
The Annals of Statistics
2013, Vol. 41, No. 2, 802–837
DOI: 10.1214/12-AOS1077
© Institute of Mathematical Statistics, 2013

VALID POST-SELECTION INFERENCE
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It is common practice in statistical data analysis to perform data-driven
variable selection and derive statistical inference from the resulting model.
Such inference enjoys none of the guarantees that classical statistical theory
provides for tests and confidence intervals when the model has been chosen
a priori. We propose to produce valid “post-selection inference” by reducing
the problem to one of simultaneous inference and hence suitably widening
conventional confidence and retention intervals. Simultaneity is required for
all linear functions that arise as coefficient estimates in all submodels. By
purchasing “simultaneity insurance” for all possible submodels, the resulting
post-selection inference is rendered universally valid under all possible model
selection procedures. This inference is therefore generally conservative for
particular selection procedures, but it is always less conservative than full
Scheffé protection. Importantly it does not depend on the truth of the selected
submodel, and hence it produces valid inference even in wrong models. We
describe the structure of the simultaneous inference problem and give some
asymptotic results.

1. Introduction: The problem with statistical inference after model selec-
tion. Classical statistical theory grants validity of statistical tests and confidence
intervals assuming a wall of separation between the selection of a model and the
analysis of the data being modeled. In practice, this separation rarely exists, and
more often a model is “found” by a data-driven selection process. As a conse-
quence inferential guarantees derived from classical theory are invalidated. Among
model selection methods that are problematic for classical inference, variable se-
lection stands out because it is regularly taught, commonly practiced and highly
researched as a technology. Even though statisticians may have a general aware-
ness that the data-driven selection of variables (predictors, covariates) must some-
how affect subsequent classical inference from F - and t-based tests and confidence
intervals, the practice is so pervasive that it appears in classical undergraduate text-
books on statistics such as Moore and McCabe (2003).

The reason for the invalidation of classical inference guarantees is that a data-
driven variable selection process produces a model that is itself stochastic, and
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this stochastic aspect is not accounted for by classical theory. Models become
stochastic when the stochastic component of the data is involved in the selection
process. (In regression with fixed predictors the stochastic component is the re-
sponse.) Models are stochastic in a well-defined way when they are the result of
formal variable selection procedures such as stepwise or stagewise forward selec-
tion or backward elimination or all-subset searches driven by complexity penalties
(such as Cp , AIC, BIC, risk-inflation, LASSO, . . .) or prediction criteria such as
cross-validation, or more recent proposals such as LARS and the Dantzig selector;
for an overview see, for example, Hastie, Tibshirani and Friedman (2009). Mod-
els are also stochastic but in an ill-defined way when they are informally selected
through visual inspection of residual plots or normal quantile plots or other regres-
sion diagnostics. Finally, models become stochastic in an opaque way when their
selection is affected by human intervention based on post-hoc considerations such
as “in retrospect only one of these two variables should be in the model” or “it turns
out the predictive benefit of this variable is too weak to warrant the cost of collect-
ing it.” In practice, all three modes of variable selection may be exercised in the
same data analysis: multiple runs of one or more formal search algorithms may be
performed and compared, the parameters of the algorithms may be subjected to ex-
perimentation and the results may be critiqued with graphical diagnostics; a round
of fine-tuning based on substantive deliberations may finalize the analysis.

Posed so starkly, the problems with statistical inference after variable selection
may well seem insurmountable. At a minimum, one would expect technical solu-
tions to be possible only when a formal selection algorithm is (1) well-specified
(1a) in advance and (1b) covering all eventualities, (2) strictly adhered to in the
course of data analysis and (3) not “improved” on by informal and post-hoc el-
ements. It may, however, be unrealistic to expect this level of rigor in most data
analysis contexts, with the exception of well-conducted clinical trials. The real
challenge is therefore to devise statistical inference that is valid following any type
of variable selection, be it formal, informal, post hoc or a combination thereof.
Meeting this challenge with a relatively simple proposal is the goal of this article.
This proposal for valid Post-Selection Inference, or “PoSI” for short, consists of a
large-scale family-wise error guarantee that can be shown to account for all types
of variable selection, including those of the informal and post-hoc varieties. On
the other hand, the proposal is no more conservative than necessary to account for
selection, and in particular it can be shown to be less conservative than Scheffé’s
simultaneous inference.

The framework for our proposal is in outline as follows—details to be elabo-
rated in subsequent sections: we consider linear regression with predictor variables
whose values are considered fixed, and with a response variable that has normal
and homoscedastic errors. The framework does not require that any of the eligible
linear models is correct, not even the full model, as long as a valid error estimate is
available. We assume that the selected model is the result of some procedure that
makes use of the response, but the procedure does not need to be fully specified.
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A crucial aspect of the framework concerns the use and interpretation of the se-
lected model: we assume that, after variable selection is completed, the selected
predictor variables—and only they—will be relevant; all others will be eliminated
from further consideration. This assumption, seemingly innocuous and natural, has
critical consequences: it implies that statistical inference will be sought for the co-
efficients of the selected predictors only and in the context of the selected model
only. Thus the appropriate targets of inference are the best linear coefficients within
the selected model, where each coefficient is adjusted for the presence of all other
included predictors but not those that were eliminated. Therefore the coefficient
of an included predictor generally requires inference that is specific to the model
in which it appears. Summarizing in a motto, a difference in adjustment implies a
difference in parameters and hence in inference. The goal of the present proposal
is therefore simultaneous inference for all coefficients within all submodels. Such
inference can be shown to be valid following any variable selection procedure, be
it formal, informal, post hoc, fully or only partly specified.

Problems associated with post-selection inference were recognized long ago,
for example, by Buehler and Feddersen (1963), Brown (1967), Olshen (1973), Sen
(1979), Sen and Saleh (1987), Dijkstra and Veldkamp (1988), Pötscher (1991),
Kabaila (1998). More recently specific problems have been the subject of incisive
analyses and criticisms by the “Vienna School” of Pötscher, Leeb and Schnei-
der; see, for example, Leeb and Pötscher (2003, 2005, 2006a, 2006b, 2008a,
2008b, 2008c), Pötscher (2006), Leeb (2006), Pötscher and Leeb (2009), Pötscher
and Schneider (2009, 2010, 2011), as well as Kabaila and Leeb (2006) and
Kabaila (2009). Important progress was made by Hjort and Claeskens (2003) and
Claeskens and Hjort (2003).

This article proceeds as follows: in Section 2 we first develop the “submodel
view” of the targets of inference after model selection and contrast it with the “full
model view” (Section 2.1); we then introduce assumptions with a view toward
valid inference in “wrong models” (Section 2.2). Section 3 is about estimation
and its targets from the submodel point of view. Section 4 develops the method-
ology for PoSI confidence intervals (CIs) and tests. After some structural results
for the PoSI problem in Section 5, we show in Section 6 that with increasing num-
ber of predictors p the width of PoSI CIs can range between the asymptotic rates
O(

√
logp) and O(

√
p). We give examples for both rates and, inspired by prob-

lems in sphere packing and covering, we give upper bounds for the limiting con-
stant in the O(

√
p) case. We conclude with a discussion in Section 7. Some proofs

are deferred to the Appendix, and some elaborations to the online Appendix in the
supplementary material [Berk et al. (2013)].

Computations will be described in a separate article. Simulation-based meth-
ods yield satisfactory accuracy specific to a design matrix up to p ≈ 20, while
nonasymptotic universal upper bounds can be computed for larger p.
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2. Targets of inference and assumptions. It is a natural intuition that model
selection distorts inference by distorting sampling distributions of parameter esti-
mates: estimates in selected models should tend to generate more type I errors than
conventional theory allows because the typical selection procedure favors models
with strong, hence highly significant predictors. This intuition correctly points to
a multiplicity problem that grows more severe as the number of predictors subject
to selection increases. This is the problem we address in this article.

Model selection poses additional problems that are less obvious but no less fun-
damental: there exists an ambiguity as to the role and meaning of the parameters
in submodels. In one view, the relevant parameters are always those of the full
model, hence the selection of a submodel is interpreted as estimating the dese-
lected parameters to be zero and estimating the selected parameters under a zero
constraint on the deselected parameters. In another view, the submodel has its own
parameters, and the deselected parameters are not zero but nonexistent. These dis-
tinctions are not academic as they imply fundamentally different ideas regarding
the targets of inference, the measurement of statistical performance, and the prob-
lem of post-selection inference. The two views derive from different purposes of
equations:

• Underlying the full model view of parameters is the use of a full equation to
describe a “data generating” mechanism for the response; the equation hence
has a causal interpretation.

• Underlying the submodel view of parameters is the use of any equation to
merely describe association between predictor and response variables; no data
generating or causal claims are implied.

In this article we address the latter use of equations. Issues relating to the former
use are discussed in the online Appendix of the supplementary material [Berk et al.
(2013), Section B.1].

2.1. The submodel interpretation of parameters. In what follows we elaborate
three points that set the submodel interpretation of coefficients apart from the full
model interpretation, with important consequences for the rest of this article:

(1) The full model has no special status other than being the repository of avail-
able predictors.

(2) The coefficients of excluded predictors are not zero; they are not defined
and therefore do not exist.

(3) The meaning of a predictor’s coefficient depends on which other predictors
are included in the selected model.

(1) The full model available to the statistician often cannot be argued to have
special status because of inability to identify and measure all relevant predictors.
Additionally, even when a large and potentially complete suite of predictors can
be measured, there is generally a question of predictor redundancy that may make
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it desirable to omit some of the measurable predictors from the final model. It
is a common experience in the social sciences that models proposed on theoret-
ical grounds are found on empirical grounds to have their predictors entangled
by collinearities that permit little meaningful statistical inference. This situation
is not limited to the social sciences: in gene expression studies it may well oc-
cur that numerous sites have a tendency to be expressed concurrently, hence as
predictors in disease studies they will be strongly confounded. The emphasis on
full models may be particularly strong in econometrics where there is a “notion
that a longer regression . . . has a causal interpretation, while a shorter regression
does not” [Angrist and Pischke (2009), page 59]. Even in causal models, however,
there is a possibility that included adjuster variables will “adjust away” some of the
causal variables of interest. Generally, in any creative observational study involv-
ing novel predictors, it will be difficult a priori to exclude collinearities that might
force a rethinking of the predictors. In conclusion, whenever predictor redundancy
is a potential issue, it cannot a priori be claimed that the full model provides the
parameters of primary interest.

