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FIXED-SMOOTHING ASYMPTOTICS FOR TIME SERIES1

BY XIANYANG ZHANG AND XIAOFENG SHAO

University of Missouri-Columbia and University of Illinois at
Urbana-Champaign

In this paper, we derive higher order Edgeworth expansions for the fi-
nite sample distributions of the subsampling-based t-statistic and the Wald
statistic in the Gaussian location model under the so-called fixed-smoothing
paradigm. In particular, we show that the error of asymptotic approximation
is at the order of the reciprocal of the sample size and obtain explicit forms for
the leading error terms in the expansions. The results are used to justify the
second-order correctness of a new bootstrap method, the Gaussian dependent
bootstrap, in the context of Gaussian location model.

1. Introduction. Many economic and financial applications involve time se-
ries data with autocorrelation and heteroskedasticity properties. Often the un-
known dependence structure is not the chief object of interest but the inference on
the parameter of interest involves the estimation of unknown dependence. In sta-
tionary time series models estimated by generalized method of moments (GMM),
robust inference is typically accomplished by consistently estimating the asymp-
totic covariance matrix, which is proportional to the long run variance (LRV) ma-
trix of the estimating equations or moment conditions defining the estimator, us-
ing a kernel smoothing method. In the econometrics and statistics literature, the
bandwidth parameter/truncation lag involved in the kernel smoothing method is
assumed to grow slowly with sample size in order to achieve consistency. The
inference is conducted by plugging in a covariance matrix estimator that is con-
sistent under heteroskedasticity and autocorrelation. This approach dates back to
Newey and West [25] and Andrews [1]. Recently, Kiefer and Vogelsang [13] (KV,
hereafter) developed an alternative first-order asymptotic theory for the HAC (het-
eroskedasticity and autocorrelation consistent) based robust inference, where the
proportion of the bandwidth involved in the HAC estimator to the sample size T ,
denoted as b, is held fixed in the asymptotics. Under the fixed-b asymptotics, the
HAC estimator converges to a nondegenerate yet nonstandard limiting distribution.
The tests based on the fixed-b asymptotic approximation were shown to enjoy bet-
ter finite sample properties than the tests based on the small-b asymptotic theory
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under which the HAC estimator is consistent, and the limiting distribution of the
studentized statistic admits a standard form, such as standard normal or χ2 dis-
tribution. Using the higher order Edgeworth expansions, Jansson [12], Sun et al.
[31] and Sun [28] rigorously proved that the fixed-b asymptotics provides a high-
order refinement over the traditional small-b asymptotics in the Gaussian location
model. Sun et al. [31] also provided an interesting decision theoretical justification
for the use of fixed-b rules in econometric testing. For non-Gaussian linear pro-
cesses, Gonçalves and Vogelsang [6] obtained an upper bound on the convergence
rate of the error in the fixed-b approximation and showed that it can be smaller
than the error of the normal approximation under suitable assumptions.

Since the seminal contribution by KV, there has been a growing body of work in
econometrics and statistics to extend and expand the fixed-b idea in the inference
for time series data. For example, Sun [30] developed a procedure for hypothesis
testing in time series models by using the nonparametric series method. The basic
idea is to project the time series onto a space spanned by a set of fourier basis
functions (see Phillips [26] and Müller [24] for early developments) and construct
the covariance matrix estimator based on the projection vectors with the number
of basis functions held fixed. Also see Sun [29] for the use of a similar idea in the
inference of the trend regression models. Ibragimov and Müller [10] proposed a
subsampling based t-statistic for robust inference where the unknown dependence
structure can be in the temporal, spatial or other forms. In their paper, the num-
ber of non-overlapping blocks is held fixed. The t-statistic-based approach was
extended by Bester et al. [3] to the inference of spatial and panel data with group
structure. In the context of misspecification testing, Chen and Qu [5] proposed a
modified M test of Kuan and Lee [15] which involves dividing the full sample
into several recursive subsamples and constructing a normalization matrix based
on them. In the statistical literature, Shao [27] developed the self-normalized ap-
proach to inference for time series data that uses an inconsistent LRV estimator
based on recursive subsample estimates. The self-normalized method is an exten-
sion of Lobato [21] from the sample autocovariances to more general approxi-
mately linear statistics, and it coincides with KVs fixed-b approach in the infer-
ence of the mean of a stationary time series by using the Bartlett kernel and letting
b = 1. Although the above inference procedures are proposed in different settings
and for different problems and data structures, they share a common feature in the
sense that the underlying smoothing parameters in the asymptotic covariance ma-
trix estimators such as the number of basis functions, the number of cluster groups
and the number of recursive subsamples, play a similar role as the bandwidth in the
HAC estimator. Throughout the paper, we shall call these asymptotics, where the
smoothing parameter (or function of smoothing parameter) is held fixed, the fixed-
smoothing asymptotics. In contrast, when the smoothing parameter grows with
respect to sample size, we use the term increasing-domain asymptotics. At some
places the terms fixed-K (or fixed-b) and increasing-K (or small-b) asymptotics
are used to follow the convention in the literature.
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In this article, we derive higher order expansions of the finite sample distri-
butions of the subsampling-based t-statistic and the Wald statistic with HAC co-
variance estimator when the underlying smoothing parameters are held fixed, un-
der the framework of the Gaussian location model. Specifically, we show that the
error in the rejection probability (ERP, hereafter) is of order O(1/T ) under the
fixed-smoothing asymptotics. Under the assumption that the eigenfunctions of the
kernel in the HAC estimator have zero mean and other mild assumptions, we de-
rive the leading error term of order O(1/T ) under the fixed-smoothing framework.
These results are similar to those obtained under the fixed-b asymptotics (see Sun
et al. [31]), but are stronger in the sense that we are able to derive the exact form of
the leading error term with order O(1/T ). The explicit form of the leading error
term in the approximation provides a clear theoretical explanation for the empirical
findings in the literature regarding the direction and magnitude of size distortion
for time series with various degrees of dependence. To the best of our knowledge,
this is the first time that the leading error terms are made explicit through the higher
order Edgeworth expansion under the fixed-smoothing asymptotics. It is also worth
noting that our nonstandard argument differs from that in Jansson [12] and Sun et
al. [31], and it may be of independent theoretical interest and be useful for future
follow-up work.

Second, we propose a novel bootstrap method for time series, the Gaussian
dependent bootstrap, which is able to mimic the second-order properties of the
original time series and produces a Gaussian bootstrap sample. For the Gaussian
location model, we show that the inference based on the Gaussian dependent boot-
strap is more accurate than the first-order approximation under the fixed-smoothing
asymptotics. This seems to be the first time a bootstrap method is shown to be
second-order correct under the fixed-smoothing asymptotics; see Gonçalves and
Vogelsang [6] for a recent attempt for the moving block bootstrap in the non-
Gaussian setting.

