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This paper considers the statistical inference of the class of asymmetric
power-transformed GARCH(1,1) models in presence of possible explosive-
ness. We study the explosive behavior of volatility when the strict stationarity
condition is not met. This allows us to establish the asymptotic normality of
the quasi-maximum likelihood estimator (QMLE) of the parameter, includ-
ing the power but without the intercept, when strict stationarity does not hold.
Two important issues can be tested in this framework: asymmetry and station-
arity. The tests exploit the existence of a universal estimator of the asymptotic
covariance matrix of the QMLE. By establishing the local asymptotic nor-
mality (LAN) property in this nonstationary framework, we can also study
optimality issues.

1. Introduction. Following more than twenty years of tremendous develop-
ment of the theory of unit roots in linear time series models [see the seminal papers
by Dickey and Fuller (1979) and Phillips and Perron (1988)], there has been, in the
last decade, much interest in the statistical analysis of nonlinear time series mod-
els under nonstationarity assumptions; see, for example, Karlsen and Tjøstheim
(2001), Karlsen, Myklebust and Tjøstheim (2007), Ling and Li (2008), Aue and
Horváth (2011). In the framework of GARCH (Generalized Autoregressive Con-
ditional Heteroscedasticity) models, Jensen and Rahbek (2004a, 2004b) were the
first to establish an asymptotic theory for the quasi-maximum likelihood estima-
tor (QMLE) of nonstationary GARCH(1,1), assuming that the intercept is fixed
to an arbitrary value. Aknouche, Al-Eid and Hmeid (2011) and Aknouche and
Al-Eid (2012) studied the properties of weighted least-squares estimators. Francq
and Zakoïan (2012) established the asymptotic properties of the standard QMLE
of the complete parameter vector: they showed that, while the intercept cannot be
consistently estimated, the QMLE of the remaining parameters is consistent (in
the weak sense at the frontier of the stationarity region, and in the strong sense
outside) and asymptotically normal with or without strict stationarity. Asymptotic
results for stationary GARCH(p, q) had been established for the first time under
mild conditions by Berkes, Horváth and Kokoszka (2003).
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Financial series are well known to present conditional asymmetry features, in
the sense that large negative returns tend to have more impact on future volatili-
ties than large positive returns of the same magnitude. This stylized fact, known
as the leverage effect, was first documented by Black (1976) and led to various
generalizations of the GARCH models of the first generation; see among oth-
ers, Glosten, Jaganathan and Runkle (1993), Rabemananjara and Zakoïan (1993),
Higgins and Bera (1992), Li and Li (1996), Francq and Zakoïan (2010). Moti-
vated by the Box–Cox transformation, Hwang and Kim (2004) introduced a power
transformed ARCH model, and the GARCH extension was studied by Pan, Wang
and Tong (2008). In this paper we consider an asymmetric power-transformed
GARCH(1,1) model defined, for a given positive constant δ, by{

εt = h1/δ
t ηt ,

ht = ω0 + α0+
(
ε+t−1

)δ + α0−
(−ε−t−1

)δ + β0ht−1,
(1.1)

with initial values ε0 and h0 ≥ 0, where ω0 > 0, α0+ ≥ 0, α0− ≥ 0, β0 ≥ 0, and us-
ing the notation x+ = max(x,0), x− = min(x,0). In this model, (ηt ) is a sequence
of independent and identically distributed (i.i.d.) variables such that

Eη2
1 = 1 and P

(
η2

1 = 1
)
< 1.(1.2)

Most commonly used extensions of the standard GARCH of Engle (1982) and
Bollerslev (1986) can be written in the form (1.1).

The first goal of the present paper is to derive a strict stationarity test in the
framework of model (1.1). In this model, strict stationarity is characterized by
the negativity of the so-called top Lyapunov exponent [see Bougerol and Picard
(1992)] which depends on the parameters (except ω) and the errors distribution.
By deriving the asymptotic behavior of the QMLE of the top-Lyapunov expo-
nent, under stationarity and nonstationarity, a strict stationarity test can be derived.
The second goal of the paper is to propose a test for the symmetry assumption
in model (1.1), namely α0+ = α0−. Existing tests, to our knowledge, rely on the
stationarity assumption. Our aim is to derive a test which can be used without
bothering about stationarity.

The rest of the paper is organized as follows. In Section 2, we study the conver-
gence of the volatility to infinity, in a model encompassing (1.1), when stationarity
does not hold. Section 3 is devoted to the asymptotic properties of the QMLE. In
Section 4, we consider strict stationarity testing and asymmetry testing. In Sec-
tion 5, the LAN property is established and used to derive the local asymptotic
power of the proposed tests. Local alternative allowing for an arbitrary rate of
convergence with respect to ω0 are considered. Optimality issues are discussed.
Necessary and sufficient conditions on the noise density are derived for the tests
to be uniformly locally asymptotically most powerful. Section 6 is devoted to the
case where the power δ is unknown and is jointly estimated with the volatility
coefficients. Proofs and technical lemmas are in Section 7. The possibility of ex-
tensions is discussed in Section 8. Due to space restrictions, several lemmas and



1972 C. FRANCQ AND J.-M. ZAKOÏAN

proofs, along with a study of the finite sample performance of the stationarity and
asymmetry tests and an empirical application, are included in the supplementary
file [Francq and Zakoïan (2013)].

2. Explosivity in the augmented GARCH(1,1). In this section, we analyze
the convergence of the volatility to infinity, for a class of augmented GARCH
processes encompassing (1.1) and many GARCH(1,1) models introduced in the
literature; see Hörmann (2008). Given a sequence (ξt )t≥0, let (εt )t≥1 be defined by{

εt = h1/δ
t ξt , t = 1,2, . . . ,

ht = ω(ξt−1)+ a(ξt−1)ht−1,
(2.1)

where δ is a positive constant, h0 ≥ 0 is a given initial value and the functions ω(·)
and a(·) satisfy ω : R → [ω,+∞) and a : R → [0,+∞), for some ω > 0. When
(ξt ) is assumed to be a white noise, (εt ) is called an augmented GARCH process.
We purposely use a different notation for ξt in (2.1) and ηt in (1.1) because, for the
moment, we only assume that (ξt ) is stationary and ergodic. Define in R ∪ {+∞}
the top Lyapunov exponent

γ =E loga(ξ1).

The following proposition is an extension of results proven for the standard
GARCH(1,1) by Nelson (1990) and completed by Klüppelberg, Lindner and
Maller (2004) and Francq and Zakoïan (2012).

PROPOSITION 2.1. For the process (εt ) satisfying (2.1), the following prop-
erties hold:

(i) When γ > 0, ht → ∞ a.s. at an exponential rate: for any ρ > e−γ ,

ρtht → ∞ and if E
∣∣log

(
ξ2

1

)∣∣<∞ ρtε2
t → ∞ a.s. as t → ∞.

(ii) When γ = 0 and (ξt ) is time reversible [i.e., for all k the distributions of
(ξt , ξt−1, . . . , ξt−k) and (ξt−k, . . . , ξt−1, ξt ) are identical], the following con-
vergences in probability hold as t → ∞:

ht → ∞ and if E
∣∣log

(
ξ2

1
)∣∣<∞ ε2

t → ∞.
Moreover, if ψ is a decreasing bijection from (0,∞) to (0,∞), if Eψ(h1) <

∞ [resp., Eψ(ε2
1) <∞ and E|log(ξ2

1 )|<∞], then

ψ(ht )→ 0
[
resp., ψ

(
ε2
t

)→ 0
]

in L1.(2.2)

The main ideas of the proof are as follows. The a.s. convergence of ht to infinity
in the case γ > 0 follows from the minoration loght ≥ logω+∑t−1

i=1 loga(ξt−i),
and the fact that the latter sum is strictly increasing, in average, as t goes to infinity.
The argument is in failure when γ = 0, the expectation of the sum being equal to
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zero. The key argument in this case is that the sequence (ht ) is increasing in distri-

bution. Indeed, taking h0 = 0 we have h1 = ω(ξ0) and h2 = ω(ξ1)+a(ξ0)ω(ξ0) d=
ω(ξ0)+ a(ξ1)ω(ξ1) > h1 under the reversibility assumption, and the same argu-
ment applies for any t > 0.

In the rest of the paper, these results will be applied with ξt = ηt to model (1.1),
for which the top Lyapunov exponent is given by

γ0 =E loga0(η1), a0(x)= α0+
(
x+)δ + α0−

(−x−)δ + β0.

