NPIV model,
with a focus on the asymptotic properties of quasi-posterior distributions. The ap-
proach taken is quasi-Bayes in the sense that it neither needs to assume any specific
distribution of (Y,X,W), nor has to put a nonparametric prior on the unknown
likelihood function. The analysis is then based upon a quasi-likelihood induced
from the conditional moment restriction. The quasi-likelihood is constructed by
first estimating the conditional moment function m(·, g) = E[Y − g(X) | W = ·]

2This global identification condition is, however, not a trivial assumption; see the discussion after
Assumption 2 in Section 3.2 as well as the last paragraph in the next subsection.

3The sieve-method is further classified into two types: the method using slowly growing finite-
dimensional sieves with no or light penalties where the dimensions of sieves play the role of regular-
ization, and the method using large-dimensional sieves with heavy penalties where the penalty terms
play the role of regularization (see [10]).
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in a nonparametric way, and taking exp{−(1/2)
∑n

i=1 m̂2(Wi, g)} as if it were a
likelihood of g. For this quasi-likelihood, we put a prior on the function-valued
parameter g. By doing so, formally, the posterior distribution for g may be de-
fined, which we call “quasi-posterior distribution.” This posterior corresponds to
what [35] called “Gibbs posterior,” and has a substantial interpretation (see Propo-
sition 1 ahead). The quasi-Bayesian approach in this paper builds upon [12] where
the dimension of the parameter of interest is finite and fixed.

We focus here on priors constructed on slowly growing finite-dimensional
sieves (called “sieve or series priors”), where the dimensions of the sieve spaces
(which grow with the sample size) play the role of regularization to deal with the
problem of ill-posedness. Potentially, there are several choices in sieve spaces, but
we choose to use wavelet bases to form sieve spaces. Wavelet bases are useful to
treat smoothness function classes such as Hölder–Zygmund and Sobolev spaces in
a unified and convenient way. We also use wavelet series estimation of the condi-
tional moment function.4

Under this setup, we study the asymptotic properties of the quasi-posterior dis-
tribution. The results obtained are summarized as follows. First, we derive rates of
contraction for the quasi-posterior distribution and establish conditions on priors
under which the minimax optimal rate of contraction is attained. Here the con-
traction is stated in the standard L2-norm. Second, we show asymptotic normal-
ity of the quasi-posterior of the first kn generalized Fourier coefficients, where
kn → ∞ is the dimension of the sieve space. This may be viewed as a nonpara-
metric Bernstein–von Mises type result (see [54], Chapter 10, for the classical
Bernstein–von Mises theorem for regular parametric models). Third, we derive
rates of convergence of the quasi-Bayes estimator defined by the posterior expec-
tation and show that under some conditions it attains the minimax optimal rate
of convergence. Finally, we give some specific sieve priors for which the quasi-
posterior distribution (the quasi-Bayes estimator) attains the minimax optimal rate
of contraction (convergence, resp.). These results greatly sharpen the previous
work of, for example, [44], as we will review below.

1.2. Literature review and contributions. Closely related are [20] and [44].
The former paper worked on the reduced form equation Y = E[g0(X) | W ] + V

with V = U + g0(X) − E[g0(X) | W ] and assumed V to be normally distributed.
They considered a Gaussian prior on g, and the posterior distribution is also Gaus-
sian (conditionally on the variance of V ). They proposed to “regularize” the pos-
terior and studied the asymptotic properties of the “regularized” posterior distribu-
tion and its expectation. Clearly, the present paper largely differs from [20] in that
(i) we do not assume normality of the “error”; (ii) roughly speaking, Florens and

4This does not rule out the use of other bases such as the Fourier and Hermite polynomial bases.
See Remark 3.



2362 K. KATO

Simoni’s method is tied with the Tikhonov regularization method, while ours is
tied with the sieve-based method with slowly growing sieves. We note the settings
of [18, 19] are largely different from the present paper; moreover in the NPIV ex-
ample, some high-level conditions on estimated operators are assumed in [18, 19],
and hence they are not directly comparable to the present paper. Liao and Jiang
[44] developed an important unified framework in estimating conditional moment
restriction models based on a quasi-Bayesian approach, and their scope is more
general than ours. They analyzed NPIV models in detail in their Section 4. Their
posterior construction is similar to ours such as the use of sieve priors, but dif-
fers from ours in detail. For example, [44] transformed the conditional moment
restriction into unconditional moment restrictions with increasing number of re-
strictions. On the other hand, we directly work on the conditional moment restric-
tion, although whether Liao and Jiang’s approach will lose any efficiency in the
frequentist sense is not formally clear.

Importantly and substantially, neither [20] nor [44] established sharp contrac-
tion rates for their (quasi-)posterior distributions, nor asymptotic normality results.
It is unclear whether Florens and Simoni’s [20] rates (in their Theorem 2) are opti-
mal, since their assumptions are substantially different from the past literature such
as [28] and [11]; moreover, strictly speaking [20] did not formally derive contrac-
tion rates for their regularized posterior when the operator is unknown (note that
[18, 19], though not directly comparable to the present paper, also did not for-
mally derive posterior contraction rates in the NPIV example). Liao and Jiang [44]
only established posterior consistency. Here we focus on a simple but important
model, and establish the sharper asymptotic results for the quasi-posterior distri-
bution. Notably, a wide class of (finite dimensional) sieve priors is shown to lead to
the optimal contraction rate. Moreover, in [44], a point estimator of the structural
function is not formally analyzed. Hence, the primal contribution of this paper
is to considerably deepen the understanding of the asymptotic properties of the
quasi-Bayesian procedure for the NPIV model.

The present paper deals with a quasi-Bayesian analysis of an infinite-dimen-
sional model. The literature on theoretical studies of Bayesian analysis of infinite-
dimensional models is large. See [24–27, 38, 50] for general contraction rates
results for posterior distributions in infinite-dimensional models. Note that these
results do not directly apply to our case: the proof of the main general theorem
(Theorem 1) depends on the construction of suitable “tests” (see the proof of
Proposition 4), but how to construct such tests in a specific problem in a nonlike-
lihood framework is not trivial, especially in the current NPIV model where we
have to deal with the ill-posedness of inverse problem. Moreover, Proposition 4
alone is not sufficient for obtaining sharp contraction rates and an additional work
is needed (see the proof of Theorem 1).

There is also a large literature on the Bayesian analysis of (ill-posed) inverse
problems. One stream of research on this topic lies in the applied mathematics lit-
erature; see [51] and references therein. However, their models and scopes are sub-
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stantially different from those of the present paper; for example, [29, 30] consid-
ered (ill-conditioned) finite-dimensional linear regression models with Gaussian
errors and priors, and contractions rates of posterior distributions are not formally
studied there. In the statistics literature, we may refer to [1, 15, 39–41] (in addition
to [18–20, 44] that are already discussed), although their results are not applicable
to the analysis of NPIV models because of its particular structure (i.e., especially
the operator K is unknown, and non-Gaussian “errors” and priors are allowed).
Hence the present paper provides a further contribution to the Bayesian analysis
of ill-posed inverse problems.

Our asymptotic normality result builds upon the previous work on asymptotic
normality of (quasi-)posterior distributions for models with increasing number of
parameters [3, 4, 6, 7, 13, 22, 23]. Related is [6], in which the author established
Bernstein–von Mises theorems for Gaussian regression models with increasing
number of regressors and improved upon the earlier work of [22] in several aspects.
Reference [6] covered nonparametric models by taking into account modeling bias
in the analysis. However, none of these papers covered the NPIV model, nor more
generally linear inverse problems.

Finally, while we here assume injectivity of the operator K in (2), as one of
anonymous referees pointed out, this condition is not a trivial assumption (see also
the discussion after Assumption 2 in Section 3.2), and there are a number of works
that relax the injectivity assumption and explore partial identification approach,
such as [42, 44, 46] and [10], Appendix A.

1.3. Organization and notation. The remainder of the paper is organized as
follows. Section 2 gives an informal discussion of the quasi-Bayesian analysis of
the NPIV model. Section 3 contains the main results of the paper where general
theorems on contraction rates and asymptotic normality for quasi-posterior distri-
butions, as well as convergence rates for quasi-Bayes estimators, are stated. Sec-
tion 4 analyzes some specific sieve priors. Section 5 contains the proofs of the main
results. Section 6 concludes with some further discussions. The Appendix contains
some omitted technical results. Because of the space limitation, the Appendix is
contained in the supplemental file [36].

Notation: For any given (random or nonrandom, scalar or vector) sequence
{zi}ni=1, we use the notation En[zi] = n−1 ∑n

i=1 zi , which should be distinguished
from the population expectation E[·]. For any vector z, let z⊗2 = zzT where zT

is the transpose of z. For any two sequences of positive constants rn and sn, we
write rn � sn if the ratio rn/sn is bounded, and rn ∼ sn if rn � sn and sn � rn. Let
L2[0,1] denote the usual L2 space with respect to the Lebesgue measure for func-
tions defined on [0,1]. Let ‖ · ‖ denote the L2-norm, that is, ‖f ‖2 = ∫ 1

0 f 2(x) dx.
The inner product in L2[0,1] is denoted by 〈·, ·〉, that is, 〈f,g〉 = ∫ 1

0 f (x)g(x) dx.
Let C[0,1] denote the metric space of all continuous functions on [0,1], equipped
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with the uniform metric. The Euclidean norm is denoted by ‖ · ‖�2 . For any ma-
trix A, let smin(A) and smax(A) denote the minimum and maximum singular val-
ues of A, respectively. Let ‖A‖op denote the operator norm of a matrix A [i.e.,
‖A‖op = smax(A)]. Denote by dN(μ,�)(x) the density of the multivariate normal
distribution with mean vector μ and covariance matrix �.

