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MINIMAX ADAPTIVE TESTS FOR THE FUNCTIONAL LINEAR
MODEL

BY NADINE HILGERT, ANDRÉ MAS AND NICOLAS VERZELEN1

INRA, Université Montpellier 2 and INRA

We introduce two novel procedures to test the nullity of the slope func-
tion in the functional linear model with real output. The test statistics combine
multiple testing ideas and random projections of the input data through func-
tional principal component analysis. Interestingly, the procedures are com-
pletely data-driven and do not require any prior knowledge on the smooth-
ness of the slope nor on the smoothness of the covariate functions. The levels
and powers against local alternatives are assessed in a nonasymptotic setting.
This allows us to prove that these procedures are minimax adaptive (up to
an unavoidable log logn multiplicative term) to the unknown regularity of
the slope. As a side result, the minimax separation distances of the slope are
derived for a large range of regularity classes. A numerical study illustrates
these theoretical results.

1. Introduction. Consider the following functional linear regression model
where the scalar response Y is related to a square integrable random function X(·)
through

Y = ω +
∫

T
X(t)θ(t) dt + ε.(1)

Here, ω is a constant, denoting the intercept of the model, T is the domain of X(·),
θ(·) is an unknown function representing the slope function and ε is a centered
random noise variable. In functional linear regression, much interest focuses on
the nonparametric estimation of θ(·) in (1), given an i.i.d. sample (Xi, Yi, )1≤i≤n

of (X,Y ). Testing whether θ belongs to a given finite dimensional linear sub-
space V is a question that arises in different problems such as dimension reduction,
goodness-of-fit analysis, or lack-of-effect tests of a functional variable. If the prop-
erties of estimators of θ are widely discussed in the literature, there is still a great
need to have generic test procedures supported by strong theoretical properties.
This is the problem addressed in the present paper.

Let us reformulate the functional model (1) as a generic linear regression model
in an infinite dimensional space. The random function X is assumed to belong
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to some separable Hilbert space, henceforth denoted H, endowed with the inner
product 〈·, ·〉. Examples of H include L2([0,1]) or Sobolev space W m

2 ([0,1]). For
the sake of clarity, we consider that ω = 0 and that X and Y are centered. Thus,
assuming that θ also belongs to H, the statistical model (1) is rephrased as

Y = 〈X,θ〉 + ε,(2)

where ε is a centered random variable independent from X with unknown vari-
ance σ 2. In the sequel, we note X and Y the size n vectors of i.i.d. observations Xi

and Yi (1 ≤ i ≤ n), while ε stands for the size n vector of the noise.
In essence, testing a linear hypothesis of the form “θ ∈ V ” is as difficult as

testing “θ = 0” when a parametric estimator of θ in V is computed. Therefore we
consider the following problem of testing:

H0 : “θ = 0” against H1 : “θ �= 0”

given an i.i.d. sample (X,Y) from model (2). The extension to general subspaces V
is developed in the discussion section.

Most testing procedures are based on ideas that have been originally developed
for the estimation of θ . We briefly review the main approaches and the correspond-
ing results in estimation.

A first class of procedures is based on the minimization of a least-square type
criterion penalized by a roughness term that assesses the “plausibility” of θ . Such
approaches include smoothing spline estimators [6, 13], thresholding projection
estimators [8], or reproducing kernel Hilbert space methods [36]. A second class
of procedures is based on the functional principal components analysis (PCA) of X
[9, 21]. It consists of estimating θ in a finite dimensional space spanned by the k

first eigenfunctions of the empirical covariance operator of X. The main difference
with the previous class of estimators lies in the fact that the finite dimensional
space is estimated from the observations of the process X. See the survey [10] and
references therein for an overview of these two approaches.

The theoretical properties of these classes of estimators have been investigated
from different viewpoints: prediction [6, 9, 13, 36] (estimation of 〈Xn+1, θ〉 where
Xn+1 follows the same distribution as X), pointwise prediction [4] (estimation of
〈x, θ〉 for a fixed x ∈ H) or the inverse problem [11, 21] (estimation of θ ). For these
three objectives, optimal rates of convergence have been derived, and some of the
aforementioned procedures have been shown to asymptotically achieve this rate [4,
13, 21, 36]. Recently, some nonasymptotic results have emerged [11, 12] for esti-
mation procedures that rely on a prescribed basis of functions (e.g., splines). Most
of these estimation procedures rely on tuning parameters whose optimal value de-
pend on quantities such as the noise variance, or the smoothness of θ . In fact, there
is a longstanding gap in the literature between theory, where the variance σ 2, the
smoothness of θ and the smoothness of the covariance operator of X are generally
assumed to be known, and practice where they are unknown.
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The literature on tests in the functional linear model is scarce. In [5], Cardot
et al. introduced a test statistic based on the k first components of the functional
PCA of X. Its limiting distribution is derived under H0 and the power of the cor-
responding test is proved to converge to one under H1. The main drawback of the
procedure is that the number k of components involved in the statistic has to be
set. As for estimation, setting k is arguably a difficult problem. To bypass this cali-
bration issue, one may apply a permutation approach [7] or use bootstrap method-
ologies [14, 20]. While the levels of the corresponding tests are asymptotically
controlled, there is again no theoretical guarantee on the power.

In this paper, our objective is to introduce automatic testing procedures whose
powers are optimal from a nonasymptotic viewpoint.

As a first step, we introduce in Section 3 Fisher-type nonadaptive tests, Tα,k ,
corresponding to projections of Y on the k first principal components of X. We
study their levels and powers in Sections 3 and 4. Under moment assumptions
on ε and mild assumptions on the covariance of X, the level is smaller than α up
to a log−1(n) additional term, and a sharp control of the power is provided. Such
results are comparable to state of the art results in nonparametric regression [3,
33]. In our setting, the main difficulty in the proof is to control the randomness of
the principal components of X. The arguments rely on the perturbation theory of
operators. While other estimation or testing procedures based on the Karhunen–
Loève expansion have only been analyzed in an asymptotic setting [4, 5, 21], our
nonasymptotic results rely on less restrictive assumptions on X than those com-
monly used in the literature. In Section 4, we assess the optimality of the paramet-
ric test Tα,k in the minimax sense. The notion of minimaxity of a level-α test Tα

is related to the separation distance of Tα over some class of functions � (e.g.,
a Sobolev ball). Intuitively, the power of a reasonable test Tα should be large when
the norm of θ is large while the power of Tα is close to α when θ is close to 0.
For the problem of testing H0 : “θ = 0” against H1,� : “θ ∈ � \ {0}”, the separation
distance corresponds to the smallest distance ρ such that Tα rejects H0 with prob-
ability larger than 1 −β for all θ ∈ � whose norm is larger than ρ. The smaller the
separation distance, the more powerful the test Tα is. The minimax separation dis-
tance over � is the smallest separation distance that is achieved by a level-α test.
A test achieving this minimax separation distance is said to be minimax over �. In
the nonparametric regression setting, minimax separation distances have been de-
rived in an asymptotic [26–28] and a nonasymptotic [2] setting. In this paper, the
separation distances of our testing procedures are nonasymptotically controlled.
We derive minimax separation distance in the functional model (2) for a wide
class of ellipsoids. We show that the parametric test Tα,k achieves the optimal rate
of detection when the dimension k is suitably chosen.

In practice, the regularity of θ is unknown. However, the choice of k in Tα,k

depends on unknown quantities such as the regularity of X or the regularity of θ .
Thus, assuming a priori that the function θ belongs to a particular smoothness class
� and building an optimal test over � may lead to poor performances, for instance,
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if θ /∈ �. For this reason, a more ambitious issue is to build a minimax adaptive
testing procedure, that is, a procedure which is simultaneously minimax for a wide
range of regularity classes �. Minimax adaptive testing procedures have already
been studied in the nonparametric regression setting, from an asymptotic [33] and
a nonasymptotic [3] viewpoint. As a second step, we combine the parametric tests
Tα,k with multiple testing techniques in the spirit of [3]. Two such multiple testing
procedures are introduced in Section 5. They are completely data-driven: no tun-
ing parameters are required, whose optimal values depend on θ , the distribution of
X or on σ . Their levels and powers are analyzed from a nonasymptotic viewpoint
in Sections 5 and 6. We prove that our multiple testing procedures are simultane-
ously minimax over the class of ellipsoids aforementioned (up to an unavoidable
log logn factor). As in the estimation setting [21], the minimax separation dis-
tances involve the common regularity of θ and X.

The two multiple testing procedures are illustrated and compared by simulations
in Section 7. Extensions of the approach are discussed in Section 8. Section 9
contains the main proofs while the lemmas involving perturbation theory are given
in Section 10. All the technical and side results are postponed to appendices.

2. Preliminaries.

2.1. Notation. We remind that 〈·, ·〉 and ‖ · ‖, respectively, refer to the inner
product and the corresponding norm in the Hilbert H. In contrast, 〈·, ·〉n and ‖ · ‖n

stand for the inner product and the Euclidean norm in R
n. Furthermore, ⊗ refers

to the tensor product. We assume henceforth that X is centered and has a second
moment that is E[‖X‖2] < ∞. The covariance operator of X is defined as the linear
operator 
 defined on H as follows:


h = E[X ⊗ Xh] = E
[〈h,X〉X]

, h ∈ H.