(2) In the submodel interpretation of parameters, claiming that the coefficients
of deselected predictors are zero does not properly describe the role of predic-
tors. Deselected predictors have no role in the submodel equation; they become no
different than predictors that had never been considered. The selected submodel
becomes the vehicle of substantive research irrespective of what the full model
was. As such the submodel stands on its own. This view is especially appropriate
if the statistician’s task is to determine which predictors are to be measured in the
future.

(3) The submodel interpretation of parameters is deeply seated in how we teach
regression. We explain that the meaning of a regression coefficient depends on
which of the other predictors are included in the model: “the slope is the average
difference in the response for a unit difference in the predictor, at fixed levels of
all other predictors in the model.” This “ceteris paribus” clause is essential to the
meaning of a slope. That there is a difference in meaning when there is a difference
in covariates is most drastically evident when there is a case of Simpson’s paradox.
For example, if purchase likelihood of a high-tech gadget is predicted from age, it
might be found against expectations that younger people have lower purchase like-
lihood, whereas a regression on age and income might show that at fixed levels of
income younger people have indeed higher purchase likelihood. This case of Simp-
son’s paradox would be enabled by the expected positive collinearity between age
and income. Thus the marginal slope on age is distinct from the income-adjusted
slope on age as the two slopes answer different questions, apart from having oppo-
site signs. In summary, different models result in different parameters with different
meanings.

Must we use the full model with both predictors? Not if income data is difficult
to obtain or if it provides little improvement in R2 beyond age. The model based
on age alone cannot be said to be a priori “wrong.” If, for example, the predictor
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and response variables have jointly multivariate normal distributions, then every
linear submodel is “correct.” These considerations drive home, once again, that
sometimes no model has special status.

In summary, a range of applications call for a framework in which the full model
is not the sole provider of parameters, where rather each submodel defines its own.
The consequences of this view will be developed in Section 3.

2.2. Assumptions, models as approximations, and error estimates. We state
assumptions for estimation and for the construction of valid tests and CIs when
fitting arbitrary linear equations. The main goal is to prepare the ground for valid
statistical inference after model selection—not assuming that selected models are
correct.

We consider a quantitative response vector Y ∈ R
n, assumed random, and a

full predictor matrix X = (X1,X2, . . . ,Xp) ∈ R
n×p , assumed fixed. We allow X

to be of nonfull rank, and n and p to be arbitrary. In particular, we allow n < p.
Throughout the article we let

d � rank(X) = dim
(
span(X)

)
hence d ≤ min(n,p).(2.1)

Due to frequent reference we call d = p (≤ n) “the classical case.”
It is common practice to assume the full model Y ∼ Nn(Xβ, σ 2I) to be correct.

In the present framework, however, first-order correctness, E[Y] = Xβ , will not
be assumed. By implication, first-order correctness of any submodel will not be
assumed either. Effectively,

μ � E[Y] ∈ R
n(2.2)

is allowed to be unconstrained and, in particular, need not reside in the column
space of X. That is, the model given by X is allowed to be “first-order wrong,” and
hence we are, in a well-defined sense, serious about G.E.P. Box’s famous quote.
What he calls “wrong models,” we prefer to call “approximations”: all predictor
matrices X provide approximations to μ, some better than others, but the degree of
approximation plays no role in the clarification of statistical inference. The main
reason for elaborating this point is as follows: after model selection, the case for
“correct models” is clearly questionable, even for “consistent model selection pro-
cedures” [Leeb and Pötscher (2003), page 101]; but if correctness of submodels is
not assumed, it is only natural to abandon this assumption for the full model also,
in line with the idea that the full model has no special status. As we proceed with
estimation and inference guarantees in the absence of first-order correctness we
will rely on assumptions as follows:

• For estimation (Section 3), we will only need the existence of μ = E[Y].
• For testing and CI guarantees (Section 4), we will make conventional second-

order and distributional assumptions,

Y ∼ N
(
μ, σ 2I

)
.(2.3)
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The assumptions (2.3) of homoscedasticity and normality are as questionable as
first-order correctness, and we will report elsewhere on approaches that avoid
them. For now we follow the vast model selection literature that relies on the tech-
nical advantages of assuming homoscedastic and normal errors.

Accepting the assumption (2.3), we address the issue of estimating the error
variance σ 2, because the valid tests and CIs we construct require a valid estimate
σ̂ 2 of σ 2 that is independent of LS estimates. In the classical case, the most com-
mon way to assert such an estimate is to assume that the full model is first-order
correct, μ = Xβ in addition to (2.3), in which case the mean squared residual
(MSR) σ̂ 2

F = ‖Y − Xβ̂‖2/(n − p) of the full model will do. However, other pos-
sibilities for producing a valid estimate σ̂ 2 exist, and they may allow relaxing the
assumption of first-order correctness:

• Exact replications of the response obtained under identical conditions might be
available in sufficient numbers. An estimate σ̂ 2 can be obtained as the MSR of
the one-way ANOVA of the groups of replicates.

• In general, a larger linear model than the full model might be considered as
correct; hence σ̂ 2 could be the MSR from this larger model.

• A different possibility is to use another dataset, similar to the one currently being
analyzed, to produce an independent estimate σ̂ 2 by whatever valid estimation
method.

• A special case of the preceding is a random split-sample approach whereby one
part of the data is reserved for producing σ̂ 2 and the other part for estimating
coefficients, selecting models and carrying out post-model selection inference.

• A different type of estimate, σ̂ 2, may be based on considerations borrowed from
nonparametric function estimation [Hall and Carroll (1989)].

The purpose of pointing out these possibilities is to separate, at least in principle,
the issue of first-order model incorrectness from the issue of error estimation under
assumption (2.3). This separation puts the case n < p within our framework as
the valid and independent estimation of σ 2 is a problem faced by all “n < p”
approaches.

3. Estimation and its targets in submodels. Following Section 2.1, the value
and meaning of a regression coefficient depends on what the other predictors in
the model are. An exception occurs, of course, when the predictors are perfectly
orthogonal, as in some designed experiments or in function fitting with orthogonal
basis functions. In this case a coefficient has the same value and meaning across
all submodels. This article is hence a story of (partial) collinearity.

3.1. Multiplicity of regression coefficients. We will give meaning to LS esti-
mators and their targets in the absence of any assumptions other than the existence
of μ = E[Y], which in turn is permitted to be entirely unconstrained in R

n. Besides
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resolving the issue of estimation in “first-order wrong models,” the major purpose
here is to elaborate the idea that the slope of a predictor generates different param-
eters in different submodels. As each predictor appears in 2p−1 submodels, the p

regression coefficients of the full model generally proliferate into a plethora of as
many as p2p−1 distinct regression coefficients according to the submodels they
appear in. To describe the situation we start with notation.

To denote a submodel we use the (nonempty) index set M = {j1, j2, . . . , jm} ⊂
MF = {1, . . . , p} of the predictors Xji

in the submodel; the size of the submodel
is m = |M| and that of the full model is p = |MF |. Let XM = (Xj1, . . . ,Xjm)

denote the n × m submatrix of X with columns indexed by M. We will only allow
submodels M for which XM is of full rank,

rank(XM) = m ≤ d.

We let β̂M be the unique least squares estimate in M,

β̂M = (XT
MXM
)−1XT

MY.(3.1)

Now that β̂M is an estimate, what is it estimating? Following Section 2.1, we
will not interpret β̂M as estimates of the full model coefficients and, more gener-
ally, of any model other than M. Thus it is natural to ask that β̂M define its own
target through the requirement of unbiasedness,

βM � E[β̂M] = (XT
MXM
)−1XT

ME[Y] = arg min
β ′∈Rm

∥∥μ − XMβ ′∥∥2.(3.2)

This definition requires no other assumption than the existence of μ = E[Y]. In
particular there is no need to assume first-order correctness of M or MF . Nor
does it matter to what degree M provides a good approximation to μ in terms
of approximation error ‖μ − XMβM‖2.

In the classical case d = p ≤ n, we can define the target of the full-model esti-
mate β̂ = (XT X)−1XT Y as a special case of (3.2) with M = MF ,

β � E[β̂] = (XT X
)−1XT E[Y].(3.3)

In the general (including the nonclassical) case, let β be any (possibly nonunique)
minimizer of ‖μ − Xβ ′‖2; the link between β and βM is as follows:

βM = (XT
MXM
)−1XT

MXβ.(3.4)

Thus the target βM is an estimable linear function of β , without first-order correct-
ness assumptions. Equation (3.4) follows from span(XM) ⊂ span(X).

Notation: to distinguish the regression coefficients of the predictor Xj relative
to the submodel it appears in, we write βj ·M = E[β̂j ·M] for the components of
βM = E[β̂M] with j ∈ M. An important convention is that indexes are always
elements of the full model, j ∈ {1,2, . . . , p} = MF , for what we call “full model
indexing.”
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3.2. Interpreting regression coefficients in first-order incorrect models. The
regression coefficient βj ·M is conventionally interpreted as the “average difference
in the response for a unit difference in Xj , ceteris paribus in the model M.” This
interpretation no longer holds when the assumption of first-order correctness is
given up. Instead, the phrase “average difference in the response” should be re-
placed with the unwieldy phrase “average difference in the response approximated
in the submodel M.” The reason is that the target of the fit ŶM = XMβ̂M in the
submodel M is μM = XMβM, hence in M we estimate unbiasedly not the true μ
but its LS approximation μM.

A second interpretation of regression coefficients is in terms of adjusted pre-
dictors: for j ∈ M define the M-adjusted predictor Xj ·M as the residual vector of
the regression of Xj on all other predictors in M. Multiple regression coefficients,
both estimates β̂j ·M and parameters βj ·M, can be expressed as simple regression
coefficients with regard to the M-adjusted predictors,

β̂j ·M = XT
j ·MY

‖Xj ·M‖2 , βj ·M = XT
j ·Mμ

‖Xj ·M‖2 .(3.5)

The left-hand formula lends itself to an interpretation of β̂j ·M in terms of the well-
known leverage plot which shows Y plotted against Xj ·M and the line with slope
β̂j ·M. This plot is valid without first-order correctness assumption.

A third interpretation can be derived from the second: to unclutter notation let
x = (xi)i=1...n be any adjusted predictor Xj ·M, so that β̂ = xT Y/‖x‖2 and β =
xT μ/‖x‖2 are the corresponding β̂j ·M and βj ·M. Introduce (1) case-wise slopes
through the origin, both as estimates β̂(i) = Yi/xi and as parameters β(i) = μi/xi ,
and (2) case-wise weights w(i) = x2

i /
∑

i′=1...n x2
i′ . Equations (3.5) are then equiv-

alent to the following:

β̂ =∑
i

w(i)β̂(i), β =∑
i

w(i)β(i).

Hence regression coefficients are weighted averages of case-wise slopes, and this
interpretation holds without first-order assumptions.