2. Quasi-Bayesian analysis: Informal discussion. In this section, we outline
a quasi-Bayesian analysis of the NPIV model (1). The discussion here is informal.
The formal discussion is given in Section 3.

Let G be a parameter space (say, some smoothness class of functions, such as
a Hölder–Zygmund or Sobolev space), for which we assume g0 ∈ G . We assume
that G is at least contained in C[0,1]: G ⊂ C[0,1]. Define the conditional moment
function as m(W,g) = E[Y − g(X) | W ], g ∈ G . Then g0 satisfies the conditional
moment restriction

m(W,g0) = 0, a.s.(3)

Equivalently, we have E[m2(W,g0)] = 0.
In this paper, for the purpose of robustness, any specific distribution of

(Y,X,W) is not assumed, which we believe is more practical in statistical and
econometric applications. So a Bayesian analysis in the standard sense is not ap-
plicable here since a proper likelihood for g (g is a generic version of g0) is not
available. Instead, we use a quasi-likelihood induced from the conditional moment
restriction (3).

Let (Y1,X1,W1), . . . , (Yn,Xn,Wn) be i.i.d. observations of (Y,X,W). Let
Wn = {W1, . . . ,Wn} and Dn = {(Y1,X1,W1), . . . , (Yn,Xn,Wn)}. By (3), a plausi-
ble candidate of the quasi-likelihood would be

pg

(
Wn) = exp

{−(n/2)En

[
m2(Wi, g)

]}
,

since pg(W
n) is maximized at the true structural function g0. However, this

pg(W
n) is infeasible since m(·, g) is unknown. Instead of using pg(W

n), we re-
place m(·, g) by a suitable estimate m̂(·, g) and use the quasi-likelihood of the
form

pg(Dn) = exp
{−(n/2)En

[
m̂2(Wi, g)

]}
.

Below we use a wavelet series estimator of m(·, g).
The quasi-Bayesian analysis considered here uses this quasi-likelihood as if it

were a proper likelihood and puts priors on g ∈ G . In this paper, as in [44], we
shall use sieve priors (more precisely, priors constructed on slowly growing sieves;
[44] indeed considered another class of priors, see their supplementary material).
The basic idea is to construct a sequence of finite-dimensional sieves (say, Gn) that
well approximates the parameter space G (i.e., each function in G is well approxi-
mated by some function in Gn as n becomes large), and put priors concentrating on
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these sieves. Each sieve space is a subset of a linear space spanned by some basis
functions. Hence the problem reduces to putting priors on the coefficients on those
basis functions. Such priors are typically called “(finite dimensional) sieve priors”
(or “series priors”) and have been widely used in the nonparametric Bayesian and
quasi-Bayesian analysis (see, e.g., [24, 25, 48]).

Let �n be a so-constructed prior on g ∈ G . Then, formally, the posterior-like
distribution of g given Dn may be defined by

�n(dg | Dn) = pg(Dn)�n(dg)∫
pg(Dn)�n(dg)

,(4)

which we call “quasi-posterior distribution.” The quasi-posterior distribution is
not a proper posterior distribution in the strict Bayesian sense since pg(Dn) is
not a proper likelihood. Nevertheless, �n(dg | Dn) is a proper distribution, that
is,

∫
�n(dg | Dn) = 1. Similar to proper posterior distributions, contraction of

the quasi-posterior distribution around g0 intuitively means that it contains more
and more accurate information about the true structural function g0 as the sam-
ple size increases. Hence, as in proper posterior distributions, it is of fundamental
importance to study rates of contraction of quasi-posterior distributions. Here we
say that the quasi-posterior �n(dg | Dn) contracts around g0 at rate εn → 0 if

�n(g :‖g − g0‖ > εn | Dn)
P→ 0.

This quasi-posterior corresponds to what [58] called “Gibbs algorithm” and
what [35] called “Gibbs posterior.” The framework of the quasi-posterior (Gibbs
posterior) allows us a flexibility since a stringent distributional assumption, such
as normality, on the data generating process is not required. Such a framework
widens a Bayesian approach to broad fields of statistical problems.5 Moreover, the
following proposition gives an interesting interpretation of the quasi-posterior.

PROPOSITION 1. Let η > 0 be a fixed constant. Let � be a prior distribution
for g defined on, say, the Borel σ -field of C[0,1]. Suppose that the data Dn are
fixed and the maps g �→ m̂i(Wi, g) are measurable with respect to the Borel σ -field
of C[0,1]. Then, the distribution

�̂η(dg) = exp(−η
∑n

i=1 m̂2(Wi, g))�(dg)∫
exp(−η

∑n
i=1 m̂2(Wi, g))�(dg)

minimizes the empirical information complexity defined by

�̌ �→
∫ n∑

i=1

m̂2(Wi, g)�̌(dg) + η−1DKL(�̌‖�)(5)

5Jiang and Tanner ([35], page 2211) remarked: “This framework of the Gibbs posterior has been
overlooked by most statisticians for a long time [· · ·] a foundation for understanding the statistical
behavior of the Gibbs posterior, which we believe will open a productive new line of research.”
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over all distributions �̌ absolutely continuous with respect to �. Here

DKL(�̌‖�) =
∫

π̌ log π̌�(dg) with d�̌/d� = π̌

is the Kullback–Leibler divergence from �̌ to �.

PROOF. Immediate from [57], Proposition 5.1. �

The proposition shows that, given the data Dn and a prior � = �n on g, the
quasi-posterior �n(dg | Dn) defined in (4) is obtained as a minimizer of the em-
pirical information complexity defined by (5) with η = 1/2. This gives a ratio-
nal to use �n(dg | Dn) as a quasi-posterior since, among all possible “quasi-
posteriors”, this �n(dg | Dn) optimally balances the average of the natural loss
function g �→ ∑n

i=1 m̂2(Wi, g) and its complexity (or deviation) relative to the
initial prior distribution measured by the Kullback–Leibler divergence. The scal-
ing constant (“temperature”) η is typically treated as a fixed constant (see, e.g.,
[35, 58]). An alternative way is to choose η in a data-dependent manner, by, for
example, cross validation as mentioned in [58]. It is not difficult to see that the
theory below can be extended to the case where η is even random, as long as η

converges in probability to a fixed positive constant. However, for the sake of sim-
plicity, we take η = 1/2 as a benchmark choice (note that as long as η is a fixed
positive constant, the analysis can be reduced to the case with η = 1/2 by renor-
malization).

The quasi-posterior distribution provides point estimators of g0. A most natural
estimator would be the estimator defined by the posterior expectation (the expec-
tation of the quasi-posterior distribution), that is,

ĝQB =
⎧⎨
⎩

∫
g�n(dg | Dn), if the right integral exists,

0, otherwise,
(6)

where the integral
∫

g�n(dg | Dn) is understood as pointwise.

REMARK 1. Quasi-Bayesian approaches (not necessarily in the present form)
are widely used and there are several other attempts of making probabilistic inter-
pretation of such approaches. See, for example, [37] where the “limited informa-
tion likelihood” is derived as the “best” (in a suitable sense) approximation to the
true likelihood function under a set of moment restrictions and the Bayesian analy-
sis with the limited information likelihood is argued ([44] adapted this approach to
conditional moment restriction models), and [47] where a version of the empirical
likelihood is interpreted in a Bayesian framework.
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3. Main results. In this section, we study the asymptotic properties of the
quasi-posterior distribution and the quasi-Bayes estimator. In doing so, we have to
specify certain regularity properties, such as the smoothness of g0 and the degree
of ill-posedness of the problem. How to characterize the “smoothness” of g0 is
important since it is related to how to put priors. For this purpose, we find wavelet
theory useful, and use sieve spaces constructed by using wavelet bases.

3.1. Posterior construction. To construct quasi-posterior distributions, we
have to estimate m(·, g) and construct a sequence of sieve spaces for G on which
priors concentrate. For the former purpose, we use a (wavelet) series estimator of
m(·, g), as in [2] and [10]. For the latter purpose, we construct a sequence of sieve
spaces formed by the wavelet basis.

We begin with stating the parameter space for g0 and the wavelet basis used. We
assume that the parameter space G is either (Bs∞,∞,‖ · ‖s,∞,∞) (Hölder–Zygmund
space) or (Bs

2,2,‖ · ‖s,2,2) (Sobolev space), where Bs
p,q is the Besov space of func-

tions on [0,1] with parameter (s,p, q) (the parameter s generally corresponds to
“smoothness;” we add “s” on the parameter space, G = Gs , to clarify its depen-
dence on s). See Appendix A.2 in the supplemental file [36] for the definition of
Besov spaces. We assume that s > 1/2, under which Gs ⊂ C[0,1].

Fix (sufficiently large) J0 ≥ 0, and let {ϕint
J0k

}2J0−1
k=0 ∪ {ψ int

jk , j ≥ J0, k = 0, . . . ,

2j − 1} be an S-regular Cohen–Daubechies–Vial (CDV) wavelet basis for
L2[0,1] [14], where S is a positive integer larger than s. See Appendix A.1 in
the supplemental file [36] for CDV wavelet bases. For the notational convenience,
we write φ1 = ϕint

J0,0
, φ2 = ϕint

J0,1
, . . . , φ2J0 = ϕint

J0,2J0−1
, and φ2j+1 = ψ int

j,0, φ2j+2 =
ψ int

j,1, . . . , φ2j+1 = ψ int
j,2j−1 for j ≥ J0. Here and in what follows:

Take and fix an S-regular CDV wavelet basis of {φl, l ≥ 1} with S > s,

and we keep this convention. Let Vj be the linear subspace of L2[0,1] spanned
by {φ1, . . . , φ2j }, and denote by Pj the projection operator onto Vj , that is, for

any g = ∑∞
l=1 blφl ∈ L2[0,1], Pjg = ∑2j

l=1 blφl . In what follows, for any J ∈ N,
the notation bJ means that it is a vector of dimension 2J . For example, bJ =
(b1, . . . , b2J )T .