It is well known that 
 is a symmetric, positive trace-class hence Hilbert–Schmidt
operator, which implies that 
 is diagonalizable in an orthonormal basis. We
denote (λj )j≥1 the nonincreasing sequence of eigenvalues of 
, while the se-
quence (Vj )j≥1 stands for a corresponding sequence of eigenfunctions. It fol-
lows that 
 decomposes as 
 = ∑∞

j=1 λjVj ⊗ Vj . For any integer k ≥ 1, we note


k = ∑k
j=1 λjVj ⊗ Vj the operator such that 
kh = 
h for h ∈ Vect(V1, . . . , Vk)

and 
kh = 0 if h ∈ (V1, . . . , Vk)
⊥.

In the sequel, C,C1, . . . denote positive universal constants that may vary from
line to line. The notation C(·) specifies the dependency on some quantities.

2.2. Karhunen–Loève expansion and functional PCA. We recall here a classi-
cal tool of functional data analysis: the Karhunen–Loève expansion, denoted KL
expansion in the sequel.
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DEFINITION 2.1. There exists an expansion of X in the basis (Vj )j≥1: X =∑〈X,Vj 〉Vj . The real random variables 〈X,Vj 〉 are centered (when X is cen-
tered), uncorrelated and with variance λj . As a consequence, there exists a col-
lection (η(j))j≥1 of random variables that are centered, uncorrelated and with unit
variance such that

X =
+∞∑
j=1

√
λjη

(j)Vj .(3)

The decomposition is called the KL-expansion of X.

The eigenfunction Vj is the j th principal direction whose amount of variance
coincides with λj . When X is a Gaussian process, the (η(j))j∈N form an i.i.d.
sequence with η(1) ∼ N (0,1). If the eigenfunctions (Vj ) and the eigenvalues (λj )

are unknown in practice, they can be estimated from the data using functional
principal component analysis. In the sequel, we note 
̂n the empirical covariance
operator defined by


̂nh = 1

n

n∑
i=1

Xi ⊗ Xih = 1

n

n∑
i=1

〈Xi,h〉Xi, h ∈ H.

Functional PCA allows us to estimate (λj ,Vj ), j ≥ 1, by diagonalizing the empir-
ical covariance operator 
̂n. These empirical counterparts of (λj ,Vj ) are denoted
(̂λj , V̂j ) in the sequel.

Functional PCA is usually applied as a dimension reduction technique. One of
its appealing features relies on its ability to capture most of the variance of X by
a k-dimensional projection on the space Vect(V̂1, . . . , V̂k). For this reason, PCA
is at the core of many procedures for functional data. After the seminal paper
by Dauxois et al. [15], the convergence of the random eigenelements (̂λj , V̂j ) has
been assessed from an asymptotic point of view [22–24, 29]. One issue with such a
dimension reduction method is the choice of the tuning parameter k, whose optimal
value usually depends on unknown quantities. Besides plugging the (̂λj , V̂j ) into
linear estimates creates nonlinearity and usually introduces stochastic dependence.

3. Parametric test.

3.1. Definition. In the sequel, k denotes a positive integer smaller than n/2.
As a first step, we consider the parametric testing problem of the hypotheses

H0 : “θ = 0” against H1,k : “θ ∈ Vect
[
(Vj )j=1,...,k

] \ {0}”.(4)

Given a dimension k of the Karhunen–Loève expansion, we note k̂KL as k ∧
Rank(
̂n). In order to introduce the parametric statistic, let us restate the func-
tional linear model into a finite dimensional linear model. We consider the re-
sponse vector Y of size n, the n× k̂KL design matrix W defined by Wi,j = 〈Xi, V̂j 〉
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for i = 1, . . . , n, j = 1, . . . , k̂KL, the parameter vector ϑ defined by ϑj = 〈θ, V̂j 〉,
j = 1, . . . , k̂KL and the size n noise vector ε̃ defined by ε̃i = εi +〈Xi, θ〉− [Wϑ]i .
The functional linear model is equivalently written as

Y = Wϑ + ε̃.

Intuitively, testing “ϑ = 0” is a reasonable proxy for testing H0 against H1,k . For
this reason, we propose a Fisher-type statistic.

DEFINITION 3.1. In the sequel, �̂k stands for the orthogonal projection in R
n

onto the space generated by the k̂KL columns of W. For any k ≤ n/2, we consider
the statistic φk(Y,X) defined by

φk(Y,X) := ‖�̂kY‖2
n

‖Y − �̂kY‖2
n/(n − k̂KL)

.(5)

The main difference with a classical Fisher statistic comes from the fact that
the projection �̂k is random. This projector is built using the k̂KL first directions
(V̂1, V̂2, . . . , V̂k̂KL) of the empirical Karhunen–Loève expansion of X. Let us call
�̃k the orthogonal projector in R

n onto the space spanned by (〈Xi,Vj 〉)i=1,...,n,
j = 1, . . . , k. If we knew the basis (Vj ), j ≥ 1, in advance, we would use this
orthogonal projector instead of �̂k . We shall prove that, under H0, φk(Y,X)/k̂KL

behaves like a Fisher distribution with (k̂KL, n − k̂KL) degrees of freedom.

DEFINITION 3.2 (Parametric tests). Fix α ∈ (0,1). We reject H0 against H1,k

when the statistic

Tα,k := φk(Y,X) − k̂KL F̄ −1
k̂KL,n−k̂KL(α)(6)

is positive.

REMARK 3.1 [Other interpretations of φk(Y,X)]. Consider θ̂k the least-
squares estimator of θ in the space generated by V̂j , j = 1, . . . , k̂KL. It is proved in

Section 9.2 that ‖�̂kY‖2
n = ‖
̂1/2

n θ̂k‖2. Thus, the numerator of (5) corresponds to
some norm of θ̂k . Intuitively, the larger θ̂k , the larger the statistic φk(Y,X) is. Fur-
thermore, ‖�̂kY‖2

n also expresses as the numerator of the statistic Dn considered
in Cardot et al. [5]; see Section 9.2 for details.

REMARK 3.2. From the considerations above, we see that the transformed
parameter 
1/2θ naturally occurs in the definition of φk(Y,X). In fact, hypotheses
H0 and H1,k remain unchanged, if we replace θ by 
1/2θ in (4) as soon as 
 is
injective. The crucial role of this synthetic parameter is underlined in [30] where
the functional linear regression model is proved to be asymptotically equivalent to
a white noise model with signal 
1/2θ .
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3.2. Size. We study the type I error of the parametric tests Tα,k . On one hand,
we control exactly the size of the tests when the noise ε is normally distributed. On
the other hand, we bound the size of the tests when the noise is only constrained
to admit a fourth moment.

3.2.1. Gaussian noise.

ε follows a Gaussian distribution N
(
0, σ 2)

.(A.1)

PROPOSITION 3.3 (Size of Tα,k under Gaussian errors). Under assumption
(A.1) and if k ≤ n/2, we have for any n ≥ 2, P0(Tα,k > 0) = α.

Observe that this control does not require any assumption on the process X.

3.2.2. Non-Gaussian noise. In this part, the noise ε is only assumed to admit
a fourth order moment, but we perform additional assumptions on X and k.

sup
j≥1

E
[(

η(j))4] ≤ C1 and
E[ε4]
σ 4 ≤ C2,(B.1)

where C1 and C2 are two positive constants:

For some γ > 0
(
jλj

((
log1+γ j

) ∨ 1
))

j≥1 is decreasing and Ker
 = {0}.(B.2)

k ≤ n1/4/ log4(n).(B.3)

Assumption (B.1) is classical, since we need to control second order moments for
the empirical covariance operator 
̂n. This comes down to inspecting the behavior
of the fourth order moments of the η(j)’s. The second part of (B.2) ensures that
the framework is truly functional. The first part of (B.2) is mild and holds for an X

that may have very irregular paths (it holds for the Brownian motion for which
λj ∝ j−2) and for classical examples of eigenvalue sequences: with polynomial
decay, exponential decay, or even Laurent sequences such as λj = j−δ · log−ν(j)

for δ > 1 and ν ≥ 0. In fact, (B.2) is less restrictive than assumptions commonly
used in the literature [4, 5, 21] since it does not require any spacing control between
the eigenvalues.

The restriction (B.3) on the dimension of the projection is classical for the anal-
ysis of statistical procedures based on the Karhunen–Loève expansion. If we knew
the eigenfunctions Vk of 
 in advance, we could consider larger dimensions k.
The estimation of the eigenfunctions Vk becomes more difficult when k increases.
By considering dimensions k that satisfy assumption (B.3), we prove in the next
theorem that the random projector �̂k concentrates well around its mean. It may
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be noticed that this assumption links k and n independently from the eigenvalues
hence from any prior knowledge on the data.

THEOREM 3.4 (Size of Tα,k). Under assumptions (B.1)–(B.3), there exist pos-
itive constants C(α,γ ) and C2 such that the following holds. For any n ≥ C2, we
have

P0[Tα,k > 0] ≤ α + C(α,γ )

log(n)
.

REMARK 3.3. In the proof of Theorem 3.4, we show that, under H0, the
distribution of φk(Y,X) is close to a χ2 distribution with k degrees of free-
dom. The arguments rely on perturbation theory for random operators (see Sec-
tion 10).

4. Power and minimaxity of Tα,k . Intuitively, the larger the signal-to-noise
ratio E[〈X,θ〉2]/σ 2 = ‖
1/2θ‖2/σ 2 is, the easier we can reject H0. For this rea-
son, we study how large ‖
1/2θ‖2 has to be, so that the test Tα,k rejects H0 with
probability larger than 1 − β for a prescribed positive number β . We provide such
type II errors under moment assumption of ε. Additional controls of the power
when ε follows a Normal distribution are stated in Appendix A of the supplemen-
tary material [25].

