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PARAMETRIC ESTIMATION. FINITE SAMPLE THEORY

BY VLADIMIR SPOKOINY1

Weierstrass-Institute, Humboldt University Berlin and Moscow Institute of
Physics and Technology

The paper aims at reconsidering the famous Le Cam LAN theory. The
main features of the approach which make it different from the classical one
are as follows: (1) the study is nonasymptotic, that is, the sample size is fixed
and does not tend to infinity; (2) the parametric assumption is possibly mis-
specified and the underlying data distribution can lie beyond the given para-
metric family. These two features enable to bridge the gap between paramet-
ric and nonparametric theory and to build a unified framework for statistical
estimation. The main results include large deviation bounds for the (quasi)
maximum likelihood and the local quadratic bracketing of the log-likelihood
process. The latter yields a number of important corollaries for statistical in-
ference: concentration, confidence and risk bounds, expansion of the maxi-
mum likelihood estimate, etc. All these corollaries are stated in a nonclas-
sical way admitting a model misspecification and finite samples. However,
the classical asymptotic results including the efficiency bounds can be easily
derived as corollaries of the obtained nonasymptotic statements. At the same
time, the new bracketing device works well in the situations with large or
growing parameter dimension in which the classical parametric theory fails.
The general results are illustrated for the i.i.d. setup as well as for general-
ized linear and median estimation. The results apply for any dimension of the
parameter space and provide a quantitative lower bound on the sample size
yielding the root-n accuracy.

1. Introduction. One of the most popular approaches in statistics is based
on the parametric assumption (PA) that the distribution P of the observed data Y
belongs to a given parametric family (Pθ , θ ∈ Θ ⊆ Rp), where p stands for the
number of parameters. This assumption allows to reduce the problem of statistical
inference about P to recovering the parameter θ . The theory of parameter esti-
mation and inference is nicely developed in a quite general setup. There is a vast
literature on this issue. We only mention the book by Ibragimov and Khas’minskiı̆
(1981), which provides a comprehensive study of asymptotic properties of maxi-
mum likelihood and Bayesian estimators. The theory is essentially based on two
major assumptions: (1) the underlying data distribution follows the PA; (2) the
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sample size or the amount of available information is large relative to the number
of parameters.

In many practical applications, both assumptions can be very restrictive and
limit the scope of applicability for the whole approach. Indeed, the PA is usually
only an approximation of real data distribution and in most statistical problems it
is too restrictive to assume that the PA is exactly fulfilled. Many modern statisti-
cal problems deal with very complex high-dimensional data where a huge number
of parameters are involved. In such situations, the applicability of large sample
asymptotics is questionable. These two issues partially explain why the paramet-
ric and nonparametric theory are almost isolated from each other. Relaxing these
restrictive assumptions can be viewed as an important challenge of the modern sta-
tistical theory. The present paper attempts at developing a unified approach which
does not require the restrictive parametric assumptions but still enjoys the main
benefits of the parametric theory.

The main steps of the approach are similar to the classical local asymptotic
normality (LAN) theory [see, e.g., Chapters 1–3 in the monograph Ibragimov and
Khas’minskiı̆ (1981)]: first one localizes the problem to a neighborhood of the
target parameter. Then one uses a local quadratic expansion of the log-likelihood to
solve the corresponding estimation problem. There is, however, one feature of the
proposed approach which makes it essentially different from the classical scheme.
Namely, the use of the bracketing device instead of classical Taylor expansion
allows to consider much larger local neighborhoods than in the LAN theory. More
specifically, the classical LAN theory effectively requires a strict localization to a
root-n vicinity of the true point. At this point, the LAN theory fails in extending
to the nonparametric situation. Our approach works for any local vicinity of the
true point. This opens the door to building a unified theory including most of the
classical parametric and nonparametric results.

Let Y stand for the available data. Everywhere below we assume that the ob-
served data Y follow the distribution P on a metric space Y. We do not specify
any particular structure of Y. In particular, no assumption like independence or
weak dependence of individual observations is imposed. The basic parametric as-
sumption is that P can be approximated by a parametric distribution Pθ from a
given parametric family (Pθ , θ ∈ Θ ⊆ Rp). Our approach allows that the PA can
be misspecified, that is, in general, P /∈ (Pθ ).

Let L(Y, θ) be the log-likelihood for the considered parametric model:
L(Y, θ) = log dPθ

dμ0
(Y), where μ0 is any dominating measure for the family (Pθ ).

We focus on the properties of the process L(Y, θ) as a function of the parameter θ .
Therefore, we suppress the argument Y there and write L(θ) instead of L(Y, θ).
One has to keep in mind that L(θ) is random and depends on the observed data Y.

By L(θ , θ∗) def= L(θ) − L(θ∗) we denote the log-likelihood ratio. The classical
likelihood principle suggests to estimate θ by maximizing the corresponding log-
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likelihood function L(θ):

θ̃
def= arg max

θ∈Θ

L(θ).(1.1)

Our ultimate goal is to study the properties of the quasi-maximum likelihood es-
timator (MLE) θ̃ . It turns out that such properties can be naturally described in
terms of the maximum of the process L(θ) rather than the point of maximum θ̃ .
To avoid technical burdens, it is assumed that the maximum is attained leading to
the identity maxθ∈Θ L(θ) = L(̃θ). However, the point of maximum does not have
to be unique. If there are many such points, we take θ̃ as any of them. Basically,
the notation θ̃ is used for the identity L(̃θ) = supθ∈Θ L(θ).

If P /∈ (Pθ ), then the (quasi) MLE θ̃ from (1.1) is still meaningful and it appears
to be an estimator of the value θ∗ defined by maximizing the expected value of
L(θ):

θ∗ def= arg max
θ∈Θ

EL(θ),(1.2)

which is the true value in the parametric situation and can be viewed as the param-
eter of the best parametric fit in the general case.

The results below show that the main properties of the quasi-MLE θ̃ like con-
centration or coverage probability can be described in terms of the excess which
is the difference between the maximum of the process L(θ) and its value at the
“true” point θ∗:

L
(̃
θ , θ∗) def= L(̃θ) − L

(
θ∗) = max

θ∈Θ
L(θ) − L

(
θ∗)

.

The established results can be split into two big groups. A large deviation bound
states some concentration properties of the estimator θ̃ . For specific local sets
Θ0(r) with elliptic shape, the deviation probability P(̃θ /∈ Θ0(r)) is exponentially
small in r. This concentration bound allows to restrict the parameter space to a
properly selected vicinity Θ0(r). Our main results concern the local properties of
the process L(θ) within Θ0(r) including a bracketing bound and its corollaries.

The paper is organized as follows. Section 2 presents the list of conditions which
are systematically used in the text. The conditions only concern the properties of
the quasi-log-likelihood process L(θ). Section 3 appears to be central in the whole
approach and it focuses on local properties of the process L(θ) within Θ0(r).
The idea is to sandwich the underlying (quasi) log-likelihood process L(θ) for
θ ∈ Θ0(r) between two quadratic (in parameter) expressions. Then the maximum
of L(θ) over Θ0(r) will be sandwiched as well by the maxima of the lower and
upper processes. The quadratic structure of these processes helps to compute these
maxima explicitly yielding the bounds for the value of the original problem. This
approximation result is used to derive a number of corollaries including the con-
centration and coverage probability, expansion of the estimator θ̃ , polynomial risk
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bounds, etc. In contrary to the classical theory, all the results are nonasymptotic
and do not involve any small values of the form o(1), all the terms are specified
explicitly. Also, the results are stated under possible model misspecification.

Section 4 accomplishes the local results with the concentration property which
bounds the probability that θ̃ deviates from the local set Θ0(r). In the modern
statistical literature there are a number of studies considering maximum likelihood
or, more generally, minimum contrast estimators in a general i.i.d. situation, when
the parameter set Θ is a subset of some functional space. We mention the papers
of van de Geer (1993), Birgé and Massart (1993, 1998), Birgé (2006) and the
references therein. The established results are based on deep probabilistic facts
from empirical process theory; see, for example, Talagrand (1996, 2001, 2005),
van der Vaart and Wellner (1996) and Boucheron, Lugosi and Massart (2003).
The general result presented in Section 2 of the supplement [Spokoiny (2012b)]
follows the generic chaining idea due to Talagrand (2005); cf. Bednorz (2006).
However, we do not assume any specific structure of the model. In particular, we do
not assume independent observations and, thus, cannot apply the most developed
concentration bounds from the empirical process theory.

Section 5 illustrates the applicability of the general results to the classical case
of an i.i.d. sample. The previously established general results apply under rather
mild conditions. Basically we assume some smoothness of the log-likelihood pro-
cess and some minimal number of observations per parameter: the sample size
should be at least of order of the dimensionality p of the parameter space. We also
consider the examples of generalized linear modeling and of median regression.

It is important to mention that the nonasymptotic character of our study yields
an almost complete change of the mathematical tools: the notions of convergence
and tightness become meaningless, the arguments based on compactness of the pa-
rameter space do not apply, etc. Instead we utilize the tools of the empirical process
theory based on the ideas of concentration of measures and nonasymptotic entropy
bounds. Section 2 of the supplement [Spokoiny (2012b)] presents an exponential
bound for a general quadratic form which is very important for getting the sharp
risk bounds for the quasi-MLE. This bound is an important step in the concentra-
tion results for the quasi-MLE. Section 1 of the supplement [Spokoiny (2012b)]
explains how the generic chaining and majorizing measure device by Talagrand
(2005) refined in Bednorz (2006) can be used for obtaining a general exponential
bound for the log-likelihood process.

The proposed approach can be useful in many further research directions in-
cluding penalized maximum likelihood and semiparametric estimation [Andresen
and Spokoiny (2012)], contraction rate and asymptotic normality of the posterior
within the Bayes approach [Spokoiny (2012a)] and local adaptive quantile estima-
tion [Spokoiny, Wang and Härdle (2012)].

2. Conditions. Below we collect the list of conditions which are systemati-
cally used in the text. It seems to be an advantage of the whole approach that all
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the results are stated in a unified way under the same conditions. Once checked,
one obtains automatically all the established results. We do not try to formulate the
conditions and the results in the most general form. In some cases we sacrifice gen-
erality in favor of readability and ease of presentation. It is important to stress that
all the conditions only concern the properties of the quasi-likelihood process L(θ).
Even if the process L(·) is not a sufficient statistic, the whole analysis is entirely
based on its geometric structure and probabilistic properties. The conditions are
not restrictive and can be effectively checked in many particular situations. Some
examples are given in Section 5 for i.i.d setup, generalized linear models and for
median regression.