REMARK 2 (Approximation property). For either g ∈ Bs∞,∞ or Bs
2,2, we have

‖g − PJ g‖2 ≤ C2−2J s for all J ≥ J0. Here the constant C depends only on s and
the corresponding Besov norm of g.

REMARK 3. The use of CDV wavelet bases is not crucial and one may use
other reasonable bases such as the Fourier and Hermite polynomial bases. The the-
ory below can be extended to such bases with some modifications. However, CDV
wavelet bases are particularly well suited to approximate (not necessarily periodic)
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smooth functions, which is the reason why we use here CDV wavelet bases. On
the other hand, for example, the Fourier basis is only appropriate to approximate
periodic functions and it is often not natural to assume that the structural function
g0 is periodic.

We shall now move to the posterior construction. For J ≥ J0, define the 2J -
dimensional vector of functions φJ (w) by

φJ (w) = (
φ1(w), . . . , φ2J (w)

)T
.

Let Jn ≥ J0 be a sequence of positive integers such that Jn → ∞ and 2Jn = o(n).
Then a wavelet series estimator of m(·, g) is defined as

m̂(w,g) = φJn(w)T
(
En

[
φJn(Wi)

⊗2])−1
En

[
φJn(Wi)

(
Yi − g(Xi)

)]
,

where we replace the inverse matrix by the generalized inverse if the former does
not exist; the probability of such an event converges to zero as n → ∞ under the
assumptions below. We use this wavelet series estimator throughout the analysis.

For the same Jn, we shall take VJn = span{φ1, . . . , φ2Jn } as a sieve space for Gs .
We consider priors �n that concentrate on VJn , that is, �n(VJn) = 1. Formally,
we think of that priors on g are defined on the Borel σ -field of C[0,1] (hence the
quasi-posterior �n(dg | Dn) is understood to be defined on the Borel σ -field of
C[0,1], which is possible since the map g �→ pg(Dn) is continuous on C[0,1]).
Since the map bJn = (b1, . . . , b2Jn )

T �→ ∑2Jn

l=1 blφl,R
2Jn → C[0,1], is homeomor-

phic from R
2Jn onto VJn , putting priors on g ∈ VJn is equivalent to putting priors

on bJn ∈ R
2Jn (the latter are of course defined on the Borel σ -field of R

2Jn ). Prac-
tically, priors on g ∈ VJn are induced from priors on bJn ∈ R

2Jn . For the later
purpose, it is useful to determine the correspondence between priors for these two
parameterizations. Unless otherwise stated, we follow the convention of the nota-
tion such that

�̃n: a prior on bJn ∈ R
2Jn ↔ �n: the induced prior on g ∈ VJn .

We shall call �̃n a generating prior, and �n the induced prior.
Correspondingly, the quasi-posterior for bJn is defined. With a slight abuse of

notation, for g = ∑2Jn

l=1 blφl , we write m̂(w,bJn) = m̂(w,g), and take pbJn (Dn) =
exp{−(n/2)En[m̂2(Wi, b

Jn)]} as a quasi-likelihood for bJn . Note that in this partic-
ular setting, the log quasi-likelihood is quadratic in bJn . Let �̃n(dbJn | Dn) denote
the resulting quasi-posterior distribution for bJn :

�̃n

(
dbJn | Dn

) = pbJn (Dn)�̃n(dbJn)∫
pbJn (Dn)�̃n(dbJn)

.(7)

For the quasi-Bayes estimator ĝQB defined by (6), since for every x ∈ [0,1],
the map g �→ g(x) is continuous on C[0,1], and conditional on Dn the quasi-
posterior �n(dg | Dn) is a Borel probability measure on C[0,1], the integral
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∫
g(x)�n(dg | Dn) exists as soon as

∫ |g(x)|�n(dg | Dn) < ∞. Furthermore, ĝQB
can be computed by using the relation∫

g(x)�n(dg | Dn) = φJn(x)T
[∫

bJn�̃n

(
dbJn | Dn

)]

as soon as the integral on the right-hand side exists. Hence, practically, it is suffi-
cient to compute the expectation of �̃n(dbJn | Dn).

REMARK 4. The use of the same wavelet basis to estimate m(·, g) and to
construct a sequence of sieve spaces for Gs is not essential and can be relaxed.
Suppose that we have another CDV wavelet basis {φ̃l} for L2[0,1] and use this
basis to estimate m(·, g). Then, all the results below apply by simply replacing
φl(Wi) by φ̃l(Wi). To keep the notation simple, we use the same wavelet basis.

However, the use of the same resolution level Jn is essential (at least at the proof
level) in establishing the asymptotic properties of the quasi-posterior distribution.
It may be a technical artifact, but we do not extend the theory in this direction since
there is no clear theoretical benefit to do so (note that in the purely frequentist
estimation case, [10] allowed for using different cut-off levels for approximating
m(·, g) and g(·)).

3.2. Basic assumptions. We state some basic assumptions. We do not state
here assumptions on priors, which will be stated in the theorems below. In what
follows, let C1 > 1 be a sufficiently large constant.

ASSUMPTION 1. (i) (X,W) has a joint density fX,W (x,w) on [0,1]2 satis-
fying that fX,W (x,w) ≤ C1,∀x,w ∈ [0,1]. (ii) supw∈[0,1] E[U2 | W = w] ≤ C1

where U = Y − g0(X). (iii) smin(E[φJ (W)⊗2]) ≥ C−1
1 ,∀J ≥ J0.

Assumption 1 is a usual restriction in the literature, up to minor differences (see
[28, 32]). Denote by fX(x) and fW(w) the marginal densities of X and W , respec-
tively, that is, fX(x) = ∫

fX,W (x,w)dw and fW(w) = ∫
fX,W (x,w)dx. Then As-

sumption 1(i) implies that fX(x) ≤ C1,∀x ∈ [0,1] and fW(w) ≤ C1,∀w ∈ [0,1].
A primitive regularity condition that guarantees Assumption 1(iii) is that fW(w) ≥
C−1

1 for all w ∈ [0,1]. To see this, for αJ ∈ R
2J

with ‖αJ ‖�2 = 1, we have

(
αJ )T

E
[
φJ (W)⊗2]

αJ =
∫ 1

0

(
φJ (w)T αJ )2

fW(w)dw

≥ C−1
1

∫ 1

0

(
φJ (w)T αJ )2

dw

(8)

= C−1
1

(
αJ )T [∫ 1

0
φJ (w)φJ (w)T dw

]
αJ

= C−1
1

∥∥αJ
∥∥2
�2 = C−1

1 ,
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where we have used the fact that {φl} is orthonormal in L2[0,1].
For identification of g0, we assume:

ASSUMPTION 2. The linear operator K :L2[0,1] → L2[0,1] is injective.

For smoothness of g0, as mentioned before, we assume:

ASSUMPTION 3. ∃s > 1/2, g0 ∈ Gs , where Gs is either Bs∞,∞ or Bs
2,2.

The identification condition (Assumption 2) is equivalent to the “completeness”
of the conditional distribution of X conditional on W [45]. We refer the reader to
[17, 49] and [34] for discussion on the completeness condition. We should note
that restricting the domain of K to a “small” set, such as a Sobolev ball, would
substantially relax Assumption 2, which however requires a different analysis. For
the sake of simplicity, we assume the injectivity of K on the full domain.

As discussed in the Introduction, solving (2) is an ill-posed inverse problem.
Thus, the statistical difficulty of estimating g0 depends on the difficulty of con-
tinuously inverting K , which is usually referred to as “ill-posedness” of the in-
verse problem (2). Typically, the ill-posedness is characterized by the decay rate
of κl → 0 (κl is the lth largest singular value of K), which is plausible if K were
known and the singular value decomposition of K were used (see [9]). However,
here, K is unknown and the known wavelet basis {φl} is used instead of the singu-
lar value system. Thus, it is suitable to quantify the ill-posedness using the wavelet
basis {φl}. To this end, define

τJ = smin
(
E

[
φJ (W)φJ (X)T

]) = smin
((〈φl,Kφm〉)1≤l,m≤2J

)
, J ≥ J0.

This quantity corresponds to (the reciprocal of) what is called “sieve measure
of ill-posedness” in the literature [5, 32]. We at least have to assume that τJ > 0
for all J ≥ J0. Note however that

τJ = smin
((〈φl,Kφm〉)1≤l,m≤2J

)
= min

g∈VJ ,‖g‖=1

∥∥(〈φl,Kg〉)1≤l≤2J

∥∥
�2

≤ min
g∈VJ ,‖g‖=1

‖Kg‖ (Bessel’s inequality)

≤ κ2J (Courant–Fischer–Weyl’s minimax principle)

by which, necessarily, τJ → 0 as J → ∞. For this quantity, we assume:

ASSUMPTION 4. (i) (Mildly ill-posed case) ∃r > 0, τJ ≥ C−1
1 2−J r ,∀J ≥ J0

or (severely ill-posed case) ∃c > 0, τJ ≥ C−1
1 exp(−c2J ),∀J ≥ J0;

(ii) ∥∥E
[
φJ (W)(g0 − PJ g0)(X)

]∥∥
�2

(= ∥∥(〈
φl,K(g0 − PJ g0)

〉)2J

l=1

∥∥
�2

)
≤ C1τJ ‖g0 − PJ g0‖ ∀J ≥ J0.



QUASI-BAYES FOR NPIV 2371

Assumption 4(i) lower bounds τJ as J → ∞, thereby quantifies the ill-
posedness. We cover both the “mildly ill-posed” and “severely ill-posed” cases
(this definition of mild ill-posedness and severe ill-posedness is due to [31, 32]).
The severely ill-posed case happens, for example, when the joint density
fX,W (x,w) is analytic (see [43], Theorem 15.20).