4.1. Power of Tα,k .

sup
j≥1

E
[(

η(j))8] ≤ C.(B.4)

THEOREM 4.1 (Power under non-Gaussian errors). Let α and β be fixed. Un-
der (B.1)–(B.4), there exist positive constants C(γ ), C1, C2 and C3 such that the
following holds. Assume that α ≥ e−√

n, β ≥ C(γ )/ log(n) and that n ≥ C3. Then,
Pθ (Tα,k > 0) ≥ 1 − β for any θ satisfying

∥∥
1/2θ
∥∥2 ≥ C1

∥∥(

1/2 − 


1/2
k

)
θ
∥∥2 + C2

σ 2

n

(√
k log

(
1

αβ

)
+ log

(
1

αβ

))
.(7)

REMARK 4.1. If we knew that θ belongs to the space spanned by the k first
eigenvectors (V1, . . . , Vk) and if we knew these k eigenvectors in advance, then we
could consider the statistic defined by

φ̃k(X,Y) := ‖�̃kY‖2
n

‖Y − �̃kY‖2
n

− F̄ −1
k,n−k(α),
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where �̃k is the projection in R
n onto the space spanned by (〈Xi,Vj 〉)i=1,...,n,

j = 1, . . . , k. The corresponding test is optimal in the minimax sense and rejects
H0 with probability larger than 1 − β when∥∥
1/2θ

∥∥2 ≥ C(α,β)
√

kσ 2/n.(8)

See [35] for a proof when X is a Gaussian process and ε follows a Gaussian distri-
bution, the extension to non-Gaussian processes being straightforward. In (7), we
recover an additional term ‖(
1/2 − 


1/2
k )θ‖2 because we do not assume that θ

belongs to the space spanned by (V1, . . . , Vk). The statistic φk(Y,X) only captures
the projection of θ onto span(V1, . . . , Vk). In fact, the test Tα,k rejects with large
probability when ∥∥
1/2

k θ
∥∥2 = ∥∥
1/2θ

∥∥2 − ∥∥(

1/2 − 


1/2
k

)
θ
∥∥2

is large.

REMARK 4.2 (Joint regularity of 
 and θ ). Looking more precisely at the bias
term, we obtain

∥∥(

1/2 − 


1/2
k

)
θ
∥∥2 =

∞∑
j=k+1

λj 〈θ,Vj 〉2.

Consequently, the bias term does not only depend on the rate of convergence of
the eigenvalues of 
, it also depends on the behavior of the sequence λj 〈θ,Vj 〉2.
In other words, the joint regularity of the covariance operator 
 and of θ [in the
expansion of (Vj ), j ≥ 1] plays a role in the bias term. For a fixed θ , the power
of Tα,k is large for a tuning parameter k that achieves a trade-off between the bias
term ‖(
1/2 − 


1/2
k )θ‖2 and a variance term

√
kσ 2/n.

4.2. Minimax separation distance over an ellipsoid. In this section, we assess
the optimality of the procedure Tα,k . To this end, we study the optimal power of a
level-α test, when θ is assumed to have a known regularity.

DEFINITION 4.2 (Ellipsoids). Given a nonincreasing sequence (ai)i≥1 and a
positive number R > 0, we define the ellipsoid Ea(R) by

Ea(R) :=
{
θ ∈ H :

+∞∑
k=1

〈θ,Vk〉2

a2
k

≤ R2σ 2

}
.

The ellipsoid Ea(R) contains all the elements θ ∈ H that have a given regularity
in the basis (Vk), k ≥ 1. In other words, it prescribes the rate of convergence of
〈θ,Vk〉 toward 0. The faster ak goes to zero, the more regular θ is assumed to be.
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We take some positive numbers α and β such that α + β < 1. Let us consider a
test T taking its values in {0,1}. For any subset C ⊂ H × R

+, β[T ; C] denotes the
supremum of type II errors of an α-level test T for all parameters (θ, σ ) ∈ C ,

β[T ; C] := sup
(θ,σ )∈C

Pθ [T = 0].

The (α,β)-separation distance of the test T over the ellipsoid Ea(R), noted
ρ[T ; Ea(R)] is the minimal number ρ > 0 such that T rejects H0 with probability
larger than 1−β for all θ ∈ Ea(R) and σ > 0 such that ‖
1/2θ‖2/σ 2 ≥ ρ2. Hence,
ρ[T ; Ea(R)] corresponds to the minimal distance such that the hypotheses {θ =
0, σ > 0} and {θ ∈ Ea(R), σ > 0,‖
1/2θ‖2/σ 2 ≥ ρ2} are well separated by T :

ρ
[
T ; Ea(R)

] := inf
{
ρ > 0,β

[
T ;

{
θ ∈ Ea(R), σ > 0,

‖
1/2θ‖2

σ 2 ≥ ρ2
}]

≤ β

}
.

By definition, T has a power larger than 1 − β for all θ ∈ Ea(R) and σ > 0 such
that ‖
1/2θ‖2/σ 2 ≥ ρ2[T , Ea(R)].

DEFINITION 4.3 (Minimax separation distance). We consider

ρ∗[
α; Ea(R)

] := inf
Tα

ρ
[
Tα; Ea(R)

]
,(9)

where the infimum run over all level-α tests. This quantity is called the (α,β)-
minimax separation distance over the ellipsoid Ea(R).

REMARK 4.3. The notion of (α,β)-minimax separation distance is
a nonasymptotic counterpart of the detection boundaries studied in the Gaussian
sequence model [16]. Furthermore, as the variance σ 2 is unknown, this definition
of the minimax separation distance considers the power of the testing procedures
for all possible values of σ 2.

PROPOSITION 4.4 (Minimax lower bound over an ellipsoid). There exists a
constant C(α,β) such that the following holds. Let us assume that X is a Gaussian
process and that ε follows a Gaussian distribution. For any ellipsoid Ea(R), we
have

ρ∗[
α; Ea(R)

] ≥ ρ2
a,R,n := sup

k≥1

[
C(α,β)

(√
k

n

)
∧ (

R2a2
kλk

)]
.(10)

In other words, for any test Tα of level α, we have

β

[
Tα;

{
θ ∈ Ea(R), σ > 0,

‖
1/2θ‖2

σ 2 ≥ ρ2
a,R,n

}]
≥ β.

Consequently, the (α,β) minimax-separation distance over Ea(R) is lower
bounded by ρ2

a,R,n. The next proposition states the corresponding upper bound.
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COROLLARY 4.5 (Minimax upper bound). Under (B.1), (B.2) and (B.4),
there exists positive constants C(γ ), C2, C3(α, γ ) and C4(α,β) such that the fol-
lowing holds. Given an ellipsoid Ea(R), we define

k∗
n := inf

{
k ≥ 1, a2

kλkR
2 ≤

√
k

n

}
.(11)

Assume that α ≥ e−√
n, β ≥ C(γ )/ log(n), n ≥ C2 and k∗

n ≤ n1/4/ log4(n). Then
the test Tα,k∗

n
has a size smaller than α + C3(α, γ )/ log(n) and is minimax over

Ea(R),

β

[
Tα,k∗

n
;
{
θ ∈ Ea(R), σ > 0,

‖
1/2θ‖2

σ 2 ≥ C4(α,β)ρ2
a,R,n

}]
≤ β.(12)

This corollary is a straightforward consequence of Theorem 4.1. Hence, the test
Tα,k∗

n
is minimax over Ea(R); that is, its (α,β)-separation distance equals (up to

a multiplicative constant) the (α,β) minimax separation distance. Interestingly,
upper bound (12) does not require the error ε to be normally distributed.

REMARK 4.4. As a consequence, the (α,β)-minimax separation distance
over Ea(R) is of order

ρ2
a,R,n := sup

k≥1

[
C(α,β)

(√
k

n

)
∧ (

R2a2
kλk

)]
.

It depends on the behavior of the nonincreasing sequence (λka
2
k ), where the se-

quence of eigenvalues (λk) prescribes the “regularity” of the process X and the
sequence (ak) prescribes the regularity of θ . In order to grasp the quantity ρ2

a,R,n,
let us specify some examples of sequences λka

2
k :

COROLLARY 4.6. Polynomial decay. If λka
2
k = k−s with s > 7/2, then the

(α,β)-minimax separation is of order R2/(1+2s)n−2s/(1+2s). This rate is achieved
by the test Tα,k with k � (R2n)2/(1+2s).

Exponential decay. If λka
2
k = e−sk with s > 0, then the (α,β)-separation dis-

tance of T
(1)
α over Ea(R) is of order

√
log(n)√

sn
. This rate is achieved by the test Tα,k

with k � log(n)/s.

REMARK 4.5. The condition s > 7/2 in the polynomial regime arises because
of assumption (B.3) [k ≤ n1/4/ log4(n)]. This restriction is related to the difficulty
to reliably estimate the eigenvalues λk and eigenfunctions Vk when k is large; see
Lemma 9.7 and its proof. If the process X and the function θ are less regular
(s < 7/2), our theory only allows us to take k = n1/4/ log4(n) in Tα,k which leads
to a rate of testing of order (up to log terms) n−s/4R2 while the minimax lower
bound is of order R2/(1+2s)n−2s/(1+2s). Note that similar restrictions also occur in
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“state of the art” results for estimation. For instance, condition (3.3) in Hall and
Horowitz [21] amounts to s > 3.