4. Universally valid post-selection confidence intervals.

4.1. Test statistics with one error estimate for all submodels. We consider in-
ference for β̂M and its target βM. Following Section 2.2 we require a normal ho-
moscedastic model for Y, but we leave its mean μ = E[Y] entirely unspecified:
Y ∼ N (μ, σ 2I). We then have equivalently

β̂M ∼ N
(
βM, σ 2(XT

MXM
)−1) and β̂j ·M ∼ N

(
βj ·M, σ 2/‖Xj ·M‖2).

Again following Section 2.2 we assume the availability of a valid estimate σ̂ 2 of σ 2

that is independent of all estimates β̂j ·M, and we further assume σ̂ 2 ∼ σ 2χ2
r /r for r
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degrees of freedom. If the full model is assumed to be correct, n > p and σ̂ 2 = σ̂ 2
F ,

then r = n − p. In the limit r → ∞ we obtain σ̂ = σ , the case of known σ , which
will be used starting with Section 6.

Let tj ·M denote a t-ratio for βj ·M that uses σ̂ irrespective of M,

tj ·M � β̂j ·M − βj ·M
((XT

MXM)−1)
1/2
jj σ̂

= β̂j ·M − βj ·M
σ̂ /‖Xj ·M‖ = (Y − μ)T Xj ·M

σ̂‖Xj ·M‖ ,(4.1)

where (· · ·)jj refers to the diagonal element corresponding to Xj . The quantity
tj ·M = tj ·M(Y) has a central t-distribution with r degrees of freedom. Essential is
that the standard error estimate in the denominator of (4.1) does not involve the
MSR σ̂M from the submodel M, for two reasons:

• We do not assume that the submodel M is first-order correct; hence σ̂ 2
M would,

in general, have a distribution that is a multiple of a noncentral χ2 distribution
with unknown noncentrality parameter.

• More disconcertingly, σ̂ 2
M would be the result of selection, σ̂ 2

M̂
; see Section 4.2.

Not much of real use is known about its distribution; see, for example, Brown
(1967) and Olshen (1973).

These problems are avoided by using one valid estimate σ̂ 2 that is independent of
all submodels.

With this choice of σ̂ , confidence intervals for βj ·M take the form

CIj ·M(K) �
[
β̂j ·M ± K

[(
XT

MXM
)−1]1/2

jj σ̂
]

(4.2)
= [β̂j ·M ± Kσ̂/‖Xj ·M‖].

If K = tr,1−α/2 is the 1 − α/2 quantile of a t-distribution with r degrees of free-
dom, then the interval is marginally valid with a 1 − α coverage guarantee

P
[
βj ·M ∈ CIj ·M(K)

] (≥)= 1 − α.

This holds if the submodel M is not the result of variable selection.

4.2. Model selection and its implications for parameters. In practice, the
model M tends to be the result of some form of model selection that makes use
of the stochastic component of the data, which is the response vector Y (X being
fixed, Section 2.2). This model should therefore be expressed as M̂ = M̂(Y). In
general we allow a variable selection procedure to be any (measurable) map

M̂ : Y 
→ M̂(Y), R
n → Mall,(4.3)

where Mall is the set of all full-rank submodels

Mall �
{
M|M ⊂ {1,2, . . . , p}, rank(XM) = |M|}.(4.4)

Thus the procedure M̂ is a discrete map that divides R
n into as many as |Mall|

different regions with shared outcome of model selection.
Data dependence of the selected model M̂ has strong consequences:
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• Most fundamentally, the selected model M̂ = M̂(Y) is now random. Whether the
model has been selected by an algorithm or by human choice, if the response
Y has been involved in the selection, the resulting model is a random object
because it could have been different for a different realization of the random
vector Y.

• Associated with the random model M̂(Y) is the parameter vector of coefficients
βM̂(Y)

, which is now randomly chosen also:

– It has a random dimension m(Y) = |M̂(Y)|: βM̂(Y)
∈ R

m(Y).

– For any fixed j , it may or may not be the case that j ∈ M̂(Y).
– Conditional on j ∈ M̂(Y), the parameter β

j ·M̂(Y)
changes randomly as the

adjuster covariates in M̂(Y) vary randomly.

Thus the set of parameters for which inference is sought is random also.

4.3. Post-selection coverage guarantees for confidence intervals. With ran-
domness of the selected model and its parameters in mind, what is a desirable form
of post-selection coverage guarantee for confidence intervals? A natural require-
ment would be a 1 − α confidence guarantee for the coefficients of the predictors
that are selected into the model,

P
[∀j ∈ M̂ :β

j ·M̂ ∈ CI
j ·M̂(K)

]≥ 1 − α.(4.5)

Several points should be noted:

• The guarantee is family-wise for all selected predictors j ∈ M̂, though the sense
of “family-wise” is unusual because M̂ = M̂(Y) is random.

• The guarantee has nothing to say about predictors j /∈ M̂ that have been de-
selected, regardless of the substantive interest they might have. Predictors of
overarching interest should be protected from variable selection, and for these
one can use a modification of the PoSI approach which we call “PoSI1;” see
Section 4.10.

• Because predictor selection is random, M̂ = M̂(Y), two realized samples
y(1),y(2) ∈ R

n from Y may result in different sets of selected predictors,
M̂(y(1)) �= M̂(y(2)). It would be a fundamental misunderstanding to wonder
whether the guarantee holds for both realizations. Instead, the guarantee (4.5)
is about the procedure

Y 
→ σ̂ (Y), M̂(Y), β̂M̂(Y)
(Y) 
→ CI

j ·M̂(K) (j ∈ M̂)

for the long run of independent realizations of Y (by the LLN), and not for any
particular realizations y(1),y(2). A standard formulation used to navigate these
complexities after a realization y of Y has been analyzed is the following: “for
j ∈ M̂ we have 1 −α confidence that the interval CI

j ·M̂(y)
(K) contains β

j ·M̂(y)
.”
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• Marginal guarantees for individual predictors require some care because β
j ·M̂

does not exist for j /∈ M̂. This makes β
j ·M̂ ∈ CI

j ·M̂(K) an incoherent statement

that does not define an event. Guarantees are possible if the condition j ∈ M̂ is
added with a conjunction or is being conditioned on: The marginal and condi-
tional probabilities

P
[
j ∈ M̂ and β

j ·M̂ ∈ CI
j ·M̂(Kj ·)

]
and P

[
β

j ·M̂ ∈ CI
j ·M̂(Kj ·)|j ∈ M̂

]
,

respectively, are both well-defined and can be the subject of coverage guaran-
tees; see the online Appendix of the supplementary material [Berk et al. (2013),
Section B.4].

Finally, we note that the smallest constant K that satisfies the guarantee (4.5)
is specific to the procedure M̂. Thus different variable selection procedures would
require different constants. Finding procedure-specific constants is a challenge that
will be intentionally bypassed by the present proposals.

4.4. Universal validity for all selection procedures. The “PoSI” procedure
proposed here produces a constant K that provides universally valid post-selection
inference for all model selection procedures M̂,

P
[
β

j ·M̂ ∈ CI
j ·M̂(K) ∀j ∈ M̂

]≥ 1 − α ∀M̂.(4.6)

Universal validity irrespective of the model selection procedure M̂ is a strong prop-
erty that raises questions of whether the approach is too conservative. There are,
however, some arguments in its favor:

(1) Universal validity may be desirable or even essential for applications in
which the model selection procedure is not specified in advance or for which the
analysis involves some ad hoc elements that cannot be accurately pre-specified.
Even so, we should think of the actually chosen model as part of a “procedure”
Y 
→ M̂(Y), and though the ad hoc steps are not specified for Y other than the
observed one, this is not a problem because our protection is irrespective of what a
specification might have been. This view also allows data analysts to change their
minds, to improvise and informally decide in favor of a model other than that pro-
duced by a formal selection procedure, or to experiment with multiple selection
procedures.

(2) There exists a model selection procedure that requires the full strength of
universally valid PoSI, and this procedure may not be entirely unrealistic as an
approximation to some types of data analytic activities: “significance hunting,” that
is, selecting that model which contains the statistically most significant coefficient;
see Section 4.9.

(3) There is a general question about the wisdom of proposing ever tighter con-
fidence and retention intervals for practical use when in fact these intervals are
valid only under tightly controlled conditions. It might be realistic to suppose that
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much applied work involves more data peeking than is reported in published arti-
cles. With inference that is universally valid after any model selection procedure,
we have a way to establish which rejections are safe, irrespective of unreported
data peeking as part of selecting a model.

(4) Related to the previous point is the fact that today there is a realization that
a considerable fraction of published empirical work is unreproducible or reports
exaggerated effects; well known in this regard is Ioannidis (2005). A factor con-
tributing to this problem might well be liberal handling of variable selection and
absent accounting for it in subsequent inference.

4.5. Restricted model selection. The concerns over PoSI’s conservative na-
ture can be alleviated somewhat by introducing a degree of flexibility to the PoSI
problem with regard to the universe of models being searched. Such flexibility is
additionally called for from a practical point of view because it is not true that
all submodels in Mall (4.4) are always being searched. Rather, the search is of-
ten limited in a way that can be specified a priori, without involvement of Y. For
example, a predictor of interest may be forced into the submodels of interest, or
there may be a restriction on the size of the submodels. Indeed, if p is large, a re-
striction to a manageable set of submodels is a computational necessity. In much
of what follows we can allow the universe M of allowable submodels to be an
(almost) arbitrary but pre-specified nonempty subset of Mall; w.l.o.g. we can as-
sume

⋃
M∈M M = {1,2, . . . , p}. Because we allow only nonsingular submodels

[see (4.4)] we have |M| ≤ d ∀M ∈ M, where as always d = rank(X). Selection
procedures are now maps

M̂ : Y 
→ M̂(Y), R
n → M.(4.7)

The following are examples of model universes with practical relevance; see also
Leeb and Pötscher (2008a), Section 1.1, Example 1.

(1) Submodels that contain the first p′ predictors (1 ≤ p′ ≤ p): M1 = {M ∈
Mall|{1,2, . . . , p′} ⊂ M}. Classical: |M1| = 2p−p′

. Example: forcing an intercept
into all models.

(2) Submodels of size m′ or less (“sparsity option”): M2 = {M ∈ Mall||M| ≤
m′}. Classical: |M2| = (p1)+ · · · + ( p

m′
)
.

(3) Submodels with fewer than m′ predictors dropped from the full model:
M3 = {M ∈ Mall||M| > p − m′}. Classical: |M3| = |M2|.