Assumption 4(ii) is a “stability” condition about the bias g0 − PJ g0, which
states that K(g0 − PJ g0) is sufficiently “small” relative to g0 − PJ g0. Note that
in the (ideal) case in which, for example, K is self-adjoint and {φl} is the eigen-
basis of K , 〈φl,K(g0 − PJ g0)〉 = 0 for all l = 1, . . . ,2J , in which case Assump-
tion 4(ii) is trivially satisfied. Assumption 4(ii) allows more general situations in
which K may not be self-adjoint and {φl} may not be the eigen-basis of K by
allowing for a certain “slack.” This assumption, although looks technical, is com-
mon in the study of rates of convergence in estimation of the structural function g0.
Indeed, essentially similar conditions have appeared in the past literature such as
[5, 11, 32]. For example, [5], Assumption 6, essentially states (in our notation) that
‖K(g0 − PJ g0)‖ ≤ C1τJ ‖g0 − PJ g0‖, which implies our Assumption 4(ii) since
‖(〈φl,K(g0 − PJ g0)〉)2J

l=1‖�2 ≤ ‖K(g0 − PJ g0)‖ (Bessel’s inequality).

REMARK 5. For given values of C1 > 1,M > 0, r > 0, c > 0 and s > 1/2,
let F = F (C1,M, r, c, s) denote the set of all distributions of (Y,X,W) satisfying
Assumptions 1–4 with ‖g0‖s,∞,∞ ≤ M in case of Gs = Bs∞,∞ and ‖g0‖s,2,2 ≤ M

in case of Gs = Bs
2,2. By [11, 28], it is shown that the minimax rate of convergence

(in ‖ · ‖) of estimation of g0 over this distribution class F is n−s/(2r+2s+1) in the
mildly ill-posed case (where τJ ≥ C−1

1 2−J r ) and (logn)−s in the severely ill-posed
case [where τJ ≥ C−1

1 exp(−c2J )] as the sample size n → ∞ (the assumption on
the conditional second moment of U given W is not binding; that is, replacing
Assumption 1(ii) by a stronger one, such as supw∈[0,1] E[|U |2+ε | W = w] ≤ C1
for some ε > 0 determined outside the class of distributions, does not alter these
minimax rates).

By Theorem 2.5 of [24], it is readily seen that these rates are the fastest possible
rates of contraction of (general) quasi-posterior distributions in this setting. More
formally, we can state the following assertion:

Let �n(dg | Dn) be the quasi-posterior distribution defined on, say, the Borel
σ -field of C[0,1], constructed from putting a suitable prior on g to the quasi-
likelihood pg(Dn) (the prior here needs not be a sieve prior). Suppose now that
for some εn → 0, supF∈F EF [�n(g :‖g − g0‖ > εn | Dn)] → 0. Then there exists
a point estimator that converges (in probability) at least as fast as εn uniformly in
F ∈ F .

The proof is just a small modification of that of Theorem 2.5 in [24] and hence
omitted. Importantly, the quasi-posterior cannot contract at a rate faster than the
optimal rate of convergence for point estimators ([24], page 507, lines 19–20).
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Hence, in the minimax sense, the fastest possible rate of contraction of the quasi-
posterior distribution �n(dg | Dn) is n−s/(2r+2s+1) in the mildly ill-posed case and
(logn)−s in the severely ill-posed case (Proposition 2 in Section 4 ahead shows that
these rates are indeed attainable for suitable sieve priors).

3.3. Main results: General theorems. This section presents general theorems
on contraction rates and asymptotic normality for the quasi-posterior distribu-
tion as well as convergence rates for the quasi-Bayes estimator. In what follows,
let (Y1,X1,W1), . . . , (Yn,Xn,Wn) be i.i.d. observations of (Y,X,W). Denote by
bJ

0 = (b01, . . . , b0,2J )T the vector of the first 2J generalized Fourier coefficients
of g0, that is, b0l = ∫

φlg0. Let ‖ · ‖TV denote the total variation norm between two
distributions.

THEOREM 1. Suppose that Assumptions 1–4 are satisfied. Take Jn in such a
way that Jn → ∞ and Jn2Jn/n = o(τ 2

Jn
). Let εn be a sequence of positive constants

such that εn → 0 and nε2
n � 2Jn . Suppose that generating priors �̃n has densities

π̃n on R
2Jn and satisfy the following conditions:

(P1) (Small ball condition). There exists a constant C > 0 such that for all n

sufficiently large, �̃n(b
Jn :‖bJn − b

Jn

0 ‖�2 ≤ εn) ≥ e−Cnε2
n .

(P2) (Prior flatness condition). Let γn = 2−Jns + τ−1
Jn

εn. There exists a se-
quence of constants Ln → ∞ sufficiently slowly such that for all n sufficiently
large, π̃n(b

Jn) is positive for all ‖bJn − b
Jn

0 ‖�2 ≤ Lnγn, and

sup
‖bJn‖

�2≤Lnγn,‖b̃Jn‖
�2≤Lnγn

∣∣∣∣ π̃n(b
Jn

0 + bJn)

π̃n(b
Jn

0 + b̃Jn)
− 1

∣∣∣∣ → 0.

Then for every sequence Mn → ∞, we have

�̃n

{
bJn :

∥∥bJn − b
Jn

0

∥∥
�2 > Mn

(
2−Jns + τ−1

Jn

√
2Jn/n

) | Dn

} P→ 0.(9)

Furthermore, assume that Jn23Jn/n = o(τ 2
Jn

). Then we have

∥∥�̃n(· | Dn) − N
(
b̂Jn, n−1�−1

WX�WW�−1
XW

)
(·)∥∥TV

P→ 0,

where �WX := E[φJn(W)φJn(X)T ],�XW := �T
WX,�WW := E[φJn(W)⊗2], and

where b̂Jn is a “maximum quasi-likelihood estimator” of b
Jn

0 , that is,

b̂Jn ∈ arg max
bJn∈R2Jn

pbJn (Dn).(10)

PROOF. See Section 5.1. �
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REMARK 6. The condition Jn2Jn/n = o(τ 2
Jn

) appears essentially because
the operator K is unknown. In our setup, this results in estimating the ma-
trix E[φJn(W)φJn(X)T ] by its empirical counterpart En[φJn(Wi)φ

Jn(Xi)
T ]. In

the proof, we have to suitably lower bound the minimum singular value of
En[φJn(Wi)φ

Jn(Xi)
T ], denoted by τ̂Jn , which is an empirical counterpart of

the sieve measure of ill-posedness τJn . By Lemma 1, we have τ̂Jn = τJn −
OP (

√
Jn2Jn/n), so that to make the estimation effect in τ̂Jn negligible, we need

Jn2Jn/n = o(τ 2
Jn

).

REMARK 7. Theorem 1 is abstract in the sense that it only gives conditions
(P1) and (P2) on priors for which (9) and (10) hold. For specific priors, we have to
check these conditions with possible Jn, which will be done in Section 4.

Since for g = ∑2Jn

l=1 blφl , ‖g −g0‖2 = ‖g −PJng0‖2 +‖g0 −PJng0‖2 � ‖bJn −
b

Jn

0 ‖2
�2 + 2−2Jns , part (9) of Theorem 1 leads to that for every sequence Mn → ∞,

we have

�n

{
g :‖g − g0‖ > Mn

(
2−Jns + τ−1

Jn

√
2Jn/n

) | Dn

} P→ 0,

which means that the rate of contraction of the quasi-posterior distribution �n(dg |
Dn) is max{2−Jns, τ−1

Jn

√
2Jn/n}.6 In many examples, for given Jn → ∞ with

Jn2Jn/n = o(τ 2
Jn

), condition (P1) is satisfied with εn ∼
√

2Jn(logn)/n. Taking Jn

in such a way that [with some constant c′ < 1/(2c) in the severely ill-posed case]{
2Jn ∼ n1/(2r+2s+1), in the mildly ill-posed case,
lim

n→∞
(
2Jn/

(
c′ logn

)) = 1, in the severely ill-posed case,(11)

under which the optimal contraction rate is attained, γn in condition (P2) is

γn ∼
{

n−s/(2r+2s+1)(logn)1/2, in the mildly ill-posed case,
(logn)−s, in the severely ill-posed case.

(12)

So condition (P2) states that, to attain the optimal contraction rate (and the
Bernstein–von Mises type result), the prior density π̃n should be sufficiently “flat”
in a ball with center b

Jn

0 and radius of order (12). Some specific priors leading to
the optimal contraction rate will be given in Section 4.

As noted before, in many examples, for given Jn → ∞ with Jn2Jn/n =
o(τ 2

Jn
), condition (P1) is satisfied with εn ∼

√
2Jn(logn)/n. Inspection of the

proof shows that, without condition (P2), this already leads to contraction rate

max{2−Jns, τ−1
Jn

√
2Jn(logn)/n}, which, in the mildly ill-posed case, reduces to

6We have ignored the appearance of Mn → ∞, which can be arbitrarily slow. A version in which
Mn is replaced by a large fixed constant M > 0 is presented in Theorem 2.
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(n/ logn)−s/(2r+2s+1) by taking 2Jn ∼ (n/ logn)1/(2r+2s+1). However, this rate is
not fully satisfactory because of the appearance of the log term. Condition (P2) is
used to get rid of the log term.

