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PARTIALLY MONOTONE TENSOR SPLINE ESTIMATION OF THE
JOINT DISTRIBUTION FUNCTION WITH BIVARIATE

CURRENT STATUS DATA
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The analysis of the joint cumulative distribution function (CDF) with
bivariate event time data is a challenging problem both theoretically and nu-
merically. This paper develops a tensor spline-based sieve maximum like-
lihood estimation method to estimate the joint CDF with bivariate current
status data. The I -splines are used to approximate the joint CDF in order
to simplify the numerical computation of a constrained maximum likelihood
estimation problem. The generalized gradient projection algorithm is used
to compute the constrained optimization problem. Based on the properties
of B-spline basis functions it is shown that the proposed tensor spline-based
nonparametric sieve maximum likelihood estimator is consistent with a rate
of convergence potentially better than n1/3 under some mild regularity con-
ditions. The simulation studies with moderate sample sizes are carried out to
demonstrate that the finite sample performance of the proposed estimator is
generally satisfactory.

1. Introduction. In some applications, observation of random event time T

is restricted to the knowledge of whether or not T exceeds a random monitor-
ing time C. This type of data is known as current status data and sometimes re-
ferred to as interval censoring case 1 [Groeneboom and Wellner (1992)]. Current
status data arise naturally in many applications; see, for example, the animal tu-
morigenicity experiments by Hoel and Walburg (1972) and Finkelstein and Wolfe
(1985); the social demographic studies of the distribution of the age at weaning
by Diamond, McDonald and Shah (1986), Diamond and McDonald (1991) and
Grummer-Strawn (1993); and the studies of human immunodeficiency virus (HIV)
and acquired immunodeficiency syndrome (AIDS) by Shiboski and Jewell (1992)
and Jewell, Malani and Vittinghoff (1994).

The univariate current status data have been thoroughly studied in the statistical
literature. Groeneboom and Wellner (1992) and Huang and Wellner (1995) stud-
ied the asymptotic properties of the nonparametrc maximum likelihood estimator
(NPMLE) of the CDF with current status data. Huang (1996) considered Cox pro-
portional hazards model with current status data and showed that the maximum
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likelihood estimator (MLE) of the regression parameter is asymptotically normal
with

√
n convergence rate, even through the MLE of the baseline cumulative haz-

ard function only converges at n1/3 rate.
Bivariate event time data occur in many applications as well. For example, in an

Australian twin study [Duffy, Martin and Matthews (1990)], the researchers were
interested in times to a certain event such as a disease or a disease-related symp-
tom in both twins. NPMLE of the joint CDF of the correlated event times with
bivariate right censored data was studied by Dabrowska (1988), Prentice and Cai
(1992), Pruitt (1991), van der Laan (1996) and Quale, van der Laan and Robins
(2006). As an alternative, Kooperberg (1998) developed a tensor spline estima-
tion of the logarithm of joint density function with bivariate right censored data.
However, asymptotic properties of Kooperberg’s estimate are unknown. Shih and
Louis (1995) proposed a two-stage semiparametric estimation procedure to study
the joint CDF with bivariate right censored data, in which the joint distribution of
the two event times is assumed to follow a bivariate Copula model [Nelsen (2006)].

For bivariate interval censored data, the conventional NPMLE was originally
studied by Betensky and Finkelstein (1999) and followed by Wong and Yu (1999),
Gentleman and Vandal (2001), Song (2001) and Maathuis (2005). A typical nu-
merical algorithm for computing the NPMLE constitutes two steps [Song (2001)
and Maathuis (2005)]: in the first stage the algorithm searches for small rectan-
gles with nonzero probability mass; in the second stage those nonzero probability
masses are estimated by maximizing the log likelihood with a reduced number of
unknown quantities. Sun, Wang and Sun (2006) and Wu and Gao (2011) adopted
the same idea used by Shih and Louis (1995) to study the joint distribution of CDF
for bivariate interval censored data with Copula models.