The imposed conditions can be classified into the following groups by their
meaning:

• smoothness conditions on L(θ) allowing the second order Taylor expansion;
• exponential moment conditions;
• identifiability and regularity conditions.

We also distinguish between local and global conditions. The global conditions
concern the global behavior of the process L(θ) while the local conditions focus
on its behavior in the vicinity of the central point θ∗. Below we suppose that degree
of locality is described by a number r. The local zone corresponds to r≤ r0 for a
fixed r0. The global conditions concern r> 0.

2.1. Local conditions. Local conditions describe the properties of L(θ) in a
vicinity of the central point θ∗ from (1.2).

To bound local fluctuations of the process L(θ), we introduce an exponential
moment condition on the stochastic component ζ(θ):

ζ(θ)
def= L(θ) − EL(θ).

Below we suppose that the random function ζ(θ) is differentiable in θ and its gra-
dient ∇ζ(θ) = ∂ζ(θ)/∂θ ∈ Rp has some exponential moments. Our first condition
describes the property of the gradient ∇ζ(θ∗) at the central point θ∗.

(ED0) There exist a positive symmetric matrix V 2
0 and constants g> 0, ν0 ≥ 1

such that Var{∇ζ(θ∗)} ≤ V 2
0 and for all |λ| ≤ g

sup
γ∈Rp

log E exp
{
λ
γ �∇ζ(θ∗)

‖V0γ ‖
}

≤ ν2
0λ2/2.

In a typical situation, the matrix V 2
0 can be defined as the covariance matrix

of the gradient vector ∇ζ (θ∗): V 2
0 = Var(∇ζ (θ∗)) = Var(∇L(θ∗)). If L(θ) is the

log-likelihood for a correctly specified model, then θ∗ is the true parameter value
and V 2

0 coincides with the corresponding Fisher information matrix. The matrix
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V0 shown in this condition determines the local geometry in the vicinity of θ∗. In
particular, define the local elliptic neighborhoods of θ∗ as

Θ0(r)
def= {

θ ∈ Θ :
∥∥V0

(
θ − θ∗)∥∥ ≤ r

}
.(2.1)

The further conditions are restricted to such defined neighborhoods Θ0(r).

(ED1) For each r≤ r0, there exists a constant ω(r) ≤ 1/2 such that it holds
for all θ ∈ Θ0(r)

sup
γ∈Rp

log E exp
{
λ
γ �{∇ζ(θ) − ∇ζ(θ∗)}

ω(r)‖V0γ ‖
}

≤ ν2
0λ2/2, |λ| ≤ g.

Here the constant g is the same as in (ED0).

The main bracketing result also requires second order smoothness of the ex-
pected log-likelihood EL(θ). By definition, L(θ∗, θ∗) ≡ 0 and ∇EL(θ∗) = 0 be-
cause θ∗ is the extreme point of EL(θ). Therefore, −EL(θ , θ∗) can be approx-
imated by a quadratic function of θ − θ∗ in the neighborhood of θ∗. The local
identifiability condition quantifies this quadratic approximation from above and
from below on the set Θ0(r) from (2.1).

(L0) There is a symmetric strictly positive-definite matrix D2
0 and for each r≤

r0 and a constant δ(r) ≤ 1/2, such that it holds on the set Θ0(r) = {θ :‖V0(θ −
θ∗)‖ ≤ r}, ∣∣∣∣ −2EL(θ , θ∗)

‖D0(θ − θ∗)‖2 − 1
∣∣∣∣ ≤ δ(r).

Usually D2
0 is defined as the negative Hessian of EL(θ∗): D2

0 = −∇2EL(θ∗). If
L(θ , θ∗) is the log-likelihood ratio and P = Pθ∗ , then −EL(θ , θ∗) =
Eθ∗ log(dPθ∗/dPθ ) = K(Pθ∗,Pθ ), the Kullback–Leibler divergence between Pθ∗
and Pθ . Then condition (L0) with D0 = V0 follows from the usual regularity
conditions on the family (Pθ ); cf. Ibragimov and Khas’minskiı̆ (1981). If the
log-likelihood process L(θ) is sufficiently smooth in θ , for example, three times
stochastically differentiable, then the quantities ω(r) and δ(r) can be taken pro-
portional to the value 	(r) defined as

	(r)
def= max

θ∈Θ0(r)

∥∥θ − θ∗∥∥.
In the important special case of an i.i.d. model one can take ω(r) = ω∗r/n1/2 and
δ(r) = δ∗r/n1/2 for some constants ω∗, δ∗; see Section 5.1.

The identifiability condition relates the matrices D2
0 and V 2

0 .

(I) There is a constant a > 0 such that a2D2
0 ≥ V 2

0 .
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2.2. Global conditions. The global conditions have to be fulfilled for all θ
lying beyond Θ0(r0). We only impose one condition on the smoothness of the
stochastic component of the process L(θ) in term of its gradient and one identifia-
bility condition in terms of the expectation EL(θ , θ∗).

The first condition is similar to the local condition (ED0) and it requires some
exponential moment of the gradient ∇ζ(θ) for all θ ∈ Θ . However, the constant g
may be dependent of the radius r= ‖V0(θ − θ∗)‖.

(Er) For any r, there exists a value g(r) > 0 such that for all λ ≤ g(r)

sup
θ∈Θ0(r)

sup
γ∈Rp

log E exp
{
λ
γ �∇ζ(θ)

‖V0γ ‖
}

≤ ν2
0λ2/2.

The global identification property means that the deterministic component
EL(θ , θ∗) of the log-likelihood is competitive with its variance VarL(θ, θ∗).

(Lr) There is a function b(r) such that rb(r) monotonously increases in r
and for each r≥ r0

inf
θ : ‖V0(θ−θ∗)‖=r

∣∣EL
(
θ, θ∗)∣∣ ≥ b(r)r2.

3. Local inference. The local asymptotic normality (LAN) condition since
introduced in Le Cam (1960) became one of the central notions in the statistical
theory. It postulates a kind of local approximation of the log-likelihood of the
original model by the log-likelihood of a Gaussian shift experiment. The LAN
property being once checked yields a number of important corollaries for statistical
inference. In words, if you can solve a statistical problem for the Gaussian shift
model, the result can be translated under the LAN condition to the original setup.
We refer to Ibragimov and Khas’minskiı̆ (1981) for a nice presentation of the LAN
theory including asymptotic efficiency of MLE and Bayes estimators. The LAN
property was extended to mixed LAN or local asymptotic quadraticity (LAQ); see,
for example, Le Cam and Yang (2000). All these notions are very much asymptotic
and very much local. The LAN theory also requires that L(θ) is the correctly
specified log-likelihood. The strict localization does not allow for considering a
growing or infinite parameter dimension and limits applications of the LAN theory
to nonparametric estimation.

Our approach tries to avoid asymptotic constructions and attempts to include
a possible model misspecification and a large dimension of the parameter space.
The presentation below shows that such an extension of the LAN theory can be
made essentially for free: all the major asymptotic results like Fisher and Cramér-
Rao information bounds, as well as the Wilks phenomenon, can be derived as
corollaries of the obtained nonasymptotic statements simply by letting the sample
size to infinity. At the same time, it applies to a high-dimensional parameter space.

The LAN property states that the considered process L(θ) can be approximated
by a quadratic in θ expression in a vicinity of the central point θ∗. This property
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is usually checked using the second order Taylor expansion. The main problem
arising here is that the error of the approximation grows too fast with the local
size of the neighborhood. Section 3.1 presents the nonasymptotic version of the
LAN property in which the local quadratic approximation of L(θ) is replaced by
bounding this process from above and from below by two different quadratic in θ
processes. More precisely, we apply the bracketing idea: the difference L(θ , θ∗) =
L(θ) − L(θ∗) is put between two quadratic processes Lε(θ , θ∗) and Lε(θ, θ∗):

Lε
(
θ , θ∗) − ♦ε ≤ L

(
θ , θ∗) ≤ Lε

(
θ, θ∗) + ♦ε, θ ∈ Θ0(r),(3.1)

where ε is a numerical parameter, ε = −ε, and ♦ε and ♦ε are stochastic errors
which only depend on the selected vicinity Θ0(r). The upper process Lε(θ , θ∗)
and the lower process Lε(θ, θ∗) can deviate substantially from each other, how-
ever, the errors ♦ε,♦ε remain small even if the value r describing the size of the
local neighborhood Θ0(r) is large.

The sandwiching result (3.1) naturally leads to two important notions: the value
of the problem and the spread. It turns out that most of the statements like con-
fidence and concentration probability rely upon the maximum of L(θ , θ∗) over θ
which we call the excess. Its expectation will be referred to as the value of the
problem. Due to (3.1), the excess can be bounded from above and from below us-
ing the similar quantities maxθ Lε(θ , θ∗) and maxθ Lε(θ , θ∗) which can be called
the lower and upper excess, while their expectations are the values of the lower and
upper problems. Note that maxθ {Lε(θ , θ∗) − Lε(θ , θ∗)} can be very large or even
infinite. However, this is not crucial. What really matters is the difference between
the upper and the lower excess. The spread Δε can be defined as the width of the
interval bounding the excess due to (3.1), that is, as the sum of the approximation
errors and of the difference between the upper and the lower excess:

Δε
def= ♦ε + ♦ε +

{
max

θ
Lε

(
θ , θ∗) − max

θ
Lε

(
θ , θ∗)}

.

The range of applicability of this approach can be described by the following
mnemonic rule: “The value of the upper problem is larger in order than the spread.”
The further sections explain in detail the meaning and content of this rule. Sec-
tion 3.1 presents the key bound (3.1) and derives it from the general results on
empirical processes. Section 3.2 presents some straightforward corollaries of the
bound (3.1) including the coverage and concentration probabilities, expansion of
the MLE and the risk bounds. It also indicates how the classical results on asymp-
totic efficiency of the MLE follow from the obtained nonasymptotic bounds.

3.1. Local quadratic bracketing. This section presents the key result about
local quadratic approximation of the quasi-log-likelihood process given by Theo-
rem 3.1 below.