The small ball condition (P1) is standard in nonparametric Bayesian statistics
and analogous to condition (2.4) in [24]. It is, however, stated in [24], pages 505–
506, that their Theorem 2.1 is not sharp enough when priors constructed on a
sequence of finite-dimensional sieves are used, and the more sophisticated condi-
tion (2.9) is devised in their Theorem 2.4 (see also the proof of their Theorem 4.5).
However, a version of their condition (2.9) is not clear to work in our problem,
because the effect of the random matrix En[φJn(Wi)φ

Jn(Xi)
T ] has to be suitably

controlled. Instead, we devise condition (P2) to obtain sharper contraction rates.
Under a further integrability condition about U = Y − g0(X), Mn → ∞ in (9)

can be replaced by a large fixed constant M .

THEOREM 2. Suppose that all the conditions that guarantee (9) in Theorem 1
are satisfied. Furthermore, assume that supw∈[0,1] E[U21(|U | > λ) | W = w] → 0
as λ → ∞ where U = Y − g0(X). Then there exists a constant M > 0 such that

�̃n

{
bJn :

∥∥bJn − b
Jn

0

∥∥
�2 > M

(
2−Jns + τ−1

Jn

√
2Jn/n

) | Dn

} P→ 0.(13)

PROOF. See Section 5.2. �

The proof consists in establishing a concentration property of the random vari-
able ‖En[φJn(Wi)Ui]‖�2 , which uses a truncation argument and Talagrand’s [52]
concentration inequality. A sufficient condition that guarantees that

sup
w∈[0,1]

E
[
U21

(|U | > λ
) | W = w

] → 0

as λ → ∞ is that ∃ε > 0, supw∈[0,1] E[|U |2+ε | W = w] < ∞. The additional con-
dition in Theorem 2 is a uniform integrability condition and stronger than Assump-
tion 1(ii). To see this, note that U is distributed as F−1

U |W(U | W) where F−1
U |W(u |

w) is the conditional quantile function of U given W = w, and U is a uniform
random variable on (0,1) independent of W . Think of Uw(u) = F−1

U |W(u | w),w ∈
[0,1] as a stochastic process defined on the probability space ((0,1),μ) with μ

Lebesgue measure on (0,1). Then the condition supw∈[0,1] E[U21(|U | > λ) | W =
w] → 0 as λ → ∞ states exactly the uniform integrability of (Uw)w∈[0,1].

The second part of Theorem 1 states a Bernstein–von Mises type result for the
quasi-posterior distribution �̃n(dbJn | Dn), which states that the quasi-posterior
distribution is approximated by the normal distribution centered at b̂Jn , which is
often referred to as the “sieve minimum distance estimator” and is a benchmark
frequentist estimator for these types of models. Note that, neglecting the bias, b̂Jn is
approximated as b

Jn

0 +�−1
WXEn[φJn(Wi)Ui], but the covariance matrix of the term

�−1
WX

√
nEn[φJn(Wi)Ui] is generally different from �−1

WX�WW�−1
XW (which is the
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reason why we added “type”). This is a generic nature of quasi-posterior distribu-
tions. Even for finite-dimensional models, generally, the covariance matrix of the
centering variable does not coincide with that of the normal distribution approxi-
mating the quasi-posterior distribution (see [12]).

Finally, we consider the convergence rate of the quasi-Bayes estimator ĝQB of
g0 defined by (6).

THEOREM 3. Suppose that all the conditions of Theorem 2 are satisfied. Let
ĝQB be the quasi-Bayes estimator defined by (6). Then P{Dn :

∫ |g(x)|�n(dg |
Dn) < ∞,∀x ∈ [0,1]} → 1, and there exists a constant D > 0 such that for every
sequence Mn → ∞,

P
[‖ĝQB − g0‖ ≤ D max

{
2−Jns, τ−1

Jn

√
2Jn/n, τ−1

Jn
εn�nMn

}] → 1,(14)

where

�n := sup
‖bJn‖

�2≤Lnγn,‖b̃Jn‖
�2≤Lnγn

∣∣∣∣ π̃n(b
Jn

0 + bJn)

π̃n(b
Jn

0 + b̃Jn)
− 1

∣∣∣∣,
and where εn, γn and Ln are given in the statement of Theorem 1.

PROOF. See Appendix C in the supplemental file [36]. �

Theorem 3 is not directly deduced from Theorem 1. Indeed, ‖g − g0‖ may be
unbounded on the support of �n since the support of �n may be unbounded in ‖·‖,
and hence the argument in [24], pages 506–507, cannot apply (in [24], a typical
distance to measure the goodness of a point estimator is the Hellinger distance and
uniformly bounded). Hence, additional work is needed to prove Theorem 3.

The convergence rate of the quasi-Bayes estimator is determined by the three

terms: 2−Jns, τ−1
Jn

√
2Jn/n, and τ−1

Jn
εn�nMn. The last term is typically small rel-

ative to the other two terms. Indeed, as noted before, in many examples, for
given Jn → ∞ with Jn2Jn/n = o(τ 2

Jn
), εn can be taken in such a way that

εn ∼
√

2Jn(logn)/n. In that case τ−1
Jn

εn�nMn ∼ τ−1
Jn

�nMn

√
2Jn(logn)/n, and as

long as �n → 0 sufficiently fast, that is, �n = o((logn)−1/2), the convergence rate

of the quasi-Bayes estimator ĝQB reduces to max{2−Jns, τ−1
Jn

√
2Jn/n}.

4. Prior specification: Examples. In this section, we give some specific sieve
priors for which the quasi-posterior distribution (the quasi-Bayes estimator) attains
the minimax optimal rate of contraction (convergence, resp.). We consider two
types of priors, namely, product and isotropic priors. We will verify that these
priors meet conditions (P1) and (P2) in Theorem 1 with the choice (11). For the
notational convenience, define

εn,s,r =
{

n−s/(2s+2r+1), in the mildly ill-posed case,
(logn)−s, in the severely ill-posed case.
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We may think of the severely ill-posed case as the case with r = ∞.

PROPOSITION 2. Suppose that Assumptions 1–4 are satisfied. Consider the
following two classes of prior distributions on R

2Jn :

(Product prior). Let q(x) be a probability density function on R such that for a
constant A > supl≥1 |b0l|: (1) q(x) is positive on [−A,A]; (2) logq(x) is Lipschitz
continuous on [−A,A], that is, there exists a constant L > 0 possibly depending
on A such that | logq(x)− logq(y)| ≤ L|x −y|,∀x, y ∈ [−A,A]. Take the density

of the generating prior by π̃n(b
Jn) = ∏2Jn

l=1 q(bl).
(Isotropic prior). Let r(x) be a probability density function on [0,∞) having

all moments such that: (1) for a constant A > ‖g0‖, r(x) is positive and con-
tinuous on [0,A]; (2) for a constant c′′ > 0,

∫ ∞
0 xk−1r(x) dx ≤ ec′′k log k for all k

sufficiently large. Take the density of the generating prior by π̃n(b
Jn) ∝ r(‖bJn‖�2).

Take Jn as in (11). Then, in either case of product or isotropic priors, for every

sequence Mn → ∞, we have �n{g :‖g−g0‖ > Mnεn,s,r | Dn} P→ 0. Furthermore,
if supw∈[0,1] E[U21(|U | > λ) | W = w] → 0 as λ → ∞, then there exists a con-

stant M > 0 such that �n{g :‖g − g0‖ > Mεn,s,r | Dn} P→ 0.

PROOF. See Appendix D in the supplemental file [36]. �

Proposition 2 shows that a wide class of priors constructed on slowly growing
sieves lead to the minimax optimal contraction rate (see Remark 5). In either case
of product or isotropic priors, the constant A is not necessarily known, which al-
lows q(x) and r(x) to have unbounded support. For example, in the former case,
q(x) may be the density of the standard normal distribution, in which case A can
be taken to be arbitrarily large. Likewise, in the latter case, r(x) may be the den-
sity of an exponential distribution: r(x) = λe−λx, x ≥ 0 for some λ > 0. In the
isotropic prior case, r(x) should have all moments, that is,

∫ ∞
0 xkr(x) dx < ∞ for

all k ≥ 1, which ensures that π̃n(b
Jn) ∝ r(‖bJn‖�2) is a proper distribution on R

2Jn

for every n ≥ 1.
The next proposition shows that two classes of priors in Proposition 2 lead to

the minimax optimal convergence rate for the quasi-Bayes estimator.

PROPOSITION 3. Suppose that Assumptions 1–4 are satisfied. Furthermore,
assume that supw∈[0,1] E[U21(|U | > λ) | W = w] → 0 as λ → ∞. Consider the

two classes of prior distributions on R
2Jn given in Proposition 2. In the isotropic

prior case, assume further that r(x) is Lipschitz continuous on [0,A]. Take Jn as
in (11). Then, in either case of product or isotropic priors, there exists a constant
M > 0 such that P{‖ĝQB − g0‖ > Mεn,s,r} → 0.

PROOF. See Appendix D in the supplemental file [36]. �
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REMARK 8. In the above propositions, Jn plays the role of regularization and
should be chosen sufficiently slowly growing, thereby there is no need to place
restrictions on weights on bl between 1 ≤ l ≤ 2Jn . The abstract Theorem 1 is de-
rived to cover this case. There is another way to deal with the ill-posedness, that
is, allowing for large-dimensional sieves but placing prior distributions that have
smaller weights on bl for larger l (“shrinking priors”), which corresponds to the
“sieve method using large-dimensional sieves with heavy penalties” in the classi-
fication of [10].7 The supplementary material of [44] is concerned with this ap-
proach, but they did not establish sharp contraction rates. The extension to this
approach requires a different technique than that used in the present paper, and
remains as an open problem.