In conclusion, Tα,k achieves the optimal rate of detection when k is suitably
chosen. However, the choice of k depends on unknown quantities such as the reg-
ularity of X or the regularity of θ . Taking k too small does not allow one to detect
nonzero θ such that the bias ‖(
1/2 − 


1/2
k )θ‖2 in (7) is too large. In contrast, tak-

ing k too large leads to a large variance term
√

k/n in (7). The best k corresponds
to the trade-off between the bias term and the variance term in (7). In the follow-
ing, we introduce a procedure that nearly achieves this trade-off without requiring
any prior knowledge of the regularity of 
 or θ .

5. A multiple testing procedure.

5.1. Definition. In the sequel, Kn stands for a “dyadic” collection of dimen-
sions defined by

Kn = {
20,21,22,23, . . . , k̄n

}
,(13)

where k̄n is a power of 2 that will be fixed later. As k cannot be a priori chosen, we
evaluate the statistic φk(Y,X) for all k belonging to a collection Kn. This choice
of the collection Kn is discussed in the next section.

DEFINITION 5.1 (KL-test). We reject H0 : “θ = 0” when the statistic

Tα := sup
k∈Kn,k≤Rank(
̂n)

[
φk(Y,X) − k̂KLF̄ −1

k̂KL,n−k̂KL

{
αKn(X)

}]
(14)

is positive, where the weight αKn(X) is chosen according to one of the procedures
P1 and P2 explained below.

P1: (Bonferroni) αKn(X) is equal to α/|Kn|.
P2: Let Z be a standard Gaussian vector of size n. We take αKn(X) = qX,α , the

α-quantile of the distribution of the random variable

inf
k∈Kn

F̄
k̂KL,n−k̂KL

[
φk(Z,X)/k̂KL]

(15)

conditionally to X.

In the sequel, T
(1)
α (resp., T

(2)
α ) refers to the statistic Tα , defined with procedure

P1 (resp., P2). T
(1)
α corresponds to a Bonferroni multiple testing procedure. In

contrast T
(2)
α handles better the dependence between the statistics φk , by using an

ad-hoc quantile qX,α . We compare these two tests in Section 5.3. This multiple
testing approach has already been considered in the nonparametric fixed design
regression setting [3].
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REMARK 5.1 (Computation of qX,α). Let Z be a standard Gaussian random
vector of size n independent of X. As ε is independent of X, the distribution of (15)
conditionally to X is the same as the distribution of

inf
k∈Kn

F̄
k̂KL,n−k̂KL

( ‖�̂kZ‖2
n/k̂

KL

‖Z − �̂kZ‖2
n/(n − k̂KL)

)
conditionally to X. As a consequence, one can simulate a random variable that
follows the same distribution as (15) conditionally to X. Hence, the quantile qX,α

is easily worked out applying a Monte Carlo approach.

REMARK 5.2 (Choice of k̄n). In practice, our advice is to take k̄n = 2�log2 n�−1

which lies between n/4 and n/2. This choice is supported by practical experi-
ences and results obtained in Section 5.2 and in Appendix A of [25]. Neverthe-
less, some of the theoretical results will require taking a slightly smaller value
for k̄n.

5.2. Size of the tests.

PROPOSITION 5.2 (Size of T
(1)
α and T

(2)
α under Gaussian errors). Under as-

sumption (A.1) and if k̄n ≤ n/2, we have for any n ≥ 2,

P0
(
T (1)

α > 0
) ≤ α, P0

(
T (2)

α > 0
) = α.

If the noise ε follows a Gaussian distribution, the size of T
(2)
α is exactly α, while

the size of T
(1)
α is smaller than α because of the Bonferroni correction. Let us now

control the size of T
(1)
α assuming that ε admit a finite fourth moment:

k̄n ≤ n1/4/ log4(n).(B′.3)

The assumption (B′.3) is the counterpart of (B.3) for a multiple testing procedure.
Next, we state the counterpart of Theorem 3.4 for T

(1)
α .

THEOREM 5.3 (Size of T
(1)
α ). Under assumptions (B.1), (B.2) and (B′.3),

there exist positive constants C(α,γ ) and C2 such that the following holds. For
any n ≥ C2, we have

P0
[
T (1)

α > 0
] ≤ α + C(α,γ )

log(n)
.

5.3. Comparison of T
(1)
α and T

(2)
α . The test T

(2)
α is always more powerful than

T
(1)
α as shown in the next proposition.
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PROPOSITION 5.4. For any parameter θ �= 0, the tests T
(1)
α and T

(2)
α satisfy

Pθ

(
T (2)

α > 0|X) ≥ Pθ

(
T (1)

α > 0|X)
X a.s.(16)

On one hand, the choice of procedure P1 is valid even for a non-Gaussian noise
and avoids the computation of the quantile qX,α . On the other hand, the test T

(2)
α

has a size of exactly α when the error is Gaussian and is more powerful than the
corresponding test with procedure P1. This comparison is numerically illustrated
in Section 7.

6. Power and adaptation of T
(1)
α . Since T

(2)
α is always more powerful than

T
(1)
α , we only consider the power and the minimax optimality of T

(1)
α .

THEOREM 6.1 (Power under non-Gaussian errors). Let α and β be fixed. Un-
der (B.1), (B.2), (B′.3), (B.4), there exist positive constants C(γ ), C1, C2 and C3

such that the following holds. Assume that α ≥ e−√
n, β ≥ C(γ )/ log(n) and that

n ≥ C3. Then, Pθ (T
(1)
α > 0) ≥ 1 − β for any θ satisfying∥∥
1/2θ
∥∥2 ≥ inf

k∈Kn

C1
∥∥(


1/2 − 

1/2
k

)
θ
∥∥2

(17)

+ C2
σ 2

n

(√
k log

(
logn

αβ

)
+ log

(
logn

αβ

))
.

REMARK 6.1. Comparing Theorems 4.1 and 6.1, we observe that the rejection
region T

(1)
α almost contains all the rejection regions of the tests Tα,k for all k ∈ Kn.

The price to pay for this feature is an additional
√

log logn in the variance term
of (17),

σ 2

n

(√
k log

(
logn

αβ

)
+ log

(
logn

αβ

))
.

This log log(n) term corresponds to the quantity log(|Kn|). If we had used a collec-
tion of the form {1, . . . , k̄n} instead of Kn, the log log(n) would have been replaced
by a log(n). We prove below that this log logn term is in fact unavoidable for an
adaptive procedure.

As for Tα,k , additional controls of the power when ε follows a Normal distri-
bution are stated in Appendix A of [25]. Let us now consider the power of T

(1)
α

over ellipsoids Ea(R). In the sequel, �·� stands for the integer part, while log2(·)
corresponds to the binary logarithm.

COROLLARY 6.2 (Power of T
(1)
α over ellipsoids). Under (B.1), (B.2) and

(B.4), there exist positive constants C(γ ), C1, C2, C3(α,β) and C4(α,β) such that
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the following holds. Assume that α ≥ e−√
n, that β ≥ C(γ )/ log(n) and n ≥ C2.

Consider the test T
(1)
α with k̄n = 2�log2[n1/4/ log4(n)]�. Fix any ellipsoid Ea(R).

(1) We have Pθ (T
(1)
α > 0) ≥ 1 − β for any θ ∈ Ea(R) satisfying

‖
1/2θ‖2

σ 2 ≥ C3(α,β) inf
k=1,2,4,...,k̄n

[
λk+1a

2
k+1R

2 + σ 2

n
(
√

k log logn + log logn)

]
.

(2) Consider k∗
n as in (11). If log log(n) ≤ k∗

n ≤ k̄n, then Pθ (T
(1)
α > 0) ≥ 1 − β

for any θ ∈ Ea(R) satisfying

‖
1/2θ‖2

σ 2 ≥ C4(α,β)
√

log lognρ2
a,R,n,

where ρa,R,n is defined in (10).

This is a direct consequence of Theorem 4.1.

REMARK 6.2. If we compare Corollary 6.2 with the minimax lower bound of
Proposition 4.4, we observe that the separation distance only matches up to a factor
of order

√
log logn. As a consequence, Tα,k is almost minimax over all ellipsoids

Ea(R) satisfying log log(n) ≤ k∗
n ≤ k̄n. Next, we prove that this

√
log log(n) term

loss is unavoidable when the ellipsoid Ea(R) is unknown.

PROPOSITION 6.3 (Minimax lower bounds over a collection of nested ellip-
soids). There exists a positive constant C(α,β) such that the following holds.
Let us assume that X is a Gaussian process, that the noise ε follows a Gaussian
distribution, and that the rank of 
 is infinite. For any ellipsoid Ea(R), we set

ρ̃2
a,R,n := sup

k≥1

[
C(α,β)

(√
log log(k ∨ 3)

√
k

n

)
∧ (

R2a2
kλk

)]
.

For any nonincreasing sequence (ak)k≥1 and any test T of level α, we have

β

[
T ; ⋃

R>0

{
θ ∈ Ea(R), σ > 0,

‖
1/2θ‖2

σ 2 ≥ ρ̃2
a,R,n

}]
≥ β.

As a consequence, there is a
√

log logn price to pay if we simultaneously con-
sider a nested collection of ellipsoids. Such impossibility for perfect adaptation
has already been observed for the testing problem in the classical nonparametric
regression framework [33].