Let the radius r of the local neighborhood Θ0(r) be fixed in a way that the
deviation probability P(̃θ /∈ Θ0(r)) is sufficiently small. Precise results about the



PARAMETRIC ESTIMATION. FINITE SAMPLE THEORY 2885

choice of r which ensures this property are postponed until Section 4. In this
neighborhood Θ0(r) we aim at building some quadratic lower and upper bounds
for the process L(θ). The first step is the usual decomposition of this process into
deterministic and stochastic components:

L(θ) = EL(θ) + ζ(θ),

where ζ(θ) = L(θ) − EL(θ). Condition (L0) allows to approximate the smooth
deterministic function EL(θ) − EL(θ∗) around the point of maximum θ∗ by the
quadratic form −‖D0(θ − θ∗)‖2/2. The smoothness properties of the stochastic
component ζ(θ) given by conditions (ED0) and (ED1) lead to linear approxima-
tion ζ(θ) − ζ(θ∗) ≈ (θ − θ∗)�∇ζ(θ∗). Putting these two approximations together
yields the following approximation of the process L(θ) on Θ0(r):

L
(
θ , θ∗) ≈ L

(
θ , θ∗) def= (

θ − θ∗)�∇ζ
(
θ∗) − ∥∥D0

(
θ − θ∗)∥∥2

/2.(3.2)

This expansion is used in most of statistical calculus. However, it does not suit our
purposes because the error of approximation grows quadratically with the radius r
and starts to dominate at some critical value of r. We slightly modify the construc-
tion by introducing two different approximating processes. They only differ in the
deterministic quadratic term which is either shrunk or stretched relative to the term
‖D0(θ − θ∗)‖2/2 in L(θ , θ∗).

Let δ, 	 be nonnegative constants. Introduce for a vector ε = (δ, 	) the follow-
ing notation:

Lε
(
θ , θ∗) def= (

θ − θ∗)�∇L
(
θ∗) − ∥∥Dε

(
θ − θ∗)∥∥2

/2
(3.3)

= ξ�
ε Dε

(
θ − θ∗) − ∥∥Dε

(
θ − θ∗)∥∥2

/2,

where ∇L(θ∗) = ∇ζ(θ∗) by ∇EL(θ∗) = 0 and

D2
ε = D2

0(1 − δ) − 	V 2
0 , ξε

def= D−1
ε ∇L

(
θ∗)

.

Here we implicitly assume that with the proposed choice of the constants δ and 	,
the matrix D2

ε is nonnegative: D2
ε ≥ 0. The representation (3.3) indicates that the

process Lε(θ , θ∗) has the geometric structure of log-likelihood of a linear Gaussian
model. We do not require that the vector ξε is Gaussian and, hence, it is not the
Gaussian log-likelihood. However, the geometric structure of this process appears
to be more important than its distributional properties.

One can see that if δ, 	 are positive, the quadratic drift component of the process
Lε(θ , θ∗) is shrunk relative to L(θ , θ∗) in (3.2) for ε positive and it is stretched if
δ, 	 are negative. Now, given r, fix some δ ≥ δ(r) and 	 ≥ 3ν0ω(r) with the value
δ(r) from condition (L0) and ω(r) from condition (ED1). Finally set ε = −ε, so
that D2

ε = D2
0(1 + δ) + 	V 2

0 .
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THEOREM 3.1. Assume (ED1) and (L0). Let for some r the values 	 ≥
3ν0ω(r) and δ ≥ δ(r) be such that D2

0(1 − δ) − 	V 2
0 ≥ 0. Then

Lε
(
θ , θ∗) − ♦ε(r) ≤ L

(
θ, θ∗) ≤ Lε

(
θ, θ∗) + ♦ε(r), θ ∈ Θ0(r),(3.4)

with Lε(θ, θ∗),Lε(θ , θ∗) defined by (3.3). The error terms ♦ε(r) and ♦ε(r) sat-
isfy the bound (3.11) from Proposition 3.7.

The proof of this theorem is given in Proposition 3.7.

REMARK 3.1. This bracketing bound (3.4) describes some properties of the
log-likelihood process and the estimator θ̃ is not shown there. However, it directly
implies most of our inference results. We therefore formulate (3.4) as a separate
statement. Section 3.3 below presents some exponential bounds on the error terms
♦ε(r) and ♦ε(r). The main message is that under rather broad conditions, these
errors are small and have only minor impact on the inference for the quasi-MLE θ̃ .

3.2. Local inference. This section presents a list of corollaries from the basic
approximation bounds of Theorem 3.1. The idea is to replace the original problem
by a similar one for the approximating upper and lower models. It is important to
stress once again that all the corollaries only rely on the bracketing result (3.4) and
the geometric structure of the processes Lε and Lε . Define the spread Δε(r) by

Δε(r)
def= ♦ε(r) + ♦ε(r) + (‖ξε‖2 − ‖ξε‖2)

/2.(3.5)

Here ξε = D−1
ε ∇L(θ∗) and ξε = D−1

ε ∇L(θ∗). The quantity Δε(r) appears to
be the price induced by our bracketing device. Section 3.3 below presents some
probabilistic bounds on the spread showing that it is small relative to the other
terms. All our corollaries below are stated under conditions of Theorem 3.1 and
implicitly assume that the spread can be nearly ignored.

3.2.1. Local coverage probability. Our first result describes the probability of
covering θ∗ by the random set

E(z) = {
θ : 2L(̃θ , θ) ≤ z

}
.(3.6)

COROLLARY 3.2. For any z > 0

P
{
E(z) � θ∗, θ̃ ∈ Θ0(r)

} ≤ P
{‖ξε‖2 ≥ z − ♦ε(r)

}
.(3.7)

PROOF. The bound (3.7) follows from the upper bound of Theorem 3.1 and
the statement (3.12) of Lemma 3.8 below. �

Below [see (3.14)] we also present an exponential bound which helps to answer
a very important question about a proper choice of the critical value z ensuring a
prescribed covering probability.
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3.2.2. Local expansion, Wilks theorem and local concentration. Now we show
how the bound (3.4) can be used for obtaining a local expansion of the quasi-
MLE θ̃ . All our results will be conditioned to the random set Cε(r) defined as

Cε(r)
def= {

θ̃ ∈ Θ0(r),
∥∥V0D

−1
ε ξ ε

∥∥ ≤ r
}
.(3.8)

The second inequality in the definition of Cε(r) is related to the solution of the
upper and lower problems (cf. Lemma 3.8): ‖V0D

−1
ε ξ ε‖ ≤ r means θ̃ ε /∈ Θ0(r),

where θ̃ ε = arg minθ Lε(θ , θ∗).
Below in Section 3.3 we present some upper bounds on the value r ensuring a

dominating probability of this random set. The first result can be viewed as a finite
sample version of the famous Wilks theorem.

COROLLARY 3.3. On the random set Cε(r) from (3.8), it holds

‖ξε‖2/2 − ♦ε(r) ≤ L
(̃
θ , θ∗) ≤ ‖ξε‖2/2 + ♦ε(r).(3.9)

The next result is an extension of another prominent asymptotic result, namely,
the Fisher expansion of the MLE.

COROLLARY 3.4. On the random set Cε(r) from (3.8), it holds∥∥Dε
(̃
θ − θ∗) − ξε

∥∥2 ≤ 2Δε(r).(3.10)

The proof of Corollaries 3.3 and 3.4 relies on the solution of the upper and lower
problems and it is given below at the end of this section.

Now we describe concentration properties of θ̃ assuming that θ̃ is restricted to
Θ0(r). More precisely, we bound the probability that ‖Dε (̃θ −θ∗)‖ > z for a given
z > 0.

COROLLARY 3.5. For any z > 0, it holds

P
{∥∥Dε

(̃
θ − θ∗)∥∥ > z,Cε(r)

} ≤ P
{‖ξε‖ > z − √

2Δε(r)
}
.

An interesting and important question is for which z in (3.6) the coverage prob-
ability of the event {E(z) � θ∗} or for which z the concentration probability of the
event {‖Dε (̃θ −θ∗)‖ ≤ z} becomes close to one. It will be addressed in Section 3.3.

3.2.3. A local risk bound. Below we also bound the moments of the excess
L(̃θ , θ∗) and of the normalized loss Dε (̃θ − θ∗) when θ̃ is restricted to Θ0(r). The
result follows directly from Corollaries 3.3 and 3.4.

COROLLARY 3.6. For u > 0

E
{
Lu(̃

θ , θ∗)
1
(̃
θ ∈ Θ0(r)

)} ≤ E
[{‖ξε‖2/2 + ♦ε(r)

}u]
.

Moreover, it holds

E
{∥∥Dε

(̃
θ − θ∗)∥∥u1

(
Cε(r)

)} ≤ E
[{‖ξε‖ + √

2Δε(r)
}u]

.
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3.2.4. Comparing with the asymptotic theory. This section briefly discusses
the relation between the established nonasymptotic bounds and the classical
asymptotic results in parametric estimation. This comparison is not straightfor-
ward because the asymptotic theory involves the sample size or noise level as the
asymptotic parameter, while our setup is very general and works even for a “single”
observation. Here we simply treat ε = (δ, 	) as a small parameter. This is well jus-
tified by the i.i.d. case with n observations, where it holds δ = δ(r) � √

r/n and
similarly for 	; see Section 5 for more details. The bounds below in Section 3.3
show that the spread Δε(r) from (3.5) is small and can be ignored in the asymp-
totic calculations. The results of Corollary 3.2 through 3.6 represent the desired
bounds in terms of deviation bounds for the quadratic form ‖ξε‖2.

For better understanding the essence of the presented results, consider first the
“true” parametric model with the correctly specified log-likelihood L(θ). Then
D2

0 = V 2
0 is the total Fisher information matrix. In the i.i.d. case it becomes nf0

where f0 is the usual Fisher information matrix of the considered parametric fam-
ily at θ∗. In particular, Var{∇L(θ∗)} = nf0. So, if Dε is close to D0, then ξε can

be treated as the normalized score. Under usual assumptions, ξ
def= D−1

0 ∇L(θ∗) is
the asymptotically standard normal p-vector. The same applies to ξε . Now one can
observe that Corollaries 3.2 through 3.6 directly imply most of the classical asymp-
totic statements. In particular, Corollary 3.3 shows that the twice excess 2L(̃θ , θ∗)
is nearly ‖ξε‖2 and thus nearly χ2

p (Wilks’ theorem). Corollary 3.4 yields the ex-
pansion Dε (̃θ − θ∗) ≈ ξε (the Fisher expansion) and, hence, Dε (̃θ − θ∗) is asymp-
totically standard normal. Asymptotic variance of Dε (̃θ − θ∗) is nearly one, so θ̃
achieves the Cramér–Rao efficiency bound in the asymptotic setup.