This paper studies bivariate current status data, a special type of bivariate in-
terval censored data. Let (T1, T2) be the two event times of interest and (C1,C2)

the two corresponding random monitoring times. In this setting, the observation of
bivariate current status data consists of

X = (
C1,C2,�1 = I (T1 ≤ C1),�2 = I (T2 ≤ C2)

)
,(1.1)

where I (·) is the indicator function. For bivariate current status data, Wang and
Ding (2000) adopted the same approach proposed by Shih and Louis (1995) to
study the association between the onset times of hypertension and diabetes for
Taiwanese in a demographic screening study. In a study on HIV transmission,
Jewell, van der Laan and Lei (2005) investigated the relationship between the time
to HIV infection to the other partner and the time to diagnosis of AIDS for the
index case by studying some smooth functionals of the marginal CDFs. In both
examples, the bivariate event times have the same monitoring time, that is, C1 =
C2 = C. In this paper, we propose a tensor spline-based sieve maximum likelihood
estimation of the joint CDF for bivariate current status data in a general scenario
in which C1 and C2 are allowed to be different. The proposed method is shown to
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have a rate of convergence potentially better than n1/3 and it can simultaneously
estimate the two marginal CDFs along with the joint CDF.

The rest of the paper is organized as follows. Section 2 characterizes the spline-
based sieve MLE τ̂n = (F̂n, F̂n,1, F̂n,2), where F̂n is the tensor spline-based esti-
mator of the joint CDF, and F̂n,1 and F̂n,2 are the spline-based estimators of the
two corresponding marginal CDFs. Section 3 presents two asymptotic properties
(consistency and convergence rate) of the proposed spline-based sieve MLE. Sec-
tion 4 discusses the computation of the spline-based estimators. Section 5 carries
out a set of simulation studies to examine the finite sample performance of the
proposed method and compares it to the conventional NMPLE computed with the
algorithm proposed by Maathuis (2005). Section 6 summarizes our findings and
discusses some related problems. Section 7 provides proofs of the theorems stated
in the early section. Details of some technical lemmas that are used for proving the
theorem and their proofs are included in a supplementary file.

2. Tensor spline-based sieve maximum likelihood estimation method.

2.1. Maximum likelihood estimation. We consider a sample of n i.i.d. bivari-
ate current status data denoted in (1.1), {(c1,k, c2,k, δ1,k, δ2,k) :k = 1,2, . . . , n}.
Suppose that (T1, T2) and (C1,C2) are independent. Then the log-likelihood for
the observed data can be expressed by

ln(·;data) =
n∑

k=1

{
δ1,kδ2,k logP(T1 ≤ c1,k, T2 ≤ c2,k)

+ δ1,k(1 − δ2,k) logP(T1 ≤ c1,k, T2 > c2,k)
(2.1)

+ (1 − δ1,k)δ2,k logP(T1 > c1,k, T2 ≤ c2,k)

+ (1 − δ1,k)(1 − δ2,k) logP(T1 > c1,k, T2 > c2,k)
}
.

Denote F the joint CDF of event times (T1, T2) and F1 and F2 the marginal
CDFs of F , respectively. The log-likelihood (2.1) can be rewritten as

ln(F,F1,F2;data) =
n∑

k=1

{
δ1,kδ2,k logF(c1,k, c2,k)

+ δ1,k(1 − δ2,k) log
(
F1(c1,k) − F(c1,k, c2,k)

)
(2.2)

+ (1 − δ1,k)δ2,k log
(
F2(c2,k) − F(c1,k, c2,k)

)
+ (1 − δ1,k)(1 − δ2,k) log

(
1 − F1(c1,k) − F2(c2,k)

+ F(c1,k, c2,k)
)}

.