REMARK 6.3. In order to compare the lower and upper bounds of Proposi-
tion 6.3 and Corollary 6.2, let us specify the sequence λka

2
k :
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• Polynomial decay. If λka
2
k = k−s , then the (α,β)-separation distance of T

(1)
α

over Ea(R) is of order

R2/(1+2s)

(√
log log(n)

n

)2s/(1+2s)

for s > 7/2. By Proposition 6.3, this rate is optimal for adaptation.
• Exponential decay. If λka

2
k = e−sk , then the (α,β)-separation distance of T

(1)
α

over Ea(R) is of order
√

log(n) log log(n)√
sn

for any s > 0. By Proposition 6.3, this rate is almost optimal for adaptation [up
to a

√
log log(n)/ log log logn term].

In conclusion, the procedure T
(1)
α is adaptive to the unknown regularity of θ ,

to the unknown regularity of the eigenvalues (λk)k≥1 and to the unknown noise
variance σ 2. Interestingly, the minimax rate of testing depends on the decay of the
nonincreasing sequence (λka

2
k )k≥1.

7. Simulations.

7.1. Experiments.
Setting. The performances of the procedures T

(1)
α and T

(2)
α are illustrated for

various choices of the function θ . In all experiments, the noise ε follows a standard
Gaussian distribution with unit variance, while the process X is a Brownian motion
defined on [0,1]. The eigenfunctions and eigenvalues of the covariance operator
of the Brownian motion have been computed in Ash and Gardner [1],

λj = 1

(j − 0.5)2π2 and

Vj (t) = √
2 sin

(
(j − 0.5)πt

)
, t ∈ [0,1], j = 1,2, . . . .

In practice X(t) has been simulated using a truncated version of the Karhunen–
Loève expansion

∑100
j=1

√
λjη

(j)Vj (t), where the (η(j))j∈N form an i.i.d. sequence
of standard normal variables. The function X(t) is observed on 1000 evenly spaced
points in [0,1].

Testing procedure. For each experiment, we perform the tests T
(1)
α (procedure

P1) and T
(2)
α (procedure P2) with k̄n = 2�log2 n−1�. The quantile qX,α involved in

P2 is computed by Monte Carlo simulations. For each experiment, we use 1000
random simulations to estimate this quantile.
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FIG. 1. Three functions θ in �KL when B = 1.

Choice of θ .

(1) In the first experiment, we fix θ = 0 as a way to evaluate the sizes of the
testing procedures.

(2) In the second experiment, we build directly the function θ in the KL basis
of X. The set �KL is made of all the functions θB,ξ with B > 0, ξ > 0 and

θB,ξ (t) := B√∑+∞
k=1 k−2ξ−1

100∑
j=1

j−ξ−0.5Vj (t),(18)

where ξ is a smoothness parameter. Observe that B stands for the l2 norm of the
function θB,ξ . As we show in Figure 1, the smoothness of θB,ξ ∈ �KL increases
with ξ . For this experiment, we have an explicit expression of the joint regularity
of θ and 
,∥∥(


1/2 − 

1/2
k

)
θ
∥∥2 = B2

π2(
∑+∞

l=1 l−2ξ−1)

100∑
j=k+1

(j − 0.5)−2j−2ξ−1.

In practice, we fix ξ = 0.1,0.5,1 and B = 0.1,0.5,1.
(3) In the third experiment, we consider the set �G of functions

θB,τ (t) = B exp
[
−(t − 0.5)2

2τ 2

][∫ 1

0
exp

[
−(x − 0.5)2

τ 2

]
dx

]−1/2

,
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TABLE 1
First simulation study: Null hypothesis is true. Percentages

of rejection of H0 and 95% confidence intervals

n = 100 n = 500

T
(1)
α 3.47 (± 0.36) 2.61 (± 0.31)

T
(2)
α 4.97 (± 0.43) 5.26 (± 0.44)

with B > 0 and τ > 0. Here, B stands for the l2 norm of θB,τ , and τ is a smooth-
ness parameter. In fact, θB,τ (t) corresponds (up to a constant) to the density of a
normal variable with mean 0.5 and variance τ 2. As τ decreases to 0, θB,τ con-
verges to a Dirac function centered on 0.5. In practice, we fix τ = 0.01,0.02,0.05
and B = 0.5,1,2.

Number of experiments. We have set n = 100 and n = 500. For each set of pa-
rameters (n,B, ξ) or (n,B, τ), 10,000 trials were run to estimate the percentages
of rejection of H0 (i.e., the percentages of positive values of T

(1)
α and T

(2)
α with

α = 5%), along with their 95% confidence intervals.

7.2. Results. The two procedures P1 and P2 have been implemented in R [31]
on a 3 GHz Intel Xeon processor, with a 4000 KB cache size and 8 GB total
physical memory.

First setting. The percentages of rejection of T
(1)
α and T

(2)
α under H0 with n =

100 and n = 500 are provided in Table 1. As expected, the size of T
(1)
α decreases

when n increases because we pay a price for the Bonferroni correction. The size
of T

(2)
α remains close to the nominal level α = 5%.

Second setting. Tables 2 and 3 depict the results for θ ∈ �KL with n = 100 and
n = 500, respectively. As expected, the power of the procedures is increasing with

TABLE 2
Second simulation study: θ ∈ �KL, n = 100. Percentages of rejection of H0 and 95% confidence

intervals

B = 0.1 B = 0.5 B = 1

ξ = 0.1 T
(1)
α 3.88 (± 0.38) 21.41 (± 0.8) 77.24 (± 0.82)

T
(2)
α 5.8 (± 0.46) 26.38 (± 0.86) 81.78 (± 0.76)

ξ = 0.5 T
(1)
α 4.74 (± 0.42) 46.47 (± 0.98) 98.68 (± 0.22)

T
(2)
α 6.65 (± 0.49) 52.79 (± 0.98) 99.06 (± 0.19)

ξ = 1 T
(1)
α 4.8 (± 0.42) 62.67 (± 0.95) 99.75 (± 0.1)

T
(2)
α 7.07 (± 0.5) 68.3 (± 0.91) 99.84 (± 0.08)
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TABLE 3
Second simulation study: θ ∈ �KL, n = 500. Percentages of rejection of H0 and 95% confidence

intervals

B = 0.1 B = 0.5 B = 1

ξ = 0.1 T
(1)
α 5.17 (± 0.43) 86.98 (± 0.66) 100 (± 0)

T
(2)
α 8.48 (± 0.55) 90.89 (± 0.56) 100 (± 0)

ξ = 0.5 T
(1)
α 8.81 (± 0.56) 99.85 (± 0.08) 100 (± 0)

T
(2)
α 13.07 (± 0.66) 99.88 (± 0.07) 100 (± 0)

ξ = 1 T
(1)
α 11.38 (± 0.62) 99.99 (± 0.02) 100 (± 0)

T
(2)
α 16.13 (± 0.72) 100 (± 0) 100 (± 0)

B as ‖θ‖ becomes larger. Furthermore, the power also increases with ξ . This cor-
roborates the rates stated in Section 6, since the function θB,ξ becomes smoother

when ξ increases. In every setting the test T
(2)
α with the second procedure performs

better than T
(1)
α .

Third setting. The results of the last experiment are provided in Table 4 for
n = 100 and Table 5 for n = 500. Again, the power is increasing with B , n and
τ . Here, τ does not directly correspond to the rate of convergence of the sequence
(
∫ 1

0 θB,τVj (t) dt), j ≥ 1, as ξ does in the last example. Nevertheless, it is difficult
to detect a function θB,τ when τ decreases, that is, when θB,τ becomes close to a
Dirac function.

In each setting, the test under P2 is more powerful than the test under P1. Nev-
ertheless, the procedure (P2) is slightly slower to compute as it requires the eval-
uations of the quantile qX,α by a Monte Carlo method. Under P1, the mean com-
putation time is 9 seconds for n = 100 and 12 seconds for n = 500. In contrast, it,
respectively, equals 11 and 18 seconds under P2.

TABLE 4
Third simulation study: θ ∈ �G, n = 100. Percentage of rejection of H0 and 95% confidence

interval

B = 0.5 B = 1 B = 2

τ = 0.01 T
(1)
α 4.94 (± 0.42) 11.85 (± 0.63) 46.69 (± 0.98)

T
(2)
α 7.25 (± 0.51) 15.49 (± 0.71) 53.56 (± 0.98)

τ = 0.02 T
(1)
α 7.33 (± 0.51) 23.09 (± 0.83) 80.26 (± 0.78)

T
(2)
α 10 (± 0.59) 28.54 (± 0.89) 84.04 (± 0.72)

τ = 0.05 T
(1)
α 13.85 (± 0.68) 56.51 (± 0.97) 99.48 (± 0.14)

T
(2)
α 18.13 (± 0.76) 63.09 (± 0.95) 99.65 (± 0.12)
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TABLE 5
Third simulation study: θ ∈ �G, n = 500. Percentage of rejection of H0 and 95% confidence

interval

B = 0.5 B = 1 B = 2

τ = 0.01 T
(1)
α 12.41 (± 0.65) 54.6 (± 0.98) 99.75 (± 0.1)

T
(2)
α 17.99 (± 0.75) 63.16 (± 0.95) 99.98 (± 0.07)

τ = 0.02 T
(1)
α 26.11 (± 0.86) 88.91 (± 0.62) 100 (± 0)

T
(2)
α 33.95 (± 0.93) 92.62 (± 0.51) 100 (± 0)

τ = 0.05 T
(1)
α 65.38 (± 0.93) 99.95 (± 0.04) 100 (± 0)

T
(2)
α 72.74 (± 0.87) 99.99 (± 0.02) 100 (± 0)

8. Discussion. Two multiple testing procedures of the nullity of the slope
function θ have been proposed in this paper. They are completely data-driven and
benefit from optimal properties assessed in a nonasymptotic setting. We address
here some extensions of our results.