3.3. Spread. This section presents some bounds on the spread Δε(r)

from (3.5). This quantity is random but it can be easily evaluated under the condi-
tions made. We present two different results: one bounds the errors ♦ε(r),♦ε(r),
while the other presents a deviation bound on quadratic forms like ‖ξε‖2. The
results are stated under conditions (ED0) and (ED1) in a nonasymptotic way, so
the formulation is quite technical. An informal discussion at the end of this sec-
tion explains the typical behavior of the spread. The first result accomplishes the
bracketing bound (3.4).

PROPOSITION 3.7. Assume (ED1). The error ♦ε(r) in (3.4) fulfills

P
{
	−1♦ε(r) ≥ z0(x,Q)

} ≤ exp(−x)(3.11)

with z0(x,Q) given for g0 = gν0 ≥ 3 by

z0(x,Q)
def=

{
(1 + √

x+ Q)2, if 1 + √
x+ Q ≤ g0,

1 + {
2g−1

0 (x+ Q) + g0
}2

, otherwise,

where Q = c1p with c1 = 2 for p ≥ 2 and c1 = 2.7 for p = 1. Similarly for ♦ε(r).
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REMARK 3.2. The bound (3.11) essentially depends on the value g from con-
dition (ED1). The result requires that gν0 ≥ 3. However, this constant can usually
be taken of order n1/2 ; see Section 5 for examples. If g2 is larger in order than
p + x, then z0(x,Q) ≈ c1p + x.

PROOF. Consider for fixed r and ε = (δ, 	) the quantity

♦ε(r)
def= sup

θ∈Θ0(r)

{
L

(
θ , θ∗) − EL

(
θ , θ∗) − (

θ − θ∗)�∇L
(
θ∗) − 	

2

∥∥V0
(
θ − θ∗)∥∥2

}
.

As δ ≥ δ(r), it holds −EL(θ , θ∗) ≥ (1− δ)D2
0 and L(θ , θ∗)−Lε(θ , θ∗) ≤ ♦ε(r).

Moreover, in view of ∇EL(θ∗) = 0, the definition of ♦ε(r) can be rewritten as

♦ε(r)
def= sup

θ∈Θ0(r)

{
ζ
(
θ, θ∗) − (

θ − θ∗)�∇ζ
(
θ∗) − 	

2

∥∥V0
(
θ − θ∗)∥∥2

}
.

Now the claim of the theorem can be easily reduced to an exponential bound for
the quantity ♦ε(r). We apply Theorem 2.11 of the supplement [Spokoiny (2012b)]
to the process

U
(
θ, θ∗) = 1

ω(r)

{
ζ
(
θ , θ∗) − (

θ − θ∗)�∇ζ
(
θ∗)}

, θ ∈ Θ0(r),

and H0 = V0. Condition (ED) follows from (ED1) with the same ν0 and g in view
of ∇U(θ, θ∗) = {∇ζ(θ) − ∇ζ(θ∗)}/ω(r). So, the conditions of Theorem 2.11 in
the supplement [Spokoiny (2012b)] are fulfilled, yielding (3.11) in view of 	 ≥
3ν0ω(r). �

Due to the main bracketing result, the local excess supθ∈Θ0(r) L(θ , θ∗) can be
put between similar quantities for the upper and lower approximating processes
up to the error terms ♦ε(r),♦ε(r). The random quantity supθ∈Rp Lε(θ , θ∗) can
be called the upper excess while supθ∈Θ0(r0)

Lε(θ , θ∗) is the lower excess. The
quadratic (in θ ) structure of the functions Lε(θ , θ∗) and Lε(θ , θ∗) enables us to
explicitly solve the problem of maximizing the corresponding function w.r.t. θ .

LEMMA 3.8. It holds

sup
θ∈Rp

Lε
(
θ, θ∗) = ‖ξε‖2/2.(3.12)

On the random set {‖V0D
−1
ε ξ ε‖ ≤ r}, it also holds

sup
θ∈Θ0(r)

Lε(θ , θ) = ‖ξε‖2/2.
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PROOF. The unconstrained maximum of the quadratic form Lε(θ, θ∗) w.r.t. θ

is attained at θ̃ ε = D−1
ε ξ ε = D−2

ε ∇L(θ∗), yielding the expression (3.12). The
lower excess is computed similarly. �

Our next step is in bounding the difference ‖ξε‖2 −‖ξε‖2. It can be decomposed
as

‖ξε‖2 − ‖ξε‖2 = ‖ξε‖2 − ‖ξ‖2 + ‖ξ‖2 − ‖ξε‖2

with ξ = D−1
0 ∇L(θ∗). If the values δ, 	 are small, then the difference ‖ξε‖2 −

‖ξε‖2 is automatically smaller than ‖ξ‖2.

LEMMA 3.9. Suppose (I) and let τε
def= δ + 	a2 < 1. Then

D2
ε ≥ (1 − τε)D

2
0, D2

ε ≤ (1 + τε)D
2
0,

(3.13) ∥∥Ip − DεD
−2
ε Dε

∥∥∞ ≤ αε
def= 2τε

1 − τ 2
ε

.

Moreover,

‖ξε‖2 − ‖ξ‖2 ≤ τε

1 − τε
‖ξ‖2, ‖ξ‖2 − ‖ξε‖2 ≤ τε

1 + τε
‖ξ‖2,

‖ξε‖2 − ‖ξε‖2 ≤ αε‖ξ‖2.

Our final step is in showing that under (ED0), the norm ‖ξ‖ behaves essentially

as a norm of a Gaussian vector with the same covariance matrix. Define for B
def=

D−1
0 V 2

0 D−1
0

p
def= tr(B), v2 def= 2 tr

(
B2)

, λ0
def= ‖B‖∞ = λmax(B).

Under the identifiability condition (I), one can bound

B2 ≤ a2Ip, p≤ a2p, v2 ≤ 2a4p, λ0 ≤ a2.

Similarly to the previous result, we assume that the constant g from condition
(ED0) is sufficiently large, namely, g2 ≥ 2p. Define μc = 2/3 and

y2
c

def= g2/μ2
c − p/μc,

gc
def= μcyc =

√
g2 − μcp,

2xc
def= μcy

2
c + log det

(
Ip − μcB

2/λ0
)
.

It is easy to see that y2
c ≥ 3g2/2 and gc ≥ √

2/3g.
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THEOREM 3.10. Let (ED0) hold with ν0 = 1 and g2 ≥ 2p. Then E‖ξ‖2 ≤ p,
and for each x≤ xc

P
(‖ξ‖2/λ0 ≥ z(x,B)

) ≤ 2e−x + 8.4e−xc ,(3.14)

where z(x,B) is defined by

z(x,B)
def=

{
p+ 2vx1/2, x≤ v/18,

p+ 6x, v/18 < x≤ xc.

Moreover, for x> xc, it holds with z(x,B) = |yc + 2(x− xc)/gc|2
P

(‖ξ‖2/λ0 ≥ z(x,B)
) ≤ 8.4e−x.

PROOF. It follows from condition (ED0) that

E‖ξ‖2 = E tr ξξ�

= trD−1
0

[
E∇L

(
θ∗){∇L

(
θ∗)}�]

D−1
0 = tr

[
D−2

0 Var
{∇L

(
θ∗)}]

and (ED0) implies γ � Var{∇L(θ∗)}γ ≤ γ �V 2
0 γ and, thus, E‖ξ‖2 ≤ p. The de-

viation bound (3.14) is proved in Corollary 2.5 of the supplement [Spokoiny
(2012b)]. �

REMARK 3.3. This small remark concerns the term 8.4e−xc in the probability
bound (3.14). As already mentioned, this bound implicitly assumes that the con-
stant g is large (usually g � n1/2). Then xc � g2 � n is large as well. So, e−xc

is very small and asymptotically negligible. Below we often ignore this term. For
x≤ xc, we can use z(x,B) = p+ 6x.

REMARK 3.4. The exponential bound of Theorem 3.10 helps to describe the
critical value of z ensuring a prescribed deviation probability P(‖ξ‖2 ≥ z). Namely,
this probability starts to gradually decrease when z grows over λ0p. In particular,
this helps to answer a very important question about a proper choice of the critical
value z providing the prescribed covering probability, or of the value z ensuring
the dominating concentration probability P(‖Dε (̃θ − θ∗)‖ ≤ z).

The definition of the set Cε(r) from (3.8) involves the event {‖V0D
−1
ε ξ ε‖ > r}.

Under (I), it is included in the set {‖ξε‖ > (1 + αε)
−1a−1r} [see (3.13)], and its

probability is of order e−x for r2 ≥ C(x+ p) with a fixed C > 0.

By Theorem 3.7, one can use max{♦ε(r),♦ε(r)} ≤ 	z0(x,Q) on a set of prob-
ability at least 1 − e−x. Further, ‖ξ‖2/λ0 ≤ z(x,B) with a probability of order
1 − e−x; see (3.14). Putting together the obtained bounds yields for the spread
Δε(r) with a probability about 1 − 4e−x

Δε(r) ≤ 2	z0(x,Q) + αελ0z(x,B).
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The results obtained in Section 3.2 are sharp and meaningful if the spread Δε(r)

is smaller in order than the value E‖ξ‖2. Theorem 3.10 states that ‖ξ‖2 does not

significantly deviate over its expected value p def= E‖ξ‖2 which is our leading term.
We know that z0(x,Q) ≈ Q + x= c1p + x if x is not too large. Also, z(x,B) ≤
p+6x, where p is of order p due to (I). Summarizing the above discussion yields
that the local results apply if the regularity condition (I) holds and the values 	

and αε or, equivalently, ω(r), δ(r) are small. In Section 5 we show for the i.i.d.

example that ω(r) �
√
r2/n and similarly for δ(r).

3.4. Proof of Corollaries 3.3 and 3.4. The bound (3.4) together with Lem-
ma 3.8 yield on Cε(r)

L
(̃
θ , θ∗) = sup

θ∈Θ0(r)

L
(
θ, θ∗)

(3.15)
≥ sup

θ∈Θ0(r)

Lε
(
θ, θ∗) − ♦ε(r) = ‖ξε‖2/2 − ♦ε(r).