A class of real-valued functions defined in a bounded region [L1,U1]×[L2,U2]
is denoted by

F = {(
F(s, t),F1(s),F2(t)

)
: for (s, t) ∈ [L1,U1] × [L2,U2]},
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where F , F1 and F2 satisfy the following conditions in (2.3):

0 ≤ F(s, t),

F
(
s′, t

) ≤ F
(
s′′, t

)
,

F
(
s, t ′

) ≤ F
(
s, t ′′

)
,[

F
(
s′′, t ′′

) − F
(
s′, t ′′

)] − [
(F

(
s′′, t ′

) − F
(
s′, t ′

)] ≥ 0,

F1(s) − F(s, t) ≥ 0,(2.3)

F2(t) − F(s, t) ≥ 0,[
F1

(
s′′) − F1

(
s′)] − [

F
(
s′′, t

) − F
(
s′, t

)] ≥ 0,[
F2

(
t ′′

) − F2
(
t ′

)] − [
F

(
s, t ′′

) − F
(
s, t ′

)] ≥ 0,[
1 − F1(s)

] − [
F2(t) − F(s, t)

] ≥ 0

for s′ ≤ s′′ with s′ and s′′ on [L1,U1], and t ′ ≤ t ′′ with t ′ and t ′′ on [L2,U2].
It can be easily argued that if F is a joint CDF and F1 and F2 are its

two corresponding marginal CDFs, (F,F1,F2) ∈ F . On the other hand, for any
(F,F1,F2) ∈ F there exists a bivariate distribution such that F is the joint CDF
and F1 and F2 are its two marginal CDFs. Throughout this paper, F0,F0,1 and
F0,2 are denoted for the true joint and marginal CDFs, respectively. The NPMLE
for (F0,F0,1,F0,2) is defined as

(F̂n, F̂n,1, F̂n,2) = arg max
(F,F1,F2)∈F

ln(F,F1,F2;data).(2.4)

The NPNLE of (2.4) is, in general, a challenging problem both numerically and
theoretically. The conventional NPMLE of F is constructed by a larger number of
unknown quantities representing the masses in small rectangles. Solving for the
NPMLE needs to perform a constrained high-dimensional nonlinear optimization
[Betensky and Finkelstein (1999), Wong and Yu (1999), Gentleman and Vandal
(2001), Song (2001), Maathuis (2005)]. Though the conventional NPMLE of (2.4)
can be efficiently computed using the algorithm developed by Maathuis (2005), it
is, however, well known that the conventional NPMLE is not uniquely determined
[Song (2001), Maathuis (2005)]. In an unpublished Ph.D. dissertation, Song (2001)
showed that the conventional NPMLE of joint CDF with bivariate current status
data can achieve a global rate of convergence of n3/10 in Hellinger distance, which
is slightly slower than that of the NPMLE with univariate current status data.

This paper adopts a popular dimension reduction method through spline-based
sieve maximum likelihood estimation. The main idea of the spline-based sieve
method is to solve problem (2.4) in a subclass of F that “approximates” to F
when sample size enlarges. The advantages of the proposed method are that the
spline-based sieve MLE is unique, and it is easy to compute and analyze. The uni-
variate spline-based sieve MLEs for various models were studied by Shen (1998),
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Lu, Zhang and Huang (2007, 2009), Zhang, Hua and Huang (2010) and Lu (2010).
Other problems related to applications of univariate shape-constrained spline esti-
mations have recently been studied as well. For example, Meyer (2008) studied the
inference using shape-restricted regression spline functions and Wang and Shen
(2010) studied B-spline approximation for a monotone univariate regression func-
tion based on grouped data. For analyzing bivariate distributions, the tensor spline
approach [de Boor (2001)] has been studied by Stone (1994) in a nonparametric
regression setting, by Koo (1996) and Scott (1992) in a multivariate density esti-
mation without censored data and, as noted in Section 1, by Kooperberg (1998)
in the bivariate density estimation with bivariate right censored data. Recently, an
application of the tensor B-spline estimation of a bivariate monotone function has
also been investigated by Wang and Taylor (2004) in a biomedical study.