Although we focused on the null-hypothesis “H0 : θ = 0,” our approach easily
extends to linear hypotheses H0,V : “θ ∈ V ”, where V is a given finite dimensional
subspace of H of dimension p < n/2. As previously, the procedure relies on para-
metric statistics for testing H0,V against H1,k,V : “θ ∈ (Vect(V1, . . . , Vk)+ V)\V ”,
where k is a positive integer. We consider the n × k̂KL design matrix W defined
by Wi,j = 〈Xi , V̂j 〉 for i = 1, . . . , n, j = 1, . . . , k̂KL. The space generated by the
k̂KL columns of the matrix W is denoted W

k̂KL . Considering a basis (ξ1, . . . , ξp)

of V , we define V p as the space generated by the p columns of the matrix whose
(ij)th element is 〈Xi , ξj 〉. In the sequel, �̂k,V stands for the orthogonal projection
in R

n onto V ⊥
p ∩ W

k̂KL of dimension less or equal to k̂KL, while �̂V stands for
the orthogonal projection onto V p . Then, we consider the following parametric
statistic:

φk,V (Y,X) := ‖�̂k,V Y‖2
n

‖Y − �̂k,V Y − �̂V Y‖2
n/[n − dim(V p + W

k̂KL)] .(19)

Under H0,V , φk,V (Y,X)/k̂KL behaves like a Fisher distribution with (dim(V ⊥
p ∩

W
k̂KL), n − dim(V p + W

k̂KL)) degrees of freedom. The proof is the same as that
for φk(Y,X). In typical situations, we have dim(V ⊥

p ∩ W
k̂KL) = k and dim(V p +

W
k̂KL) = k + p. We reject H0,V when the statistic

Tα,V := sup
k∈Kn,k≤Rank(
̂n)

[
φk,V (Y,X)

− k̂KLF̄ −1
dim(V ⊥

p ∩W
k̂KL ),n−dim(V p+W

k̂KL )

{
αKn(X)

}]
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is positive, where the weight αKn(X) is chosen according to procedure P1 (Bonfer-
roni) or a slight variation of P2 (Monte Carlo). All the results stated for T

(1)
α and

T
(2)
α are still valid with Tα,V . The extension to affine subspaces V is also possible.

The power of T
(1)
α has been analyzed over the collection of ellipsoids Ea(R).

The considered ellipsoids describing the nonparametric alternatives are determined
by the principal directions (Vj )j≥1, which are generally unknown. In fact, for some
functions θ that are well represented by a prescribed basis (as wavelet, spline or
Fourier basis) and whose expansion in the eigenfunction basis decreases slowly,
projecting the data onto the Karhunen–Loève expansion is not necessarily best
suited. Alternatively, one can adopt a similar approach in the context of a pre-
scribed basis (as wavelet, spline or Fourier basis) instead of the eigenfunctions
basis discussed above. The size and the power of the corresponding procedures are
in fact easier to derive than for a Karhunen–Loève approach as we do not have to
control the randomness of the basis. We refer, for instance, to [3] for such results in
a fixed design regression problem. As θ is unknown, the best choice of basis (pre-
scribed or estimated by PCA) is also unknown. A solution is to combine testing
procedures based on different basis.

9. Main proofs. In this section, we emphasize the core of the proofs. Ar-
guments based on perturbation theory are introduced in the next section. All the
technical and side results are gathered in Appendices C–F of [25].

9.1. Additional notation. Given any integer k < Rank(
), we recall that

k = ∑k

j=1 λiVj ⊗ Vj , where ⊗ stands for the tensor product. Similarly, 
̂n,k :=∑k
j=1 λ̂i V̂j ⊗ V̂j denotes its empirical counterpart. For any k < Rank(
), we note

�k the orthogonal projection in H onto the space spanned by Vj , j = 1, . . . , k,
while �̂k stands for the orthogonal projection onto the space spanned by V̂j ,
j = i, . . . , k ∧ Rank(
̂n).

In order to translate the definition of the testing procedure into functional
data analysis framework, we shall use � = E(〈X, ·〉Y). We note �n =∑n

i=1〈Xi, ·〉Yi/n its empirical counterpart. For any k ≤ Rank(
), we note Ak =∑k
j=1 λ

−1/2
j 〈Vj , ·〉Vj and Âk = ∑k∧Rank(
̂n)

j=1 λ̂
−1/2
j 〈V̂j , ·〉V̂j its empirical counter-

part.
Let S be a bounded linear operator on the Hilbert space H. The correspond-

ing operator norm will be denoted ‖ · ‖∞ where ‖S‖∞ = supx∈B(0,1) ‖S(x)‖ and
B(0,1) stands for the unit ball of H. Let T be a Hilbert–Schmidt operator. ‖ · ‖HS
denotes the Hilbert–Schmidt norm, and tr stands for the classical trace (defined for
trace-class operators). We recall that ‖T ‖2

HS = tr(T ∗T ).
In the sequel, we note χ̄k(u) the probability that a χ2 variable with k degrees of

freedom is larger than u, while χ̄−1
k (u) denotes the 1 − u quantile of a χ2 random

variable.
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9.2. Connection between φk(Y,X) and the procedure of Cardot et al. [5]. In
fact, the numerator of the statistic φk is exactly the same as the test statistic
‖√nÂk�n‖2 introduced by Cardot et al. [5], that is,

φk(Y,X) = ‖�̂kY‖2
n

‖Y − �̂kY‖2
n/(n − k̂KL)

= ‖√nÂk�n‖2

‖Y − �̂kY‖2
n/(n − k̂KL)

.(20)

PROOF OF EQUATION (20). Consider the least-squares θ̂k estimator of θ in
the space generated by V̂j , j = 1, . . . , k̂KL. It follows that ‖�̂kY‖2

n = n〈θ̂k, 
̂nθ̂k〉.
Since θ̂k = 
̂−

n,k�n where 
̂−
n,k is the Moore–Penrose pseudo-inverse of 
̂n,k , we

obtain

‖�̂kY‖2
n = n

〈

̂−

n,k�n, 
̂n
̂
−
n,k�n

〉 = n
〈
Âk�n, Âk
̂n
̂

−
n,k�n

〉 = n‖Âk�n‖2. �

9.3. Proof of the type I error bounds. We first prove Propositions 3.3 and 5.2.
Afterwards, we derive Theorem 5.3, the proof of Theorem 3.4 being postponed to
Appendix D in [25].

PROOF OF PROPOSITIONS 3.3 AND 5.2. Let us assume that ε follows a Gaus-
sian distribution and that θ = 0. Conditionally on X, the statistic φk(Y,X)/k̂ de-
fined in (5.1) follows a Fisher distribution with (k̂, n − k̂) degrees of freedom.
Hence, conditionally on X, the test Tα,k has a size exactly α. Conditionally on X,
T

(1)
α is a Bonferroni procedure of Fisher statistics, and its size is smaller than α.

Reintegrating with respect to X, we derive that the size of T
(1)
α is smaller than α.

Let us turn to the second result. The quantity qX,α satisfies

P0

(
sup
k∈Kn

{
(n − k̂)‖�̂kε‖2

n

k̂‖ε − �̂kε‖2
n

− F̄ −1
k̂,n−k̂

(qX,α)

}
> 0

∣∣∣X)
= α,

which implies that P0(T
(2)
α |X) = α X a.s. �

PROOF OF THEOREM 5.3. First, we state that k̂KL = k with large probability.

LEMMA 9.1. Consider the event An defined by

An =
{

sup
1≤j≤k̄n

|̂λj − λj |
min{λj − λj+1, λj−1 − λj } ≥ 1/2

}
.(21)

Under assumptions (B.2) and (B.3), we have

P(An) ≤ C(γ )

[
k̄3
n log2(k̄n ∨ e)

n

]
≤ C(γ )

1

log2(n)
,(22)

where γ is a positive constant involved in assumption (B.2).
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This result, proved in Appendix E of [25], relies on the perturbation theory of
random operators. Observe that under the event An, we have k̂KL = k for all k ≤
k̄n. Consequently, we can replace k̂KL by k in the definition of the test statistic up to
an event of probability less than C(γ )/ log(n). In the sequel, we use the alternative
expression (20) of φk , and we replace k̂KL by k. The proof is split into three main
lemmas, Lemmas 9.2–9.4. The first lemma states that ‖√nAk�n‖2/σ 2 behaves
like a χ2 distribution. Its proof (Appendix C in [25]) relies on a multivariate Berry–
Esseen theorem. The second lemma, which tells us that ‖√nAk�n‖2/σ 2 is close to
‖√nÂk�n‖2/σ 2 is proved below. The third lemma, proved in Appendix F of [25],
states that ‖Y − �̂kY‖2

n/n concentrates well around σ 2.

LEMMA 9.2. Assume that (B.1) and (B′.3) hold. For any k ≥ 1 and any x > 0,
we have∣∣P(‖√nAk�n‖2 ≥ x

) − χ̄k

(
x/σ 2)∣∣ ≤ C

k3/2
√

n

E[ε4]3/4

σ 3 sup
1≤j≤k

E
[(

η(j))4]3/4

≤ C

log2(n)
,

uniformly over all k ≤ k̄n.

LEMMA 9.3. Assume that (B.1)–(B′.3) hold. Writing xn,k = 1/(k log2(n)), we
have for all k ≤ k̄n, and all n ≥ 5,

P
[‖√nÂk�n‖2 ≥ (1 − xn,k)

−1‖√nAk�n‖2]
(23)

≤ P[An] + C(γ )

log2(n)
+

( √
e

log(n)

)k

.