Similarly,

L
(̃
θ, θ∗) ≤ sup

θ∈Θ0(r)

Lε
(
θ, θ∗) + ♦ε(r) ≤ ‖ξ ε‖2/2 + ♦ε(r),

yielding (3.9). For getting (3.10), we again apply the inequality L(θ , θ∗) ≤
Lε(θ , θ∗) + ♦ε(r) from Theorem 3.1 for θ equal to θ̃ . With ξε = D−1

ε ∇L(θ∗)
and uε

def= Dε (̃θ − θ∗), this gives

L
(̃
θ , θ∗) − ξ�

ε uε + ‖uε‖2/2 ≤ ♦ε(r).

Therefore, by (3.15),

‖ξε‖2/2 − ♦ε(r) − ξ�
ε uε + ‖uε‖2/2 ≤ ♦ε(r)

or, equivalently,

‖ξε‖2/2 − ξ�
ε uε + ‖uε‖2/2 ≤ ♦ε(r) + ♦ε(r) + (‖ξε‖2 − ‖ξε‖2)

/2

and the definition of Δε(r) implies ‖uε − ξε‖2 ≤ 2Δε(r).

4. Upper function approach and concentration of the qMLE. A very im-
portant step in the analysis of the qMLE θ̃ is localization. This property means
that θ̃ concentrates in a small vicinity of the central point θ∗. This section states
such a concentration bound under the global conditions of Section 2. Given r0, the
deviation bound describes the probability P(̃θ /∈ Θ0(r0)) that θ̃ does not belong to
the local vicinity Θ0(r0) of Θ . The question of interest is to check a possibility
of selecting r0 in a way that the local bracketing result and the deviation bound
apply simultaneously; see the discussion at the end of the section.
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Below we suppose that a sufficiently large constant x is fixed to specify the
accepted level be of order e−x for this deviation probability. All the constructions
below depend upon this constant. We do not indicate it explicitly for ease of nota-
tion.

The key step in this large deviation bound is made in terms of an upper function

for the process L(θ , θ∗) def= L(θ) − L(θ∗). Namely, u(θ) is a deterministic upper
function if it holds with a high probability:

sup
θ∈Θ

{
L

(
θ , θ∗) + u(θ)

} ≤ 0.(4.1)

Such bounds are usually called for in the analysis of the posterior measure in the
Bayes approach. Below we present sufficient conditions ensuring (4.1). Now we
explain how (4.1) can be used for describing concentration sets for θ̃ .

LEMMA 4.1. Let u(θ) be an upper function in the sense

P
(

sup
θ∈Θ

{
L

(
θ , θ∗) + u(θ)

} ≥ 0
)

≤ e−x(4.2)

for x> 0. Given a subset Θ0 ⊂ Θ with θ∗ ∈ Θ0, the condition u(θ) ≥ 0 for θ /∈ Θ0
ensures

P(̃θ /∈ Θ0) ≤ e−x.

PROOF. If Θ◦ is a subset of Θ not containing θ∗, then the event θ̃ ∈ Θ◦ is
only possible if supθ∈Θ◦ L(θ , θ∗) ≥ 0, because L(θ∗, θ∗) ≡ 0. �

A possible way of checking the condition (4.2) is based on a lower quadratic
bound for the negative expectation −EL(θ , θ∗) ≥ b(r)‖V0(θ − θ∗)‖2/2 in the
sense of condition (Lr) from Section 2.2. We present two different results. The
first one assumes that the values b(r) can be fixed universally for all r≥ r0.

THEOREM 4.2. Suppose (Er) and (Lr) with b(r) ≡ b. Let, for r≥ r0,

1 + √
x+ Q ≤ 3ν2

0g(r)/b,(4.3)

6ν0
√
x+ Q ≤ rb,(4.4)

with x+ Q ≥ 2.5 and Q = c1p. Then

P
(̃
θ /∈ Θ0(r0)

) ≤ e−x.(4.5)

PROOF. The result follows from Theorem 2.8 of the supplement [Spokoiny
(2012b)] with μ = b

3ν0
, t(μ) ≡ 0, U(θ) = L(θ) − EL(θ) and M(θ, θ∗) =

−EL(θ , θ∗) ≥ b
2 ‖V0(θ − θ∗)‖2. �
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REMARK 4.1. The bound (4.5) requires only two conditions. Condition (4.3)
means that the value g(r) from condition (Er) fulfills g2(r) ≥ C(x + p), that
is, we need a qualified rate in the exponential moment conditions. This is simi-
lar to requiring finite polynomial moments for the score function. Condition (4.4)
requires that r exceeds some fixed value, namely, r2 ≥ C(x+ p). This bound is
helpful for fixing the value r0 providing a sensible deviation probability bound.

If b(r) decreases with r, the result is a bit more involved. The key requirement
is that b(r) decreases not too fast, so that the product rb(r) grows to infinity
with r. The idea is to include the complement of the central set Θ0 in Θ in the
union of the growing sets Θ0(rk) with b(rk) ≥ b(r0)2−k , and then apply Theo-
rem 4.2 for each Θ0(rk).

THEOREM 4.3. Suppose (Er) and (Lr). Let rk be such that b(rk) ≥
b(r0)2−k for k ≥ 1. If the conditions

1 + √
x+ Q + ck ≤ 3ν2

0g(rk)/b(rk),

6ν0
√
x+ Q + ck ≤ rkb(rk),

are fulfilled for c = log(2), then it holds

P
(̃
θ /∈ Θ0(r0)

) ≤ e−x.

PROOF. The result (4.5) is applied to each set Θ0(rk) and xk = x+ ck. This
yields

P
(̃
θ /∈ Θ0(r0)

) ≤ ∑
k≥1

P
(̃
θ /∈ Θ0(rk)

) ≤ ∑
k≥1

e−x−ck = e−x

as required. �

REMARK 4.2. Here we briefly discuss the very important question: how one
can fix the value r0 ensuring the bracketing result in the local set Θ0(r0) and a
small probability of the related set Cε(r) from (3.8)? The event {‖V0D

−1
ε ξ ε‖ > r}

requires r2 ≥ C(x+ p). Further, we inspect the deviation bound for the comple-
ment Θ \ Θ0(r0). For simplicity, assume (Lr) with b(r) ≡ b. Then the condi-
tion (4.4) of Theorem 4.2 requires that

r2
0 ≥ Cb−2(x+ p).(4.6)

In words, the squared radius r2
0 should be at least of order p. The other condi-

tion (4.3) of Theorem 4.2 is technical and only requires that g(r) is sufficiently
large, while the local results only require that δ(r) and 	(r) are small for such r.
In the asymptotic setup one can typically bring these conditions together. Section 5
provides further discussion for the i.i.d. setup.
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5. Examples. The model with independent identically distributed (i.i.d.) ob-
servations is one of the most popular setups in statistical literature and in statistical
applications. The essential and the most developed part of the statistical theory
is designed for the i.i.d. modeling. Especially, the classical asymptotic parametric
theory is almost complete including asymptotic root-n normality and efficiency of
the MLE and Bayes estimators under rather mild assumptions; see, for example,
Chapters 2 and 3 in Ibragimov and Khas’minskiı̆ (1981). So, the i.i.d. model can
naturally serve as a benchmark for any extension of the statistical theory: being ap-
plied to the i.i.d. setup, the new approach should lead to essentially the same con-
clusions as in the classical theory. Similar reasons apply to the regression model
and its extensions. Below we try to demonstrate that the proposed nonasymptotic
viewpoint is able to reproduce the existing brilliant and well-established results
of the classical parametric theory. Surprisingly, the majority of classical efficiency
results can be easily derived from the obtained general nonasymptotic bounds.

The next question is whether there is any added value or benefits of the new
approach being restricted to the i.i.d. situation relative to the classical one. Two
important issues have been already mentioned: the new approach applies to the
situation with finite samples and survives under model misspecification. One more
important question is whether the obtained results remain applicable and infor-
mative if the dimension of the parameter space is high—this is one of the main
challenges in modern statistics. We show that the dimensionality p naturally ap-
pears in the risk bounds and the results apply as long as the sample size exceeds
in order of this value p. All these questions are addressed in Section 5.1 for the
i.i.d. setup; Section 5.2 focuses on generalized linear modeling, while Section 5.3
discusses linear median regression.

5.1. Quasi-MLE in an i.i.d. model. An i.i.d. parametric model means that the
observations Y = (Y1, . . . , Yn) are independent identically distributed from a dis-
tribution P which belongs to a given parametric family (Pθ , θ ∈ Θ) on the obser-
vation space Y1. Each θ ∈ Θ clearly yields the product data distribution Pθ = P ⊗n

θ
on the product space Y = Yn

1. This section illustrates how the obtained general
results can be applied to this type of modeling under possible model misspecifi-
cation. Different types of misspecification can be considered. Each of the assump-
tions, namely, data independence, identical distribution and parametric form of the
marginal distribution can be violated. To be specific, we assume the observations
Yi independent and identically distributed. However, we admit that the distribution
of each Yi does not necessarily belong to the parametric family (Pθ ). The case of
nonidentically distributed observations can be done similarly at the cost of more
complicated notation.

In what follows the parametric family (Pθ ) is supposed to be dominated by a
measure μ0, and each density p(y, θ) = dPθ/dμ0(y) is two times continuously
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differentiable in θ for all y. Denote �(y, θ) = logp(y, θ). The parametric assump-
tion Yi ∼ Pθ∗ ∈ (Pθ ) leads to the log-likelihood

L(θ) = ∑
�(Yi, θ),

where the summation is taken over i = 1, . . . , n. The quasi-MLE θ̃ maximizes this
sum over θ ∈ Θ :

θ̃
def= arg max

θ∈Θ

L(θ) = arg max
θ∈Θ

∑
�(Yi, θ).

The target of estimation θ∗ maximizes the expectation of L(θ):

θ∗ def= arg max
θ∈Θ

EL(θ) = arg max
θ∈Θ

E�(Y1, θ).

Let ζi(θ)
def= �(Yi, θ)− E�(Yi, θ). Then ζ(θ) = ∑

ζi(θ). The equation ∇EL(θ∗) =
0 implies

∇ζ
(
θ∗) = ∑∇ζi

(
θ∗) = ∑∇�i

(
θ∗)

.(5.1)

I.i.d. structure of the Yi ’s allows to rewrite the local conditions (Er), (ED0),
(ED1), and (L0) , and (I) in terms of the marginal distribution.