3. Asymptotic properties of the QMLE. We wish to estimate ϑ0 = (α0+,
α0−, β0)

′ from observations εt , t = 1, . . . , n, in the stationary and the explosive
cases under mild assumption. Denote by θ = (ω,α+, α−, β)′ the parameter and
define the QMLE as any measurable solution of

θ̂n = (ω̂n, α̂n+, α̂n−, β̂n)′ = arg min
θ∈�

1

n

n∑
t=1

�t (θ),

(3.1)

�t (θ)= ε2
t

σ 2
t (θ)

+ logσ 2
t (θ),

where � is a compact subset of (0,∞)4 containing the true value θ0 = (ω0, α0+,
α0−, β0)

′, and σ δt (θ)= ω+ α+(ε+t−1)
δ + α−(−ε−t−1)

δ + βσδt−1(θ) for t = 1, . . . , n
[with initial values for ε0 and σδ0 (θ)]. The rescaled residuals are defined by η̂t =
ηt (θ̂n) where ηt (θ)= εt/σt (θ) for t = 1, . . . , n.

Write ϑ = (α+, α−, β)′ and let ϑ̂n = (α̂n+, α̂n−, β̂n)′.

3.1. Consistency and asymptotic normality of ϑ̂n. The following theorem ex-
tends, to the nonstationary framework, results obtained for the stationary case [see
Hamadeh and Zakoïan (2011) and the references therein], which we recall for con-
venience. We introduce the assumptions:

A1: The support of (ηt ) contains at least 3 points and is not concentrated on the
positive or the negative line.

A2: When t tends to infinity,

E

{
1 +

t−1∑
i=1

a0(η1) · · ·a0(ηi)

}−1

= o
(

1√
t

)
.

Note that A2, which is only required in the case γ0 = 0, is obviously satisfied in
the degenerate case when a(ηt )= 1, a.s., since the expectation is then equal to 1/t .

To handle initial values we introduce the following notation. For any asymptoti-
cally stationary process (Xt)t≥0, let E∞(Xt)= limt→∞E(Xt) provided this limit
exists. Let also

◦
� denote the interior of �.
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THEOREM 3.1. Let (1.1)–(1.2) and A1 hold. Then the QMLE defined in (3.1)
satisfies the following properties:

(i) Stationary case. When γ0 < 0, and β < 1 for all θ ∈�,

θ̂n → θ0 a.s. as n→ ∞.
If, in addition, κη =Eη4

1 ∈ (1,∞) and θ0 ∈ ◦
�, we have

√
n(θ̂n − θ0)

d→ N
{
0, (κη − 1)J −1} as n→ ∞,(3.2)

where

J = 4

δ2E∞
(

1

σ 2δ
t

∂σ δt

∂θ

∂σ δt

∂θ ′ (θ0)

)
.(3.3)

(ii) Explosive case. When γ0 > 0, if P(η1 = 0)= 0,

ϑ̂n → ϑ0 a.s. as n→ ∞.
If, in addition, κη ∈ (1,∞), E|logη2

1|<∞ and θ0 ∈ ◦
�,

√
n(ϑ̂n − ϑ0)

d→ N
{
0, (κη − 1)I −1}(3.4)

as n→ ∞, where I is a positive definite matrix.
(iii) At the boundary of the stationarity region. When γ0 = 0, if P(η1 = 0) = 0,

and ∀θ ∈�, β < ‖1/a0(η1)‖−1
p for some p > 1,

ϑ̂n → ϑ0 in probability as n→ ∞.
If, in addition, θ0 ∈ ◦

�, κη ∈ (1,∞), E|logη2
1|<∞ and A2 is satisfied, then

(3.4) holds.

The key ideas of the proof can be summarized as follows. First, we note that
θ̂n can be equivalently defined as the minimizer of 1

n

∑n
t=1{�t (θ)− �t (θ0)}, where

�t (θ)− �t (θ0) is a function of η2
t and the ratio σ δt (θ)/ht . While the numerator and

the denominator explode to infinity as t increases, the ratio is close to a station-
ary process for t sufficiently large. For instance, in the symmetric ARCH(1) case
(α+ = α− = α and β = 0), we have σ δt (θ)/ht → α/α0, a.s. in the strictly explo-
sive case (in probability in the case γ = 0). The situation is much more intricate
when β �= 0, but we can show that, when γ > 0,∣∣∣∣σ

δ
t (θ)

ht
− vt (ϑ)

∣∣∣∣→ 0 a.s. as t → ∞
uniformly on some compact set included in�, where (vt (ϑ)) is a strictly stationary
and ergodic process. The a.s. convergence is replaced by a Lp convergence in the
case γ = 0. The consistency results are established by showing that the criterion
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in which σ δt (θ)/ht is replaced by vt (ϑ) produces an estimator which is consistent
to ϑ0. Similar arguments are used to prove the asymptotic normality results, but
we now show that∥∥∥∥ 1

σ δt (θ)

∂σ δt

∂ϑ
(θ0)− dt

∥∥∥∥→ 0 in Lp as t → ∞

for some strictly stationary and ergodic process dt .
An explicit expression of I is given in the supplementary file [Francq and Za-

koïan (2013)]. To conclude the section, it can be noted that no asymptotically
valid inference on ω0 can be done in the nonstationary case; see Propositions
2.1 and 3.1 in Francq and Zakoïan (2012), denoted hereafter FZ, for the standard
GARCH(1,1) model.

3.2. A universal estimator of the asymptotic variance of ϑ̂n. In view of (3.2)–
(3.3), when γ0 < 0 the asymptotic distribution of the QMLE ϑ̂n of ϑ0 (the param-
eter without ω0) is given by

√
n(ϑ̂n − ϑ0)

d→ N
{
0, (κη − 1)I −1∗

}
as n→ ∞(3.5)

with

I∗ = Jϑ,ϑ − Jϑ,ωJ −1
ω,ωJω,ϑ ,(3.6)

Jω,ω = 4
δ2E∞( 1

h2
t

∂σ δt
∂ω

∂σ δt
∂ω
(θ0)),Jϑ,ϑ = 4

δ2E∞( 1
h2
t

∂σ δt
∂ϑ

∂σ δt
∂ϑ ′ (θ0)) and Jω,ϑ = J ′

ϑ,ω =
4
δ2E∞( 1

h2
t

∂σ δt
∂ω

∂σ δt
∂ϑ ′ (θ0)). Letting

Ĵϑ,ϑ = 4

δ2

1

n

n∑
t=1

1

σ 2δ
t (θ̂n)

∂σ δt

∂ϑ

∂σ δt

∂ϑ ′ (θ̂n)

and defining Ĵϑ,ω, Ĵω,ω and Ĵω,ϑ accordingly, it can be shown that

Î∗ = Ĵϑ,ϑ − Ĵϑ,ωĴ −1
ω,ωĴω,ϑ

is a strongly consistent estimator of I∗ in the stationary case γ0 < 0. The following
result shows that this estimator also provides a consistent estimator of the asymp-
totic variance of ϑ̂n in the nonstationary case γ0 ≥ 0.

THEOREM 3.2. Let the assumptions required for the consistency results in
Theorem 3.1 hold, assume κη ∈ (1,∞) and let κ̂η = n−1∑n

t=1 η̂
4
t , where η̂t =

εt/σt (θ̂n).

(i) When γ0 < 0, we have κ̂η → κη and Î∗ → I∗ a.s. as n→ ∞.
(ii) When γ0 > 0, we have κ̂η → κη and Î∗ → I a.s.

(iii) When γ0 = 0, we have κ̂η → κη and, if A2 is satisfied, Î∗ → I in probability.
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In any case, (κ̂η − 1)Î −1∗ is a consistent estimator of the asymptotic variance of
the QMLE of ϑ0.

It follows that asymptotically valid confidence intervals for the parameter ϑ0
can be constructed without knowing if the underlying process is stationary or not.
This theorem also has interesting applications for testing problems, which we now
consider.

4. Testing. In this section we consider testing stationarity and testing asym-
metry.

4.1. Strict stationarity testing. Consider the strict stationarity testing prob-
lems

H0 :γ0 < 0 against H1 :γ0 ≥ 0(4.1)

and

H0 :γ0 ≥ 0 against H1 :γ0 < 0.(4.2)

Let γ̂n = γn(θ̂n) be the empirical estimator of γ0, with for any θ ∈�,

γn(θ)= 1

n

n∑
t=1

log
[
α+
{
η+
t (θ)

}δ + α−
{−η−

t (θ)
}δ + β],(4.3)

where ηt (θ) = εt/σt (θ). The following result shows that the asymptotic distribu-
tion of γ̂n is particularly simple in the nonstationarity case.