(4) Nested models: M4 = {{1, . . . , j}|j ∈ {1, . . . , p}}. |M4| = p. Example: se-
lecting the degree up to p − 1 in a polynomial regression.

(5) Models dictated by an ANOVA hierarchy of main effects and interactions
in a factorial design.

This list is just an indication of possibilities. In general, the smaller the set
M̃ = {(j,M)|j ∈ M ∈ M} is, the less conservative the PoSI approach is, and the
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more computationally manageable the problem becomes. With sufficiently strong
restrictions, in particular using the sparsity option (2) and assuming the availability
of an independent valid estimate σ̂ , it is possible to apply PoSI in certain nonclas-
sical p > n situations.

Further reduction of the PoSI problem is possible by pre-screening adjusted
predictors without the response Y. In a fixed-design regression, any variable se-
lection procedure that does not involve Y does not invalidate statistical inference.
For example, one may decide not to seek inference for predictors in submodels
that impart a “Variance Inflation Factor” (VIF) above a user-chosen threshold:
VIFj ·M = ‖Xj‖2/‖Xj ·M‖2 if Xj is centered, hence does not make use of Y, and
elimination according to VIFj ·M > c does not invalidate inference.

4.6. Reduction of universally valid post-selection inference to simultaneous in-
ference. We show that universally valid post-selection inference (4.6) follows
from simultaneous inference in the form of family-wise error control for all pa-
rameters in all submodels. The argument depends on the following lemma that
may fall into the category of the “trivial but not immediately obvious.”

LEMMA 4.1 (“Significant triviality bound”). For any model selection proce-
dure M̂ : Rn → M, the following inequality holds for all Y ∈ R

n:

max
j∈M̂(Y)

∣∣t
j ·M̂(Y)

(Y)
∣∣≤ max

M∈M
max
j∈M

∣∣tj ·M(Y)
∣∣.

PROOF. This is a special case of the triviality f (M̂(Y)) ≤ maxM f (M), where
f (M) = maxj∈M |tj ·M(Y)|. �

The right-hand max-|t | bound of the lemma is sharp in the sense that there exists
a variable selection procedure M̂ that attains the bound; see Section 4.9. Next we
introduce the 1 −α quantile of the right-hand max-|t | statistic of the lemma: let K

be the minimal value that satisfies

P
[

max
M∈M

max
j∈M

|tj ·M| ≤ K
]
≥ 1 − α.(4.8)

This value will be called “the PoSI constant.” It does not depend on any model
selection procedures, but it does depend on the design matrix X, the universe M
of models subject to selection, the desired coverage 1 − α, and the degrees of
freedom r in σ̂ , hence K = K(X, M, α, r).

THEOREM 4.1. For all model selection procedures M̂ : Rn → M we have

P
[
max
j∈M̂

|t
j ·M̂| ≤ K

]
≥ 1 − α,(4.9)

where K = K(X, M, α, r) is the PoSI constant.
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This follows immediately from Lemma 4.1. Although mathematically trivial we
give the above the status of a theorem as it is the central statement of the reduction
of universal post-selection inference to simultaneous inference. The following is
just a repackaging of Theorem 4.1:

COROLLARY 4.1. “Simultaneous post-selection confidence guarantees” hold
for any model selection procedure M̂ : Rn → M,

P
[
β

j ·M̂ ∈ CI
j ·M̂(K) ∀j ∈ M̂

]≥ 1 − α,(4.10)

where K = K(X, M, α, r) is the PoSI constant.

Simultaneous inference provides strong family-wise error control, which in turn
translates to strong error control for tests following model selection.

COROLLARY 4.2. “Strong post-selection error control” holds for any model
selection procedure M̂ : Rn → M,

P
[∃j ∈ M̂ :β

j ·M̂ �= 0 and
∣∣t (0)

j ·M̂
∣∣> K

]≤ α,

where K = K(X, M, α, r) is the PoSI constant and t
(0)
j ·M is the t-statistic for the

null hypothesis βj ·M = 0.

The proof is standard; see the online Appendix of the supplementary material
[Berk et al. (2013), Section B.3]. The corollary states that, with probability 1 − α,
in a selected model all PoSI-significant rejections have detected true alternatives.

4.7. Computation of the POSI constant. Several portions of the following
treatment are devoted to a better understanding of the structure and value of the
POSI constant K(X, M, α, r). Except for very special choices it does not seem
possible to provide closed form expressions for its value. However, the structural
geometry and other properties to be described later do enable a reasonably effi-
cient computational algorithm. R-code for computing the POSI constant for small
to moderate values of p is available on the authors’ web pages. This code is ac-
companied by a manuscript that will be published elsewhere describing the com-
putational algorithm and generalizations. For the basic setting involving Mall the
algorithm will conveniently provide values of K(X, Mall, α, r) for matrices X of
rank ≤ 20, or slightly larger depending on available computing speed and mem-
ory. It can also be adapted to compute K for some other families contained within
Mall, such as some discussed in Section 4.5.
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4.8. Scheffé protection. Realizing the idea that the LS estimators in different
submodels are generally unbiased estimates of different parameters, we generated
a simultaneous inference problem involving up to p2p−1 linear contrasts βj ·M.
In view of the enormous number of linear combinations for which simultaneous
inference is sought, one should wonder whether the problem is not best solved by
Scheffé’s method [Scheffé (1959)] which provides simultaneous inference for all
linear combinations. To accommodate rank-deficient X, we cast Scheffé’s result in
terms of t-statistics for arbitrary nonzero x ∈ span(X):

tx � (Y − μ)T x
σ̂‖x‖ .(4.11)

The t-statistics in (4.1) are obtained for x = Xj ·M. Scheffé’s guarantee is

P
[

sup
x∈span(X)

|tx| ≤ KSch

]
= 1 − α,(4.12)

where the Scheffé constant is

KSch = KSch(α, d, r) =
√

dFd,r,1−α.(4.13)

It provides an upper bound for all PoSI constants:

PROPOSITION 4.1. K(X, M, α, r) ≤ KSch(α, d, r) ∀X, M, d = rank(X).

Thus for j ∈ M̂ a parameter estimate β̂
j ·M̂ whose t-ratio exceeds KSch in magni-

tude is universally safe from having the rejection of “H0 :β
j ·M̂ = 0” invalidated by

variable selection. The universality of the Scheffé constant is a tip-off that it may
be too loose for some predictor matrices X, and obtaining the sharper constant
K(X) may be worthwhile. An indication is given by the following comparison as
r → ∞:

• For the Scheffé constant it holds KSch ∼ √
d .

• For orthogonal designs it holds Korth ∼ √
2 logd .

(For orthogonal designs see Section 5.5.) Thus the PoSI constant Korth is much
smaller than KSch. The large gap between the two suggests that the Scheffé
constant may be too conservative at least in some cases. We will study certain
nonorthogonal designs for which the PoSI constant is O(

√
log(d)) in Section 6.1.

On the other hand, the PoSI constant can approach the order O(
√

d) of the Scheffé
constant KSch as well, and we will study an example in Section 6.2.

Even though in this article we will give asymptotic results for d = p → ∞ and
r → ∞ only, we mention another kind of asymptotics whereby r is held constant
while d = p → ∞: in this case KSch is in the order of the product of

√
d and the

1 − α quantile of the inverse-root-chi-square distribution with r degrees of free-
dom. In a similar way, the constant Korth for orthogonal designs is in the order of
the product of

√
2 logd and the 1−α quantile of the inverse-chi-square distribution

with r degrees of freedom.
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4.9. PoSI-sharp model selection—“SPAR.” There exists a model selection
procedure that requires the full protection of the simultaneous inference procedure
(4.8). It is the “significance hunting” procedure that selects the model containing
the most significant “effect”:

M̂SPAR(Y) � arg max
M∈M

max
j∈M

∣∣tj ·M(Y)
∣∣.

We name this procedure “SPAR” for “Single Predictor Adjusted Regression.” It
achieves equality with the “significant triviality bound” in Lemma 4.1 and is there-
fore the worst case procedure for the PoSI problem. In the submodel M̂SPAR(Y),
the less significant predictors matter only in so far as they boost the significance
of the winning predictor by adjusting it accordingly. This procedure ignores the
quality of the fit to Y provided by the model. While our present purpose is to point
out the existence of a selection procedure that requires full PoSI protection, SPAR
could be of practical interest when the analysis is centered on strength of “effects,”
not quality of model fit.

4.10. One primary predictor and controls—“PoSI1.” Sometimes a regression
analysis is centered on a predictor of interest, Xj , and on inference for its coeffi-
cient βj ·M. The other predictors in M act as controls, so their purpose is to adjust
the primary predictor for confounding effects and possibly to boost the primary
predictor’s own “effect.” This situation is characterized by two features:

• Variable selection is limited to models that contain the primary predictor. We
therefore define for any model universe M a sub-universe Mj · of models that
contain the primary predictor Xj ,

Mj · � {M|j ∈ M ∈ M},
so that for M ∈ M we have j ∈ M iff M ∈ Mj ·.

• Inference is sought for the primary predictor Xj only, hence the relevant test
statistic is now |tj ·M| and no longer maxj∈M |tj ·M|. The former statistic is co-
herent because it is assumed that j ∈ M.

We call this the “PoSI1” situation in contrast to the unconstrained PoSI situation.
Similar to PoSI, PoSI1 starts with a “significant triviality bound”:

LEMMA 4.2 (“Primary predictor’s significant triviality bound”). For a fixed
predictor Xj and model selection procedure M̂ : Rn → Mj ·, it holds that∣∣t

j ·M̂(Y)
(Y)
∣∣≤ max

M∈Mj ·

∣∣tj ·M(Y)
∣∣.

For a “proof,” the only thing to note is j ∈ M̂(Y) by the assumption M̂(Y) ∈
Mj ·. We next define the “PoSI1” constant for the predictor Xj as the 1 − α
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quantile of the max-|t | statistic on the right-hand side of the lemma: let Kj · =
Kj ·(X, M, α, r) be the minimal value that satisfies

P
[

max
M∈Mj ·

|tj ·M| ≤ Kj ·
]
≥ 1 − α.(4.14)

Importantly, this constant is dominated by the general PoSI constant,

Kj ·(X, M, α, r) ≤ K(X, M, α, r)(4.15)

for the obvious reason that the present max-|t | is smaller than the general PoSI
max-|t | due to Mj · ⊂ M and the restriction of inference to Xj . The constant Kj ·
provides the following “PoSI1” guarantee shown as the analog of Theorem 4.1 and
Corollary 4.1 folded into one:

THEOREM 4.2. Let M̂ : Rn → Mj · be a selection procedure that always in-
cludes the predictor Xj in the model. Then we have

P
[|t

j ·M̂| ≤ Kj ·
]≥ 1 − α,(4.16)

and accordingly we have the following post-selection confidence guarantee:

P
[
β

j ·M̂ ∈ CI
j ·M̂(Kj ·)

]≥ 1 − α.(4.17)

Inequality (4.16) is immediate from Lemma 4.2. The “triviality bound” of the
lemma is attained by the following variable selection procedure which we name
“SPAR1”:

M̂j ·(Y) � arg max
M∈Mj ·

∣∣tj ·M(Y)
∣∣.(4.18)

It is a potentially realistic description of some data analyses when a predictor of
interest is determined a priori, and the goal is to optimize this predictor’s “effect.”
This procedure requires the full protection of the PoSI1 constant Kj ·.