(ed0) There exists a positively definite symmetric matrix v0, such that for all
|λ| ≤ g1

sup
γ∈Rp

log E exp
{
λ
γ �∇ζ1(θ

∗)
‖v0γ ‖

}
≤ ν2

0λ2/2.

A natural candidate on v2
0 is given by the variance of the gradient ∇�(Y1, θ

∗), that
is, v2

0 = Var{∇�(Y1, θ
∗)} = Var{∇ζ1(θ

∗)}.
Next consider the local sets

Θloc(u) = {
θ :

∥∥v0
(
θ − θ∗)∥∥ ≤ u

}
.

In view of V 2
0 = nv2

0, it holds Θ0(r) = Θloc(u) with r2 = nu2.
Below we distinguish between local conditions for u≤ u0 and the global con-

ditions for all u> 0, where u0 is some fixed value.
The local smoothness conditions (ED1) and (L0) require to specify the func-

tions δ(r) and 	(r) for r ≤ r0 where r2
0 = nu2

0. If the log-likelihood function
�(y, θ) is sufficiently smooth in θ , these functions can be selected proportional to
u= r/n1/2.

(ed1) There are constants ω∗ > 0 and g1 > 0 such that for each u ≤ u0 and
|λ| ≤ g1

sup
γ∈Rp

sup
θ∈Θloc(u)

log E exp
{
λ
γ �[∇ζ1(θ) − ∇ζ1(θ

∗)]
ω∗u‖v0γ ‖

}
≤ ν2

0λ2/2.
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Further, we restate the local identifiability condition (L0) in terms of the

expected value k(θ , θ∗) def= −E{�(Yi, θ) − �(Yi, θ
∗)} for each i. We suppose

that k(θ , θ∗) is two times differentiable w.r.t. θ . The definition of θ∗ implies
∇E�(Yi, θ

∗) = 0. Define also the matrix f0 = −∇2E�(Yi, θ
∗). In the parametric

case P = Pθ∗ , k(θ , θ∗) is the Kullback–Leibler divergence between Pθ∗ and Pθ ,
while the matrices v2

0 = f0 are equal to each other and coincide with the Fisher
information matrix of the family (Pθ ) at θ∗.

(�0) There is a constant δ∗ such that it holds for each u≤ u0

sup
θ∈Θloc(u)

∣∣∣∣ 2k(θ , θ∗)
(θ − θ∗)�f0(θ − θ∗)

− 1
∣∣∣∣ ≤ δ∗u.

(ι) There is a constant a > 0 such that a2f2
0 ≥ v2

0.
(eu) For each u> 0, there exists g1(u) > 0, such that for all |λ| ≤ g1(u)

sup
γ∈Rp

sup
θ∈Θloc(u)

log E exp
{
λ
γ �∇ζ1(θ)

‖v0γ ‖
}

≤ ν2
0λ2/2.

(�u) For each u> 0, there exists b(u) > 0 such that

sup
θ∈Θ : ‖v0(θ−θ∗)‖=u

k(θ , θ∗)
‖v0(θ − θ∗)‖2 ≥ b(u),

LEMMA 5.1. Let Y1, . . . , Yn be i.i.d. Then (eu), (ed0), (ed1), (ι) and (�0)

imply (Er), (ED0), (ED1), (I) and (L0) with V 2
0 = nv2

0, D2
0 = nf0, ω(r) =

ω∗r/n1/2, δ(r) = δ∗r/n1/2, and g= g1
√

n.

PROOF. The identities V 2
0 = nv2

0, D2
0 = nf0 follow from the i.i.d. structure of

the observations Yi . We briefly comment on condition (Er). The use of the i.i.d.
structure once again yields by (5.1) in view of V 2

0 = nv2
0

log E exp
{
λ
γ �∇ζ(θ)

‖V0γ ‖
}

= nE exp
{

λ

n1/2

γ �∇ζ1(θ)

‖v0γ ‖
}

≤ ν2
0λ2/2

as long as λ ≤ n1/2g1(u) ≤ g(r). Similarly for (ED0) and (ED1). �

REMARK 5.1. This remark discusses how the presented conditions relate to
what is usually assumed in statistical literature. One general remark concerns the
choice of the parametric family (Pθ ). The point of the classical theory is that the
true measure is in this family, so the conditions should be as weak as possible.
The viewpoint of this paper is slightly different: whatever family (Pθ ) is taken,
the true measure is never included, any model is only an approximation of reality.
From the other side, the choice of the parametric model (Pθ ) is always done by a
statistician. Sometimes some special stylized features of the model force to include
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an irregularity in this family. Otherwise any smoothness condition on the density
�(y, θ) can be secured by a proper choice of the family (Pθ ).

The presented list also includes the exponential moment conditions (ed0) and
(ed1) on the gradient ∇�(Y1, θ). We need exponential moments for establishing
some nonasymptotic risk bounds; the classical concentration bounds require even
stronger conditions that the considered random variables are bounded.

The identifiability condition (�u) is very easy to check in the usual asymptotic
setup. Indeed, if the parameter set Θ is compact, the Kullback–Leibler divergence
k(θ , θ∗) is continuous and positive for all θ = θ∗, then (�u) is fulfilled automati-
cally with a universal constant b. If Θ is not compact, the condition is still fulfilled
but the function b(u) may depend on u.

Below we specify the general results of Sections 3 and 4 to the i.i.d. setup.

5.1.1. A large deviation bound. This section presents some sufficient con-
ditions ensuring a small deviation probability for the event {̃θ /∈ Θloc(u0)} for
a fixed u0. Below Q = c1p. We only discuss the case b(u) ≡ b. The general
case only requires more complicated notation. The next result follows from Theo-
rem 4.2 with the obvious changes.

THEOREM 5.2. Suppose (eu) and (�u) with b(u) ≡ b. If, for u0 > 0,

n1/2u0b≥ 6ν0
√
x+ Q,

(5.2)
1 + √

x+ Q ≤ 3b−1ν2
0g1(u0)n

1/2,

then

P
(̃
θ /∈ Θloc(u0)

) = P
(∥∥v0

(̃
θ − θ∗)∥∥ > u0

) ≤ e−x.

REMARK 5.2. The presented result helps to qualify two important values u0
and n providing a sensible deviation probability bound. For simplicity suppose
that g1(u) ≡ g1 > 0. Then the condition (5.2) can be written as nu2

0 � x + Q.
In other words, the result of the theorem claims a large deviation bound for the
vicinity Θloc(u0) with u2

0 of order p/n. In classical asymptotic statistics this result
is usually referred to as root-n consistency. Our approach yields this result in a
very strong form and for finite samples.

5.1.2. Local inference. Now we restate the general local bounds of Section 3
for the i.i.d. case. First we describe the approximating linear models. The matrices
v2

0 and f0 from conditions (ed0), (ed1) and (�0) determine their drift and variance
components. Define

fε
def= f0(1 − δ) − 	v2

0.
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If τε
def= δ + a2	 < 1, then

fε ≥ (1 − τε)f0 > 0.

Further, D2
ε = nfε and

ξε
def= D−1

ε ∇ζ
(
θ∗) = (nfε)−1/2

∑∇�
(
Yi, θ

∗)
.

The upper bracketing process reads as

Lε
(
θ , θ∗) = (

θ − θ∗)�
Dεξ ε − ∥∥Dε

(
θ − θ∗)∥∥2

/2.

This expression can be viewed as log-likelihood for the linear model ξε = Dεθ +ε

for a standard normal error ε. The (quasi) MLE θ̃ ε for this model is of the form
θ̃ ε = D−1

ε ξ ε .

THEOREM 5.3. Suppose (ed0). Given u0, assume (ed1), (�0) and (ι) on

Θloc(u0), and let 	 = 3ν0ω
∗u0, δ = δ∗u0, and τε

def= δ + a2	 < 1. Then the re-
sults of Theorem 3.1 and all its corollaries apply to the case of i.i.d. modeling with
r2

0 = nu2
0. In particular, on the random set Cε(r0) = {̃θ ∈ Θloc(u0),‖ξε‖ ≤ r0}, it

holds

‖ξ ε‖2/2 − ♦ε(r0) ≤ L
(̃
θ , θ∗) ≤ ‖ξε‖2/2 + ♦ε(r0),∥∥√

nfε
(̃
θ − θ∗) − ξε

∥∥2 ≤ 2Δε(r0).

The random quantities ♦ε(r0), ♦ε(r0) and Δε(r0) follow the probability bounds
of Theorems 3.7 and 3.10.

Now we briefly discuss the implications of Theorem 5.2 and 5.3 to the classical
asymptotic setup with n → ∞. We fix u2

0 = Cp/n for a constant C ensuring the
deviation bound of Theorem 5.2. Then δ is of order u0 and the same for 	. For a
sufficiently large n, both quantities are small and, thus, the spread Δε(r0) is small
as well; see Section 3.3.

Further, under (ed0) condition, the normalized score

ξ
def= (nf0)

−1/2
∑∇�

(
Yi, θ

∗)
is zero mean asymptotically normal by the central limit theorem. Moreover, if
f0 = v2

0, then ξ is asymptotically standard normal. The same holds for ξε . This
immediately yields all classical asymptotic results like Wilks theorem or the Fisher
expansion for MLE in the i.i.d. setup as well as the asymptotic efficiency of the
MLE. Moreover, our results’ bounds yield the asymptotic result for the case when
the parameter dimension p = pn grows linearly with n. Below un = on(pn) means
that un/pn → 0 as n → ∞.
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THEOREM 5.4. Let Y1, . . . , Yn be i.i.d. Pθ∗ and let (ed0), (ed1), (�0), (ι), (eu)

and (�u) with b(u) ≡ b hold. If n > Cpn for a fixed constant C depending on
constants in the above conditions only, then∥∥√

nf0
(̃
θ − θ∗) − ξ

∥∥2 = on(pn), 2L
(̃
θ , θ∗) − ‖ξ‖2 = on(pn).

This result particularly yields that
√

nf0(̃θ − θ∗) is nearly standard normal and
2L(̃θ , θ∗) is nearly χ2

p .

5.2. Generalized linear modeling. Now we consider a generalized linear mod-
eling (GLM) which is often used for describing some categorical data. Let P =
(Pw,w ∈ Υ ) be an exponential family with a canonical parametrization; see,
for example, McCullagh and Nelder (1989). The corresponding log-density can
be represented as �(y,w) = yw − d(w) for a convex function d(w). The pop-
ular examples are given by the binomial (binary response, logistic) model with
d(w) = log(ew +1), the Poisson model with d(w) = ew and the exponential model
with d(w) = − log(w). Note that linear Gaussian regression is a special case with
d(w) = w2/2.