We now introduce some notation. For a vector x = (x1, x2, . . . , xq0) ∈ R
q0 , we

let ‖x‖ = (
∑q0

i=1 x2
i )1/2 be the Euclidean norm. For a matrix A = (aij )

q0
i,j=1 ∈

R
q0×q0 , denote by ‖A‖2 = sup‖x‖=1 ‖Ax‖ the spectral norm and ‖A‖∞ =

max1≤i,j≤q0 |aij | the max norm. Denote by �a� the integer part of a real num-
ber a. Let L2[0,1] be the space of square integrable functions on [0,1]. Denote
by D[0,1] the space of functions on [0,1] which are right continuous and have
left limits, endowed with the Skorokhod topology; see Billingsley [4]. Denote by
“⇒” weak convergence in the R

q0 -valued function space Dq0[0,1], where q0 ∈ N.
Denote by “→d” and “→p” convergence in distribution and convergence in prob-
ability, respectively. The notation N(μ,�) is used to denote the multivariate nor-
mal distribution with mean μ and covariance �. Let χ2

k be a random variable
following χ2 distribution with k degrees of freedom and Gk be the corresponding
distribution function.

The layout of the paper is as follows. Section 2 contains the higher order expan-
sions of the finite sample distributions of the subsampling t-statistic and the Wald
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statistic with HAC estimator. We introduce the Gaussian dependent bootstrap and
the results about its second-order accuracy in Section 3. Section 4 concludes. Tech-
nical details and simulation results are gathered in the supplementary material [34].

2. Higher order expansions. This paper is partially motivated by recent stud-
ies on the ERP for the Gaussian location model by Jansson [12] and Sun et al.
[31], who showed that the ERP is of order O(1/T ) under the fixed-b asymptotics,
which is smaller than the ERP under the small-b asymptotics. A natural ques-
tion is to what extent the ERP result can be extended to the recently proposed
fixed-smoothing based inference methods under the fixed-smoothing asymptotics.
Following Jansson [12] and Sun et al. [31], we focus on the inference of the mean
of a univariate stationary Gaussian time series or equivalently, a Gaussian location
model. We conjecture that the higher order terms in the asymptotic expansion un-
der the Gaussian assumption will also show up in the general expansion without
the Gaussian assumption.

2.1. Expansion for the finite sample distribution of subsampling-based t-
statistic. We first investigate the Edgeworth expansion of the finite sample dis-
tribution of subsampling-based t-statistic (Ibragimov and Müller [10]). Here we
treat the subsampling-based t-statistic and other cases separately, because the t-
statistic corresponds to a different choice of normalization factor (compare with
the Wald statistic in Section 2.2). Given the observations {X1,X2, . . . ,XT } from a
Gaussian stationary time series, we divide the sample into K approximately equal
sized groups of consecutive observations. The observation Xi is in the j th group if
and only if i ∈ Mj = {s ∈ Z : (j − 1)T /K < s ≤ jT /K}, j = 1,2, . . . ,K . Define
the sample mean of the kth group as

μ̂k = 1

|Mk|
∑

i∈Mk

Xi, k = 1,2, . . . ,K,

where | · | denotes the cardinality of a finite set. Let μ̂ = (μ̂1, μ̂2, . . . , μ̂K)′, μ̄n =
1
K

∑K
i=1 μ̂i and S2

n = 1
K−1

∑K
i=1(μ̂i −μ̄n)

2. Then the subsampling-based t-statistic
for testing the null hypothesis H0 :μ = μ0 versus the alternative Ha :μ �= μ0 is
given by

TK =
√

K(μ̄n − μ0)

Sn

=
√

K(μ̄n − μ0)

{(∑K
i=1(μ̂i − μ̄n)2)/(K − 1)}1/2

.(1)

Our goal here is to develop an Edgeworth expansion of P(|TK | ≤ x) when K

is fixed and sample size T → ∞. It is not hard to see that the distribution of
TK is symmetric, so it is sufficient to consider P(|TK | ≤ x) since P(TK ≤ x) =
1+P(|TK |≤x)

2 for any x ≥ 0. Denote by tk a random variable following t distribution
with k degrees of freedom. The following theorem gives the higher order expan-
sion under the Gaussian assumption.
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THEOREM 2.1. Assume that {Xi} is a stationary Gaussian time series satis-
fying that

∑+∞
h=−∞ γX(h) > 0 and

∑+∞
h=−∞ h2|γX(h)| < ∞. Further suppose that

|M1| = |M2| = · · · = |MK | and K is fixed. Then under H0, we have

sup
x∈[0,+∞)

∣∣P (|TK | ≤ x
) − �(x;K)

∣∣ = O
(
1/T 2)

,(2)

where �(x;K) = P(|tK−1| ≤ x) − B
2σ 2T

ϒ(x;K) with

ϒ(x;K) = −K2P
(|tK−1| ≤ x

) + (K + 1)E

[
χ2

K−1G1

(
χ2

K−1x
2

K − 1

)]

− E

[
χ2

1 GK−1

(
(K − 1)χ2

1

x2

)]
+ 1

and B = ∑+∞
h=−∞ |h|γX(h).

We present the proof of Theorem 2.1 in Section 5, which requires some non-
standard arguments. From the above expression, we see that the leading error term
is of order O(1/T ), and the magnitude and direction of the error depend upon
B/σ 2, which is related to the second-order properties of time series, and ϒ(x;K),
which is independent of the dependence structure of {Xi} and can be approxi-
mated numerically for given x and K . Figure 1 plots the approximated values
of ϒ(tK−1(1 − α);K)/K for different K and α, where tK−1(1 − α) denotes the
100(1−α)% quantile of the t distribution with K −1 degrees of freedom. It can be
seen from Figure 1 that ϒ(tK−1(1 − α);K)/K increases rapidly for K < 10, and
it becomes stable for relatively large K . For each K ≥ 2, ϒ(tK−1(1 −α);K)/K is
an increasing function of α. In the simulation work of Ibragimov and Müller [10]
(see Figure 2 therein), they found that the size of the subsampling-based t-test
is relatively robust to the correlations if K is small (say K = 4 in their simula-
tion). This finding is in fact supported by our theory. For K ≤ 4, the magnitude
of ϒ(x;K) is rather small, so the leading error term is small across a range of
correlations. As K increases, the first-order approximation deteriorates, which is
reflected in the increasing magnitude of ϒ(tK−1(1 − α);K) with respect to K .