In addition to its methodological interest, the PoSI1 situation addressed by The-
orem 4.2 is of theoretical interest: even though the PoSI1 constant Kj · is dominated
by the unrestricted PoSI constant K , we will construct in Section 6.2 an example
of predictor matrices for which the PoSI1 constant increases at the Scheffé rate
and is asymptotically more than 63% of the Scheffé constant KSch. It follows that
near-Scheffé protection can be needed even for SPAR1 variable selection.

5. The structure of the PoSI problem.

5.1. Canonical coordinates. We can reduce the dimensionality of the PoSI
problem from n × p to d × p, where d = rank(X) ≤ min(n,p), by introducing
Scheffé’s canonical coordinates. This reduction is important both geometrically
and computationally because the PoSI coverage problem really takes place in the
column space of X.
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DEFINITION. Let Q = (q1, . . . ,qd) ∈ R
n×d be any orthonormal basis of the

column space of X. Note that Ŷ = QQT Y is the orthogonal projection of Y onto
the column space of X even if X is not of full rank. We call X̃ = QT X ∈ R

d×p and
Ỹ = QT Ŷ ∈ R

d canonical coordinates of X and Ŷ.

We extend the notation XM for extraction of subsets of columns to canonical
coordinates X̃M. Accordingly slopes obtained from canonical coordinates will be
denoted by β̂M(X̃, Ỹ) = (X̃T

MX̃M)−1X̃T
MỸ to distinguish them from the slopes ob-

tained from the original data β̂M(X,Y) = (XT
MXM)−1XT

MY, if only to state in the
following proposition that they are identical.

PROPOSITION 5.1. Properties of canonical coordinates:

(1) Ỹ = QT Y.
(2) X̃T

MX̃M = XT
MXM and X̃T

MỸ = XT
MY.

(3) β̂M(X̃, Ỹ) = β̂M(X,Y) for all submodels M .
(4) Ỹ ∼ N (μ̃, σ 2Id), where μ̃ = QT μ.
(5) X̃j ·M = QT Xj ·M, where j ∈ M and X̃j ·M ∈ R

d is the residual vector of the
regression of X̃j onto the other columns of X̃M.

(6) tj ·M = (β̂j ·M(X̃, Ỹ) − βj ·M)/(σ̂ /‖X̃j ·M‖).
(7) In the classical case d = p, X̃ can be chosen to be an upper triangular or

a symmetric matrix.

The proofs of (1)–(6) are elementary. As for (7), an upper triangular X̃ can be
obtained from a QR-decomposition based on a Gram–Schmidt procedure, X =
QR, X̃ = R. A symmetric X̃ is obtained from a singular value decomposition,
X = UDVT , Q = UVT , X̃ = VDVT .

Canonical coordinates allow us to analyze the PoSI coverage problem in R
d .

In what follows we will freely assume that all objects are rendered in canonical
coordinates and write X and Y for X̃ and Ỹ, implying that the predictor matrix is
of size d × p and the response is of size d × 1.

5.2. PoSI coefficient vectors in canonical coordinates. We simplify the PoSI
coverage problem (4.8) as follows: due to pivotality of t-statistics, the problem is
invariant under translation of μ and rescaling of σ ; see equation (4.1). Hence it
suffices to solve coverage problems for μ = 0 and σ = 1. In canonical coordinates
this implies E[Ỹ] = 0d , hence Ỹ ∼ N (0d, Id). For this reason we use the more
familiar notation Z instead of Ỹ. The random vector Z/σ̂ has a d-dimensional t-
distribution with r degrees of freedom, and any linear combination uT Z/σ̂ with
a unit vector u has a one-dimensional t-distribution. Letting Xj ·M be the adjusted
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predictors in canonical coordinates, estimates (3.5) and their t-statistics (4.1) sim-
plify to

β̂j ·M = XT
j ·MZ

‖Xj ·M‖2 = lTj ·MZ, tj ·M = XT
j ·MZ

‖Xj ·M‖σ̂ = l̄Tj ·MZ/σ̂ ,(5.1)

which are linear functions of Z and Z/σ̂ , respectively, with “PoSI coefficient vec-
tors” lj ·M and l̄j ·M that equal Xj ·M up to scale

lj ·M � Xj ·M
‖Xj ·M‖2 , l̄j ·M � lj ·M

‖lj ·M‖ = Xj ·M
‖Xj ·M‖ .(5.2)

As we now operate in canonical coordinates, we have lj ·M ∈ R
d and l̄j ·M ∈ Sd−1,

the unit sphere in R
d . To complete the structural description of the PoSI problem

we let

L(X, M) � {l̄j ·M|j ∈ M ∈ M} ⊂ Sd−1.(5.3)

If M = Mall, we omit the second argument and write L(X).

PROPOSITION 5.2. The PoSI problem (4.8) is equivalent to a d-dimensional
coverage problem for linear functions of the multivariate t-vector Z/σ̂ ,

P
[

max
M∈M

max
j∈M

|tj ·M| ≤ K
]
= P
[

max
l̄∈L(X,M)

∣∣l̄T Z/σ̂
∣∣≤ K

]
(≥)= 1 − α.(5.4)

5.3. Orthogonalities of PoSI coefficient vectors. The set L(X, M) of unit vec-
tors l̄j ·M has interesting geometric structure which is the subject of this and the
next subsection. The following proposition (proof in Appendix A.1) elaborates the
fact that l̄j ·M is essentially the predictor vector Xj orthogonalized with regard to
the other predictors in the model M. Vectors will always be assumed in canonical
coordinates and hence d-dimensional.

PROPOSITION 5.3. Orthogonalities in L(X, M): the following statements
hold assuming that the models referred to are in M (hence are of full rank).

(1) Adjustment properties:

l̄j ·M ∈ span{Xj |j ∈ M} and l̄j ·M ⊥ Xj ′ for j �= j ′ both ∈ M.

(2) The following vectors form an orthonormal “Gram–Schmidt” series:

{l̄1·{1}, l̄2·{1,2}, l̄3·{1,2,3}, . . . , l̄d·{1,2,...,d}}.
Other series are obtained using (j1, j2, . . . , jd) in place of (1,2, . . . , d).

(3) Vectors l̄j ·M and l̄j ′·M′ are orthogonal if M ⊂ M′, j ∈ M and j ′ ∈ M′ \ M.
(4) Classical case d = p and M = Mall: each vector l̄j ·M is orthogonal to

(p − 1)2p−2 vectors l̄j ′·M′ (not all of which may be distinct).
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The cardinality of orthogonalities in the classical case and M = Mall is as
follows: if the predictor vectors Xj have no orthogonal pairs among them, then
|L(X)| = p2p−1. If there exist orthogonal pairs, then |L(X)| is less. For example,
if there exists exactly one orthogonal pair, then |L(X)| = (p − 1)2p−1. When X is
a fully orthogonal design, then |L(X)| = p.

5.4. The PoSI polytope. Coverage problems can be framed geometrically in
terms of probability coverage of polytopes in R

d . For the PoSI problem the poly-
tope with half-width K is defined by

�K = �K(X, M) �
{
z ∈ R

d |∣∣l̄T z
∣∣≤ K,∀l̄ ∈ L(X, M)

}
,(5.5)

henceforth called the “PoSI polytope.” The PoSI coverage problem (5.4) is equiv-
alent to calibrating K such that

P[Z/σ̂ ∈ �K ] = 1 − α.

The simplest case of a PoSI polytope, for d = p = 2, is illustrated in Figure 1 in the
online Appendix of the supplementary material [Berk et al. (2013), Section B.7].
More general polytopes are obtained for arbitrary sets L of unit vectors, that is,
subsets L ⊂ Sd−1 of the unit sphere in R

d . For the special case L = Sd−1 the

“polytope” is the “Scheffé ball” with coverage
√

dFd,r →
√

χ2
d as r → ∞:

BK �
{
z ∈ R

d |‖z‖ ≤ K
}
, P[Z/σ̂ ∈ BK ] = FFd,r

(
K2/d

)
.

Many properties of the polytopes �K are not specific to PoSI because they
hold for polytopes (5.5) generated by simultaneous inference problems for linear
functions with arbitrary sets L of unit vectors. These polytopes:

(1) form scale families of geometrically similar bodies: �K = K�1;
(2) are point symmetric about the origin: �K = −�K ;
(3) contain the Scheffé ball: BK ⊂ �K ;
(4) are intersections of “slabs” of width 2K :

�K =⋂
l̄∈L

{
z ∈ R

d |∣∣zT l̄
∣∣≤ K

};
(5) have 2|L| faces (assuming L ∩ −L = ∅), and each face is tangent to the

Scheffé ball BK with tangency points ±K l̄ (l̄ ∈ L).

Specific to PoSI are the orthogonalities described in Proposition 5.3.

5.5. PoSI optimality of orthogonal designs. In orthogonal designs, adjustment
has no effect: Xj ·M = Xj for all j ∈ M, hence l̄j ·M = Xj /‖Xj‖ and L(X, M) =
{X1/‖X1‖, . . . ,Xp/‖Xp‖}. The polytope �K is therefore a hypercube. This ob-
servation implies an optimality property of orthogonal designs if the submodel
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universes M are sufficiently rich to force L(X, M) to contain an orthonormal ba-
sis of R

d : the polytope generated by an orthonormal basis is a hypercube; hence
the polytope �K(X, M) is contained in this hypercube; thus �K(X, M) has max-
imal extent if and only if it is equal to this hypercube, which is the case if and only
if L(X, M) is this orthonormal basis and nothing more; that is, X is an orthogonal
design. A simple sufficient condition for M to grant the existence of an orthonor-
mal basis in L(X, M) is the existence of a maximal nested sequence of submod-
els such as {1}, {1,2}, . . . , {1,2, . . . , d} in M. It follows according to item (2) in
Proposition 5.3 that there exists an orthonormal Gram–Schmidt basis in L(X, M).
We summarize:

PROPOSITION 5.4. Among predictor matrices with rank(X) = d and model
universes M that contain at least one maximal nested sequence of submodels,
orthogonal designs with p = d columns yield:

• the maximal coverage probability P[Z/σ̂ ∈ �K ] for fixed K and
• the minimal PoSI constant K satisfying P[Z/σ̂ ∈ �K ] = 1 − α for fixed α,

infrank(X)=d K(X, M, α, r) = Korth(α, d, r).