A GLM specification means that every observation Yi has a distribution from the
family P with the parameter wi which linearly depends on the regressor Ψi ∈ Rp:

Yi ∼ PΨ �
i θ∗ .(5.3)

The corresponding log-density of a GLM reads as

L(θ) = ∑{
YiΨ

�
i θ − d

(
Ψ �

i θ
)}

.

Under Pθ∗ each observation Yi follows (5.3), in particular, EYi = d ′(Ψ �
i θ∗).

However, similarly to the previous sections, it is accepted that the parametric
model (5.3) is misspecified. Response misspecification means that the vector

f def= EY cannot be represented in the form d ′(Ψ �θ) whatever θ is. The other sort
of misspecification concerns the data distribution. The model (5.3) assumes that
the Yi ’s are independent and the marginal distribution belongs to the given para-
metric family P. In what follows, we only assume independent data having certain
exponential moments. The target of estimation θ∗ is defined by

θ∗ def= arg max
θ

EL(θ).

The quasi-MLE θ̃ is defined by maximization of L(θ):

θ̃ = arg max
θ

L(θ) = arg max
θ

∑{
YiΨ

�
i θ − d

(
Ψ �

i θ
)}

.

Convexity of d(·) implies that L(θ) is a concave function of θ , so that the opti-
mization problem has a unique solution and can be effectively solved. However, a
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closed form solution is only available for the constant regression or for the linear
Gaussian regression. The corresponding target θ∗ is the maximizer of the expected
log-likelihood:

θ∗ = arg max
θ

EL(θ) = arg max
θ

∑{
fiΨ

�
i θ − d

(
Ψ �

i θ
)}

with fi = EYi . The function EL(θ) is concave as well and the vector θ∗ is also
well defined.

Define the individual errors (residuals) εi = Yi − EYi . Below we assume that
these errors fulfill some exponential moment conditions.

(e1) There exist some constants ν0 and g1 > 0, and for every i a constant si

such that E(εi/si )
2 ≤ 1 and

log E exp(λεi/si) ≤ ν2
0λ2/2, |λ| ≤ g1.(5.4)

A natural candidate for si is σi where σ 2
i = Eε2

i is the variance of εi ; see
Lemma 2.13 of the supplement [Spokoiny (2012b)]. Under (5.4), introduce a p×p

matrix V0 defined by

V 2
0

def= ∑
s2
i ΨiΨ

�
i .(5.5)

Condition (e1) effectively means that each error term εi = Yi − EYi has some

bounded exponential moments: for |λ| ≤ g1, it holds f (λ)
def= log E exp(λεi/si) <

∞. This implies the quadratic upper bound for the function f (λ) for |λ| ≤ g1;
see Lemma 2.13 of the supplement [Spokoiny (2012b)]. In words, condition (e1)

requires a light (exponentially decreasing) tail for the marginal distribution of
each εi .

Define also

N−1/2 def= max
i

sup
γ∈Rp

si |Ψ �
i γ |

‖V0γ ‖ .(5.6)

LEMMA 5.5. Assume (e1) and let V0 be defined by (5.5) and N by (5.6).
Then conditions (ED0) and (Er) follow from (e1) with the matrix V0 due to (5.5)
and g= g1N

1/2. Moreover, the stochastic component ζ(θ) is linear in θ and the
condition (ED1) is fulfilled with ω(r) ≡ 0.

PROOF. The gradient of the stochastic component ζ(θ) of L(θ) does not de-
pend on θ , namely, ∇ζ(θ) = ∑

Ψiεi with εi = Yi − EYi . Now, for any unit vector
γ ∈ Rp and λ ≤ g, independence of the εi’s implies that

log E exp
{

λ

‖V0γ ‖γ � ∑
Ψiεi

}
= ∑

log E exp
{
λsiΨ

�
i γ

‖V0γ ‖ εi/si

}
.
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By definition, si |Ψ �
i γ |/‖V0γ ‖ ≤ N−1/2 and, therefore, λsi |Ψ �

i γ |/‖V0γ ‖ ≤ g1.
Hence, (5.4) implies

log E exp
{

λ

‖V0γ ‖γ � ∑
Ψiεi

}
≤ ν2

0λ2

2‖V0γ ‖2

∑
s2
i

∣∣Ψ �
i γ

∣∣2 = ν2
0λ2

2
,(5.7)

and (ED0) follows. �

It only remains to bound the quality of quadratic approximation for the mean of
the process L(θ , θ∗) in a vicinity of θ∗. An interesting feature of the GLM is that
the effect of model misspecification disappears in the expectation of L(θ , θ∗).

LEMMA 5.6. It holds

−EL
(
θ , θ∗) = ∑{

d
(
Ψ �

i θ
) − d

(
Ψ �

i θ∗) − d ′(Ψ �
i θ∗)

Ψ �
i

(
θ − θ∗)}

(5.8)
= K(Pθ∗,Pθ ),

where K(Pθ∗,Pθ ) is the Kullback–Leibler divergence between measures Pθ∗
and Pθ . Moreover,

−EL
(
θ, θ∗) = ∥∥D(

θ◦)(θ − θ∗)∥∥2
/2,(5.9)

where θ◦ ∈ [θ∗, θ] and

D2(
θ◦) = ∑

d ′′(Ψ �
i θ◦)ΨiΨ

�
i .

PROOF. The definition implies

EL
(
θ , θ∗) = ∑{

fiΨ
�
i

(
θ − θ∗) − d

(
Ψ �

i θ
) + d

(
Ψ �

i θ∗)}
.

As θ∗ is the extreme point of EL(θ), it holds ∇EL(θ∗) = ∑[fi − d ′(Ψ �
i θ∗)]Ψi =

0 and (5.8) follows. The Taylor expansion of the second order around θ∗ yields the
expansion (5.9). �

Define now the matrix D0 by

D2
0

def= D2(
θ∗) = ∑

d ′′(Ψ �
i θ∗)

ΨiΨ
�
i .

Let also V0 be defined by (5.5). Note that the matrices D0 and V0 coincide if
the model Yi ∼ PΨ �

i θ∗ is correctly specified and s2
i = d ′′(Ψ �

i θ∗). The matrix V0

describes a local elliptic neighborhood of the central point θ∗ in the form Θ0(r) =
{θ :‖V0(θ − θ∗)‖ ≤ r}. If the matrix function D2(θ) is continuous in this vicinity
Θ0(r), then the value δ(r) measuring the approximation quality of −EL(θ, θ∗) by
the quadratic function ‖D0(θ − θ∗)‖2/2 is small and the identifiability condition
(L0) is fulfilled on Θ0(r).
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LEMMA 5.7. Suppose that∥∥Ip − D−1
0 D2(θ)D−1

0

∥∥∞ ≤ δ(r), θ ∈ Θ0(r).(5.10)

Then (L0) holds with this δ(r). Moreover, as the quantities ω(r),♦ε(r),♦ε(r)

vanish, one can take 	 = 0, leading to the following representation for Dε and ξε :

D2
ε = (1 − δ)D2

0, ξε = (1 + δ)1/2ξ ,

D2
ε = (1 + δ)D2

0, ξε = (1 − δ)1/2ξ ,

with

ξ
def= D−1

0 ∇ζ = D−1
0

∑
Ψi(Yi − EYi).

Linearity of the stochastic component ζ(θ) in the considered GLM implies
the important fact that the quantities ♦ε(r),♦ε(r) in the general bracketing
bound (3.4) vanish for any r. Therefore, in the GLM case, the deficiency can
be defined as the difference between upper and lower excess and it can be easily
evaluated:

Δ(r) = ‖ξε‖2/2 − ‖ξε‖2/2 = δ‖ξ‖2.

Our result assumes some concentration properties of the squared norm ‖ξ‖2 of the
vector ξ . These properties can be established by general results of Section 1 of the
complement under the regularity condition: for some a

V0 ≤ aD0.(5.11)

Now we are prepared to state the local results for the GLM estimation.

THEOREM 5.8. Let (e1) hold. Then for δ ≥ δ(r) any z > 0 and z > 0, it holds

P
(∥∥D0

(̃
θ − θ∗)∥∥ > z,

∥∥V0
(̃
θ − θ∗)∥∥ ≤ r

) ≤ P
{‖ξ‖2 > (1 − δ)z2}

,

P
(
L

(̃
θ , θ∗)

> z,
∥∥V0

(̃
θ − θ∗)∥∥ ≤ r

) ≤ P
{‖ξ‖2/2 > (1 − δ)z

}
.

Moreover, on the set Cε(r) = {‖V0(̃θ − θ∗)‖ ≤ r,‖ξε‖ ≤ r}, it holds

∥∥D0
(̃
θ − θ∗) − ξ

∥∥2 ≤ 2δ

1 − δ2 ‖ξ‖2.(5.12)

If the function d(w) is quadratic, then the approximation error δ vanishes as
well and the expansion (5.12) becomes equality which is also fulfilled globally,
a localization step in not required. However, if d(w) is not quadratic, the result
applies only locally and it has to be accomplished with a large deviation bound.
The GLM structure is helpful in the large deviation zone as well. Indeed, the gra-
dient ∇ζ(θ) does not depend on θ and, hence, the most delicate condition (Er)

is fulfilled automatically with g = g1N
1/2 for all local sets Θ0(r). Further, the
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identifiability condition (Lr) easily follows from Lemma 5.6: it suffices to bound
from below the matrix D(θ) for θ ∈ Θ0(r):

D(θ) ≥ b(r)V0, θ ∈ Θ0(r).

An interesting question, similarly to the i.i.d. case, is the minimal radius r0 of
the local vicinity Θ0(r0) ensuring the desirable concentration property. Suppose
for the moment that the constants b(r) are all the same for different r: b(r) ≡ b.
Under the regularity condition (5.11), a sufficient lower bound for r0 can be based
on Corollary 4.3. The required condition can be restated as

1 + √
x+ Q ≤ 3ν2

0g/b, 6ν0
√
x+ Q ≤ rb.

It remains to note that Q = c1p and g = g1N
1/2. So, the required conditions are

fulfilled for r2 ≥ r2
0 = C(x+ p), where C only depends on ν0,b, and g.