Notice that ϒ(tK−1(1 − α);K) is always positive and σ 2 > 0 by assumption,
so the sign of the leading error term, that is, − B

2σ 2T
ϒ(x;K), is determined by

B . When B > 0 [e.g., AR(1) process with positive coefficient], the first-order
based inference tends to be oversized, and conversely it tends to be undersized
when B < 0 [e.g., MA(1) process with negative coefficient]. Some simulations for
AR(1) and MA(1) models in the Gaussian location model support these theoretical
findings. We decide not to report these results to conserve space. Given the sample
size T , the size distortion for the first-order based inference may be severe if the ra-
tio B/σ 2 is large. For example, this is the case for AR(1) model, Xt = ρXt−1 + εt ,
as the correlation ρ gets closer to 1. As indicated by Figure 1, we show in the
following proposition that ϒ(tK−1(1 − α);K)/K converges as K → +∞.
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FIG. 1. Simulated values of ϒ(tK−1(1 − α);K)/K based on 500,000 replications.

PROPOSITION 2.1. As K → +∞, we have ϒ(x;K)/K = 2x2G′
1(x

2) +
O(1/K), for any fixed x ∈ R.

Under the local alternative H ′
a :μ = μ0 + (δσ )/

√
T with δ �= 0, we can derive

a similar expansion for TK with K fixed. Formally let Z be a random variable

following the standard normal distribution and SK−1 =
√

χ2
K−1/(K − 1) with the

χ2
K−1 distribution being independent with Z. Then the quantity tK−1,δ = (Z +

δ)/SK−1 follows a noncentral t distribution with noncentral parameter δ. Define
e1(x) = E[I{|tK−1,δ| > x}Z2] and e2(x) = E[I{|tK−1,δ| > x}χ2

K−1]. Then under
the local alternative, we have

P
(|TK | ≤ x

) = P
(|tK−1,δ| ≤ x

) − B

2σ 2T
ϒδ(x;K) + O

(
1/T 2)

,

where ϒδ(x;K) = K2P(|tK−1,δ| > x) − e1(x) − (K + 1)e2(x). For fixed δ,
P(|tK−1,δ| > tK−1(1 − α)) is a monotonic increasing functions of K . An unre-
ported numerical study shows that ϒδ(tK−1(1 −α);K) is roughly monotonic with
respect to K for δ ∈ (0,4], which suggests that larger K tends to deliver more
power when B > 0. Combined with the previous discussion, we see that the choice
of K leads to a trade-off between the size distortion and power loss.

REMARK 2.1. Theorem 2.1 gives the ERP and the exact form of the lead-
ing error term under the fixed-K asymptotics. The higher order expansion derived
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here is based on an expansion of the density function of (μ̂1, . . . , μ̂K) which is
made possible by the Gaussian assumption. Extension to the general GMM set-
ting without the Gaussian assumption may require a different strategy in the proof.
Expansion for a distribution function or equivalently characteristic function has
been used in the higher order expansion of the finite sample distribution under the
Gaussian assumption (see, e.g., Velasco and Robinson [32] and Sun et al. [31]).
With K fixed in the asymptotics, the leading term of the variance of the LRV
estimator is captured by the first order fixed-K limiting distribution and the lead-
ing term of the bias of the LRV estimator is reflected in the leading error term
− B

2σ 2T
ϒ(x,K). Specifically, let �T = (σij )

K
i,j=1 with σij = q Cov(μ̂i, μ̂j ). Then

the leading error term captures the difference between �T and σ 2IK , and the ef-
fect of the off-diagonal elements σij with |i − j | > 1 is of order O(1/T 2) and thus
is not reflected in the leading term.

REMARK 2.2. When the number of groups K grows slowly with the sample
size T , the Edgeworth expansion for TK was developed for P(TK ≤ x) in Lahiri
[18, 19] under the general non-Gaussian setup. The expansion given here is differ-
ent from the usual Edgeworth expansion under the increasing-domain asymptotics
in terms of the form and the convergence rate. Using the same argument, we can
show that under the fixed-K asymptotics, the leading error term in the expansion
of P(TK ≤ x) is of order O(1/T ) under the Gaussian assumption. In the non-
Gaussian case, we conjecture that the order of the leading error term is O(1/

√
T ),

which is due to the effect of the third and fourth-order cumulants.

The higher order Edgeworth expansion results in Sun et al. [31] suggest that
the fixed-b based approximation is a refinement of the approximation provided
by the limiting distribution derived under the small-b asymptotics. In a similar
spirit, it is natural to ask if the fixed-K based approximation refines the first-order
approximation under the increasing-K asymptotics. To address this question, we
consider the expansion under the increasing-domain asymptotics, where K grows
slowly with the sample size T .

PROPOSITION 2.2. Under the same conditions in Theorem 2.1 but with
limT →∞(1/K + K/T ) = 0, we have

P
(|TK | ≤ x

) = G1
(
x2) + 1

K − 1
x4G′′

1
(
x2) − BK

T σ 2 x2G′
1
(
x2) + O(1/T ).(3)

REMARK 2.3. Since

P
(|tK−1| ≤ x

) = G1
(
x2) + 1

K − 1
x4G′′

1
(
x2) + O

(
1/K2)
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(see, e.g., Sun [30]), we know that the fixed-K based approximation captures the
first two terms in (3), whereas the increasing-K-based approximation (i.e., χ2

1 )
only captures the first term. In view of Proposition 2.1, it is not hard to see that

�(x;K) = G1
(
x2) + 1

K − 1
x4G′′

1
(
x2) − BK

T σ 2 x2G′
1
(
x2) + O

(
1/K2) + O(1/T ),

which implies that the fixed-K-based expansion is able to capture all the three
terms in (3) as the smoothing parameter K → ∞ with T 1/3 = o(K). Loosely
speaking, this suggests that the fixed-K-based expansion holds for a broad range
of K , and it gets close to the corresponding increasing-K-based expansion when
K is large.

2.2. Fixed-b expansion. Consider a semi-positive definite bivariate kernel
G(·, ·) which satisfies the spectral decomposition

G(r, t) =
+∞∑
j=1

λjφj (r)φj (t), 0 ≤ r, t ≤ 1,(4)

where {φj } are the eigenfunctions, and {λj } are the eigenvalues which are in a
descending order, that is, λ1 ≥ λ2 ≥ · · · ≥ 0. Suppose we have the observations
{X1,X2, . . . ,XT } from a stationary Gaussian time series with mean μ and auto-
covariance function γX(i − j) = E[(Xi − μ)(Xj − μ)]. The LRV estimator based
on the kernel G(·, ·) and bandwidth ST = bT with b ∈ (0,1] is given by

D̂T ,b = 1

T

T∑
i=1

T∑
j=1

G
(

i

bT
,

j

bT

)
(Xi − X̄T )(Xj − X̄T ),

where X̄T = ∑T
i=1 Xi/T is the sample mean. For the convenience of presen-

tation, we set b = 1. See Remark 2.4 for the case b ∈ (0,1). To illustrate the
idea, we define the projection vectors ξj = 1√

T

∑T
i=1 φ0

j (i/T )Xi with φ0
j (t) =

φj (t) − 1
T

∑T
i=1 φj (i/T ) for j = 1,2, . . . . Here the dependence of ξj on T is

suppressed to simplify the notation. Following Sun [30], we limit our attention
to the case

∫ 1
0 φj (t) dt = 0 (e.g., Fourier basis and Haar wavelet basis). For any

semi-positive definite kernel Ḡ(·, ·), we can define the demeaned kernel,

G̃(r, t) = Ḡ(r, t) −
∫ 1

0
Ḡ(s, t) ds −

∫ 1

0
Ḡ(r,p) dp +

∫ 1

0

∫ 1

0
Ḡ(s,p) ds dp.