In this paper, we propose a partially monotone tensor spline estimation of the
joint CDF. To solve problem (2.4), the unknown joint CDF is approximated by a
linear combination of the tensor spline basis functions, and its two marginal CDFs
are approximated by linear combinations of spline basis functions as well. Then
the problem converts to maximizing the sieve log likelihood with respect to the
unknown spline coefficients subject to a set of inequality constraints.

2.2. B-spline-based estimation. In this section, the spline-based sieve maxi-
mum likelihood estimation problem is reformulated as a constrained optimization
problem with respect to the coefficients of B-spline functions.

Suppose two sets of the normalized B-spline basis functions of order l

[Schumaker (1981)], {N(1),l
i (s)}pn

i=1 and {N(2),l
j (t)}qn

j=1 are constructed in [L1,

U1] × [L2,U2] with the knot sequence {ui}pn+l
i=1 satisfying L1 = u1 = · · · = ul <

ul+1 < · · · < upn < upn+1 = · · · = upn+l = U1 and the knot sequence {vj }qn+l
j=1 sat-

isfying L2 = v1 = · · · = vl < vl+1 < · · · < vqn < vqn+1 = · · · = vqn+l = U2, where
pn = O(nv) and qn = O(nv) for some 0 < v < 1.

Define

�n =
{
τn = (Fn,Fn,1,Fn,2) :Fn(s, t) =

pn∑
i=1

qn∑
j=1

αi,jN
(1),l
i (s)N

(2),l
j (t),

Fn,1(s) =
pn∑
i=1

βiN
(1),l
i (s), Fn,2(t) =

qn∑
j=1

γjN
(2),l
j (t)

}
,

with α = (α1,1, . . . , αpn,qn), β = (β1, . . . , βpn) and γ = (γ1, . . . , γqn) subject to
the following conditions in (2.5):

α1,1 ≥ 0,

α1,j+1 − α1,j ≥ 0 for j = 1, . . . , qn − 1,

αi+1,1 − αi,1 ≥ 0 for i = 1, . . . , pn − 1,(2.5)
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(αi+1,j+1 − αi+1,j ) − (αi,j+1 − αi,j ) ≥ 0

for i = 1, . . . , pn − 1, j = 1, . . . , qn − 1,

β1 − α1,qn ≥ 0, γ1 − αpn,1 ≥ 0,

(βi+1 − βi) − (αi+1,qn − αi,qn) ≥ 0 for i = 1, . . . , pn − 1,

(γj+1 − γj ) − (αpn,j+1 − αpn,j ) ≥ 0 for j = 1, . . . , qn − 1,

βpn + γqn − αpn,qn ≤ 1.

(2.5) is established corresponding to the constraints given in (2.3). Using the
properties of B-spline, a straightforward algebra yields �n ⊂ F . To obtain the
tensor B-spline-based sieve likelihood with bivariate current status data, τn =
(Fn,Fn,1,Fn,2) ∈ �n is substituted into (2.2) to result in

l̃n(α,β, γ ;data)

=
n∑

k=1

{
δ1,kδ2,k log

pn∑
i=1

qn∑
j=2

αi,jN
(1),l
i (c1,k)N

(2),l
j (c2,k)

+ δ1,k(1 − δ2,k) log

{ pn∑
i=1

βiN
(1),l
i (c1,k)

−
pn∑
i=1

qn∑
j=1

αi,jN
(1),l
i (c1,k)N

(2),l
j (c2,k)

}

+ (1 − δ1,k)δ2,k log

{ qn∑
j=1

γjN
(2),l
j (c2,k)(2.6)

−
pn∑
i=1

qn∑
j=1

αi,jN
(1),l
i (c1,k)N

(2),l
j (c2,k)

}

+ (1 − δ1,k)(1 − δ2,k) log

{
1 −

pn∑
i=1

βiN
(1),l
i (c1,k)

−
qn∑

j=1

γjN
(2),l
j (c2,k)

+
pn∑
i=1

qn∑
j=1

αi,jN
(1),l
i (c1,k)N

(2),l
j (c2,k)

}}
.