5.3. Linear median estimation. This section illustrates how the proposed ap-
proach applies to robust estimation in linear models. The target of analysis is the
linear dependence of the observed data Y = (Y1, . . . , Yn) on the set of features
Ψi ∈ Rp:

Yi = Ψ �
i θ + εi,(5.13)

where εi means the ith individual error. As usual, the true data distribution can
deviate from the linear model. In addition, we admit contaminated data which nat-
urally leads to the idea of robust estimation. This section offers a qMLE view on
the robust estimation problem. Our parametric family assumes the linear depen-
dence (5.13) with i.i.d. errors εi which follow the double exponential (Laplace)
distribution with the density (1/2)e−|y|. Then the corresponding log-likelihood
reads as

L(θ) = −1

2

∑∣∣Yi − Ψ �
i θ

∣∣
and θ̃

def= arg maxθ L(θ) is called the least absolute deviation (LAD) estimate. In
the context of linear regression, it is also called the linear median estimate. The
target of estimation θ∗ is usually defined by the equation θ∗ = arg maxθ EL(θ).

It is useful to define the residuals ε̃i = Yi − Ψ �
i θ∗ and their distributions

Pi(A) = P(̃εi ∈ A) = P
(
Yi − Ψ �

i θ∗ ∈ A
)

for any Borel set A on the real line. If Yi = Ψ �
i θ∗ + εi is the true model, then Pi

coincides with the distribution of each εi . Below we suppose that each Pi has a
positive density fi(y).

Note that the difference L(θ) − L(θ∗) is bounded by 1
2

∑ |Ψ �
i (θ − θ∗)|. Next

we check conditions (ED0) and (ED1). Denote ξi(θ) = 1(Yi −Ψ �
i θ ≤ 0)−qi(θ)
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for qi(θ) = P(Yi − Ψ �
i θ ≤ 0). This is a centered Bernoulli random variable, and it

is easy to check that

∇ζ(θ) = −∑
ξi(θ)Ψi.(5.14)

This expression differs from the similar ones from the linear and generalized linear
regression because the stochastic terms ξi now depend on θ . First we check the
global condition (Er). Fix any g1 < 1. Then it holds for a Bernoulli r.v. Z with
P(Z = 1) = q , ξ = Z − q , and |λ| ≤ g1

log E exp(λξ) = log
[
q exp

{
λ(1 − q)

} + (1 − q) exp(−λq)
]

(5.15)
≤ ν2

0q(1 − q)λ2/2,

where ν0 ≥ 1 depends on g1 only. Let now a vector γ ∈ Rp and ρ > 0 be such that
ρ|Ψ �

i γ | ≤ g1 for all i = 1, . . . , n. Then

log E exp
{
ργ �∇ζ(θ)

} ≤ ν2
0ρ2

2

∑
qi(θ)

{
1 − qi(θ)

}∣∣Ψ �
i γ

∣∣2
(5.16)

≤ ν2
0ρ2

2

∥∥V (θ)γ
∥∥2

,

where

V 2(θ) = ∑
qi(θ)

{
1 − qi(θ)

}
ΨiΨ

�
i .

Denote also

V 2
0 = 1

4

∑
ΨiΨ

�
i .(5.17)

Clearly, V (θ) ≤ V0 for all θ and condition (Er) is fulfilled with the matrix V0 and
g(r) ≡ g= g1N

1/2 for N defined by

N−1/2 def= max
i

sup
γ∈Rp

Ψ �
i γ

2‖V0γ ‖;(5.18)

cf. (5.7).
Let some r0 > 0 be fixed. We will specify this choice later. Now we check the

local conditions within the elliptic vicinity Θ0(r0) = {θ :‖V0(θ − θ∗)‖ ≤ r0} of
the central point θ∗ for V0 from (5.17). Then condition (ED0) with the matrix V0
and g = N1/2g1 is fulfilled on Θ0(r0) due to (5.16). Next, in view of (5.18), it
holds |Ψ �

i γ | ≤ 2N−1/2‖V0γ ‖ for any vector γ ∈ Rp . By (5.14),

∇ζ(θ) − ∇ζ
(
θ∗) = ∑

Ψi

{
ξi(θ) − ξi

(
θ∗)}

.

If Ψ �
i θ ≥ Ψ �

i θ∗, then

ξi(θ) − ξi

(
θ∗) = 1

(
Ψ �

i θ∗ ≤ Yi < Ψ �
i θ

) − P
(
Ψ �

i θ∗ ≤ Yi < Ψ �
i θ

)
.
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Similarly, for Ψ �
i θ < Ψ �

i θ∗

ξi(θ) − ξi

(
θ∗) = −1

(
Ψ �

i θ ≤ Yi < Ψ �
i θ∗) + P

(
Ψ �

i θ ≤ Yi < Ψ �
i θ∗)

.

Define qi(θ , θ∗) def= |qi(θ) − qi(θ
∗)|. Now (5.15) yields similarly to (5.16)

log E exp
{
ργ �{∇ζ(θ) − ∇ζ

(
θ∗)}}

≤ ν2
0ρ2

2

∑
qi

(
θ, θ∗)∣∣Ψ �

i γ
∣∣2

≤ 2ν2
0ρ2 max

i≤n
qi

(
θ , θ∗)‖V0γ ‖2 ≤ ω(r)ν2

0ρ2‖V0γ ‖2/2,

with

ω(r)
def= 4 max

i≤n
sup

θ∈Θ0(r)

qi

(
θ , θ∗)

.

If each density function pi is uniformly bounded by a constant C, then∣∣qi(θ) − qi

(
θ∗)∣∣ ≤ C

∣∣Ψ �
i

(
θ − θ∗)∣∣ ≤ CN−1/2∥∥V0

(
θ − θ∗)∥∥ ≤ CN−1/2r.

Next we check the local identifiability condition. We use the following technical
lemma.

LEMMA 5.9. It holds for any θ

− ∂2

∂2θ
EL(θ) = D2(θ)

def= ∑
pi

(
Ψ �

i

(
θ − θ∗))

ΨiΨ
�
i ,(5.19)

where fi(·) is the density of ε̃i = Yi − Ψ �
i θ∗. Moreover, there is θ◦ ∈ [θ, θ∗] such

that

−EL
(
θ , θ∗) = 1

2

∑∣∣Ψ �
i

(
θ − θ∗)∣∣2fi

(
Ψ �

i

(
θ◦ − θ∗))

(5.20)
= (

θ − θ∗)�
D2(

θ◦)(θ − θ∗)
/2.

PROOF. Obviously

∂EL(θ)

∂θ
= ∑{

P
(
Yi ≤ Ψ �

i θ
) − 1/2

}
Ψi.

The identity (5.19) is obtained by one more differentiation. By definition, θ∗ is the
extreme point of EL(θ). The equality ∇EL(θ∗) = 0 yields∑{

P
(
Yi ≤ Ψ �

i θ∗) − 1/2
}
Ψi = 0.

Now (5.20) follows by the Taylor expansion of the second order at θ∗. �

Define

D2
0

def= ∑∣∣Ψ �
i

(
θ − θ∗)∣∣2fi(0).(5.21)
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Due to this lemma, condition (L0) is fulfilled in Θ0(r) with this choice D0 for
δ(r) from (5.10); see Lemma 5.7. Moreover, if fi(0) ≥ a2/4 for a > 0, then the
identifiability condition (I) is also satisfied. Now all the local conditions are ful-
filled, yielding the general bracketing bound of Theorem 3.1 and all its corollar-
ies.

It only remains to accomplish them by a large deviation bound, that is, to specify
the local vicinity Θ0(r0) providing the prescribed deviation bound. A sufficient
condition for the concentration property is that the expectation EL(θ , θ∗) grows in
absolute value with the distance ‖V0(θ − θ∗)‖. We use the representation (5.19).
Suppose that for some fixed δ < 1/2 and ρ > 0∣∣fi(u)/fi(0) − 1

∣∣ ≤ δ, |u| ≤ ρ.(5.22)

For any θ with ‖V0(θ − θ∗)‖ = r≥ r0, and for any i = 1, . . . , n, it holds∣∣Ψ �
i

(
θ − θ∗)∣∣ ≤ N−1/2∥∥V0

(
θ − θ∗)∥∥ = N−1/2r.

Therefore, for r ≤ ρN1/2 and any θ ∈ Θ0(r) with ‖V0(θ − θ∗)‖ = r, it holds
fi(Ψ

�
i (θ◦ − θ∗)) ≥ (1 − δ)fi(0). Now Lemma 5.9 implies

−EL
(
θ , θ∗) ≥ 1 − δ

2

∥∥D0
(
θ − θ∗)∥∥2 ≥ 1 − δ

2a2

∥∥V0
(
θ − θ∗)∥∥2 = 1 − δ

2a2 r2.

By Lemma 5.9 the function −EL(θ , θ∗) is convex. This easily yields

−EL
(
θ , θ∗) ≥ 1 − δ

2a2 ρN1/2r

for all r≥ ρN1/2. Thus,

rb(r) ≥
{

(1 − δ)
(
2a2)−1r, if r≤ ρN1/2,

(1 − δ)
(
2a2)−1

ρN1/2, if r> ρN1/2.

So, the global identifiability condition (L1) is fulfilled if r2
0 ≥ C1a

2(x+ Q) and if
ρ2N ≥ C2a

2(x+ Q) for some fixed constants C1 and C2.
Putting this all together yields the following result.

THEOREM 5.10. Let Yi be independent, θ∗ = arg maxθ EL(θ), D2
0 be given

by (5.21), and V 2
0 by (5.17). Let also the densities fi(·) of Yi −Ψ �

i θ∗ be uniformly
bounded by a constant C, fulfill (5.22) for some ρ > 0 and δ > 0, and fi(0) ≥ a2/4
for all i. Finally, let N ≥ C2ρ

−2a2(x+ p) for some fixed x> 0 and C2. Then on

the random set of probability at least 1 − e−x, one obtains for ξ
def= D−1

0 ∇L(θ∗)
the bounds∥∥√

D0
(̃
θ − θ∗) − ξ

∥∥2 = o(p), 2L
(̃
θ, θ∗) − ‖ξ‖2 = o(p).
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SUPPLEMENTARY MATERIAL

Some results from the theory of empirical processes (DOI: 10.1214/12-
AOS1054SUPP; .pdf). This part collects some general deviation bounds for non-
Gaussian quadratic forms and for general centered random processes used in the
text.
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