Suppose G̃(·, ·) admits the spectral decomposition G̃(r, t) = ∑+∞
i=1 λ̃i φ̃i(r)φ̃i(t)

with {φ̃i} and {λ̃i} being the eigenfunctions and eigenvalues, respectively. Notice
that ∫ 1

0

∫ 1

0
G̃(r, t) dr dt =

+∞∑
i=1

λ̃i

(∫ 1

0
φ̃i(t) dt

)2

= 0,
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which implies
∫ 1

0 φ̃i(t) dt = 0 whenever λi > 0, that is, the eigenfunctions of the
demeaned kernel G̃(·, ·) are all mean zero. Based on the spectral decomposition
(4) of G(·, ·), the LRV estimator with b = 1 can be rewritten as

D̂T ,1 = 1

T

T∑
i=1

T∑
j=1

G
(

i

T
,

j

T

)
(Xi − X̄T )(Xj − X̄T ) =

+∞∑
i=1

λiξ
2
i .

We focus on testing the null hypothesis H0 :μ = μ0 versus the alternative Ha :μ �=
μ0. Define a sequence of random variables

FT (K) = ξ2
0∑K

j=1 λjξ
2
j

, K = 1, . . . ,∞,

with ξ0 = 1√
T

∑T
i=1(Xi − μ0). The Wald test statistic with HAC estiamtor is

given by FT (∞) = ξ2
0 /D̂T ,1. Let {vi}+∞

i=0 be a sequence of independent and
identically distributed (i.i.d.) standard normal random variables. Further define

F (K) := F (v;K) = v2
0∑K

j=1 λj v2
j

and

ℵT (x;K) = 1

2σ 2

K∑
i=0

(
var(ξi) − σ 2)

E
[(

v2
i − 1

)
I
{

F (v;K) ≤ x
}]

,

(5)
K = 1, . . . ,∞,

with σ 2 = ∑+∞
h=−∞ γX(h) being the LRV. The following theorem establishes the

asymptotic expansion of the finite sample distribution of FT (K) with 1 ≤ K ≤ ∞.

THEOREM 2.2. Assume the kernel G(·, ·) satisfies the following conditions:
(1) The second derivatives of the eigenfunctions {φ(2)

i (·)}+∞
i=1 exist. Further as-

sume that the eigenfunctions are mean zero and satisfy that

sup
1≤i≤J

sup
t∈[0,1]

∣∣φ(j)
i (t)

∣∣ < CJj

for j = 0,1,2, J ∈ N, and some constant C which does not depend on j and J;
(2) The eigenvalues λn = O(1/na), for some a > 19.
Under the assumption that {Xi} is a stationary Gaussian time series with σ 2 =∑+∞
h=−∞ γX(h) > 0 and

∑+∞
h=−∞ h2|γX(h)| < ∞, and the null hypothesis H0, we

have supx∈[0,+∞) |ℵT (x;K)| = O(1/T ) and

sup
x∈[0,+∞)

∣∣P (
FT (K) ≤ x

) − P
(

F (K) ≤ x
) − ℵT (x;K)

∣∣ = o(1/T )(6)

for any 1 ≤ K ≤ ∞.
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The proof of Theorem 2.2 is based on the arguments of the proof of Theo-
rem 2.1 given in Section 5 and the truncation argument. The technical details
are provided in Zhang and Shao [34]. For K < ∞, Theorem 2.2 shows that the
O(1/T ) ERP rate can be extended to the Wald statistic with series variance esti-
mator (Sun [30]). When K = ∞, Theorem 2.2 gives the asymptotic expansion of
the Wald test statistic FT (∞) which is of particular interest. The leading error term
ℵT (x;∞) reflects the departure of {ξj }+∞

j=0 from the i.i.d. standard normal random

variables {vj }+∞
j=0. Specifically, the form of ℵT (x;∞) suggests that the leading er-

ror term captures the difference between the LRV and the variances of ξi ’s which
are not exactly the same across i = 0,1,2, . . . . By the orthogonality assumption,
the covariance between ξi and ξj with i �= j is of smaller order and hence is not
reflected in the leading term. Assume

∫ 1
0 G(r, r) dr = ∑+∞

j=1 λj = 1. As seen from

Theorem 2.2, the bias of the LRV estimator [i.e.,
∑∞

i=1 λi(var(ξi) − σ 2)] is re-
flected in the leading error term ℵT (x;∞), which is a weighted sum of the relative
difference of var(ξi) and σ 2. Note that the difference var(ξi) − σ 2 relies on the
second-order properties of the time series and the eigenfunctions of G(·, ·), and the
weight E[(v2

i − 1)I{F (∞) ≤ x}] which depends on the eigenvalues of G(·, ·) is of
order O(λi), as seen from the arguments used in the proof of Theorem 2.2.

In the econometrics and statistics literature, the bivariate kernel G(·, ·) is usually
defined through a semi-positive definite univariate kernel K(·), that is, G(r, t) =
K(r − t). In what follows, we make several remarks regarding this special case.

REMARK 2.4. For 0 < b ≤ 1, we define Gb(·, ·) = G(·/b, ·/b). If G(·, ·) is
semi-positive definite on [0,1/b]2, then Gb(·, ·) satisfies the spectral decomposi-
tion Gb(r, t) = ∑+∞

j=1 λj,bφj,b(r)φj,b(t) with 0 ≤ r, t ≤ 1. The eigencompoents of
Gb(r, t) can be obtained by solving a homogenuous Fredholm integral equation of
the second kind, where the solutions can be approximated numerically when ana-
lytical solutions are unavailable. When G(r, t) = K(r − t), it was shown in Knessl
and Keller [14] that under suitable assumptions on K(·), λj,b = b

∫ +∞
−∞ K(r) dr −

(π2j2b3/2)
∫ +∞
−∞ r2K(r) dr + o(b3) and φj,b ≈ √

2 sin(πjx) for x bounded away
from 0 and 1 as b → 0, which implies that λM,b/λ1,b → 1 for any fixed M ∈ N

and b → 0. Our result can be extended to the case where b < 1 if the assumptions
in Theorem 2.2 hold for {λj,b} and {φj,b}. It is also worth noting that our result
is established under different assumptions as compared to Theorem 6 in Sun et al.
[31], where the bivariate kernel is defined as G(r, t) = K(r − t) and the technical
assumption b < 1/(16

∫ +∞
−∞ |K(r)|dr) is required, which rules out the case b = 1

for most kernels. Here we provide an alternative way of proving the O(1/T ) ERP
when the eigenfunctions are mean zero. Furthermore, we provide the exact form
of the leading error term which has not been obtained in the literature.