THEOREM 4.1. Let ut = loga0(ηt )− γ0, and σ 2
u =Eu2

t . Then, under the as-
sumptions of Theorem 3.1,

√
n(γ̂n − γ0)

d→ N
(
0, σ 2

γ

)
as n→ ∞,(4.4)

where

σ 2
γ =

{
σ 2
u + (κη − 1)

{
a′J −1a − (1 − ν1)

2}, when γ0 < 0,
σ 2
u , when γ0 ≥ 0,

with a = (0, ν̃1,+, ν̃1,−, ν1/β0)
′ and

ν̃1+ =E
{
(η+

1 )
δ

a0(η1)

}
, ν̃1− =E

{
(−η−

1 )
δ

a0(η1)

}
, ν1 =E

{
β0

a0(η1)

}
.

Let σ̂ 2
u be the empirical variance of log{α̂n+(η̂+

t )
δ + α̂n−(−η̂−

t )
δ + β̂n}, for t =

1, . . . , n. Under the assumptions of Theorem 4.1, it can be shown that σ̂ 2
u is a

weakly consistent estimator of σ 2
u . The statistics

Tn = √
nγ̂n/σ̂u
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are thus asymptotically N (0,1) distributed when γ0 = 0. For the testing problem
(4.1) [resp., (4.2)], at the asymptotic significance level α, this leads to consider the
critical region

CST = {
Tn >�

−1(1 − α)} [
resp., CNS = {

Tn <�
−1(α)

}]
.(4.5)

4.2. Asymmetry testing. It is of particular interest to test the existence of a
leverage effect in stock market returns. In the framework of model (1.1), this test-
ing problem is of the form

H0 :α0+ = α0− against H1 :α0+ �= α0−.(4.6)

Consider the test statistic for symmetry

T S
n :=

√
n(α̂n+ − α̂n−)

σ̂T S
, σ̂T S =

√
(κ̂η − 1)e′Î −1∗ e

with e′ = (1,−1,0). The following result is a direct consequence of (3.4), (3.5)
and Theorem 3.1.

COROLLARY 4.1. Assume that θ0 ∈ ◦
� and the assumptions of Theorem 3.1

hold. For the testing problem (4.6), the test defined by the critical region

CS = {∣∣T S
n

∣∣>�−1(1 − α/2)}(4.7)

has the asymptotic significance level α and is consistent.

We emphasize the fact that this test for symmetry does not require any stationar-
ity assumption. The somewhat surprising output is that the usual Wald test, based
on the asymptotic theory for the stationary case, also works in the nonstationary
situation.2

5. Asymptotic local powers. This section investigates the asymptotic behav-
ior under local alternatives of the asymmetry test (4.7) and of the strict stationarity
test (4.5). We first establish the LAN of the power-transformed GARCH model
without imposing any stationarity constraint. This LAN property will be used to
derive the asymptotic properties of our tests, but the result is of independent inter-
est; see van der Vaart (1998) for a general reference on LAN and its applications,
and see Drost and Klaassen (1997), Drost, Klaassen and Werker (1997) and Ling
and McAleer (2003) for applications to GARCH and other stationary processes.

2For instance, in ARMA models, Wald tests on the parameters are not the same in the stationary
and nonstationary cases.
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5.1. LAN without stationarity constraint. Assume that ηt has a density f
which is positive everywhere, with third-order derivatives such that

lim|y|→∞yf (y)= 0 and lim|y|→∞y
2f ′(y)= 0,(5.1)

and that, for some positive constants K and δ,

|y|
∣∣∣∣f

′

f
(y)

∣∣∣∣+ y2
∣∣∣∣
(
f ′

f

)′
(y)

∣∣∣∣+ y2
∣∣∣∣
(
f ′

f

)′′
(y)

∣∣∣∣ ≤K(1 + |y|δ),(5.2)

E|η1|2δ <∞.(5.3)

These regularity conditions are satisfied for numerous distributions, in particular
for the Gaussian distribution with δ = 2, and entail the existence of the Fisher
information for scale

ιf =
∫ {

1 + yf ′(y)/f (y)
}2
f (y) dy <∞.

Given the initial values ε0 and h0, the density of the observations (ε1, . . . , εn) sat-
isfying (1.1) is given by Ln,f (θ0)=∏n

t=1 σ
−1
t (θ0)f {σ−1

t (θ0)εt }. Around θ0 ∈ ◦
�,

let a sequence of local parameters of the form

θn = θ0 + τn/
√
n,(5.4)

where (τn) is a bounded sequence of R
4. Without loss of generality, assume that

n is sufficiently large so that θn ∈�. Under the strict stationarity condition γ0 < 0,
Drost and Klaassen (1997) showed that, for standard GARCH, the log-likelihood
ratio �n,f (θn, θ0)= logLn,f (θn)/Ln,f (θ0) satisfies the LAN property

�n,f (θn, θ0)= τ ′
nSn,f (θ0)− 1

2τ ′
nIf τn + oPθ0 (1),(5.5)

where Sn,f (θ0)
d−→ N {0,If } under Pθ0 as n→ ∞. Note that the so-called central

sequence Sn,f is conditional on the initial values. In the stationary case, Lee and
Taniguchi (2005) showed that the initial values have no influence on the LAN
property. The following proposition shows that (5.5) holds regardless of γ0.

PROPOSITION 5.1. When θ0 ∈ ◦
�, under (5.1)–(5.3) we have the LAN property

(5.5). When γ0 < 0, we have Jf = ιf
4 J , where J is defined in (3.3). When γ0 ≥ 0,

the Fisher information is the degenerate matrix

If = ιf

4

(
0 0′

3
03 I

)
,(5.6)

where I is the positive definite matrix introduced in (3.4).
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5.2. Near-global alternatives with respect to ω0. We now show that, in the
nonstationary case, LAN continues to hold when the local alternative allows for an
arbitrary rate of convergence with respect to ω0. To this aim we assume that

θn = θ0 + υne1 + τn√
n
,(5.7)

where e1 = (1,0,0,0)′, (τn) is as in (5.4), and (υn) is a deterministic sequence
converging to zero. The next result shows that, in the nonstationary case, (5.5)
which was established under (5.4), continues to hold under the more general alter-
natives (5.7). For simplicity, take τn = τ = (τ1, τ̃ ′)′ and τ̃ ′ = (τ2, τ3, τ4).

PROPOSITION 5.2. Let θ0 ∈ ◦
� with γ0 ≥ 0. Then, under (5.1)–(5.3) and (5.7),

we have the LAN property

�n,f (θn, θ0)
d−→ N

(
− ιf

8
τ̃ ′I τ̃ ,

ιf

4
τ̃ ′I τ̃

)
under Pθ0 as n→ ∞.

Note that this Gaussian law is the distribution of the log-likelihood ratio in the
statistical model N {τ̃ ,4I −1/ιf } of parameter τ̃ , or equivalently in the statistical
model N {ιf I τ̃/4, ιf I/4}. To interpret this result in terms of convergence of sta-
tistical experiments [see van der Vaart (1998) for details], assume that υn = υνn
where υ ∈ R and (νn) is a given sequence converging to zero as n→ ∞. Denoting
by T a subset of R

4 containing a neighborhood of 0, the so-called local exper-
iments {Ln,f (θ0 + υνne1 + (0, τ̃ ′)/

√
n), (υ, τ̃ ′) ∈ T } converge to the Gaussian

experiment {N (τ̃ ,4I −1/ιf ), (υ, τ̃
′) ∈ T }.

Interestingly, the parameter υ vanishes in the limiting experiment. Conse-
quently, in the limit experiment there exists no test on the parameter υ (except
of trivial power equal to the level). On the other hand, the limit of any converg-
ing sequence of power functions in the local experiments is a power function in
the Gaussian limit experiment, by the asymptotic representation theorem. We can
conclude that there exists no test with a nontrivial asymptotic power, for local al-
ternatives on the parameter υ at the rate 1/νn. Given that the rate of convergence
of νn to zero is arbitrary, the LAN approach shows that no asymptotically valid
inference can be made on the parameter ω0.3

5.3. Local asymptotic powers of the tests. The LAN property, with the help
of Le Cam’s third lemma, allows us to easily compute local asymptotic powers of
tests. In view of Theorem 4.1,

lim
n→∞Pθ0

(
CST)= lim

n→∞Pθ0
(
CNS)= α,

3This is in accordance with the observation that, at least in the explosive case, the Fisher informa-
tion with respect to ω0 is bounded as n increases. A proof is available from the authors.
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when θ0 is such that γ0 = 0. For τ such that θ0 + τ/
√
n ∈�, we denote by Pn,τ

the distribution of the observations (ε1, . . . , εn) when the parameter is θ0 + τ/
√
n.

We should use the notation (ε1,n, . . . , εn,n) instead of (ε1, . . . , εn) because the pa-
rameter varies with n, but we will avoid this heavy notation. Let

aτ (η1)=
(
α0+ + τ2√

n

)(
η+

1

)δ +
(
α0− + τ3√

n

)(−η−
1

)δ + β0 + τ4√
n
.