5. Proofs of Theorems 1 and 2.

5.1. Proof of Theorem 1. Before proving Theorem 1, we first prepare some
technical lemmas (Lemmas 1–3) and establish preliminary rates of contraction for
the quasi-posterior distribution (Proposition 4). Proofs of Lemmas 1–3 are given
in Appendix B in the supplemental file [36]. For the notational convenience, define
the matrices

�̂WX = En

[
φJn(Wi)φ

Jn(Xi)
T ]

, �̂XW = �̂T
WX,

�̂WW = En

[
φJn(Wi)

⊗2]
,

which are the empirical counterparts of �WX,�XW and �WW , respectively. Also
define

Ui = Yi − g0(Xi), Ri = Yi − PJng0(Xi), �n = √
nEn

[
φJn(Wi)Ri

]
.

Lemma 1 is a technical lemma on these quantities. Lemma 2 characterizes the to-
tal variation convergence between two centered multivariate normal distributions
with increasing dimensions in terms of the speed of convergence between the cor-
responding covariance matrices. Lemma 3 will be used in the latter part in the
proof of Theorem 1.

LEMMA 1. Suppose that Assumptions 1–4 are satisfied. Let Jn → ∞ as
n → ∞. (i) There exists a constant D > 0 such that supw∈[0,1] ‖φJ (w)‖�2 ≤
D2J/2 for all J ≥ J0. (ii) C−1

1 ≤ smin(E[φJ (W)⊗2]) ≤ smax(E[φJ (W)⊗2]) ≤
C1 and smax(E[φJ (W)φJ (X)T ]) ≤ C1 for all J ≥ J0. (iii) If Jn2Jn/n → 0,

‖�̂WW − �WW‖op = OP (
√

Jn2Jn/n) and ‖�̂WX − �WX‖op = OP (
√

Jn2Jn/n).

7The previous version of this paper contains results on shrinking priors, but Jn should be still
slowly growing as in the above propositions, which corresponds to the sieve method using slowly
growing sieves with light penalties. Those results have been removed in the current version according
to the referee’s suggestion, but available upon request.
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(iv) ‖En[φJn(Wi)Ri]‖2
�2 = OP (2Jn/n + τ 2

Jn
2−2Jns). (v) If Jn2Jn/n = o(τ 2

Jn
),

smin(�̂WX) ≥ (1 − oP (1))τJn .

LEMMA 2. Let �n be a sequence of symmetric positive definite matrices of
dimension kn → ∞ as n → ∞ such that ‖�n − Ikn‖op = o(k−1

n ). Then as n → ∞,∫ ∣∣dN(0,�n)(x) − dN(0, Ikn)(x)
∣∣dx → 0.

LEMMA 3. Let Ân be a sequence of random kn × kn matrices where kn

is either bounded or kn → ∞ as n → ∞. Suppose that there exist sequences
of positive constants εn, δn and a sequence of nonrandom, nonsingular kn × kn

matrices An such that εn → 0, δn → 0, smin(An) � εn,‖Ân − An‖op = OP (δn)

and ε−1
n δn → 0. Then Ân is nonsingular with probability approaching one and

‖Â−1
n An − Ikn‖op ∨ ‖AnÂ

−1
n − Ikn‖op = OP (ε−1

n δn).

The following proposition gives preliminary rates of contraction for the quasi-
posterior distribution.

PROPOSITION 4 (Preliminary contraction rates). Suppose that Assumptions
1–4 are satisfied. Take Jn in such a way that Jn → ∞ and Jn2Jn/n = o(τ 2

Jn
). Let

εn be a sequence of positive constants such that εn → 0 and
√

nεn → ∞. Assume
that a sequence of generating priors �̃n satisfies condition (P1) of Theorem 1.
Define the data-dependent, empirical seminorm ‖ · ‖Dn on R

2Jn by∥∥bJn
∥∥

Dn
= ∥∥�̂WXbJn

∥∥
�2, bJn ∈ R

2Jn
.

Then for every sequence Mn → ∞, we have

�̃n

{
bJn :

∥∥bJn − b
Jn

0

∥∥
Dn

> Mn

(
εn + τJn2−Jns) | Dn

} P→ 0.

PROOF. Proof of Proposition 4 The proof consists of constructing suitable
“tests” and is essentially similar to, for example, the proof of Theorem 2.1 in [24].
Let δn = εn + τJn2−Jns . We wish to show that there exists a constant c0 > 0 such
that

P
{
�̃n

(
bJn :

∥∥bJn − b
Jn

0

∥∥
Dn

> Mnδn | Dn

) ≤ e−c0M
2
nnδ2

n
} → 1.(15)

Note that since
√

nεn → ∞, nδ2
n ≥ nε2

n → ∞. Below, c1, c2, . . . are some positive
constants of which the values are understood in the context.

Note that Yi = PJng0(Xi) + Ri = φJn(Xi)
T b

Jn

0 + Ri . Then for bJn ∈ R
2Jn ,

En

[
m̂2(

Wi,b
Jn

)] = −2
(
bJn − b

Jn

0

)T
�̂XW�̂−1

WW En

[
φJn(Wi)Ri

]
+ (

bJn − b
Jn

0

)T
�̂XW�̂−1

WW�̂WX

(
bJn − b

Jn

0

)
(16)

+ En

[
φJn(Wi)Ri

]T
�̂−1

WW En

[
φJn(Wi)Ri

]
.
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Since the last term is independent of bJn , it is canceled out in the quasi-posterior
distribution. Denote by �bJn (Dn) the sum of the first two terms in (16). Then

�̃n

(
dbJn | Dn

) ∝ exp
{−(n/2)�bJn (Dn)

}
�̃n

(
dbJn

)
.

Using the fact that for any x, y, c ∈ R with c > 0, 2xy ≤ cx2 + c−1y2, we have

�bJn (Dn) ≥ (λ̂min − c)
∥∥bJn − b

Jn

0

∥∥2
Dn

(17)
− c−1λ̂2

max
∥∥En

[
φJn(Wi)Ri

]∥∥2
�2 ∀c > 0,

where λ̂min and λ̂max are the minimum and maximum eigenvalues of the matrix
�̂−1

WW , respectively. Likewise, we have

�bJn (Dn) ≤ (λ̂max + c)
∥∥bJn − b

Jn

0

∥∥2
Dn

(18)
+ c−1λ̂2

max
∥∥En

[
φJn(Wi)Ri

]∥∥2
�2 ∀c > 0.

Define the event

E1n = {
Dn : λ̂min < 0.5C−1

1

} ∪ {Dn : λ̂max > 1.5C1}
∪ {

Dn :
∥∥En

[
φJn(Wi)Ri

]∥∥2
�2 > Mnδ

2
n

}
.

Construct the “tests” ωn by ωn = 1(E1n). Then we have

�̃n

(
bJn :

∥∥bJn − b
Jn

0

∥∥
Dn

> Mnδn | Dn

)
= �̃n

(
bJn :

∥∥bJn − b
Jn

0

∥∥
Dn

> Mnδn | Dn

){
ωn + (1 − ωn)

}
(19)

≤ ωn + �̃n

(
bJn :

∥∥bJn − b
Jn

0

∥∥
Dn

> Mnδn | Dn

)
(1 − ωn).

By Lemma 1(ii)–(iv), we have P(ωn = 1) = P(E1n) → 0.
For the second term in (19), taking c > 0 sufficiently small in (17), we have

(1 − ωn)

∫
‖bJn−b

Jn
0 ‖Dn>Mnδn

exp
{−(n/2)�bJn (Dn)

}
�̃n

(
dbJn

)

≤ exp
{−c1M

2
nnδ2

n + O
(
Mnnδ2

n

)} ≤ e−c2M
2
nnδ2

n .

On the other hand, taking, say c = 1 in (18), we have

(1 − ωn)

∫
exp

{−(n/2)�bJn (Dn)
}
�̃n

(
dbJn

)

≥ (1 − ωn)

∫
‖bJn−b

Jn
0 ‖Dn≤√

Mnεn

exp
{−(n/2)�bJn (Dn)

}
�̃n

(
dbJn

)

≥ (1 − ωn)e
−c3Mnnδ2

n

∫
‖bJn−b

Jn
0 ‖Dn≤√

Mnεn

�̃n

(
dbJn

)
.
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Denote by ŝmax the maximum singular value of the matrix �̂WX , so that∥∥bJn − b
Jn

0

∥∥
Dn

≤ ŝmax
∥∥bJn − b

Jn

0

∥∥
�2 .

Define the event E2n = {Dn : ŝmax ≤ 1.5C1}. By Lemma 1(ii) and (iii), we have
P(E2n) → 1. Since Mn → ∞, for all n sufficiently large, we have

1(E2n)(1 − ωn)

∫
exp

{−(n/2)�bJn (Dn)
}
�̃n

(
dbJn

)
≥ 1(E2n)(1 − ωn)e

−c3Mnnδ2
n�̃n

(
bJn :

∥∥bJn − b
Jn

0

∥∥
�2 ≤ εn

)
≥ 1(E2n)(1 − ωn)e

−c3Mnδ2
n−Cnε2

n

≥ 1(E2n)(1 − ωn)e
−c4Mnnδ2

n,

where the second inequality is due to the small ball condition (P1). Summarizing,
we have

�̃n

(
bJn :

∥∥bJn − b
Jn

0

∥∥
Dn

> Mnδn | Dn

)
(1 − ωn) ≤ 1

(
E c

2n

) + e−c2M
2
nnδ2

n+c4Mnnδ2
n .

Therefore, we obtain (15) for a sufficiently small c0 > 0. �

We are now in position to prove Theorem 1. We will say that a sequence of ran-
dom variables An is eventually bounded by another sequence of random variables
Bn if P(An ≤ Bn) → 1 as n → ∞.