Hence, the proposed sieve MLE with the B-spline basis functions is the maxi-
mizer of (2.6) over �n.
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REMARK 2.1. The spline-based sieve MLE in �n is the MLE defined in a
sub-class of F . Hence, the spline-based sieve MLE is anticipated to have good
asymptotic properties if this sub-class “approximates” to F as n → ∞.

3. Asymptotic properties. In this section, we describe asymptotic properties
of the tensor spline-based sieve MLE of joint CDF with bivariate current status
data. Study of the asymptotic properties of the proposed sieve estimator requires
some regularity conditions, regarding the event times, observation times and the
choice of knot sequences. The following conditions sufficiently guarantee the re-
sults in the forthcoming theorems.

Regularity conditions:

(C1) Both ∂F0(s,t)
∂s

and ∂F0(s,t)
∂t

have positive lower bounds in [L1,U1] ×
[L2,U2].

(C2) ∂2F0(s,t)
∂s ∂t

has a positive lower bound b0 in [L1,U1] × [L2,U2].
(C3) F0(s, t),F0,1(s) and F0,2(t) are all continuous differentiable up to order

p in domain [L1,U1] × [L2,U2], [L1,U1] and [L2,U2], respectively.
(C4) The observation times (C1,C2) follow a bivariate distribution defined in

[l1, u1] × [l2, u2], with l1 > L1, u1 < U1, l2 > L2 and u2 < U2.
(C5) The density of the joint distribution of (C1,C2) has a positive lower bound

in [l1, u1] × [l2, u2].
(C6) The knot sequences {ui}pn+l

i=1 and {vj }qn+l
j=1 of the B-spline basis functions,

{N(1),l
i }pn

i=1 and {N(2),l
j }qn

j=1, satisfy that both
mini �

(u)
i

maxi �
(u)
i

and
minj �

(v)
j

maxj �
(v)
j

have positive

lower bounds, where �
(u)
i = ui+1 − ui for i = l, . . . , pn and �

(v)
j = vj+1 − vj for

j = l, . . . , qn.

REMARK 3.1. (C1) implies that dF0,1(s)

ds
and dF0,2(t)

dt
have positive lower

bounds on [L1,U1] and [L2,U2], respectively. (C3) implies that both ∂F0(s,t)
∂s

and
∂F0(s,t)

∂t
have positive upper bounds in [L1,U1] × [L2,U2]; dF0,1(s)

ds
and dF0,2(t)

dt

have positive upper bounds on [L1,U1] and [L2,U2], respectively.

Let

�n,1 =
{
τ = (Fn,Fn,1,Fn,2) :Fn(s, t) =

pn∑
i=1

qn∑
j=1

αi,jN
(1),l
i (s)N

(2),l
j (t),

Fn,1(s) =
pn∑
i=1

βiN
(1),l
i (s),Fn,2(t) =

qn∑
j=1

γjN
(2),l
j (t)

}
,
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with α = (α1,1, . . . , αpn,qn), β = (β1, . . . , βpn) and γ = (γ1, . . . , γqn) subject to
the following conditions in (3.1):

α1,1 ≥ 0,

α1,j+1 − α1,j ≥ 0 for j = 1, . . . , qn − 1,

αi+1,1 − αi,1 ≥ 0 for i = 1, . . . , pn − 1,

(αi+1,j+1 − αi+1,j ) − (αi,j+1 − αi,j )

≥ b0 mini1:l≤i1≤pn �
(u)
i1

minj1:l≤j1≤qn �
(v)
j1

l2
(3.1)

for i = 1, . . . , pn − 1, j = 1, . . . , qn − 1,

β1 − α1,qn ≥ 0, γ1 − αpn,1 ≥ 0,

(βi+1 − βi) − (αi+1,qn − αi,qn) ≥ 0 for i = 1, . . . , pn − 1,

(γj+1 − γj ) − (αpn,j+1 − αpn,j ) ≥ 0 for j = 1, . . . , qn − 1,

βpn + γqn − αpn,qn ≤ 1.