Local alternatives for the CST-test (resp., the CNS-test) are obtained for τ such that
E logaτ (η1) > 0 (resp., E logaτ (η1) < 0).

PROPOSITION 5.3. Under the assumptions of Theorem 3.1 and Proposi-
tion 5.1, the local asymptotic powers of the strict stationarity tests (4.5) are given
by

lim
n→∞Pn,τ

(
CST)=�{cf (θ0)−�−1(1 − α)}(5.8)

and, using the notation of Theorem 4.1,

lim
n→∞Pn,τ

(
CNS)=�{�−1(α)− cf (θ0)

}
,

where

cf (θ0)= (τ2ν̃1+ + τ3ν̃1− + τ4ν1/β0)E loga0(η1){1 + η1f
′(η1)/f (η1)}

δσu(1 − ν1)
.

We now compute the local asymptotic power of the asymmetry test defined
by (4.7). We thus consider a sequence of local parameters of the form θn = θ0 +
τ/

√
n where θ0 = (ω0, α0, α0, β0)

′ and τ = (τ1, τ2, τ3, τ4)′ (with τ2 �= τ3 under a
local alternative). We denote by P S

n,τ the distribution of the observations under the
assumption that the parameter is θn.

PROPOSITION 5.4. Let the assumptions of Proposition 5.1 and Theorem 3.1
be satisfied. For testing (4.6), the test defined by the rejection region (4.7) has the
local asymptotic power

lim
n→∞P

S
n,τ

(
CS)= 1 −�

{
�−1

(
1 − α

2

)
− τ2 − τ3

σT S

}

+�
{
−�−1

(
α

2

)
− τ2 − τ3

σT S

}
,

where, recalling the notation e′ = (1,−1,0),

σ 2
T S =

{
(κη − 1)e′I −1∗ e, when γ0 < 0,
(κη − 1)e′I −1e, when γ0 ≥ 0.

5.4. Optimality issues. We discuss, in this section, the optimality of the sym-
metry test defined in (4.7). Let θ0 = (ω0, α0, α0, β0)

′ be a parameter value corre-
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sponding to a symmetric GARCH. Assume that, at this point, γ0 ≥ 0. If γ0 < 0, it
suffices to replace I by I∗ in the sequel. A sequence of local alternatives to this
symmetric parameter is defined by θ0 + τ/

√
n where τ ′ = (τ1, τ2, τ3, τ4)′ is such

that τ2 �= τ3. Relations (5.5)–(5.6) imply that

�n,f (θ0 + τ/
√
n, θ0)

d−→ N
(
− ιf

8
τ̃ ′I τ̃ ,

ιf

4
τ̃ ′I τ̃

)
under Pθ0

with τ̃ = (τ2, τ3, τ4)′, which is the distribution of the log-likelihood ratio in the
statistical model N {τ̃ ,4I −1/ιf } of parameter τ̃ . In other words, denoting by T̃
a subset of R

3 containing a neighborhood of 0, for any τ1, the so-called local
experiments {Ln,f (θ0 +(τ1, τ̃ ′)/

√
n), τ̃ ∈ T̃ } converge to the Gaussian experiment

{N (τ̃ ,4I −1/ιf ), τ̃ ∈ T̃ }.
The asymmetry test (4.6) corresponds to the test

e′τ̃ = 0 against e′τ̃ �= 0

in the limiting experiment. The uniformly most powerful unbiased (UMPU) test
based on X ∼ N (τ̃ ,4I −1/ιf ) is the test of rejection region

C = {∣∣e′X
∣∣/√4e′I −1e/ιf > �−1(1 − α/2)}.

This UMPU test has the power

Pe′τ̃ (C)= 1 −�
{
�−1

(
1 − α

2

)
− ce′τ̃

}
+�

{
−�−1

(
α

2

)
− ce′τ̃

}
(5.9)

with ce′τ̃ = e′τ̃√
ιf

2
√

e′I−1e
. A test of (4.6) whose level converges to α, which is asymp-

totically unbiased, and whose power converges to the bound in (5.9) will be called
asymptotically locally UMPU.

PROPOSITION 5.5. Under the assumptions of Proposition 5.3, the test (4.7) is
asymptotically locally UMPU for the testing problem (4.6) if and only if the density
of ηt has the form

f (y)= aa

�(a)
e−ay2 |y|2a−1, a > 0, �(a)=

∫ ∞
0
ta−1e−t dt.(5.10)

A figure displaying the density (5.10) for different values of a is in the sup-
plementary file [Francq and Zakoïan (2013)]. Note that the Gaussian density is
obtained for a = 1/2. The result was expected because the CS-test is based on the
QMLE of θ0, and the QMLE is obviously efficient in the Gaussian case. It can be
shown that when the distribution of ηt is of the form (5.10), the MLE does not
depend on a. The QMLE is then equal to the MLE, which makes obvious the “if
part” of Proposition 5.5. The “only if” part of the proposition shows that there is
necessarily an efficiency loss when the test is not based on the MLE of θ0.
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FIG. 1. Optimal asymptotic power (5.9) (in full line) and local asymptotic power of the asymmetry
test (4.7) (in dotted line) when ηt follows a standardized Student distribution with ν degrees of
freedom. The horizontal axis correspond to the local parameter e′τ .

This point is illustrated by Figure 1, in which the local asymptotic power of the
asymmetry test (in dotted lines) is compared to the optimal asymptotic power given
by (5.9). In this figure, the noise ηt is assumed to satisfy a Student distribution
with ν > 2 degrees of freedom, standardized in such a way that Eη2

t = 1. The
parameters of the model under the null are α0+ = α0− = 0.2, β0 = 0.9 and δ = 1,
which corresponds to a nonstationary model with γ0 = 0.045. In the figure, it can
be seen that the local asymptotic power is far from the optimal power when ν is
small, but, as expected, the discrepancy decreases as ν increases.

6. Estimation when the power δ is unknown. In this section, we consider
the case where the power δ, now denoted δ0, is unknown and is jointly estimated
with θ0. We rewrite the vector of parameters as ζ := (δ, θ ′)′, which is assumed to
belong to a compact parameter space ϒ ⊂ (0,∞)2 ×[0,∞)3. The true parameters
value is denoted by ζ0 := (δ0, θ ′

0)
′. A QMLE of ζ is defined as any measurable

solution ζ̂n of

ζ̂n = (
δ̂n, θ̂

′
n

)′ = arg min
ζ∈ϒ

1

n

n∑
t=1

�t (ζ ), �t (ζ )= ε2
t

σ 2
t (ζ )

+ logσ 2
t (ζ ),(6.1)

where

σt = σt (ζ )= (
ω+ α+

(
ε+t−1

)δ + α−
(−ε−t−1

)δ + βσδt−1(ζ )
)1/δ(6.2)

for t = 1, . . . , n [with initial values for ε0 and σ0(ζ )]. The rescaled residuals are
defined by η̂t = ηt (ζ̂n) where ηt (ζ )= εt/σt (ζ ) for t = 1, . . . , n. For identifiability
reasons, we need to slightly reinforce assumption A1 as follows.

A3: The support of ηt contains at least three points of the same sign, and at least
two points of opposite signs.

We also introduce the following technical assumption to handle the derivatives
of �t with respect to the exponent δ.

A4: ∀ζ ∈ϒ , β < ‖1/a2
0(η1)‖−1

p and ‖|η1|δ log |η1|‖p <∞ for some p > 1.
For brevity, we only present results for the nonstationary cases.
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THEOREM 6.1. Let (1.1)–(1.2) and A3 hold. Then the QMLE defined in (6.1)
satisfies the following properties:

(i) Explosive case. When γ0 > 0, if P(η1 = 0)= 0(
δn, ϑ̂

′
n

)→ (
δ0, ϑ

′
0
)

a.s. as n→ ∞.
If, in addition, κη ∈ (1,∞), E| logη2

1|<∞, ζ0 ∈ ◦
ϒ , and A4 holds, then

√
n
((
δ̂n, ϑ̂

′
n

)− (δ0, ϑ ′
0
))′ d→ N

{
0, (κη − 1)I −1

δ

}
(6.3)

as n→ ∞, where Iδ is a positive definite matrix (see Lemma 3.1).
(ii) At the boundary of the stationarity region. When γ0 = 0, if P(η1 = 0) = 0,

and ∀ζ ∈ϒ , β < ‖1/a0(η1)‖−1
p for some p > 1,(

δn, ϑ̂
′
n

)→ (
δ0, ϑ

′
0
)

in probability as n→ ∞.
If, in addition, ζ0 ∈ ◦

ϒ , κη ∈ (1,∞), E| logη2
1|<∞ and A2 and A4 are satis-

fied, then (6.3) holds.