The proposition holds not only for multivariate t-vectors and their Gaussian
limits but for arbitrary spherically symmetric distributions. Optimality of orthog-
onal designs translates to optimal asymptotic behavior of their constant K(X, α)

for large d:

PROPOSITION 5.5. Consider the Gaussian limit r → ∞. For X and M as
in Proposition 5.4, the asymptotic lower bound for the constant K as d → ∞ is
attained for orthogonal designs for which the asymptotic rate is

inf
rank(X)=d

K(X, M, α) = Korth(d,α) =
√

2 logd + o(d).

By Proposition 5.4 the PoSI problem is bounded below by orthogonal designs,
and by Proposition 4.1 it is loosely bounded above by the Scheffé ball (both for
all α, d , and r). The question of how close to the Scheffé bound PoSI problems
can get for r → ∞ will occupy us in Section 6.2. Unlike the infimum problem,
the supremum problem does not appear to have a unique optimizing design X
uniformly in α, d and r .

5.6. A duality property of PoSI vectors. In the classical case d = p and M =
Mall there exists a duality for PoSI vectors L(X) which we will use in Section 6.1
below but which is also of independent interest. Some preliminaries: letting MF =
{1,2, . . . , p} be the full model, we observe that the (unnormalized) PoSI vectors
lj ·MF

= Xj ·MF
/‖Xj ·MF

‖2 form the rows of the matrix (XT X)−1XT ; see (3.5) and
(3.4). In a change of perspective, we interpret the transpose matrix

X∗ = X
(
XT X
)−1
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as a predictor matrix, to be called the “dual design” of X. It is also of size p ×p in
canonical coordinates, and its columns are the PoSI vectors lj ·MF

. It turns out that
X∗ and X pose identical PoSI problems if M = Mall:

THEOREM 5.1. L(X∗) = L(X),�K(X∗) = �K(X),K(X∗) = K(X).

Recall that L(X) and L(X∗) contain the normalized versions of the respective
adjusted predictor vectors. The theorem follows from the following lemma which
establishes the identities of vectors between L(X∗) and L(X). We extend obvious
notation from X to X∗ as follows:

X∗
j = l∗j ·{j} = lj ·MF

.

Submodels for X∗ will be denoted M∗, but they, too, will be given as subsets
of {1,2, . . . , p} which, however, refer to columns of X∗. Finally, the normalized
version of l∗j ·M∗ will be written as l̄∗j ·M∗ .

LEMMA 5.1. For two submodels M and M∗ that satisfy M ∩ M∗ = {j} and
M ∪ M∗ = MF , we have

l̄∗j ·M∗ = l̄j ·M,
∥∥l∗j ·M∗

∥∥‖lj ·M‖ = 1.

The proof is in Appendix A.2. The assertion about norms is really only needed
to exclude collapse of l∗j ·M∗ to zero.

A special case arises when the predictor matrix (in canonical coordinates) is
chosen to be symmetric according to Proposition 5.1(7): if XT = X, then X∗ =
X(XT X)−1 = X−1, and hence:

COROLLARY 5.1. If X is symmetric in canonical coordinates, then

L
(
X−1)= L(X), �K

(
X−1)= �K(X) and K

(
X−1)= K(X).

6. Illustrative examples and asymptotic results. We consider examples in
the classical case d = p and M = Mall. Also, we work with the Gaussian limit
r → ∞, that is, σ 2 known, and w.l.o.g. σ 2 = 1.

6.1. Example 1: Exchangeable designs. In exchangeable designs all pairs of
predictor vectors enclose the same angle. In canonical coordinates a convenient
parametrization of a family of symmetric exchangeable designs is

X(p)(a) = Ip + aEp×p,(6.1)

where −1/p < a < ∞, and Ep×p is a matrix with all entries equal to 1. The range
restriction on a assures that X(p) is positive definite. We will write X = X(p) =
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X(a) = X(p)(a) depending on which parameter matters in a given context. We
will make use of the fact that

X(p)(a)−1 = X(p)(−a/(1 + pa)
)

is also an exchangeable design. The function cp(a) = −a/(1 + pa) maps the in-
terval (−1/p,∞) onto itself, and it holds cp(0) = 0, cp(a) ↓ −1/p as a ↑ +∞,
and vice versa. Exchangeable designs include orthogonal designs for a = 0, and
they extend to two types of strict collinearities: for a ↑ ∞ the predictor vectors col-
lapse to a single dimension span(1), and for a ↓ −1/p they collapse to a subspace
span(1)⊥ of dimension (p − 1), where 1 = (1,1, . . . ,1)T ∈ R

p .
As collinearity drives the fracturing of the regression coefficients into model-

dependent quantities βj ·M, it is of interest to analyze K(X(a)) as X(a) moves
from orthogonality at a = 0 toward either of the two types of collinearity. Here is
what we find: unguided intuition might suggest that the collapse to rank 1 calls for
larger K(X) than the collapse to rank p − 1. This turns out to be entirely wrong:
collapse to rank 1 or rank p − 1 has identical effects on K(X). The reason is
duality (Section 5.6): for exchangeable designs, X(a) collapses to rank 1 if and
only if X(a)∗ = X(a)−1 = X(−a/(1 + pa)) collapses to rank p − 1, and vice
versa, while K(X(a)−1) = K(X(a)) according to Corollary 5.1.

We next address the asymptotic behavior of K = K(X(p), α) for increasing p.
As noted in Section 4.8, there is a wide gap between orthogonal designs with
Korth ∼ √

2 logp and the full Scheffé protection with KSch ∼ √
p. The following

theorem shows how exchangeable designs fall into this gap:

THEOREM 6.1. PoSI constants of exchangeable design matrices X(p)(a) [de-
fined in (6.1) above] have the following limiting behavior:

lim
p→∞ sup

a∈(−1/p,∞)

K(X(p)(a), α)√
2 logp

= 2.

The proof can be found in Appendix A.3. The theorem shows that for exchange-
able designs the PoSI constant remains much closer to the orthogonal case than
the Scheffé case. Thus, for this family of designs it is possible to improve on the
Scheffé constant by a considerable margin.

The following detail of geometry for exchangeable designs has a bearing on
their PoSI constants: the angle between pairs of predictor vectors as a function of
a is cos(X(p)

j (a),X(p)

j ′ (a)) = a(2 + pa)/(pa2 + 4a + 2). As the vectors fall into
the rank-(p−1) collinearity at a ↓ −1/p, the cosine becomes −1/(2p−3), which
converges to zero as p → ∞. Thus, as p ↑ ∞, exchangeable designs approach or-
thogonal designs even at their most collinear extreme. For further illustrative ma-
terials related to exchangeable designs, see Figures 2 and 3 in the online Appendix
of the supplementary material [Berk et al. (2013), Section B.7].
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6.2. Example 2: Where K(X) is close to the Scheffé bound. The following is
a situation in which the asymptotic upper bound for K(X(p), α) is O(

√
p), hence

equal to the rate of the Scheffé constant KSch(α,p). Perhaps surprisingly, it is
sufficient to consider PoSI1 (Section 4.10) whose constant is dominated by that
of full PoSI. Let the PoSI1 predictor of interest be X(p)

p , so the search is over all
models M � p, but inference is sought only for βp·M. Consider the following upper
triangular p × p design matrix in canonical coordinates:

X(p)(c) = (e1, e2, . . . , ep−1,Xp(c)
)
,(6.2)

where Xp(c) = (c, c, . . . , c,

√
1 − (p − 1)c2)T ∈ R

T is the primary predictor, and
the canonical basis vectors e1, . . . , ep−1 ∈ R

p are the controls. The vector Xp(c)

has unit length, and hence the parameter c is the correlation between the primary
predictor and the controls. It is constrained to c2 < 1/(p − 1), so X(p)(c) has full
rank. For c2 = 1/(p − 1) the primary predictor Xp(c) becomes fully collinear
with the controls, and it is on the approach to this boundary where the rate of the
following theorem is attained:

THEOREM 6.2. For σ 2 known, the designs (6.2) have PoSI1 constants
Kp·(X(p)(c), α) with the following asymptotic rate:

lim
p→∞ sup

c2<1/(p−1)

Kp·(X(p)(c), α)√
p

= 0.6363 . . . .

The proof is in Appendix A.4. As K(X, α) ≥ Kj ·(X, α) the theorem provides
a lower bound on the rate of the full PoSI constant. The value 0.6363. . . is not
maximal, and we have indications that the supremum over all designs may ex-
ceed 0.78. Together with the upper bound of Corollary 6.1, this would provide
a narrow asymptotic range for worst-case PoSI. Most importantly, the example
shows that for some designs PoSI constants can be much larger than the O(1)

|t |-quantiles used in common practice.

6.3. Bounding away from Scheffé. The following is a rough asymptotic upper
bound on all PoSI constants K(X, M, α). It has the Scheffé rate but with a multi-
plier that is strictly less than Scheffé’s. The bound is loose because it ignores the
rich structure of the sets L(X, M) (Section 5.3) and only uses their cardinality |L|
(=p2p−1 in the classical case d = p and M = Mall).

THEOREM 6.3. Denote by Ld arbitrary finite sets of d-dimensional unit vec-
tors, Ld ⊂ Sd−1, such that |Ld | ≤ ad where a

1/d
d → a(> 1). Denote by K(Ld, α)

the (1 − α)-quantile of supl̄∈Ld
|l̄T Z|. Then the following describes an asymptotic

worst-case bound for K(Ld, α) and its attainment:

lim
d→∞ sup

|Ld |≤ad

K(Ld, α)√
d

=
(

1 − 1

a2

)1/2
.
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The proof of Theorem 6.3 (see Appendix A.5) is an adaptation of Wyner’s
(1967) techniques for sphere packing and sphere covering. The worst-case bound
(≤) is based on a surprisingly crude Bonferroni-style inequality for caps on
spheres. Attainment of the bound (≥) makes use of the artifice of picking the
vectors l̄ ∈ L randomly and independently. Applying the theorem to PoSI sets

L = L(Xn×p, Mall) in the classical case d = p, we have |L| = p2p−1 = ap , hence

a
1/p
p → 2, so the theorem applies with a = 2:

COROLLARY 6.1. In the classical case d = p a universal asymptotic upper
bound for the PoSI constant K(Xn×p, Mall, α) is

lim
p→∞ sup

Xn×p

K(Xn×p, Mall, α)√
p

≤
√

3

2
= 0.866 . . . .