REMARK 3.2. Note that �n,1 is a sub-class of �n due to the change from the
forth inequality of (2.5) to that of (3.1). The choice of �n,1 is mainly for the tech-
nical convenience in justifying the asymptotic properties. In the forth inequality

of (3.1), b0 is the positive lower bound of ∂2F0(s,t)
∂s ∂t

stated in (C2). This inequality

will guarantee that ∂2Fn(s,t)
∂s ∂t

also has a positive lower bound which is necessary
for the proof of Lemma 0.1 in the supplemental article [Wu and Zhang (2012)].
It is obvious that as sample n increases to infinity, the right-hand side of the forth
inequality in (3.1) will approach to 0.

We study the asymptotic properties in the feasible region of the observation
times: [l1, u1] × [l2, u2]. Let �′

n = {τ ∈ �n,1, for (s, t) ∈ [l1, u1] × [l2, u2]} and
let τ0 = (F0(s, t),F0,1(s),F0,2(t)) with (s, t) ∈ [l1, u1] × [l2, u2]. Under (C4),
the maximization of l̃n(α,β, γ ;data) over �n,1 is actually the maximization of

l̃n(α,β, γ ;data) over �′
n. Throughout the study of asymptotic properties, we de-

note τ̂n the maximizer of l̃n(α,β, γ ;data) over �′
n.

Denote Lr(Q) the norm associated with a probability measure Q which is de-
fined as

‖f ‖Lr(Q) = (
Q|f |r)1/r =

(∫
|f |r dQ

)1/r

.

In the following, Lr(PC1,C2), Lr(PC1) and Lr(PC2) are denoted as the Lr -norms
associated with the joint and marginal probability measures of the observation
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times (C1,C2), respectively, and Lr(P ) is denoted as the Lr -norm associated with
the joint probability measure P of observation and event times (T1, T2,C1,C2).

Based on the L2-norms, the distance between τn = (Fn,Fn,1,Fn,2) ∈ �′
n and

τ0 = (F0,F0,1,F0,2) is defined as

d(τn, τ0)

= (‖Fn − F0‖2
L2(PC1,C2 ) + ‖Fn,1 − F0,1‖2

L2(PC1 ) + ‖Fn,2 − F0,2‖2
L2(PC2 )

)1/2
.

THEOREM 3.1. Suppose (C2)–(C6) hold, and pn = O(nv), qn = O(nv) for
v < 1; that is, the numbers of interior knots of knot sequences {ui}pn+l

1 and

{vj }qn+l
1 are both in the order of nv for v < 1. Then

d(τ̂n, τ0) →p 0 as n → ∞.

THEOREM 3.2. Suppose (C1)–(C6) hold, and pn = O(nv), qn = O(nv) for
v < 1; that is, the numbers of interior knots of knot sequences {ui}pn+l

1 and

{vj }qn+l
1 are both in the order of nv for v < 1. Then

d(τ̂n, τ0) = Op

(
n−min{pv,(1−2v)/2}).

REMARK 3.3. Theorem 3.2 implies that the optimal rate of convergence of the
proposed estimator is np/(2(p+1)), achieved by letting pv = (1 − 2v)/2. This rate
is equal to n1/3 when p = 2 and improves as p (the degree of smoothness of the
true joint distribution) increases. Nonetheless, the rate will never exceed n1/2. The
result of Theorem 3.2 also indicates that the proposed method potentially results
in an estimate of the targeted joint CDF with a faster convergence rate than the
conventional NPMLE method given in Song (2001).