The presence of parameter δ induces specific difficulties. It turns out that the
derivative of the criterion with respect to δ involves the process (∂σ δt /∂δ− logσt ).
A strictly stationary approximation to this process can then be obtained, but in a
more complicated way than for the other parameters. To save space, the proofs of
this section are given in the supplementary file [Francq and Zakoïan (2013)].

Obviously, stationarity and symmetry tests could be derived as in Sections 4
and 5. Other tests concerning the exponent δ [e.g., testing the TARCH model
(δ = 1) against the GJR model (δ = 2)] could be considered as well, but we leave
this for further investigation.

7. Proofs and complementary results.

PROOF OF PROPOSITION 2.1. Writing ωt = ω(ξt ) and at = a(ξt ), we have,
for all t > 1 and 1 ≤ k < t ,

ht = ωt−1 +
k∑
j=1

ωt−j−1

j∏
i=1

at−i + ht−k−1

k+1∏
i=1

at−i .(7.1)

We begin by showing (i). Since all the random variables involved in (7.1) are pos-
itive, ht ≥ ω∏t−1

i=1 at−i . For any constant ρ > e−γ , we thus have, a.s.

lim inf
t→∞

1

t
logρtht ≥ logρ + lim

t→∞
1

t

{
logω+

t−1∑
i=1

logai

}
= logρ + γ > 0

by the ergodic theorem. It follows that logρtht , and hence ρtht , tend to +∞ a.s.
as n→ ∞. The second convergence is shown in just the same way, arguing that
E| log ξ2

1 |<∞ entails log ξ2
t /t → 0 a.s. as t → ∞.
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To show (ii), first consider the case where h0 = 0. Note that, for all t , the distri-
bution of ht = ht (ξ0, . . . , ξt−1) is equal to that of

h∗
t := ht (ξt , . . . , ξ1)= ω1 +

t−1∑
j=1

ωj+1

j∏
i=1

ai.(7.2)

Note that, contrary to (ht ), the sequence (h∗
t ) increases with t . The Chung–Fuchs

theorem applied to the random walk
∑t
i=1 logai entails that lim supt→∞

∏t
i=1 ai =

+∞ a.s. It follows that h∗
t → +∞ as t → ∞. We thus have P(ht ≥A)= P(h∗

t ≥
A)→ 1 for all A> 0, from which the first part of (ii) easily follows. To prove the
first convergence of (2.2), note that the dominated convergence theorem entails

Eψ(ht )=
∫ ∞

0
P
{
h∗
t < ψ

−1(u)
}
du→

∫ ∞
0

lim
t→∞P

{
h∗
t < ψ

−1(u)
}
du= 0.

The second convergence is shown similarly. Now consider the case where the ini-
tial value is not equal to zero. It is clear from (7.1), with k = t − 1, that ht is an
increasing function of h0. So the convergences to infinity obtained when h0 = 0,
and the convergences in (2.2), hold a fortiori when h0 > 0. �

7.1. Asymptotic behavior of the QMLE of ϑ0. Define the [0,∞]-valued pro-
cess

vt (ϑ)=
∞∑
j=1

{α+(η+
t−j )δ + α−(−η−

t−j )δ}
a0(ηt−j )

j−1∏
k=1

β

a0(ηt−k)

with the convention
∏j−1
k=1 = 1 when j ≤ 1. Let �0 = {θ ∈� :β < eγ0} and �p =

{θ ∈ [0,∞)4 :β < ‖1/a0(η1)‖−1
p }.

LEMMA 7.1. (i) When γ0 > 0, for any θ ∈�0 the process vt (ϑ) is stationary
and ergodic. Moreover, for any compact �∗

0 ⊂�0,

sup
θ∈�∗

0

∣∣∣∣σ
δ
t (θ)

ht
− vt (ϑ)

∣∣∣∣→ 0 a.s. as t → ∞.

Finally, for any θ /∈�0 it holds that σ δt (θ)/ht → ∞ a.s.
(ii) When γ0 = 0, for any θ ∈ �p with p ≥ 1, the process vt (ϑ) is stationary

and ergodic. Moreover, for any compact �∗
p ⊂�p ,

sup
θ∈�∗

p

∣∣∣∣σ
δ
t (θ)

ht
− vt (ϑ)

∣∣∣∣→ 0 in Lp.
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PROOF. Assuming, with no generality loss, that σ0(θ)= 0, we have σ δt (θ)=∑t
j=1 β

j−1zt−j where zt = ω+ α+(ε+t )δ + α−(−ε−t )δ and

σ δt (θ)

ht
=

t∑
j=1

βj−1

{ j∏
k=1

ht−k
ht−k+1

}
zt−j
ht−j

.(7.3)

Noting that

ht−k
ht−k+1

= ht−k
ω0 + a0(ηt−k)ht−k

≤ 1

a0(ηt−k)
,(7.4)

the rest of the proof follows from arguments similar to those used in the proof of
Lemma A.1 in FZ. Therefore is it omitted. �

LEMMA 7.2. If θ ∈�0, we have vt (ϑ)= 1, a.s. if and only if ϑ = ϑ0.

PROOF. Straightforward algebra shows that

vt (ϑ)a0(ηt−1)= βvt−1(ϑ)+ α+
(
η+
t−1

)δ + α−
(−η−

t−1

)δ
.(7.5)

Hence {
vt (ϑ)− 1

}
a0(ηt−1)= βvt−1(ϑ)− β0 + (α+ − α0+)

(
η+
t−1

)δ
+ (α− − α0−)

(−η−
t−1

)δ
.

It follows that vt (ϑ)= 1 a.s. if and only if

β − β0 + (α+ − α0+)
(
η+
t−1

)δ + (α− − α0−)
(−η−

t−1

)δ = 0.

Thus if ϑ �= ϑ0, ηt takes at most two values of different signs, in contradiction with
assumption A1. The conclusion follows. �

Let ω = inf{ω | θ ∈ �}, α = inf{α+, α− | θ ∈ �}, β = inf{β | θ ∈ �}, ω =
sup{ω | θ ∈�}, α = sup{α+, α− | θ ∈�}, β = sup{β | θ ∈�}. Denote by K any
constant whose value is unimportant and can change throughout the proofs. Let �̌
be the compact set of the ϑ’s such that (ω,ϑ ′)′ ∈�.

LEMMA 7.3. Suppose that P(ηt = 0)= 0. Then, for any k > 0,

E sup
ϑ∈�̌

(
1

vt (ϑ)

)k
<∞ and E sup

θ∈�

(
ht

σ δt (θ)

)k
<∞.

PROOF. Let ε > 0 such that p(ε) := P(|ηt | ≤ ε) ∈ [0,1). If |ηt−1|> ε, since
the sum vt (ϑ) is greater than its first term, we have

1

vt (ϑ)
≤ a0(ηt−1)

α+(η+
t−1)

δ + α−(−η−
t−1)

δ
≤ max(α0+, α0−)

α
+ β0

αεδ
:=K(ε).
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Iterating this method, we can write

sup
ϑ∈�̌

1

vt (ϑ)
≤K(ε)

∞∑
i=1

1|ηt−1|≤ε · · ·1|ηt−i+1|≤ε1|ηt−i |>ε
(
a0(ε)

β

)i−1

,

where a0(ε)= max(α0+, α0−)εδ + β0. It follows that, for any integer k,

E sup
ϑ∈�̌

(
1

vt (ϑ)

)k
≤ {K(ε)}k{1 − p(ε)} ∞∑

i=1

p(ε)i−1
(
a0(ε)

β

)k(i−1)

.

Noting that limε→0 p(ε)= 0 and limε→0 a0(ε)= β0, we have p(ε)(a0(ε)
β
)k < 1 for

ε sufficiently small. The first result of the lemma is thus proven.
Similarly, we have for |ηt−1|> ε,

ht

σ δt (θ)
≤ ω0

ω
+ α
α

+ β0

αεδ
:=H(ε)

and for |ηt−1| ≤ ε and |ηt−2|> ε,
ht

σ δt (θ)
≤ ω0

ω
+ a0(ε)

β
H(ε).

More generally,

sup
θ∈�

ht

σ δt (θ)
≤

∞∑
i=1

1|ηt−1|≤ε · · ·1|ηt−i+1|≤ε1|ηt−i |>ε

×
(
ω0

ω

i−2∑
j=0

(
a0(ε)

β

)j
+
(
a0(ε)

β

)i−1

H(ε)

)
.