REMARK 2.5. The assumption on the eigenvalues is satisfied by the bivariate
kernel defined through the QS kernel and the Daniel kernel with 0 < b ≤ 1, and the
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TABLE 1
Asymptotic comparison between the first and second-order approximations based on fixed-b and

small-b asymptotics

Asymptotics First order Second order

Fixed-b P (Fb(∞) ≤ x) P (Fb(∞) ≤ x) + ℵT ,b(x;∞)

Small-b G1(x) G1(x) + (c2G′′
1(x)x2 − c1G′

1(x)x)b

− gq
∑+∞

h=−∞ |h|qγX(h)

σ 2(bT )q
G′

1(x)x

Tukey–Hanning kernel with b = 1 because these kernels are analytical on the cor-
responding regions, and their eigenvalues decay exponentially fast; see Little and
Reade [20]. However, the assumption does not hold for the Bartlett kernel because
the decay rate of its eigenvalues is of order O(1/n2). For the demeaned Tukey–
Hanning kernel with b = 1, we have that the eigenfunctions φ1(t) = √

2 cosπt and
φ2(t) = sinπt−2/π√

1/2−4/π2
with eigenvalues λ1 = 0.25, λ2 = 0.0474 and λj = 0 for j ≥ 3.

It is not hard to construct a kernel that satisfies the conditions in Theorem 2.2. For
example, one can consider the kernel K(r − t) = ∑+∞

j=1 λj {cos(2πjr) cos(2πjt)+
sin(2πjr) sin(2πjt)} = ∑+∞

j=1 λj cos(2πj (r − t)) with
∑+∞

j=1 λj = 1 and λj =
O(1/j19+ε) for some ε > 0. Then the asymptotic expansion (6) holds for the Wald
statistic based on the difference kernel G(r, t) = K(r − t).

Define the Parzen characteristic exponent

q = max
{
q0 :q0 ∈ Z

+, gq0 = lim
x→0

1 − K(x)

|x|q0
< ∞

}
.

For the Bartlett kernel q is 1; For the Parzen and QS kernels, q is equal to 2.
Let c1 = ∫ +∞

−∞ K(x) dx and c2 = ∫ +∞
−∞ K2(x) dx. Further define Fb(∞) and

ℵT ,b(x;∞) with φj and λj being replaced with φj,b and λj,b in the definition of
F (∞) and ℵT (x;∞). We summarize the first and second-order approximations
for the distribution of studentized sample mean in the Gaussian location model
based on both fixed-b and small-b asymptotics in Table 1 above. The formulas
for the second-order approximation under the small-b asymptotics is from Velasco
and Robinson [32].

REMARK 2.6. A few remarks are in order regarding Table 1. First of all, it is
worth noting that P(Fb(∞) ≤ x) = G1(x) + (c2G

′′
1(x)x2 − c1G

′
1(x)x)b + O(b2)

as b → 0 in Sun et al. [31], which suggests that the fixed-b limiting distribution
captures the first two terms in the higher order asymptotic expansion under the
small-b asymptotics and thus provides a better approximation than the χ2

1 approx-
imation. Second, it is interesting to compare the second-order asymptotic expan-
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sions under the fixed-b asymptotics and small-b asymptotics. We show in Propor-
tion 2.3 that the higher order expansion under fixed-b asymptotics is consistent
with the corresponding higher order expansion under small-b asymptotics as b

approaches zero.

Because our fixed-b expansion is established under the assumption that the
eigenfunctions have mean zero, we shall consider the Wald statistic FT (∞) based
on the demeaned kernel G̃b(r, t) = Kb(r − t)−∫ 1

0 Kb(s− t) ds−∫ 1
0 Kb(r −p)dp+∫ 1

0
∫ 1

0 Kb(s − p)ds dp with Kb(·) = K(·/b) and b ∈ (0,1]. Let {φ̃j,b} and {λ̃j,b}
be the corresponding eigenfunctions and eigenvalues of G̃b(·, ·).

PROPOSITION 2.3. Suppose K(·) : R → [0,1] is symmetric, semi-positive def-
inite, piecewise smooth with K(0) = 1 and

∫ +∞
0 xK(x) dx < ∞. The Parzen char-

acteristic exponent of K is no less than one. Further assume that

sup
k∈N

∣∣∣∣∣
k∑

i=1

λ̃i,b

(
var(ξ̃i,b) − σ 2)∣∣∣∣∣ = O

(+∞∑
i=1

λ̃i,b

(
var(ξ̃i,b) − σ 2))

(7)

as b+1/(bT ) → 0, where ξ̃i,b is defined by replacing φj with φ̃j,b in the definition
of ξi . Then under the assumption that σ 2 > 0 and

∑+∞
h=−∞ h2|γX(h)| < ∞, we

have

ℵT ,b(x;∞) = −gq

∑+∞
h=−∞ |h|qγX(h)

σ 2(bT )q
G′

1(x)x
(
1 + o(1)

) + O(1/T )

for fixed x ∈ R, as b → 0 and bT → +∞.

In Proposition 2.3, condition (7) is not primitive, and it requires that the bias
for the LRV estimators based on the kernel G̃k,b(r, t) = ∑k

i=1 λ̃j,bφ̃j,b(r)φ̃j,b(t) is
at the same or smaller order of the bias for the LRV estimator based on G̃b(r, t).
This condition simplifies our technical arguments and it can be verified through a
case-by-case study. As shown in Proposition 2.3, the fixed-b expansion is consis-
tent with the small-b expansion as b approaches zero, and it is expected to be more
accurate in terms of approximating the finite sample distribution when b is rela-
tively large. Overall speaking, the above result suggests that the fixed-b expansion
provides a good approximation to the finite sample distribution which holds for a
broad range of b.