LEMMA 9.4. Uniformly over all k ≤ k̄n, we have

P

[∣∣∣∣‖Y − �̂kY‖2
n

nσ 2 − 1
∣∣∣∣ ≥ k log2(n)

n
+ 8

√
log logn

n

]
≤ C

log2(n)
+ C′

√
n
.

Let us upper bound the rejection probability due to the statistic φk

P
[
φk(Y,X) ≥ kF̄ −1

k,n−k

(
α/|Kn|)] ≤ P

[ ‖√nÂk�n‖2

‖Y − �̂kY‖2
n/n

≥ kF̄ −1
k,n−k

(
α/|Kn|)]

by the three following probabilities:

P

[‖√nAk�n‖2

(1 − xn,k)σ 2 ≥ k

(
1 − 8

√
log log(n)

n
− k log2(n)

n

)
F̄ −1

k,n−k

(
α/|Kn|)]

+ P
[‖√nÂk�n‖2 ≥ (1 − xn,k)

−1‖√nAk�n‖2]
+ P

[∣∣∣∣‖Y − �̂kY‖2
n

nσ 2 − 1
∣∣∣∣ ≥ k log2(n)

n
+ 8

√
log log(n)

n

]
.
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Gathering the above results, we obtain that this probability is upper bounded by

C(γ )

log2(n)
+

( √
e

log(n)

)k

(24)

+ χ̄k

[
k

(
1 − 8

√
log logn

n
− k log2(n)

n
− xn,k

)
F̄ −1

k,n−k

(
α/|Kn|)],

uniformly over all k ≤ k̄n.

LEMMA 9.5. Writing t = 8
√

log logn
n

+ k log2(n)
n

+ 1
k log2(n)

, we have for n larger

than some numerical constant

χ̄k

[
k(1 − t)F̄ −1

k,n−k

(
α/|Kn|)] ≤ α

|Kn|
(

1 + C(α)

log(n)

)
.

The proof of this technical lemma is postponed to Appendix F of [25]. We
conclude by combining (24) with Lemma 9.5 and taking an union bound over all
k ∈ Kn [recall that |Kn| ≤ log(n)]. �

PROOF OF LEMMA 9.3. From ‖b‖2 − ‖a‖2 = 2〈a, b − a〉 + ‖b − a‖2, we get

‖b‖2 − ‖a‖2

‖a‖2 ≤ ‖b − a‖
‖a‖

(
2 + ‖b − a‖

‖a‖
)
.

Since xn,k < 1 for n ≥ 3, it follows that

P

[
‖√nÂk�n‖2 ≥ ‖√nAk�n‖2

1 − xn,k

]
≤ P

[‖√n(Âk − Ak)�n‖
‖√nAk�n‖ ≥ xn,k

4

]

≤ P

[∥∥√n(Âk − Ak)�n

∥∥ ≥ σ
√

kxn,k

4 log(n)

]

+ P

[
‖√nAk�n‖ ≤

√
kσ

log(n)

]
.

By Lemma 11.1 in [34], we know that for any 0 < x < 1 and any integer d ≥ 1,
P[χ2(d) ≤ de−1x2/d ] ≤ x. We get from Lemma 9.2 and the last deviation inequal-
ity that

P

[
‖√nAk�n‖ ≤ σ

√
k

log(n)

]
≤ C

log2(n)
+

( √
e

log(n)

)k

,

uniformly over all k ≤ k̄n. Let us turn to the other term. By Markov’s inequality

and by definition of xn,k , the first probability P[‖√n(Âk − Ak)�n‖ ≥ σ
√

kxn,k

4 log(n)
] is

smaller than

16k log6(n)

σ 2 E
[∥∥√n(Âk − Ak)�n

∥∥21An

] + P[An].
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In order to conclude, we only need to bound E[‖√n(Âk − Ak)�n‖21An
]. Tedious

computations whose details are gathered in Appendix F of [25] lead us to the
following bound:

LEMMA 9.6. The expectation E[‖√n(Âk − Ak)�n‖21An
] is smaller than

2σ 2
E

[
tr

{



−1/2
k

(



1/2
k − 
̂

1/2
n,k

)}
1An

] + σ 2C(γ )
k̄

5/2
n log(k̄n ∨ e)

n
.(25)

The main argument in the proof of the theorem is to bound the expectation in
the right-hand side of (25). Its proof relies on perturbation theory and is described
in the next section.

LEMMA 9.7. Under assumptions (B.1) and (B.2), we have for all n ≥ 1,

E
[
tr

{



−1/2
k

(



1/2
k − 
̂

1/2
n,k

)}
1An

] ≤ C(γ )
k3[log2(k) ∨ 1]

n
+ C′ k√

n
(26)

uniformly over all k ≤ k̄n.

Gathering Lemma 9.7 with (25) allows us to conclude

P

[∥∥√n(Âk − Ak)�n

∥∥ ≥ σ
√

kxn,k

4 log(n)

]
≤ C(γ )

[
k̄4
n log8(n)

n
+ k̄2

n log6(n)√
n

]
+ P[An],

where the left-hand side is smaller than C(γ )/ log2(n) by assumption (B′.3). �

9.4. Proofs of the type II error bounds.

PROOF OF PROPOSITION 5.4. This proof follows the same steps as the proof
of Proposition 3.2 in [35]. �

We derive Theorem 6.1, the proof of Theorem 4.1 being postponed to Ap-
pendix D in [25].

PROOF OF THEOREM 6.1. Arguing as in the beginning of the proof of The-
orem 5.3, we can replace k̂KL by k in the definition of the statistic (14). Consider
some k ∈ Kn and n > 8, the numerator of φk(Y,X) (20) is lower bounded as fol-
lows:

‖√nÂk�n‖2 ≥ ‖√nAk�n‖2[
1 − (√

k log(n)
)−1]

− √
k log(n)

∥∥√n(Ak − Âk)�n

∥∥2
,

since 2ab ≤ a2 + b2. Observe that �n = 
̂nθ + �n,1, where �n,1 =∑n
i=1〈Xi, ·〉εi/n. The proof is based on the two main following lemmas.
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LEMMA 9.8. For any β ∈ (0,1), we have

‖√nAk�n‖2 ≥ kσ 2 + n

5

∥∥
1/2
k θ

∥∥2 − 2σ 2

√
k log

(
2

β

)
− 10σ 2 log

(
2

β

)
,

with probability larger than 1 − β/2 − C/ log(n) uniformly over all k ≤ k̄n.

LEMMA 9.9. Assume that (B.1)–(B′.3) hold. For any n ≥ 1 we have

P

[∥∥√n(Âk − Ak)
̂nθ
∥∥ ≥

√
n‖
1/2θ‖

k1/4 log(n)

]
≤ C(γ )

log(n)
,

P

[∥∥√n(Âk − Ak)�n,1
∥∥ ≥ σ

log(n)

]
≤ C(γ )

log(n)
,

uniformly over all k ≤ k̄n.

Lemma 9.8 is based on a multivariate Berry–Esseen inequality and is proved in
Appendix C in [25]. The second lemma proceeds from the same kind of arguments
as Lemma 9.3. Thus, its proof is postponed to Appendix F in [25]. We get by
gathering Lemmas 9.8 and 9.9 and since

√
k log(n) ≥ 2 for n ≥ 8,

‖√nÂk�n‖2 ≥ kσ 2 − 3σ 2

√
k

log(n)
− 2n

‖
1/2θ‖2

log(n)

+ C1n
∥∥
1/2

k θ
∥∥2 − C2σ

2
(√

k log
(

2

β

)
+ log

(
2

β

))
,

with probability larger than 1 −β/2 −C(γ )/ log(n). Next, we use a rough control
of the denominator, proved in Appendix F.

LEMMA 9.10 (Control of the denominator). We have

‖Y − �̂kY‖2
n

n − k
≤ σ 2

[
1 + C

(
k

n
+

√
log(n)

n

)]
+ C′∥∥
1/2θ

∥∥2
/β,

with probability larger than 1 − 2/ log(n) − β/4.

Since
√

log(2/β) ≥ 1/ log(n) and C1 ≥ 2/ log(n) for n large enough, we derive
from the previous results that with probability larger than 1−3β/4−C(γ )/ log(n),
the statistic φk(Y,X) is lower bounded by(

kσ 2 + n
∥∥
1/2

k θ
∥∥2

nC′
1 − C′

2σ
2(√

k log(1/β) + log(1/β)
)

− 2
n

log(n)

∥∥(

1/2 − 


1/2
k

)
θ
∥∥2

)
(27)

/(
σ 2

[
1 + C

(
k

n
+

√
log(n)

n

)]
+ C′∥∥
1/2θ

∥∥2
/β

)
.
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By Lemma 1 in [3], we can upper bound the quantile of Fisher distribution

kF̄ −1
k,n−k

(
α/|Kn|) ≤ k + C

[√
k log

( |Kn|
α

)
+ log

( |Kn|
α

)]
,(28)

since we assume that log(|Kn|/α) ≤ log(n) + log(1/α) ≤ 2
√

n. Comparing the
lower bound (27) with (28) allows us to conclude. We refer to Appendix F in [25]
for the details. �

10. Arguments based on perturbation theory.

10.1. Preliminary facts. Roughly speaking, several results mentioned below
are based on an extension of the classical residue formula on the complex plane
(see Rudin [32]) to analytic functions still defined on the complex plane but with
values in the space of operators. We refer to Dunford and Schwartz [17], Chap-
ter VII.3 or to Gohberg et al. [18, 19] for an introduction to functional calculus for
operators related with Riesz integrals. Let us denote Bj the oriented circle of the
complex plane with center λj and radius δj /2 where δj is defined by

δj = min{λj − λj+1, λj−1 − λj }.(29)

The open domain whose boundary is Ck := ⋃k
j=1 Bj is not connected, but

we can apply the functional calculus for bounded operators; see Dunford and
Schwartz [17], Section VII.3, Definitions 8 and 9. Using this formalism it is easy
to prove the following formulas:

�k = 1

2πι

∫
Ck

(zI − 
)−1 dz and 

1/2
k = 1

2πι

∫
Ck

z1/2(zI − 
)−1 dz.