The corollary shows that the asymptotic rate of the PoSI constant, if it reaches
the Scheffé rate, will always have a multiplier that is strictly below that of the
Scheffé constant. We do not know whether there exist designs for which the bound
of the corollary is attained, but the theorem says the bound is sharp for unstructured
sets L.

7. Summary and discussion. We investigated the Post-Selection Inference
or “PoSI” problem for linear models whereby valid statistical tests and confidence
intervals are sought after variable selection, that is, after selecting a subset of the
predictors in a data-driven way. We adopted a framework that does not assume any
of the linear models under consideration to be correct. We allowed the response
vector to be centered at an arbitrary mean vector but with homoscedastic and Gaus-
sian errors. We further allowed the full predictor matrix Xn×p to be rank-deficient,
d = rank(X) < p, and we also allowed the set M of models M under considera-
tion to be largely arbitrary. In this framework we showed that valid post-selection
inference is possible via simultaneous inference. An important enabling principle
is that submodels have their own regression coefficients; put differently, βj ·M and
βj ·M′ are generally different parameters if M �= M′. We showed that simultaneity
protection for all parameters βj ·M provides valid post-selection inference. In prac-
tice this means enlarging the constant t1−α/2,r used in conventional inference to a
constant K(Xn×p, M, α, r) that provides simultaneity protection for up to p2p−1

parameters βj ·M. We showed that the constant depends strongly on the predictor
matrix X as the asymptotic bound for K(X, M, α, r) with d = rank(X) ranges be-
tween the minimum of

√
2 logd achieved for orthogonal designs on the one hand,

and a large fraction of the Scheffé bound
√

d on the other hand. This wide asymp-
totic range suggests that computation is critical for problems with large numbers
of predictors. In the classical case d = p our current computational methods are
feasible up to about p ≈ 20.

We carried out post-selection inference in a limited framework. Several prob-
lems remain open, and many natural extensions are desirable:
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• Among open problems is the quest for the largest fraction of the asymptotic
Scheffé rate

√
d attained by PoSI constants. So far we know this fraction to be

at least 0.6363, but no more than 0.8660. . . in the classical case d = p. When
the size of models |M| is limited as a function of p (“sparse models”), better
rates can be achieved, and we will report these results elsewhere.

• Computations for p > 20 are a challenge. Straight enumeration of the set of up
to p2p−1 linear combinations should be replaced with heuristic shortcuts that
yield practically useful upper bounds on K(Xn×p , M, α, r) that are specific to
X and the set of submodels M, unlike the 0.8660 fraction of the Scheffé bound
which is universal.

• Situations to which the PoSI framework should be extended include general-
ized linear models, mixed effects models, models with random predictors, as
well as prediction problems. Results for the last two situations will be reported
elsewhere.

• It would be desirable to devise post-selection inference for specific selection
procedures for cases in which a strict model selection protocol is being adhered
to.

R code for computing the PoSI constant for up to p = 20 can be obtained from the
authors’ web pages (a manuscript describing the computations is available from
the authors).

APPENDIX: PROOFS

A.1. Proof of Proposition 5.3. (1) The matrix X∗
M = XM(XT

MXM)−1 has
the vectors lj ·M as its columns. Thus lj ·M ∈ span(Xj : j ∈ M). Orthogonality
lj ·M ⊥ Xj ′ for j ′ �= j follows from XT

MX∗
M = Ip . The same properties hold for

the normalized vectors l̄j ·M.
(2) The vectors {l̄1·{1}, l̄2·{1,2}, l̄3·{1,2,3}, . . . , l̄p·{1,2,...,p}} form a Gram–Schmidt

series with normalization, hence they are an o.n. basis of R
p .

(3) For M ⊂ M′, j ∈ M, j ′ ∈ M′ \ M, we have l̄j ·M ⊥ l̄j ′·M because they can be
embedded in an o.n. basis by first enumerating M and subsequently M′ \ M, with
j being last in the enumeration of M and j ′ last in the enumeration of M′ \ M.

(4) For any (j0,M0), j0 ∈ M0, there are (p − 1)2p−2 ways to choose a partner
(j1,M1) such that either j1 ∈ M1 ⊂ M0 \ j0 or M0 ⊂ M1 \ j1, both of which result
in l̄j0·M0 ⊥ l̄j1·M1 by the previous part.

A.2. Proof of duality: Lemma 5.1 and Theorem 5.1. The proof relies on
a careful analysis of orthogonalities as described in Proposition 5.3, part (3). In
what follows we write [A] for the column space of a matrix A, and [A]⊥ for its
orthogonal complement. We show first that, for M ∩ M∗ = {j}, M ∪ M∗ = MF ,
the vectors l̄∗j ·M∗ and l̄j ·M are in the same one-dimensional subspace, hence are a
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multiple of each other. To this end we observe:

l̄j ·M ∈ [XM], l̄j ·M ∈ [XM\j ]⊥,(A.1)

l̄∗j ·M∗ ∈ [X∗
M∗
]
, l̄∗j ·M∗ ∈ [X∗

M∗\j
]⊥

,(A.2) [
X∗

M∗
]= [XM\j ]⊥,

[
X∗

M∗\j
]⊥ = [XM].(A.3)

The first two lines state that l̄j ·M and l̄∗j ·M∗ are in the respective column spaces
of their models, but orthogonalized with regard to all other predictors in these
models. The last line, which can also be obtained from the orthogonalities implied
by XT X∗ = Ip , establishes that the two vectors fall in the same one-dimensional
subspace,

l̄j ·M ∈ [XM] ∩ [XM\j ]⊥ = [X∗
M∗
]∩ [X∗

M∗\j
]⊥ � l̄∗j ·M∗ .

Since they are normalized, it follows l̄∗j ·M∗ = ±l̄j ·M. This result is sufficient to
imply all of Theorem 5.1. The lemma, however, makes a slightly stronger state-
ment involving lengths which we now prove. In order to express lj ·M and l∗j ·M∗
according to (5.2), we use PM\j as before and we write P∗

M∗\j for the analogous
projection onto the space spanned by the columns M∗ \ j of X∗. The method of
proof is to evaluate lTj ·Ml∗j ·M∗ . The main argument is based on

XT
j (I − PM\j )

(
I − P∗

M∗\j
)
X∗

j = 1,(A.4)

which follows from these facts:

PM\j P∗
M∗\j = 0, PM\j X∗

j = 0, P∗
M∗\j Xj = 0, XT

j X∗
j = 1,

which in turn are consequences of (A.3) and XT X∗ = Ip . We also know from (5.2)
that

‖lj ·M‖ = 1/
∥∥(I − PM\j )Xj

∥∥, ∥∥l∗j ·M∗
∥∥= 1/

∥∥(I − P∗
M∗\j
)
X∗

j

∥∥.(A.5)

Putting together (A.4), (A.5) and (5.2), we obtain

lTj ·Ml∗j ·M∗ = ‖lj ·M‖2∥∥l∗j ·M∗
∥∥2 > 0.(A.6)

Because the two vectors are scalar multiples of each other, we also know that

lTj ·Ml∗j ·M∗ = ±‖lj ·M‖∥∥l∗j ·M∗
∥∥.(A.7)

Putting together (A.6) and (A.7) we conclude

‖lj ·M‖∥∥l∗j ·M∗
∥∥= 1, l̄∗j ·M∗ = l̄j ·M.

This proves the lemma and the theorem.
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A.3. Proof of Theorem 6.1. The parameter a in equation (6.1) can range from
−1/p to ∞, but because of duality there is no loss of generality in considering only
the case in which a ≥ 0, and we do so in the following. Let M ⊂ {1, . . . , p} and
j ∈ M.

Consider first the case |M| = 1, hence M = {j}: we have lj ·M = Xj , the j th

column of X, and l̄j ·M = lj ·M/
√

pa2 + 2a + 1. For any Z ∈ R
p it follows

∣∣l̄Tj ·MZ
∣∣≤ |Zj | +

∣∣∣∣ 1√
p

∑
k

Zk

∣∣∣∣≤ ‖Z‖∞ +
∣∣∣∣ 1√

p

∑
k

Zk

∣∣∣∣.(A.8)

Consider next the case |M| > 1, and for notational convenience let j = 1 and
M = {1, . . . ,m} where 1 < m ≤ p. The following results can then be applied to
arbitrary M and j ∈ M by permuting coordinates. The projection of X1 on the
space spanned by X2, . . . ,Xm must be of the form

Proj = c

m − 1

m∑
k=2

Xk =
(
ca, ca + c

m − 1
, . . . , ca + c

m − 1︸ ︷︷ ︸
m−1

, ca, . . . , ca︸ ︷︷ ︸
p−m

)
,

where the constant c satisfies l1·M = (X1 − Proj)⊥Proj. This follows from symme-
try, and no calculation of projection matrices is needed to verify this. Let d = 1−c.
Then

(l1·M)k =

⎧⎪⎪⎨
⎪⎪⎩

1 + da (k = 1),

− 1 − d

m − 1
+ da (2 ≤ k ≤ m),

da (k ≥ m + 1).

(A.9)

Some algebra starting from lT1·MX2 = 0 yields

d = 1/(m − 1)

pa2 + 2a + 1/(m − 1)
.

The term da is nonnegative, maximal wrt m for m = 2, and thereafter maximal wrt
a for a = 1/

√
p, whence maxa≥0,m≥2 da = 1/(2(

√
p + 1)) and finally

0 ≤ da <
1

2
√

p
.(A.10)

This fact will make the term da in (A.9) asymptotically irrelevant. Using
‖l1·M‖ ≥ 1 and l̄1·M = l1·M/‖l1·M‖ as well as (A.9) and (A.10) we obtain

∣∣l̄T1·MZ
∣∣≤ |Z1| + 1

m − 1

m∑
j=2

|Zj | +
∣∣∣∣∣ 1

2
√

p

p∑
j=1

Zj

∣∣∣∣∣
(A.11)

≤ ‖Z‖∞ + ‖Z‖∞ +
∣∣∣∣∣ 1

2
√

p

p∑
j=1

Zj

∣∣∣∣∣.
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Combining (A.8) and (A.11) we obtain for Z ∼ N (0, Ip) the following:

sup
a≥0;j,M : j∈M

∣∣l̄Tj ·MZ
∣∣≤ 2‖Z‖∞ +

∣∣∣∣∣ 1√
p

p∑
j=1

Zj

∣∣∣∣∣
≤ 2
√

2 logp
(
1 + op(1)

)+ Op(1).