3. Gaussian dependent bootstrap. Given the higher order expansions pre-
sented in Section 2, it seems natural to investigate if bootstrapping can help to
improve the first-order approximation. Though the higher order corrected critical
values can also be obtained by direct estimation of the leading error term, it in-
volves estimation of the eigencomponents of the kernel function and a choice of
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truncation number for the leading error term ℵT (x;∞) [see (5)] besides estimating
the second-order properties of the time series. Therefore it is rather inconvenient to
implement this analytical approach because numerical or analytical calculation of
eigencomponents can be quite involved, the truncation number and the bandwidth
parameter used in estimating second-order properties are both user-chosen num-
bers, and it seems difficult to come up with good rules about their (optimal) choice
in the current context. By contrast, the bootstrap procedure proposed below, which
involves only one user-chosen number, aims to estimate the leading error term in
an automatic fashion and the computational cost is moderate given current high
computing power.

To present the idea, we again limit our attention to the univariate Gaussian lo-
cation model. Consider a consistent estimate of the covariance matrix of {Xi}Ti=1
which takes the form �̂(ω; l) ∈ R

T ×T with the (i, j)th element given by ωl(i −
j)γ̂X(|i − j |) for i, j = 1,2, . . . , T , where ω is a kernel function with ωl(·) =
ω(·/l) and γ̂X(h) = 1

T

∑T −h
i=1 (Xi − X̄T )(Xi+h − X̄T ) for h = 0,1,2, . . . , T − 1.

Estimating the covariance matrix of a stationary time series has been investigated
by a few researchers. See Wu and Pourahmadi [33] for the use of a banded sample
covariance matrix and McMurry and Politis [23] for a tapered version of the sam-
ple covariance matrix. In what follows, we shall consider the Bartlett kernel, that
is, ω(x) = (1 − |x|)I{|x| < 1}, which guarantees to yield a semi-positive definite
estimates, that is, �̂(ω; l) ≥ 0.

We now introduce a simple bootstrap procedure which can be shown to be
second-order correct. Suppose X∗

1, . . . ,X∗
T is the bootstrap sample generated from

N(0, �̂(ω, l)). It is easy to see that X∗
i ’s are stationary and Gaussian conditional

on the data. This is why we name this bootstrap method “Gaussian dependent boot-
strap.” There is a large literature on bootstrap for time series; see Lahiri [17] for
a review. However, most of the existing bootstrap methods do not deliver a condi-
tionally normally distributed bootstrap sample. Since our higher order results are
obtained under the Gaussian assumption, we need to generate Gaussian bootstrap
samples in order for our expansion results to be useful.

Denote by T ∗
K the bootstrapped subsampling t-statistic obtained by replac-

ing (X1 − μ0,X2 − μ0, . . . ,XT − μ0) with (X∗
1,X∗

2, . . . ,X∗
T ). Define the boot-

strapped projection vectors ξ∗
0 = 1√

T

∑T
j=1 X∗

j and ξ∗
j = 1√

T

∑T
i=1 φ0

j (i/T )X∗
i for

j = 1, . . . . Let P ∗ be the bootstrap probability measure conditional on the data.
The following theorems state the second-order accuracy of the Gaussian depen-
dent bootstrap in the univariate Gaussian location model.

THEOREM 3.1. For the Gaussian location model, under the same conditions
in Theorem 2.1 and 1/l + l3/T → 0, we have

sup
x∈[0,+∞)

∣∣P (|TK | ≤ x
) − P ∗(|T ∗

K | ≤ x
)∣∣ = op(1/T ).(8)
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THEOREM 3.2. For the Gaussian location model, under the assumptions in
Theorem 2.2 and that 1/l + l3/T → 0, we have

sup
x∈[0,+∞)

∣∣P (
FT (∞) ≤ x

) − P ∗(
F ∗

T (∞) ≤ x
)∣∣ = op(1/T ),(9)

where F ∗
T (∞) = (ξ∗

0 )2∑+∞
j=1 λj (ξ∗

j )2 with {λj }+∞
j=1 given in (4). Note that F ∗

T (∞) =
(ξ∗

0 )2/D̂∗
T ,1, where D̂∗

T ,1 = T −1 ∑T
i,j=1 G(i/T , j/T )(X∗

i − X̄∗
T )(X∗

j − X̄∗
T ) and

X̄∗
T is the bootstrap sample mean.

REMARK 3.1. The higher order terms in the small-b expansion and the
increasing-K expansion (see Table 1 and Proposition 2.2) depend on the second-
order properties only through the quantities

∑+∞
h=−∞ |h|kγX(h) for k = 0,1, . . . , q .

It suggests that the Gaussian dependent bootstrap also preserves the second-order
accuracy under the increasing-domain asymptotics provided that

+∞∑
h=−∞

|h|q+1γX(h) < ∞.

A rigorous proof is omitted due to space limitation.

The bootstrap-based autocorrelation robust testing procedures have been well
studied in both econometrics and statistics literature under the increasing-domain
asymptotics. In the statistical literature, Lahiri [16] showed that for the studentized
M-estimator, the ERP of the moving block bootstrap (MBB)-based one-sided test-
ing procedure is of order op(T −1/2) which provides an asymptotic refinement to
the normal approximation. Under the framework of the smooth function model,
Götze and Künsch [7] showed that the ERP for the MBB-based one-sided test is
of order Op(T −3/4+ε) for any ε > 0 when the HAC estimator is constructed us-
ing the truncated kernel. Note that in the latter paper, the HAC estimator used in
the studentized bootstrap statistic needs to take a different form from the origi-
nal HAC estimator to achieve the higher order accuracy. Also see Lahiri [18] for
a recent contribution. In the econometric literature, the Edgeworth analysis for
the block bootstrap has been conducted by Hall and Horowitz [8], Andrews [2]
and Inoue and Shintani [11], among others, in the GMM framework. Within the
increasing-domain asymptotic framework, it is still unknown whether the boot-
strap can achieve an ERP of op(1/T ) when a HAC covariance matrix estimator is
used for studentization; see Härdle, Horowitz and Kreiss [9]. Note that Hall and
Horowitz [8] and Andrews [2] obtained the op(1/T ) results for symmetrical tests
but they assumed the uncorrelatedness of the moment conditions after finite lags.
Note that all the above results were obtained under the non-Gaussian assumption.