PROOF OF THEOREM 1. We first note that by Lemma 1(ii), (iii) and (v),
the matrices �̂WX and �̂WW are nonsingular with probability approaching one.
Conditional on Dn, define the rescaled “parameter” θJn = (θ1, . . . , θ2Jn )

T =√
n�̂WX(bJn − b

Jn

0 ). By (16), the corresponding “quasi-posterior” density for θJn

is given by

π∗
n

(
θJn | Dn

)
dθJn ∝ π̃n

(
b

Jn

0 + �̂−1
WXθJn/

√
n
)
dN(�n, �̂WW)

(
θJn

)
dθJn,

where recall that �n = √
nEn[φJn(Wi)Ri] (this operation is valid as soon as �̂WX

and �̂WW are nonsingular, of which the probability is approaching one).
The proof of Theorem 1 consists of 3 steps. After step 1, we will turn to the

proof of (9). The remaining two steps are devoted to the proof of (10).
Step 1. We first show that∫ ∣∣π∗

n

(
θJn | Dn

) − dN(�n, �̂WW)
(
θJn

)∣∣dθJn
P→ 0.(20)

In this step, we do not assume Jn23Jn/n = o(τ 2
Jn

). As before, let δn = εn +
τJn2−Jns . By Proposition 4, for every sequence Mn → ∞,∫

‖θJn‖
�2≤Mn

√
nδn

π∗
n

(
θJn | Dn

)
dθJn = 1 + oP (1)
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by which we have

Left-hand side of (20)

≤
∫
‖θJn‖

�2≤Mn
√

nδn

∣∣π∗
n

(
θJn | Dn

) − dN(�n, �̂WW)
(
θJn

)∣∣dθJn(21)

+
∫
‖θJn‖

�2>Mn
√

nδn

dN(�n, �̂WW)
(
θJn

)
dθJn + oP (1).

By Lemma 1(iv), ‖�n‖�2 = OP (
√

nδn), and by Lemma 1(ii) and (iii), (1 −
oP (1))C−1

1 ≤ smin(�̂WW) ≤ smax(�̂WW) ≤ (1 + oP (1))C1, so that the second in-
tegral is eventually bounded by∫

‖θJn‖
�2>

√
Mnnδn

dN(0, I2Jn )
(
θJn

)
dθJn,(22)

where note that Mn is replaced by
√

Mn to “absorb” the constant. By Borell’s
inequality for Gaussian measures (see, e.g., [55], Lemma A.2.2), for every x > 0,

P
(∥∥N(0, I2Jn )

∥∥
�2 >

√
2Jn + x

) ≤ e−x2/2.(23)

Here since nδ2
n ≥ nε2

n � 2Jn ,
√

Mnnδn/
√

2Jn → ∞, so that the integral in (22) is
o(1).

It remains to show that the first integral in (21) is oP (1). This step uses a stan-
dard cancellation argument. Let Cn := {θJn ∈ R

2Jn :‖θJn‖�2 ≤ Mn

√
nδn}. First,

provided that ‖�̂−1
WX‖op ≤ 1.5τ−1

Jn
, for all θJn ∈ Cn,

∥∥�̂−1
WXθJn/

√
n
∥∥
�2 ≤ 1.5Mnτ

−1
Jn

δn ≤ 1.5Mn

(
2−Jns + τ−1

Jn
εn

) ∼ Mnγn.

So taking Mn → ∞ such that Mn = o(Ln), ‖�̂−1
WXθJn/

√
n‖�2 ≤ Lnγn and hence

π̃n(b
Jn

0 + �̂−1
WXθJn/

√
n) > 0 for all n sufficiently large. Here, by Lemma 1(v), we

have P(‖�̂−1
WX‖op ≤ 1.5τ−1

Jn
) → 1.

Suppose that ‖�̂−1
WX‖op ≤ 1.5τ−1

Jn
. Let

π∗
n,Cn

(
θJn | Dn

)
and dN Cn(�n, �̂WW)

(
θJn

)
denote the probability densities obtained by first restricting π∗

n (θJn | Dn) and
dN(�n, �̂WW)(θJn) to the ball Cn and then renormalizing, respectively. By the
first part of the present proof, replacing π∗

n (θJn | Dn) and dN(�n, �̂WW)(θJn)

by π∗
n,Cn

(θJn | Dn) and dN Cn(�n, �̂WW)(θJn), respectively, in the first inte-
gral in (21) has impact at most oP (1). Abbreviating π∗

n,Cn
(θJn | Dn) by π∗

n,Cn
,

dN Cn(�n, �̂WW)(θJn) by dN Cn , dN(�n, �̂WW)(θJn) by dN , and π̃n(b
Jn

0 +
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�̂−1
WXθJn/

√
n) by π̃n, we have

∫ ∣∣π∗
n,Cn

− dN Cn
∣∣ =

∫ ∣∣∣∣1 − dN Cn

π∗
n,Cn

∣∣∣∣π∗
n,Cn

=
∫ ∣∣∣∣1 − dN/

∫
Cn

dN

π̃ndN/
∫

Cn
π̃ndN

∣∣∣∣π∗
n,Cn

=
∫ ∣∣∣∣1 −

∫
Cn

π̃ndN

π̃n

∫
Cn

dN

∣∣∣∣π∗
n,Cn

=
∫ ∣∣∣∣1 −

∫
Cn

π̃ndN Cn

π̃n

∣∣∣∣π∗
n,Cn

.

By the convexity of the map x �→ |1 − x| and Jensen’s inequality, the last expres-
sion is bounded by

sup
θJn∈Cn,θ̃Jn∈Cn

∣∣∣∣1 − π̃n(b
Jn

0 + �̂−1
WXθJn/

√
n)

π̃n(b
Jn

0 + �̂−1
WXθ̃Jn/

√
n)

∣∣∣∣,
which is eventually bounded by

sup
‖bJn‖

�2≤Lnγn,‖b̃Jn‖
�2≤Lnγn

∣∣∣∣1 − π̃n(b
Jn

0 + bJn)

π̃n(b
Jn

0 + b̃Jn)

∣∣∣∣.
The last expression goes to zeros as n → ∞ by condition (P2).

We now turn to the proof of (9). Take any Mn → ∞ (this Mn may be different
from the previous Mn). By step 1, we have

sup
z>0

∣∣∣∣�̃n

{
bJn :

∥∥�̂WX

(
bJn − b

Jn

0

)∥∥
�2 > z | Dn

}

−
∫
‖θJn‖

�2>z
dN

(
n−1/2�n,n

−1�̂WW

)(
θJn

)
dθJn

∣∣∣∣ P→ 0.

By Lemma 1(v), we have∥∥�̂WX

(
bJn − b

Jn

0

)∥∥
�2 ≥ smin(�̂WX)

∥∥bJn − b
Jn

0

∥∥
�2

≥ (
1 − oP (1)

)
τJn

∥∥bJn − b
Jn

0

∥∥
�2

by which we have, uniformly in z > 0,

�̃n

{
bJn :

∥∥bJn − b
Jn

0

∥∥
�2 > 2τ−1

Jn
z | Dn

}
≤ �̃n

{
bJn :

∥∥�̂WX

(
bJn − b

Jn

0

)∥∥
�2 > z | Dn

} + oP (1)

≤
∫
‖θJn‖

�2>z
dN

(
n−1/2�n,n

−1�̂WW

)(
θJn

)
dθJn + oP (1).

By Markov’s inequality, the integral in the last expression is bounded by

1

nz2

{‖�n‖2
�2 + tr(�̂WW)

}
.
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By Lemma 1(ii)–(iv), we have ‖�n‖2
�2 + tr(�̂WW) = OP (2Jn + nτ 2

Jn
2−2Jns).

Therefore, we conclude that, taking z = Mn(τJn2−Jns +
√

2Jn/n), �̃n{bJn :‖bJn −
b

Jn

0 ‖�2 > 2Mn(2−Jns + τ−1
Jn

√
2Jn/n) | Dn} P→ 0, which leads to the contraction rate

result (9).
In what follows, we assume Jn23Jn/n = o(τ 2

Jn
), and prove the asymptotic nor-

mality result (10).
Step 2 (replacement of �̂WW by �WW ). This step shows that∫ ∣∣dN(�n, �̂WW)

(
θJn

) − dN(�n,�WW)
(
θJn

)∣∣dθJn
P→ 0,

which is equivalent to∫ ∣∣dN(0, �̂WW)
(
θJn

) − dN(0,�WW)
(
θJn

)∣∣dθJn
P→ 0.

By Lemmas 1(ii), (iii) and 2, this follows if
√

Jn2Jn/n = o(2−Jn), that is, Jn23Jn =
o(n), which is satisfied since Jn23Jn/n = o(τ 2

Jn
) = o(1).

Step 3 (replacement of �̂WX by �WX). We have shown that∫ ∣∣π∗
n

(
θJn | Dn

) − dN(�n,�WW)
(
θJn

)∣∣dθJn
P→ 0.

By Scheffé’s lemma, this means that

∥∥�̃n

{
bJn :

√
n�̂WX

(
bJn − b

Jn

0

) ∈ · | Dn

} − N(�n,�WW)(·)∥∥TV
P→ 0

or equivalently,

∥∥�̃n

{
bJn :

√
n
(
bJn − b

Jn

0

) ∈ · | Dn

} − N
(
�̂−1

WX�n, �̂
−1
WX�WW�̂−1

XW

)
(·)∥∥TV

P→ 0.

The last expression is asymptotically valid since �̂WX is nonsingular with proba-
bility approaching one. Recall the maximum quasi-likelihood estimator b̂Jn . With
probability approaching one, we have

b̂Jn = �̂−1
WXEn

[
φJn(Wi)Yi

] = b
Jn

0 + �̂−1
WXEn

[
φJn(Wi)Ri

]
,

so that
√

n(b̂Jn − b
Jn

0 ) = �̂−1
WX�n. Hence to conclude the theorem, it suffices to

show that ∥∥N(
�̂−1

WX�n, �̂
−1
WX�WW�̂−1

XW

)
(24)

− N
(
�̂−1

WX�n,�
−1
WX�WW�−1

XW

)∥∥
TV

P→ 0.