This verifies that

lim sup
p→∞

supa∈(−1/p,∞) K(X(a))√
2 logp

≤ 2 in probability.(A.12)

It remains to prove that equality holds in (A.12). To this end let Z(1) < Z(2) <

· · · < Z(p) denote the order statistics of Z1, Z2, . . . ,Zp . Fix m. We have in proba-
bility

lim
p→∞

Z(1)√
2 logp

= −1 and lim
p→∞

Z(j)√
2 logp

= 1 ∀j :p − m + 2 ≤ j ≤ p.

Note that

lim
a→∞da = 0 and lim

a→∞‖l1·M‖2 = 1 + (m − 1)−1.

For a given Z we choose lj∗·M∗ such that j∗ = j∗(Z) is the index of Z(1) and M∗ =
M∗(Z) includes j∗ as well as the set of indices of Z(k) for p − m + 2 ≤ k ≤ p.
From (A.9) we then obtain in probability

lim
p→∞,a→∞

|l̄Tj∗·M∗Z|√
2 logp

≥ 2√
1 + (m − 1)−1

.

Choosing m arbitrarily large and combining this with (A.12) yields the desired
conclusion.

A.4. Proof of Theorem 6.2. Recall from (6.2) the designs

X = (e1, e3, . . . , ep−1,Xp(c)
)
,

where Xp(c) = (c, c, . . . , c,

√
1 − (p − 1)c2)T is the primary predictor. The matrix

X will be treated according to PoSI1 (Section 4.10), and hence we will examine
the distribution of maxM:p∈M |l̄Tp·MZ| (assuming σ 2 = 1 known). We determine

l̄p·M for a fixed model M (�p) with |M| = m,

l̄p·M,j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

√
1 − (p − 1)c2

1 − (m − 1)c2 , j = p,

0, j ∈ M \ {p},
c√

1 − (m − 1)c2
, j ∈ Mc.



832 R. BERK ET AL.

Therefore,

zp·M = l̄Tp·MZ =
√

1 − (p − 1)c2

1 − (m − 1)c2 Z1 + c√
1 − (m − 1)c2

∑
j∈Mc

Zj .(A.13)

For fixed m we can explicitly maximize the sum on the right-hand side,

max
M:|M|=m

∣∣∣∣ ∑
j∈Mc

Zj

∣∣∣∣= max

(p−m∑
j=1

Z(p−j),−
p−m∑
j=1

Z(j)

)
,

where Z(j) is the j th order statistic of Z1, Z2, . . . ,Zp−1, omitting Zp . We can also
explicitly maximize the factor c/

√
1 − (m − 1)c2 in (A.13),

sup
c2<1/(p−1)

c√
1 − (m − 1)c2

= 1√
p − m

,

and equality is attained as c2 ↑ 1/(p − 1). Therefore, for fixed m, we can continue
from (A.13) as follows:

sup
c2<1/(p−1)

max|M|=m

|zp·M|√
p

= Op

(√
1

p

)
+
√

p

p − m
max

(p−m∑
j=1

Z(p−j)

1

p
,−

p−m∑
j=1

Z(j)

1

p

)
.

The reason for writing the two sums in this manner is that we will interpret them
as approximations to Riemann sums. To this end we borrow from Bahadur (1966)
the following approximations for j = 1, . . . , p − 1:

Z(j) = �−1
(

j

p

)
+ Op

(
p−1/2).

Reparametrizing m = rp, the anticipated Riemann approximation is

∫ 1

r
�−1(x) dx =

p−m∑
j=1

�−1
(

p − j

p

)
1

p
+ O
(
p−2).

Therefore,

p−m∑
j=1

Z(p−j)

1

p
=
∫ 1

r
�−1(x) dx + Op

(
p−1/2)

and similarly

−
p−m∑
j=1

Z(j)

1

p
=
∫ 1

r
�−1(x) dx + Op

(
p−1/2).
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Summarizing,

sup
c

max|M|=m

∣∣∣∣zp·M√
p

∣∣∣∣
= 1√

p − m
max

(p−m∑
j=1

Z(p−j)

1

p
,−

p−m∑
j=1

Z(j)

1

p

)
+ Op(

√
1/p)

= 1√
1 − r

∫ 1

r
�−1(x) dx + Op

(
p−1/2)+ Op(

√
1/p)

= 1√
1 − r

φ
(
�−1(r)

)+ Op(
√

1/p).

The function f (r) = 1√
1−r

φ(�−1(r)) is maximized at r∗ ≈ 0.72972 with f (r∗) ≈
0.6363277. Therefore,

lim sup
p→∞

sup
c

1√
p

max
M

|zp·M| = 0.636 . . . .(A.14)

The bound is sharp because it is attained by the models that include the first or
last m∗ = r∗p order statistics of Z when p → ∞ and c2 ↑ 1

p−1 . From (A.14) we
conclude that K1·(X) ∼ 0.6363

√
p.

A.5. Proof of Theorem 6.3. We show that if a
1/p
p → a(> 1), then:

• we have a uniform asymptotic worst-case bound,

lim
p→∞ sup

|Lp|≤ap

max
l̄∈Lp

∣∣l̄T Z
∣∣/√p

P≤
√

1 − 1/a2,

• which is attained when |Lp| = ap and l̄ ∈ Lp are i.i.d. Unif(Sp−1) independent
of Z,

lim
p→∞ max

l̄∈Lp

∣∣l̄T Z
∣∣/√p

P≥
√

1 − 1/a2.

These facts imply the assertions about (1−α)-quantiles K(Lp) of maxl̄∈Lp
|l̄T Z| in

Theorem 6.3. We decompose Z = RU where R2 = ‖Z‖2 ∼ χ2
p and U = Z/‖Z‖ ∼

Unif(Sp−1) are independent. Due to R/
√

p
P→ 1 it is sufficient to show the fol-

lowing:

• uniform asymptotic worst-case bound,

lim
p→∞ sup

|Lp|≤ap

max
l̄∈Lp

∣∣l̄T U
∣∣ P≤
√

1 − 1/a2;(A.15)
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• attainment of the bound when |Lp| = ap and l̄ ∈ Lp are i.i.d. Unif(Sp−1) inde-
pendent of U,

lim
p→∞ max

l̄∈Lp

∣∣l̄T U
∣∣ P≥
√

1 − 1/a2.(A.16)

To show (A.15), we upper-bound the noncoverage probability and show that it

converges to zero for K ′ >
√

1 − 1/a2. To this end we start with a Bonferroni-style
bound, as in Wyner (1967),

P
[
max
l̄∈L

∣∣l̄T U
∣∣> K ′]= P

⋃
l̄∈L

[∣∣l̄T U
∣∣> K ′]

≤∑
l̄∈L

P
[∣∣l̄T U

∣∣> K ′](A.17)

= |Lp|P[|U | > K ′],
where U is any coordinate of U or projection of U onto a unit vector. We will show
that bound (A.17) converges to zero. We use the fact that U2 ∼ Beta(1/2, (p −
1)/2), hence

P
[|U | > K ′]= 1

B(1/2, (p − 1)/2)

∫ 1

K ′2
x−1/2(1 − x)(p−3)/2 dx.(A.18)

We bound the Beta function and the integral separately,

1

B(1/2, (p − 1)/2)
= �(p/2)

�(1/2)�((p − 1)/2)
<

√
(p − 1)/2

π
,

where we used �(x + 1/2)/�(x) <
√

x (a good approximation, really) and
�(1/2) = √

π .∫ 1

K ′2
x−1/2(1 − x)(p−3)/2 dx ≤ 1

K ′
1

(p − 1)/2

(
1 − K ′2)(p−1)/2

,

where we used x−1/2 ≤ 1/K ′ on the integration interval. Continuing with the chain
of bounds from (A.17) we have

|Lp|P[|U | > K ′]≤ 1

K ′
(

2

(p − 1)π

)1/2(|Lp|1/(p−1)
√

1 − K ′2)p−1
.

Since |Lp|1/(p−1) → a(> 0), the right-hand side converges to zero at geometric

speed if a
√

1 − K ′2 < 1, that is, if K ′ >
√

1 − 1/a2. This proves (A.15).
To show (A.16), we upper-bound the coverage probability and show that it con-

verges to zero for K ′ <
√

1 − 1/a2. We make use of independence of l̄ ∈ Lp , as in
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Wyner (1967),

P
[
max
l̄∈Lp

∣∣l̄T U
∣∣≤ K ′]= ∏

l̄∈Lp

P
[∣∣l̄T U

∣∣≤ K ′]= P
[|U | ≤ K ′]|Lp|

= (1 − P
[|U | > K ′])|Lp|(A.19)

≤ exp
(−|Lp|P[|U | > K ′]).

We will lower-bound the probability P[|U | > K ′] recalling (A.18) and again deal
with the Beta function and the integral separately,

1

B(1/2, (p − 1)/2)
= �(p/2)

�(1/2)�((p − 1)/2)
>

√
p/2 − 3/4

π
,

where we used �(x + 1)/�(x + 1/2) >
√

x + 1/4 (again, a good approximation).∫ 1

K ′2
x−1/2(1 − x)(p−3)/2 dx ≥ 1

(p − 1)/2

(
1 − K ′2)(p−1)/2

,

where we used x−1/2 ≥ 1. Putting it all together we bound the exponent in (A.19),

|Lp|P[|U | > K ′]≥ √
p/2 − 3/4√
π(p − 1)/2

(|Lp|1/(p−1)
√

1 − K ′2)p−1
.

Since |Lp|1/(p−1) → a(> 0), the right-hand side converges to +∞ at nearly geo-

metric speed if a
√

1 − K ′2 > 1, that is, K ′ <
√

1 − 1/a2. This proves (A.16).
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SUPPLEMENTARY MATERIAL

Supplement to “Valid post-selection inference” (DOI: 10.1214/12-
AOS1077SUPP; .pdf). The online supplement contains the following sections:

B.1 The Full Model Interpretation of Parameters (as a contrast to the sub-model
interpretation adopted in this article).

B.2 “Omitted Variables Bias” (which is not bias in the sense of this article).
B.3 Proof of Corollary 4.2 (strong error control).
B.4 Alternative PoSI Guarantees (conditional on selection).
B.5 PoSI P-Value Adjustment for Model Selection.
B.6 The PoSI Process [the PoSI problem in terms of a (j,M)-indexed process].
B.7 Figures (illustrating PoSI polytopes and results of a simulation for exchange-

able designs).

http://dx.doi.org/10.1214/12-AOS1077SUPP
http://dx.doi.org/10.1214/12-AOS1077SUPP
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