Within the fixed-smoothing asymptotic framework, Jansson [12] established
that the error of the fixed-b approximation to the distribution of two-sided test
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statistic is of order O(log(T )/T ) for the Gaussian location model and the case
b = 1, which was further refined by Sun et al. [31] by dropping the log(T ) term.
In the non-Gaussian setting, Gonçalves and Vogelsang [6] showed that the fixed-
b approximation to the distribution of one-sided test statistic has an ERP of or-
der o(T −1/2+ε) for any ε > 0 when all moments exist. The latter authors further
showed that the MBB (with i.i.d. bootstrap as a special case) is able to replicate the
fixed-b limiting distribution and thus provides more accurate approximation than
the normal approximation. However, because the exact form of the leading error
term was not obtained in their studies, their results seem not directly applicable to
show the higher order accuracy of bootstrap under the fixed-b asymptotics. Using
the asymptotic expansion results developed in Section 2, we show that the Gaus-
sian dependent bootstrap can achieve an ERP of order op(1/T ) under the Gaussian
assumption. This appears to be the first result that shows the higher order accuracy
of bootstrap under the fixed-smoothing asymptotics. Our result also provides a
positive answer to the open question mentioned in Härdle, Horowitz and Kreiss
[9] that whether the bootstrap can achieve an ERP of op(1/T ) in the dependence
case when a HAC covariance matrix estimator is used for studentization. It is worth
noting that our result is established for the symmetrical distribution functions un-
der the fixed-smoothing asymptotics and the Gaussian assumption. It seems that in
general the ERP of order op(1/T ) cannot be achieved under the increasing-domain
asymptotics or for the non-Gaussian case. In the supplementary material [34], we
provide some simulation results which demonstrate the effectiveness of the pro-
posed Gaussian dependent bootstrap in both Gaussian and non-Gaussian settings.
The MBB is expected to be second-order accurate, as seen from its empirical per-
formance, but a rigorous theoretical justification seems very difficult. Finally, we
mention that it is an important problem to choose l. For a given criterion, the op-
timal l presumably depends on the second-order property of the time series in a
sophisticated fashion. Some of the rules proposed for block-based bootstrap (see
Lahiri [17], Chapter 7) may still work, but a serious investigation is beyond the
scope of this article.

4. Conclusion. In this paper, we derive the Edgeworth expansions of the
subsampling-based t-statistic and the Wald statistic with HAC estimator in the
Gaussian location model. Our work differs from the existing ones in two impor-
tant aspects: (i) the expansion is derived under the fixed-smoothing asymptotics
and the ERP of order O(1/T ) is shown for a broad class of fixed-smoothing
inference procedures; (ii) we obtain an explicit form for the leading error term,
which is unavailable in the literature. An in-depth analysis of the behavior of the
leading error term when the smoothing parameter grows with sample size (i.e.,
K → ∞ in the subsampling t-statistic or b → 0 in the Wald statistic with the HAC
estimator) shows the consistency of our results with the expansion results under
the increasing-domain asymptotics. Building on these expansions, we further pro-
pose a new bootstrap method, the Gaussian dependent bootstrap, which provides a
higher order correction than the first-order fixed-smoothing approximation.
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We mention a few directions that are worthy of future research. First, it would be
interesting to relax the Gaussian assumption in all the expansions we obtained in
the paper. For non-Gaussian time series, Edgeworth expansions have been obtained
by Götze and Kunsch [7], Lahiri [18, 19], among others, for studentized statistics
of a smooth function model under weak dependence assumption, but their results
were derived under the increasing-smoothing asymptotics. For the location model
and studentized sample mean, the extension to the non-Guassian case may require
an expansion of the corresponding characteristic function, which involves calcu-
lation of the high-order cumulants under the fixed-smoothing asymptotics. The
detailed calculation of the high-order terms can be quite involved and challenging.
We conjecture that under the fixed-smoothing asymptotics, the leading error term
in the expansion of its distribution function involves the third and fourth-order cu-
mulants, which reflects the non-Gaussianness, and the order of the leading error
term is O(T −1/2) instead of O(T −1). Second, we expect that our expansion results
will be useful in the optimal choice of the smoothing parameter, the kernel and its
corresponding eigenvalues and eigenfunctions, for a given loss function. The opti-
mal choice of the smoothing parameter has been addressed in Sun et al. [31] using
the expansion derived under the increasing-smoothing asymptotics. As the finite
sample distribution is better approximated by the corresponding fixed-smoothing
based approximations at either first or second order than its increasing-smoothing
counterparts, the fixed-smoothing asymptotic theory proves to be more relevant
in terms of explaining the finite sample results; see Gonçalves and Vogelsang [6].
Therefore, it might be worth reconsidering the choice of the optimal smoothing
parameter under the fixed-smoothing asymptotics. Third, we restrict our atten-
tion to the Gaussian location model when deriving the higher order expansions.
It would be interesting to extend the results to the general GMM setting. A recent
attempt by Sun [28] for the HAC-based inference seems to suggest this is feasi-
ble. Finally, under the fixed-smoothing asymptotics, the second correctness of the
moving block bootstrap for studentized sample mean, although suggested by the
simulation results, is still an open but challenging topic for future research.

5. Proof of Theorem 2.1. Consider the K + 1-dimensional multivariate nor-
mal density function which takes the form

f (y,�) = (2π)−(K+1)/2|�|−1/2 exp
(−1

2y′�−1y
)
.

We assume the (i, j)th element and the (j, i)th element of � are functionally un-
related. The results can be extended to the case where symmetric matrix elements
are considered functionally equal; see, for example, McCulloch [22]. In the fol-
lowing, we use ⊗ to denote the Kronecker product in matrix algebra and use vec
to denote the operator that transforms a matrix into a column vector by stacking
the columns of the matrix one underneath the other. For a vector y ∈ R

l×1 whose
elements are differential functions of a vector x ∈ R

k×1, we define ∂y
∂x

to be a k × l
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matrix with the (i, j)th element being ∂yj

∂xi
. The notation u � v represents u = O(v)

and v = O(u). We first present the following lemmas whose proofs are given in
the online supplement [34].

LEMMA 5.1.
∂f

∂ vec(�)
(y,�) = f (y,�)

2

{(
�−1y

) ⊗ (
�−1y

) − vec
(
�−1)}

.

LEMMA 5.2.

∂2f

∂ vec(�)vec(�)
(y,�)

= 1

4

{(
�−1y

) ⊗ (
�−1y

) − vec
(
�−1)}{(

�−1y
) ⊗ (

�−1y
) − vec

(
�−1)}′

× f (y,�)

− 1

2

{(
�−1yy′�−1) ⊗ �−1 + �−1 ⊗ (

�−1yy′�−1) − �−1 ⊗ �−1}
× f (y,�).

LEMMA 5.3. Let {�T } ⊂ R
(K+1)×(K+1) be a sequence of positive definite

matrices with K +1 ≤ T . If K is fixed with respect to T and ‖�T −�‖2 = O(1/T )

for a positive definite matrix �, then we have∥∥�−1
T − �−1∥∥

2 = O(1/T ).

LEMMA 5.4. Let �̃T (y) be a (K + 1) × (K + 1) positive symmetric matrix
which depends on y ∈ R

K+1. Assume that supy∈RK+1 ‖�̃T (y) − �‖2 ≤ ‖�T −
�‖2 = O(1/T ) for a positive definite matrix �. Let RT = �T − �. If K is fixed
with respect to T , we have∫

y∈RK+1

∣∣∣∣vec(RT )′ ∂2f

∂ vec(�)vec(�)

(
y, �̃T (y)

)
vec(RT )

∣∣∣∣dy = O
(
1/T 2)

.