The same is true with the random operator 
̂n, but the contour Ck must be re-

placed by its random counterpart Ĉk = ⋃k∧Rank(
̂n)
j=1 B̂j where each B̂j is a ran-

dom ball of the complex plane with center λ̂j and a radius δ̂j /2 = min{̂λj −
λ̂j+1, λ̂j−1 − λ̂j }. We start with some lemmas.

LEMMA 10.1. Assume that for some γ > 0, the sequence (jλj log1+γ (j ∨
2))j∈N∗ decreases. Then we have∑

j≥1,j �=k

λj

|λk − λj | ≤ C(γ )k[log k ∨ 1].

For any positive integer j , let us define the event

Ej,n :=
{

sup
z∈Bj

∥∥(zI − 
)−1/2(
̂n − 
)(zI − 
)−1/2∥∥∞ ≥ 1/2
}
.
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LEMMA 10.2. Suppose that assumption (B.1)–(B.2) holds. For any j ≥ 1, we
have the two following bounds:

E sup
z∈Bj

∥∥(zI − 
)−1/2(
̂n − 
)(zI − 
)−1/2∥∥2
HS ≤ C(γ )

n

[
j (log j ∨ 1)

]2
,

P(Ej,n) ≤ C(γ )

n

[
j (log j ∨ 1)

]2
.

The proof of Lemma 10.1 (resp., Lemma 10.2) is postponed to Appendix F
(resp., Appendix E) in [25].

10.2. Proof of Lemma 9.7. In order to upper bound this expectation, we set
λ̂j = 0 for any j > Rank(
̂n). We have

tr
[



−1/2
k

(



1/2
k − 
̂

1/2
n,k

)
1An

] = k1An
−

k∑
j=1

k∑
l=1

√
λ̂j

λl

〈Vl, V̂j 〉21An

≤ k1An
−

k∑
j=1

√√√√ λ̂j

λj

〈Vj , V̂j 〉21An

≤
k∑

j=1

(
1 − 〈Vj , V̂j 〉2)

1An
+

k∑
j=1

∣∣∣∣
√√√√ λ̂j

λj

− 1
∣∣∣∣1An

≤
k∑

j=1

(
1 − 〈Vj , V̂j 〉2)

1An
+

k∑
j=1

|̂λj − λj |
λj

1An
,

where the last equation follows from the upper bound |√1 + x − 1| ≤ |x| for
any x ≥ −1. Observe that under the event An, (̂λj − λj )/λj ≤ 1/2. Applying
Lemma 10.2, we obtain the following bound:

E
[
tr

[



−1/2
k

(



1/2
k − 
̂

1/2
n,k

)
1An

]]
≤

k∑
j=1

E
[(

1 − 〈Vj , V̂j 〉2)
1An∩E j,n

] +
k∑

j=1

E

[ |̂λj − λj |
λj

1An∩E j,n

]

+
k∑

j=1

3

2
P[Ej,n](30)

≤
k∑

j=1

E
[(

1 − 〈Vj , V̂j 〉2)
1An∩E j,n

] +
k∑

j=1

E

[ |̂λj − λj |
λj

1An∩E j,n

]

+ C(γ )
k3(log2(k) ∨ 1)

n
.
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In the sequel, πj stands for the orthogonal projector associated to the single j th
eigenvector Vj while π̂j refers to its empirical counterpart. Applying functional
calculus tools for linear operators, we get for any 1 ≤ j ≤ k

1 − 〈Vj , V̂j 〉2 = 〈Vj ,Vj 〉2 − 〈Vj , V̂j 〉2 = 〈
(πj − π̂j )Vj ,Vj

〉
= 1

2πι

[∫
Bj

〈
(zI − 
)−1Vj ,Vj

〉
dz −

∫
B̂j

〈
(zI − 
̂n)

−1Vj ,Vj

〉
dz

]
,

which looks like the definition of �k given in the first paragraph of Section 10.1
(note that only the contour changed). Under the event An, λ̂j lies inside the circle
Bj . In fact, (zI − 
̂n)

−1 has only one pole inside the circle Bj at z = λ̂j . As a
consequence, we have almost surely∫

B̂j

〈
(zI − 
̂n)

−1Vj ,Vj

〉
dz1An

=
∫

Bj

〈
(zI − 
̂n)

−1Vj ,Vj

〉
dz1An

,

so that (
1 − 〈Vj , V̂j 〉2)

1E j,n∩An

(31)

= 1

2πι

∫
Bj

〈{
(zI − 
)−1 − (zI − 
̂n)

−1}
Vj ,Vj

〉
dz1E j,n∩An

.

Working out this integral, we get∫
Bj

〈{
(zI − 
)−1 − (zI − 
̂n)

−1}
Vj ,Vj

〉
dz

= −
∫

Bj

〈
(zI − 
)−1(
̂n − 
)(zI − 
)−1Vj ,Vj

〉
−

∫
Bj

〈
(zI − 
̂n)

−1(
̂n − 
)(zI − 
)−1(
̂n − 
)(zI − 
)−1Vj ,Vj

〉
dz.

The first term is
∫

Bj
(z − λj )

−2〈(
̂n − 
)Vj ,Vj 〉dz. Thus, it is null almost surely

by the Cauchy integration theorem. Define Sn(z) = (zI − 
)1/2(zI − 
̂n)
−1(zI −


)1/2 and Tn(z) = (zI − 
)−1/2(
̂n − 
)(zI − 
)−1/2. For any fixed z, we have
Sn(z) = [I − Tn(z)]−1. Thus, it comes from (31) that

E
[(

1 − 〈Vj , V̂j 〉2)
1E j,n∩An

]
≤ E

[∣∣∣∣ 1

2πι

∫
Bi

〈
(zI − 
)−1/2Sn(z)T

2
n (z)(zI − 
)−1/2Vj ,Vj

〉
1E j,n∩An

dz

∣∣∣∣]
(32)

≤ CδjE

[
sup
z∈Bj

{∥∥Sn(z)
∥∥∞1E j,n

∥∥Tn(z)
∥∥2
∞

∥∥(zI − 
)−1∥∥∞
}]

≤ Cδj sup
z∈Bj

∥∥(zI − 
)−1∥∥∞E

[
sup
z∈Bj

∥∥Tn(z)
∥∥2
∞

]
≤ C(γ )

j2(log2(j) ∨ 1)

n
,
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since supz∈Bj
‖(zI − 
)−1‖∞ ≤ 2δ−1

i , supz∈Bj
‖Sn(z)‖∞1E j,n

≤ 2 and

E[supz∈Bi
‖Tn(z)‖2∞] ≤ C(γ )

n
j2(log2(j) ∨ 1) by Lemma 10.2. Hence, we obtain

an upper bound for the first term in (30),

E

[(
k −

k∑
j=1

〈Vj , V̂j 〉2

)
1An

]
≤ C(γ )

k3(log2(k) ∨ 1)

n
.(33)

Turning to the second term in (30), we only provide a sketch of the proof since
the approach is the same as for the first term. We have

λ̂j − λj = tr(
̂nπ̂j − 
πj ) = tr
(

̂n(π̂j − πj )

) + tr
(
(
̂n − 
)πj

)
,

so that

|̂λj − λj |
λj

1An∩E j,n

(34)

≤ | tr(
̂n(π̂j − πj ))|
λj

1An∩E j,n
+ | tr((
̂n − 
)πj )|

λj

1An∩E j,n
.

The second term in this decomposition is bounded as follows:

E

[ | tr((
̂n − 
)πj )|
λj

1An∩E j,n

]
≤ E

[ |〈(
̂n − 
)Vj ,Vj 〉|
λj

]
≤ 1√

n
.(35)

We now consider E[| tr(
̂n(π̂j − πj ))|1An∩E j,n
], and we use the same method as

above for bounding (1 − 〈Vj , V̂j 〉2). This leads us to the upper bound (the details
are postponed to Appendix E in [25]).

LEMMA 10.3. We have

1

λj

E
[∣∣tr(
̂n(π̂j − πj )

)∣∣1An∩E j,n

] ≤ C(γ )
j2(log2 j ∨ 1)

n
.

Gathering (34) and (35) with this last bound, we get

k∑
j=1

E

[∣∣∣∣ λ̂j − λj

λj

∣∣∣∣1An∩E j,n

]
≤ C(γ )

k3(log2(k) ∨ 1)

n
+ C′ k√

n
.

Combining this last bound with (30) and (33) allows us to conclude.

Acknowledgments. We would like to thank two anonymous referees for their
insightful remarks that lead us to significantly improve the presentation of the pa-
per.
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SUPPLEMENTARY MATERIAL

Technical Appendix (DOI: 10.1214/13-AOS1093SUPP; .pdf). We provide ad-
ditional control of the power and we describe the remaining proofs.
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