The conclusion follows by the same arguments as before. �

PROOF OF THE CONSISTENCY RESULTS IN CASES (ii) AND (iii) OF THE-
OREM 3.1. Note that (ω̂n, ϑ̂ ′

n) = arg minθ∈�Qn(θ), where Qn(θ) = n−1 ×∑n
t=1{�t (θ)− �t (θ0)}. We have

Qn(θ)= 1

n

n∑
t=1

η2
t

{(
ht

σ δt (θ)

)2/δ

− 1
}

+ log
(
σ δt (θ)

ht

)2/δ

=On(ϑ)+Rn(θ),

where

On(ϑ)= 1

n

n∑
t=1

η2
t

{
1

v
2/δ
t (ϑ)

− 1
}

+ logv2/δ
t (ϑ)

and

Rn(θ)= 1

n

n∑
t=1

η2
t

{(
ht

σ δt (θ)

)2/δ

− 1

v
2/δ
t (ϑ)

}
+ log

(
σ δt (θ)

htvt (ϑ)

)2/δ

.
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It suffices to consider the case θ ∈ �∗
0 where �∗

0 is an arbitrary compact subset
of �0, because by Lemma 7.1(i) Qn(θ)→ ∞ a.s. if θ /∈�0. We have by station-
arity and ergodicity of vt (ϑ), a.s.

lim
n→∞On(ϑ)=E

{
1

v
2/δ
1 (ϑ)

− 1 + logv2/δ
1 (ϑ)

}
≥ 0,

because logx ≤ x − 1 for x > 0. The inequality is strict except when v1(ϑ) = 1
a.s. By Lemma 7.2 we thus have E{On(ϑ)} ≥ 0, with equality only if ϑ = ϑ0.

By Lemma 7.3 we prove, as in FZ, that

lim
n→∞ sup

θ∈�∗
0

∣∣Rn(θ)∣∣= 0 a.s.
[
resp., lim

n→∞ sup
θ∈�∗

p

∣∣Rn(θ)∣∣= 0 in L1
]
,(7.6)

when γ0 > 0 (resp., γ0 = 0) and �∗
0,�

∗
p are defined in Lemma 7.1, which com-

pletes the proof. �

We now need to introduce new [0,∞]-valued processes. Let a(ηt )= α+(η+
t )
δ+

α−(−η−
t )
δ + β and

d
α+
t =

∞∑
j=1

(η+
t−j )δ

a0(ηt−j )

j−1∏
k=1

β0

a0(ηt−k)
, d

α−
t =

∞∑
j=1

(−η−
t−j )δ

a0(ηt−j )

j−1∏
k=1

β0

a0(ηt−k)
,

d
β
t =

∞∑
j=2

(j − 1){α0+(η+
t−j )δ + α0−(−η−

t−j )δ}
β0a0(ηt−j )

j−1∏
k=1

β0

a0(ηt−k)
.

LEMMA 7.4. Assume γ0 ≥ 0 and Eη4
t <∞. We have

1√
n

n∑
t=1

∂�t

∂ϑ
(θ0)

d→ N
{
0, (κη − 1)I

}
as n→ ∞,

where I = 4
δ2Ed1d

′
1 and d ′

t = (dα+
t , d

α−
t , d

β
t ). Moreover, I is nonsingular.

PROOF. Since E logβ0/a0(η1) < 0, by the Cauchy root test, the processes
d
α+
t , d

α−
t and dβt are stationary and ergodic. Still assuming σ 2

0 = 0, we have

∂σ δt

∂(α+, α−)
(θ)=

t∑
j=1

βj−1({ε+t−j}δ, {−ε−t−j}δ),
∂σ 2
t

∂β
(θ)=

t∑
j=2

(j − 1)βj−2zt−j .
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Thus, using a direct extension of (7.4),

1

σ δt (θ0)

∂σ δt

∂(α+, α−)
(θ0)=

t∑
j=1

βj−1

{ j∏
k=1

σ δt−k(θ0)

σ δt−k+1(θ0)

}{(ε+t−j )δ, (−ε−t−j )δ}
σ δt−j (θ0)

≤ (
d
α+
t (ϑ0), d

α−
t (ϑ0)

)
,

1

σ δt (θ0)

∂σ δt

∂β
(θ0)=

t∑
j=2

(j − 1)βj−2
0

{ j∏
k=1

σ δt−k(θ0)

σ δt−k+1(θ0)

}
zt−j

σ δt−j (θ0)

≤ dβt (ϑ0),

where the first inequality stands componentwise. Moreover, we have

0 ≤ dα+
t (ϑ0)− 1

σ δt

∂σ δt

∂α+ (θ0)≤ st0 + rt0,
where

st0 =
t0∑
j=1

(η+
t−j )δ

a0(ηt−j )

j−1∏
k=1

β0

a0(ηt−k)
− (ε+t−j )δ

β0σ
δ
t−j (θ0)

j∏
k=1

β0σ
δ
t−k(θ0)

σ δt−k+1(θ0)
,

rt0 =
∞∑

j=t0+1

(η+
t−j )δ

a0(ηt−j )

j−1∏
k=1

β0

a0(ηt−k)
.

For all p ≥ 1, ‖rt0‖p → 0 as t0 → ∞ because ‖β0/a0(η1)‖p < 1 and ‖(η+
1 )
δ/

a0(η1)‖p < 1/α0+. Since, in addition, ‖β0σ
δ
t−1(θ0)/σ

δ
t (θ0)‖p < 1, and∥∥∥∥ β0

a0(ηt−1)
− β0σ

δ
t−1(θ0)

σ δt (θ0)

∥∥∥∥
p

=
∥∥∥∥ β0ω0

a0(ηt−1)σ
δ
t (θ0)

∥∥∥∥
p

→ 0

as t → ∞ by the dominated convergence theorem, st0 = st0(t) converges to 0 in Lp

as t → ∞. The same derivations hold true when dα+
t is replaced by dα−

t and dβt .
Therefore, dα+

t , d
α−
t and dβt have moments of any order, and∥∥∥∥ 1

σ δt

∂σ δt

∂ϑ
(θ0)− dt

∥∥∥∥→ 0(7.7)

in Lp for any p ≥ 1.
Using (7.7) and the ergodic theorem, we thus have, as n→ ∞,

Var
1√
n

n∑
t=1

∂

∂ϑ
�t (θ0)= 4

δ2

κη − 1

n

n∑
t=1

E
(
dtd

′
t

)+ o(1)→ (κη − 1)I.

Moreover, it can be shown as in FZ that the Lindeberg condition is satisfied, al-
lowing us to apply the Lindeberg central limit theorem for martingale differences;
see Billingsley (1995), page 476.
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Now we show that I is nonsingular. Suppose there exists x = (x1, x2, x3)
′ ∈ R

3

such that x′Ix = 0. Then we get x′dt = 0, that is,

∞∑
j=1

(
x1
(η+
t−j )δ

a(ηt−j )
+ x2

(−η−
t−j )δ

a(ηt−j )
+ x3(j − 1)

α+(η+
t−j )δ + α−(−η−

t−j )δ

βa(ηt−j )

)

×
j−1∏
k=1

β

a(ηt−k)
= 0 a.s.

It follows that x1(η
+
t−1)

δ + x2(−η−
t−1)

δ = zt−2, a.s. where zt−2 is a measurable
function of the ηt−j with j > 1. Because ηt−1 is independent of zt−2, this variable
must be a.s. constant. In view of assumption A1, this entails x1 = x2 = 0 and then
x3 = 0. Therefore, I is nonsingular. �

LEMMA 7.5. Let � be an arbitrary compact subset of [0,∞). Assume that
E logη2

1 <∞. When γ0 > 0 we have, a.s.

∞∑
t=1

sup
θ∈�0

∣∣∣∣ ∂∂ω�t (θ)
∣∣∣∣<∞,

∞∑
t=1

sup
θ∈�0

∥∥∥∥ ∂2

∂ω ∂θ
�t (θ)

∥∥∥∥<∞,

sup
ω∈�

∣∣∣∣∣1n
n∑
t=1

∂2�t (ω,ϑ0)

∂θi+1 ∂θj+1
− Iij

∣∣∣∣∣= o(1) for all i, j ∈ {1,2,3},

1

n

n∑
t=1

sup
θ∈�

∣∣∣∣ ∂3

∂θi ∂θj ∂θk
�t (θ)

∣∣∣∣=O(1) for all i, j, k ∈ {2,3,4}.