PROOF OF THEOREM 2.1. For the convenience of our presentation, we ignore
the functional symmetry of the covariance matrix in the proof. With some proper
modifications, we can extend the results to the case where the functional symmetry
is taken into consideration. Let |M1| = |M2| = · · · = |MK | = q . Define Yi =√

q(μ̂i − μ0), and Ȳ = 1
K

∑K
i=1 Yi and S2

Y = 1
K−1

∑K
i=1(Yi − Ȳ )2 as the sample

mean and sample variance of {Yi}Ki=1, respectively. Note that TK(Y ) = √
KȲ/SY ,

where Y = (Y1, Y2, . . . , YK)′. Simple algebra yields that

σij := Cov(Yi, Yj ) =
q−1∑

h=1−q

(
q − |h|

q

)
γX

(
h − (j − i)q

)
.
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Notice that Y follows a normal distribution with mean zero and covariance ma-
trix �T , where �T = (σij )

K
i,j=1. The density function of Y is given by

f (y,�T ) = (2π)−K/2|�T |−1/2 exp
(−1

2y′�−1
T y

)
.

Under the assumption
∑+∞

h=−∞ h2|γX(h)| < ∞, it is straightforward to see that
‖�T − σ 2IK‖2 = O(1/T ). Taking a Taylor expansion of f (y,�T ) around ele-
ments of the matrix σ 2IK , we have

f (y,�T ) = f
(
y,σ 2IK

) +
{

∂f

∂ vec(�)

(
y,σ 2IK

)}′
vec

(
�T − σ 2IK

)

+ vec
(
�T − σ 2IK

)′ ∂2f

∂ vec(�)vec(�)

(
y, �̃T (y)

)
vec

(
�T − σ 2IK

)
,

where supy∈RK ‖�̃T (y) − σ 2IK‖2 ≤ ‖�T − σ 2IK‖2 = O(1/T ). By Lemmas 5.1
and 5.4, we get

∂f

∂ vec(�)

(
y,σ 2IK

) = f
(
y,σ 2IK

){− 1

2σ 2 vec(IK) + 1

2σ 4 y ⊗ y

}

and ∫
y∈RK

∣∣∣∣vec
(
�T − σ 2IK

)′ ∂2f

∂ vec(�)vec(�)

(
y, �̃T (y)

)
vec

(
�T − σ 2IK

)∣∣∣∣dy

(10)

= O

(
1

T 2

)
,

which imply that

f (y,�T ) = f
(
y,σ 2IK

){
1 − 1

2σ 2

K∑
i=1

(
σii − σ 2)}

+ 1

2σ 4 f
(
y,σ 2IK

) K∑
i=1

K∑
j=1

(
σij − σ 2δij

)
yiyj + R(y)

= g
(
y,σ 2IK

) + R(y),

where g denotes the major term, R(y) is the remainder term and δij = I{i = j} is
the Kronecker’s delta. Define �̃(x;K) = ∫

{|TK(y)|>x} g(y,σ 2IK)dy. By (10), we
see that

sup
x∈R

∣∣∣∣
∫
{|TK(y)|>x}

f (y,�T )dy − �̃(x;K)

∣∣∣∣ ≤
∫

RK

∣∣R(y)
∣∣dy = O

(
1/T 2)

.

It follows from some simple calculation that

�̃(x;K) =
{

1 − 1

2σ 2

K∑
i=1

(
σii − σ 2)}

P
(|tK−1| > x

) + 1

2σ 2 (J1 + J2),
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where

J1 =
K∑

i=1

(
σii −σ 2)

E
[
I
{∣∣T̃K(v)

∣∣ > x
}
v2
i

]
, J2 = ∑

i �=j

σijE
[
I
{∣∣T̃K(v)

∣∣ > x
}
vivj

]
.

Here {vi}Ki=1 are i.i.d. standard normal random variables and T̃K(v) = √
Kv̄/Sv

is the t statistic based on {vi} with v̄ = 1
K

∑K
i=1 vi and S2

v = 1
K−1

∑K
i=1(vi − v̄)2.

Let U = Kv̄2 and D = (K − 1)S2
v . Then U ∼ χ2

1 , D ∼ χ2
K−1 and U and D are

independent. We define that

E
[
I
{∣∣T̃K(v)

∣∣ > x
}
v2
i

]

= 1

K
E

[
I
{∣∣T̃K(v)

∣∣ > x
} K∑

i=1

v2
i

]

= 1

K
E

[
I
{∣∣T̃K(v)

∣∣ > x
}
U

] + 1

K
E

[
I
{∣∣T̃K(v)

∣∣ > x
}
D

]

= 1

K
E

[
UGK−1

(
(K − 1)U

x2

)]
+ 1

K
E

[
D − DG1

(
Dx2

K − 1

)]

and

E
[
I
{∣∣T̃K(v)

∣∣ > x
}
vivj

]
= 1

K(K − 1)
E

[
I
{∣∣T̃K(v)

∣∣ > x
}∑

i �=j

vivj

]

= 1

K − 1
E

[
I
{∣∣T̃K(v)

∣∣ > x
}
U

] − 1

K(K − 1)
E

[
I
{∣∣T̃K(v)

∣∣ > x
} K∑

i=1

v2
i

]

= 1

K
E

[
UGK−1

(
(K − 1)U

x2

)]
− 1

K(K − 1)
E

[
D − DG1

(
Dx2

K − 1

)]
.

We then have

P
(|TK | > x

) = �̃(x;K) + O
(
1/T 2)

= {1 − α}P (|tK−1| > x
) + βE

[
UGK−1

(
(K − 1)U

x2

)]
(11)

+ τ

{
K − 1 − E

[
DG1

(
Dx2

K − 1

)]}
+ O

(
1/T 2)

,

uniformly for x ∈ R, where the coefficients are given by

α = 1

2σ 2

K∑
i=1

(
σii − σ 2) = − K2B

2σ 2T
+ O

(
1/T 2)

,
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β = 1

2Kσ 2

K∑
i=1

K∑
j=1

(
σij − δijσ

2) = − B

2σ 2T
+ O

(
1/T 2)

and

τ = 1

2Kσ 2

K∑
i=1

(
σii − σ 2) − 1

2K(K − 1)σ 2

∑
i �=j

σij = −(K + 1)B

2σ 2T
+ O

(
1/T 2)

.

The conclusion thus follows from equation (11). �
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SUPPLEMENTARY MATERIAL

Proofs of the other results in Sections 2–3 and simulation results. (DOI:
10.1214/13-AOS1113SUPP; .pdf). This supplement contains proofs of the other
main results in Sections 2–3 and some simulation results.
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