Assertion (24) reduces to
∥∥N(

0,�WX�̂−1
WX�WW�̂−1

XW�XW

) − N(0,�WW)
∥∥

TV
P→ 0.
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By Lemmas 1(ii), (iii) and 3,
∥∥�WX�̂−1

WX�WW�̂−1
XW�XW − �WW

∥∥
op = OP

(
τ−1
Jn

√
Jn2Jn/n

) = oP

(
2−Jn

)
[the last equality follows since Jn23Jn/n = o(τ 2

Jn
)]. Since C−1

1 ≤ smin(�WW) ≤
smax(�WW) ≤ C1, the desired conclusion follows from Lemma 2.

Steps 1–3 lead to the asymptotic normality result (10). �

5.2. Proof of Theorem 2. We first prove the following lemma.

LEMMA 4. Suppose that the conditions of Theorem 2 are satisfied. Then there
exists a constant D > 0 such that

P
{∥∥En

[
φJn(Wi)Ui

]∥∥
�2 > D

√
2Jn/n

} → 0.

REMARK 9. It is standard to show that ‖En[φJn(Wi)Ui]‖�2 = OP (
√

2Jn/n),
which, however, does not leads to the conclusion of Lemma 4 since the for-
mer only implies that for every sequence Mn → ∞, P{‖En[φJn(Wi)Ui]‖�2 >

Mn

√
2Jn/n} → 0. Hence, an additional step is needed. The current proof uses a

truncation argument and Talagrand’s concentration inequality.

PROOF OF LEMMA 4. For a given λ > 0, define U−
i = Ui1(|Ui | ≤ λ)

and U+
i = Ui1(|Ui | > λ). Since 0 = E[U | W ] = E[U− | W ] + E[U+ | W ],

we have En[φJn(Wi)Ui] = n−1 ∑n
i=1{φJn(Wi)U

−
i − E[φJn(W)U−]} + n−1 ×∑n

i=1{φJn(Wi)U
+
i − E[φJn(W)U+]}, by which we have

∥∥En

[
φJn(Wi)Ui

]∥∥
�2 ≤

∥∥∥∥∥n−1
n∑

i=1

{
φJn(Wi)U

−
i − E

[
φJn(W)U−]}∥∥∥∥∥

�2

+
∥∥∥∥∥n−1

n∑
i=1

{
φJn(Wi)U

+
i − E

[
φJn(W)U+]}∥∥∥∥∥

�2

=: I + II.

First, by Markov’s inequality, we have for every z > 0,

P(II > z) ≤ E[II2]
z2 ≤

∑2Jn

l=1 E[(φl(W)U+)2]
nz2

≤ supw∈[0,1] E[U21(|U | > λ) | W = w] × ∑2Jn

l=1 E[φl(W)2]
nz2

≤ C12Jn

nz2 × sup
w∈[0,1]

E
[
U21

(|U | > λ
) | W = w

]
,
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where we have used that
∑2Jn

l=1 E[φl(W)2] = tr(�WW) ≤ 2Jnsmax(�WW) ≤ C12Jn

by Lemma 1(ii). Thus, we have

P
{
II >

√
C12Jn/n

} ≤ sup
w∈[0,1]

E
[
U21

(|U | > λ
) | W = w

]
.

By assumption, the right-hand side goes to zero as λ → ∞.
Second, let Zi = φJn(Wi)U

−
i −E[φJn(W)U−] (denote by Z the generic version

of Zi). Let S
2Jn−1 := {αJn ∈ R

2Jn :‖αJn‖�2 = 1}. Then

I = ∥∥En[Zi]
∥∥
�2 = sup

αJn∈S2Jn−1

En

[(
αJn

)T
Zi

]
.

We make use of Talagrand’s concentration inequality to bound the tail probability
of I . For any αJn ∈ S

2Jn−1, by Lemma 1, we have

E
[{(

αJn
)T

Z
}2] ≤ sup

w∈[0,1]
E

[
U2 | W = w

] × smax(�WW) ≤ C2
1 ,

∣∣(αJn
)T

Z
∣∣ ≤ λ sup

w∈[0,1]
∥∥φJn(w)

∥∥
�2 ≤ D1λ

√
2Jn

and

(
E[I ])2 ≤ E

[
I 2] ≤ n−1 sup

w∈[0,1]
E

[
U2 | W = w

] ×
2Jn∑
l=1

E
[
φl(W)2]

≤ C2
12Jn/n,

where D1 > 0 is a constant. Thus, by Talagrand’s inequality (see Theorem 2 in
Appendix E), we have for every z > 0

P
{
I ≥ D2

(√
2Jn/n + √

z/n + zλ
√

2Jn/n
)} ≤ e−z,

where D2 > 0 is a constant independent of λ and z.
The final conclusion follows from taking λ = λn → ∞ and z = zn → ∞ suffi-

ciently slowly. �

PROOF OF THEOREM 2. Let D1 and D2 be some positive constants of which
the values are understood in the context. For either g0 ∈ Bs∞,∞ or Bs

2,2, ‖g0 −
PJng0‖ = O(2−Jns) = o(1), by which we have

2Jn∑
l=1

Var
{
En

[
φl(Wi)(g0 − PJng0)(Xi)

]}

≤ n−1
2Jn∑
l=1

E
[
φl(W)2{

(g0 − PJng0)(X)
}2]
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= n−1
2Jn∑
l=1

∫ ∫
φl(w)2{

(g0 − PJng0)(x)
}2

fX,W (x,w)dx dw

≤ n−1C1‖g0 − PJng0‖2 ×
2Jn∑
l=1

∫
φl(w)2 dw = o

(
2Jn/n

)
.

Hence

En

[
φJn(Wi)Ri

] = En

[
φJn(Wi)Ui

]
+ E

[
φJn(W)(g0 − Png0)(X)

] + Rem

with ‖Rem‖�2 = oP (
√

2Jn/n). The second term on the right-hand side is

O(τJn2−Jns) in the Euclidean norm. Together with Lemma 4, we have

P
{∥∥En

[
φJn(Wi)Ri

]∥∥2
�2 > D1

(
τ 2
Jn

2−2Jns + 2Jn/n
)} → 0.

Moreover, by Lemma 1, we have

tr(�̂WW) ≤ 2Jnsmax(�̂WW) ≤ C1
(
1 + oP (1)

)
2Jn.

Taking these together, we have

P
{∥∥En

[
φJn(Wi)Ri

]∥∥2
�2 + n−1 tr(�̂WW) ≤ D2

(
τ 2
Jn

2−2Jns + 2Jn/n
)} → 1.

By the proof of Theorem 1, this leads to the desired conclusion. �

6. Discussion. We have studied the asymptotic properties of quasi-posterior
distributions against sieve priors in the NPIV model and given some specific priors
for which the quasi-posterior distribution (the quasi-Bayes estimator) attains the
minimax optimal rate of contraction (convergence, resp.). These results greatly
sharpen the previous work [44]. We end this paper with two additional discussions.

6.1. Multivariate case. In this paper, we have focused on the case where X

and W are scalar, mainly to avoid the notational complication. It is not diffi-
cult to see that the results naturally extend to the case where X and W are vec-
tors with the same dimension, by considering tensor product sieves (the contrac-
tion/convergence rates will then deteriorate as the dimension grows). We can also
consider the following more general situation as in Section 3 of [28]: suppose
that Y is a scalar random variable, X and W are random vectors with the same
dimension, and Z is another random vector (whose dimension may be different
from X), and suppose that we are interested in estimating the function g0 identi-
fied by the conditional moment restriction: E[Y | Z,W ] = E[g0(X,Z) | Z,W ] or
Y = g0(X,Z) + U with E[U | Z,W ] = 0 (i.e., X and Z are endogenous and ex-
ogenous explanatory variables, resp.). In principle, the analysis can be reduced to
the case where there are no exogenous variables by conditioning on Z = z (so the
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sieve measure of ill-posedness can be defined by the one conditional on Z = z).
More precisely, when Z is discretely distributed with finitely many mass points,
then g0(x, z), where z is a mass point, can be estimated by using only observa-
tions i for which Zi = z. When Z is continuously distributed, then g0(x, z) can be
estimated by using observations i for which Zi is “close” to z; one way is to use
kernel weights as in Section 4.2 of [31]. However, the detailed analysis of this case
is not presented here for brevity.

6.2. Direction of future research. Finally, we make some remarks on the di-
rection of future research. First, as also noted by [44], (adaptive) selection of the
resolution level Jn in a (quasi-)Bayesian or “empirical” Bayesian approach is an
important topic to be investigated. Second, a (quasi-)Bayesian analysis is typically
useful in the analysis of complex models in which frequentist estimation is difficult
to implement due to nondifferentiability/nonconvex nature of loss functions. This
usefulness comes from the fact that a (quasi-)Bayesian approach is typically able
to avoid numerical optimization. See [12] and [53] for the finite-dimensional case.
In infinite-dimensional models, such a computational challenge in frequentist es-
timation occurs in the analysis of nonparametric instrumental quantile regression
models [10, 21, 33]. In that model, a typical loss function contains the indicator
function and hence highly nonconvex. In such a case, the computation of an opti-
mal solution is by itself difficult, and a solution obtained, if possible, is typically
not guaranteed to be globally optimal since there may be many local optima. It is
hence of interest to extend the results of the paper to nonparametric instrumental
quantile regression models. The extension to the quantile regression case, which
is currently under investigation, is highly nontrivial since the problem of estimat-
ing the structural function becomes a nonlinear ill-posed inverse problem and a
delicate care of the stochastic expansion of the criterion function is needed.
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