When γ0 = 0 we have, for all i, j, k ∈ {2,3,4},

sup
ω∈�

∣∣∣∣∣1n
n∑
t=1

∂2�t (ω,α0, β0)

∂θi+1 ∂θj+1
− Iij

∣∣∣∣∣= oP (1),(7.8)

1

n

n∑
t=1

sup
θ∈�4

∣∣∣∣ ∂3

∂θi ∂θj ∂θk
�t (θ)

∣∣∣∣=OP (1).(7.9)

PROOF. This is similar to that of Lemma A.5. in FZ, therefore is it omitted.
�

PROOF OF THE ASYMPTOTIC NORMALITY IN CASE (ii) OF THEOREM 3.1.
An expansion of the criterion derivative gives

( 1√
n

∑n
t=1

∂
∂ω
�t (θ̂n)

0

)
= 1√

n

n∑
t=1

∂

∂θ
�t (θ0)+ Jn

√
n(θ̂n − θ0),(7.10)
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where Jn is a 4 × 4 matrix whose elements have the form

Jn(i, j)= 1

n

n∑
t=1

∂2

∂θi ∂θj
�t
(
θ∗
i

)
,

where θ∗
i = (ω∗

i , α
∗
i+, α∗

i−, β∗
i )

′ is between θ̂n and θ0. Moreover, it can be shown
that, for i, j = 1,2,3,

Jn(i + 1,1)= o(1/√n), Jn(i + 1, j + 1)→ I(i, j) a.s.(7.11)

The conclusion follows from the last rows of (7.10) and Lemma 7.4. �

PROOF OF THE ASYMPTOTIC NORMALITY IN CASE (III) OF THEOREM 3.1.
Note that (7.10) continues to hold. In view of (7.8)–(7.9), we have

Jn(i + 1, j + 1)→ I(i, j) in probability as n→ ∞.
To conclude, by the arguments used in case (ii), it suffices to show that

for i = 2,3,4 E
∣∣Jn(i,1)

√
n(ω̂n −ω0)

∣∣→ 0 as n→ ∞.(7.12)

Noting that

1

σ δt (θ)

t∑
j=1

βj−1(ε+t−j )δ ≤ 1

α+
,(7.13)

and β∗
2 < 1 for n large enough, and using the compactness of �, we obtain∣∣Jn(2,1)

√
n(ω̂n −ω0)

∣∣
≤ K√

n

n∑
t=1

(
2h2/δ
t η

2
t

σ 2
t (θ

∗
2 )

+ 1
){∑tj=1(β

∗
2 )
j−1(ε+t−j )δ}{

∑t
j=1(β

∗
2 )
j−1}

σ 2δ
t (θ

∗
2 )

≤ K√
n

n∑
t=1

(
2h2/δ
t η

2
t

σ 2
t (θ

∗
2 )

+ 1
)

ht

σ δt (θ
∗
2 )

1

ht
.

Hence, by Lemma 7.3 and Hölder’s inequality

E
∣∣Jn(2,1)

√
n(ω̂n −ω0)

∣∣≤ K√
n

n∑
t=1

E
1

h1+τ
t

for any τ > 0. The same bound is obtained when Jn(2,1) is replaced by Jn(3,1)
and Jn(4,1). Moreover,

ht = ω0(1 +Zt−1 +Zt−1Zt−2 + · · · +Zt−1 · · ·Z1)+Zt−1 · · ·Z0σ
2
0 .

Hence
1

h1+τ
t

≤ 1

ω1+τ
0 (1 +Zt−1 +Zt−1Zt−2 + · · · +Zt−1 · · ·Z1)

.
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By assumption A2, the conclusion follows. �

PROOF OF THEOREM 3.2. To save space, this is displayed in the supplemen-
tary file [Francq and Zakoïan (2013)]. �

7.2. Stationarity test.

PROOF OF THEOREM 4.1. In the stationary case γ0 < 0, standard arguments
show that

γ̂n = γn(θ0)+ ∂γn(θ0)

∂θ ′ (θ̂n − θ0)+ oP (n−1/2)(7.14)

with

∂γn(θ0)

∂θ
= −1

n

n∑
t=1

1

a0(ηt )

⎡
⎢⎢⎣{a0(ηt )− β0

} 1

ht

∂σ δt (θ0)

∂θ
−

⎛
⎜⎜⎝

0(
η+
t

)δ(−η−
t

)δ
1

⎞
⎟⎟⎠
⎤
⎥⎥⎦

(7.15)
= −� + oP (1),

where � = (1 − ν1)�− a and �=E∞ 1
ht

∂σ δt (θ0)

∂θ
. Moreover the QMLE satisfies

√
n(θ̂n − θ0)= −J −1 1√

n

n∑
t=1

(
1 − η2

t

) 2

δht

∂σ δt (θ0)

∂θ
+ oP (1).(7.16)

In view of (7.14), (7.15) and (7.16), we have

√
n(γ̂n − γ0)= 1√

n

n∑
t=1

ut +� ′J −1 1√
n

n∑
t=1

(
1 − η2

t

) 2

δht

∂σ δt (θ0)

∂θ
+ oP (1).

Note that

Cov

(
1√
n

n∑
t=1

ut ,�
′J −1 1√

n

n∑
t=1

(
1 − η2

t

) 2

δht

∂σ δt (θ0)

∂θ

)
= 2c

δ
�′J −1�,

where c = Cov(ut ,1 − η2
t ). The Slutsky lemma and the central limit theorem for

martingale differences thus entail

√
n(γ̂n − γ0)

d→ N
(

0, σ 2
u + 4

c

δ
�′J −1� + (κη − 1)� ′J −1�

)
.

Now let θ0 = (ω0, α0+, α0−,0)′. Noting that θ
′
0 ∂σ

δ
t (θ0)/∂θ = ht almost surely,

we have

E

{
1

ht

∂σ δt (θ0)

∂θ

(
1 − 1

ht

∂σ δt (θ0)

∂θ ′ θ0

)}
= 0,
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which entails δ
2

4 J θ0 =� and �′J −1�= δ2

4 . It follows that

�′J −1� = (1 − ν1)
δ2

4
− δ

2

4
θ

′
0a = δ2

4
(1 − ν1 − α0+ν̃1+ − α0−ν̃1−)= 0.

We also have � ′J −1� = a′J −1a − (1 − ν1)
2, which completes the proof of the

asymptotic distribution (4.4) in the case γ0 < 0.
Now consider the case γ0 ≥ 0. Let θ∗

n be a sequence such that ‖θ∗
n − θ0‖ ≤

‖θ̂n − θ0‖. By Proposition 2.1 (using assumption A2 when γ0 = 0), we have

1√
n

n∑
t=1

1

σ δt (θ
∗
n )

∂σ δt (θ
∗
n )

∂ω
= o(1) a.s. (resp., in probability) as n→ ∞,

when γ0 > 0 (resp., when γ0 = 0). It can be deduced that, under the same condi-

tions,
√
n
∂2γn(θ

∗
n )

∂ω ∂θ
= o(1), and

√
n(θ̂ − θ0)

′ ∂2γn(θ
∗
n )

∂θ ∂θ ′ (θ̂ − θ0)= o(1), which entails
that (7.14) still holds. The previous arguments show that (7.15) holds with

�=E

⎛
⎜⎜⎝

0
d
α+
t (θ0)

d
α−
t (θ0)

d
β
t (θ0)

⎞
⎟⎟⎠= 1

1 − ν1

⎛
⎜⎜⎝

0
ν̃1+
ν̃1−
ν1/β

⎞
⎟⎟⎠ and � =

⎛
⎝0

0
0

⎞
⎠ .

The conclusion follows. �

7.3. Asymptotic local powers.

PROOF OF PROPOSITION 5.1. The LAN of GARCH models has already
been established in the stationary case; see Drost and Klaassen (1997), Lee and
Taniguchi (2005). The nonstationary case will be studied under more general as-
sumptions in the proof of Proposition 5.2. �

PROOF OF PROPOSITION 5.2. Let the functions

g1(y)= 1 + y f
′

f
(y) and g2(y)= 1 + 2y

f ′

f
(y)+ y2

(
f ′

f

)′
(y).

Introduce also the notation

 1,t (θ)= 1

σt (θ)

∂2σt (θ)

∂θ ∂θ ′ ,  2,t (θ)= 1

δ2σ 2δ
t (θ)

∂σ δt (θ)

∂θ

∂σ δt (θ)

∂θ ′ .

A Taylor expansion of θn �→�n,f (θn, θ0) around θ0 yields

�n,f (θn, θ0)= τ ′Sn,f (θ0)− 1
2τ ′In

(
θ∗
n

)
τ + Rn,(7.17)
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where θ∗
n is between θ0 and θn,

Sn,f (θ0)= −1√
n

n∑
t=1

g1(ηt )
1

δht

∂σ δt (θ0)

∂θ
,

(7.18)

In(θ)= 1

n

n∑
t=1

g1

(
εt

σt (θ)

)
 1,t (θ)− 1

n

n∑
t=1

g2

(
εt

σt (θ)

)
 2,t (θ),

and Rn is a reminder which is displayed below. As in the proof of Lemma 7.4, it
can be seen that

Sn,f (θ0)= −1

δ
√
n

n∑
t=1

g1(ηt ) dt (ϑ0)+ oP (1), dt (ϑ)=

⎛
⎜⎜⎝

0
d
α+
t

d
α−
t

d
β
t

⎞
⎟⎟⎠ .

Using (5.1), it is easy to see that Eg1(η1)= 0, and thus Eg2
1(η1)= ιf . The Linde-

berg central limit theorem for martingale differences then shows that

Sn,f (θ0)
d−→ N (0,If ).(7.19)

Turning to the second term of (7.17) we first note that, similar to (7.7),∣∣∣∣ 1

ht

∂σ δt (θ0)

∂θ
− dt (ϑ0)

∣∣∣∣→ 0 in L2 as t → ∞.

Moreover, integrations by parts show that, under (5.1),
∫
y2f ′′(y) dy = −2

∫
y×

f ′(y) dy = 2. It follows that Eg2(η1)= −ιf . We thus have, using Eg1(η1)= 0,

In(θ0)= 1

n

n∑
t=1

−g2(ηt )

δ2 dt (ϑ0) d
′
t (ϑ0)

+ oPθ0 (1)→ If in probability as n→ ∞.
Next, it can be shown that, as n→ ∞,∥∥In(θ∗

n

)− In(θ0)
∥∥→ 0 in probability.(7.20)

Finally, we show the convergence in probability to zero of

Rn = υn
n∑
t=1

g1(ηt )
1

δht

∂σ δt (θ0)

∂ω
− υn√nτ ′In

(
θ∗
n

)
e′

1 − 1

2
nυ2
ne1In

(
θ∗
n

)
e′

1.

Noting that ∂σ δt (θ0)/∂ω is constant and that 1/ht converges to 0 in L2 by Propo-
sition 2.1, the first term in the right-hand side converges to zero in probability.
The two other terms can be handled similarly. The conclusion then follows from
(7.17)–(7.20). �
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PROOF OF PROPOSITION 5.3. For simplicity, write P instead of Pn,0. In the
proof of Theorem 4.1 we have seen that

Tn = 1√
n

n∑
t=1

ut

σu
+ oP (1).

By (5.5) and (7.18), it follows that under P(
Tn

�n,f (θ0 + τ/
√
n, θ0)

)
d−→ N

{(
0

− ιf
8

τ̃ ′I τ̃

)
,

(
1 c

c
ιf

4
τ̃ ′I τ̃

)}
,

where τ̃ ′ = (τ2, τ3, τ4), c = −τ ′Ed1(ϑ0)
δσu

Eu1g1(η1) = cf (θ0). Le Cam’s third
lemma [see, e.g., van der Vaart (1998), page 90] shows that

Tn
d−→ N

(
cf (θ0),1

)
under Pn,τ .

The conclusion easily follows. �

PROOF OF PROPOSITION 5.4. First consider the case γ0 ≥ 0. In the proof of
(3.4) it has been shown that

√
n(ϑ̂n − ϑ0)= −2

δ
I −1 1√

n

n∑
t=1

(
1 − η2

t

)
dt + oP (1).

Moreover

�n,f (θ0 + τ/
√
n, θ0)= − 1

δ
√
n

n∑
t=1

{
1 + ηt f

′(ηt )
f (ηt )

}
τ̃ ′dt − ιf

8
τ̃ ′I τ̃ + oP (1)

with τ̃ ′ = (τ2, τ3, τ4). Note also that, since Eη4
1 < ∞ implies y3f (y) → 0 as

|y| → ∞, we have

E
(
1 − η2

t

){
1 + ηt f

′(ηt )
f (ηt )

}
= 2.(7.21)

It follows that under P S
n,0⎛

⎝
√
n(ϑ̂n − ϑ0)

�n,f

(
θ0 + τ√

n
, θ0

)⎞⎠ d−→ N
{( 03−ιf

8
τ̃ ′I τ̃

)
,

(
(κη − 1)I −1 τ̃

τ̃ ′ ιf

4
τ̃ ′I τ̃

)}
.

Le Cam’s third lemma [see, e.g., van der Vaart (1998), page 90] shows that
√
n(ϑ̂n − ϑ0)

d−→ N
(
τ̃ , (κη − 1)I −1) under P S

n,τ .

We thus have shown that, in the case γ0 > 0, ϑ̂n is a regular estimator of ϑ0, in
the sense that

√
n(ϑ̂n − ϑ0 − τ̃/

√
n) converges to a distribution which does not

depend on τ̃ . More precisely
√
n(ϑ̂n − ϑ0 − τ̃/

√
n)

d−→ N
(
0, (κη − 1)I −1) under P S

n,τ .(7.22)
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When γ0 ≤ 0, the same arguments show that θ̂n is a regular estimator of θ0

√
n(θ̂n − θ0 − τ/

√
n)

d−→ N
(
0, (κη − 1)J −1) under P S

n,τ .

In the case γ0 ≤ 0, we thus have (7.22) with I replaced by I∗. Now, not-

ing that T S
n = e′√n(ϑ̂n−ϑ0)

σ̂
T S

, and by the same arguments, it follows that T S
n

d−→
N (0,1), under P S

n,0 and more generally T S
n

d−→ N (cτ ,1), under P S
n,τ , where

cτ = (0,1,−1,0)τ/σT S . The conclusion easily follows. �

PROOF OF PROPOSITION 5.5. Recall that we assume γ0 ≥ 0. The case γ0 < 0
is obtained similarly, replacing I by I∗. In view of Proposition 5.4 and (5.9), the
CS-test is asymptotically locally UMPU if and only if ce′τ̃ = e′τ̃/σT S , which is
equivalent to (κη − 1)ιf = 4. By Corollary 1 in Francq and Zakoïan (2006), the
solutions of this equation are given by (5.10). �

8. Concluding remarks. Our framework covers the most widely used
GARCH models in financial applications. Strictly stationary models are a spe-
cial case, but symmetry tests and asymptotically valid confidence intervals for the
parameters (except the intercept) can be built without this assumption. Surpris-
ingly, while the asymptotic covariance matrix of the estimators is sensitive to the
stationarity of the underlying process, an estimator which converges to the appro-
priate covariance matrix in every situation can be built. Nevertheless, if the interest
is on the whole parameter vector, including the intercept, it is important to know
whether the observations come from a stationary process or not. To this aim we
derived strict stationarity/nonstationarity tests which are very easy to implement.

Are our results extendable to higher-order models? It seems likely that for
particular extensions involving univariate stochastic recurrence equations for the
volatility, the asymptotic theory derived in this paper can also be established. One
key problem, to show consistency, is to find stationary approximations to ε2

t−j /ht
for j = 1,2, . . . . For an ARCH-type model of order q it suffices to take j ≤ q .
Consider standard symmetric GARCH models for simplicity. In the GARCH(1,1)
case, the problem can be circumvented because

ε2
t−j
ht

= ht−1

ht
· · · ht−j
ht−j+1

η2
t−j

can be approximated by a stationary process, in view of

ht−i
ht−i+1

≈ 1

αη2
t−i + β

for large t .

To have a glimpse of the considerable difficulties encountered when the orders
increase, consider a standard ARCH(2) model

εt =
√
htηt , ht = ω+ α1ε

2
t−1 + α2ε

2
t−2.
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We have, neglecting ω and for t large enough ht/ε2
t−1 ≈ Xt and ht/ε2

t−2 ≈ Yt
where

Xt = α1 + α2

Xt−1

1

η2
t−1

, Yt = α2 + α1η
2
t−1Xt−1.

It is not difficult to show that the first stochastic recurrence equation admits a
strictly stationary solution (Xt) under mild assumptions on the density of ηt , what-
ever the values of α1 and α2. From this solution we deduce a strictly stationary
solution (Yt ) to the second equation. We thus believe that, at least for the consis-
tency, the ARCH(2) model is amenable to a treatment similar to that developed in
this paper, but at the price of increasing technical difficulties. To summarize, the
ratio ht/ht−1 is, for large t , close to (i) a constant in the ARCH(1) case, (ii) an
i.i.d. process in the GARCH(1,1) case and (iii) the stationary solution of a nonlin-
ear times series model in the ARCH(2) case. Whether or not this approach based
on the resolution of nonlinear stochastic recurrence equations could be extended is
left for further investigation.
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SUPPLEMENTARY MATERIAL

Supplement to “Inference in nonstationary asymmetric GARCH models.”
(DOI: 10.1214/13-AOS1132SUPP; .pdf). The supplementary file contains an il-
lustration concerning the optimality of the asymmetry test, a Monte Carlo study of
finite sample performance, an application to real time series, an explicit expression
for the matrix I in Theorem 3.1, the proofs of Theorems 3.2 and 6.1.
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