4. Computation of the spline-based sieve MLE. For the B-spline-based
sieve MLE, the constraint set (3.1) complicates the numerical implementation. We
propose to compute the sieve MLE using I -spline basis functions for the sake of
numerical convenience. The I -spline basis functions are defined by Ramsay (1988)
as

I l
i (s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, i > j,
j∑

m=i

(um+l+1 − um)Ml+1
m (s)/(l + 1), j − l + 1 ≤ i ≤ j,

1, i < j − l + 1

(4.1)

for uj ≤ s < uj+1, where Ml
ms are the M-spline basis functions of order l, studied

by Curry and Schoenberg (1966), and can be calculated recursively by

M1
i (s) = 1

ui+1 − ui

, ui ≤ s < ui+1,
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Ml
i (s) = l[(s − ui)M

l−1
i (s) + (ui+l − s)Ml−1

i+1(s)]
(l − 1)(ui+l − ui)

.

By the relationship between the B-spline basis functions and the M-spline basis
functions [Schumaker (1981)], it can be easily demonstrated that the I -spline basis
function defined in (4.1) can be expressed by a sum of the B-spline basis functions

I l−1
i (s) =

pn∑
m=i

Nl
m(s).(4.2)

Consequently, the spline-based sieve space can be reconstructed using the I -spline
basis functions with a different set of constraints:


n =
{
τn = (Fn,Fn,1,Fn,2) :Fn(s, t) =

pn∑
i=1

qn∑
j=1

ηi,j I
(1),l−1
i (s)I

(2),l−1
j (t),

Fn,1(s) =
pn∑
i=1

{ qn∑
j=1

ηi,j + ωi

}
I

(1),l−1
i (s),

Fn,2(t) =
qn∑

j=1

{ pn∑
i=1

ηi,j + πj

}
I

(2),l−1
j (t)

}

with η = (η1,1, . . . , ηpn,qn), ω = (ω1, . . . ,ωpn) and π = (π1, . . . , πqn) subject to
the following conditions in (4.3),

ηi,j ≥ 0 for i = 1, . . . , pn, j = 1, . . . , qn,

ωi ≥ 0, i = 1, . . . , pn,(4.3)

πj ≥ 0, j = 1, . . . , qn,

pn∑
i=1

qn∑
j=1

ηi,j +
pn∑
i=1

ωi +
qn∑

j=1

πj ≤ 1.

Then the spline-based sieve log likelihood can be also expressed in I -spline, and
the spline-based sieve MLE can be obtained by maximizing the log likelihood in
I -spline over 
n.

REMARK 4.1. Class 
n is actually equivalent to �n, and hence the I -spline-
based sieve MLE is the same as the B-spline-based sieve MLE. It is advocated in
numerical implementation due to the simplicity of the constraints in class 
n.

Given pn and qn, the proposed sieve estimation problem described above is
actually a restricted parametric maximum likelihood estimation problem with re-
spect to the coefficients associated with the I -spline and the tensor I -spline basis
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functions. Jamshidian (2004) generalized the gradient projection algorithm orig-
inally proposed by Rosen (1960) using a weighted L2-norm ‖x‖ = x′Wx with a
positive definite matrix W for the restricted maximum likelihood estimation prob-
lems. Because the constraint set (4.3) is made by linear inequalities, the maximiza-
tion of (2.2) in the I -spline form over 
n can be efficiently implemented by the
generalized gradient projection algorithm [Jamshidian (2004)] and is described as
follows.

First we rewrite (4.3) as Xθ ≤ y, where X = (x1, x2, . . . , xpn·qn+pn+qn,

xpn·qn+pn+qn+1)
T with x1 = (−1,0, . . . ,0)T , x2 = (0,−1,0, . . . ,0)T ,

xpn·qn+pn+qn = (0, . . . ,0,−1)T , xpn·qn+pn+qn+1 = (1, . . . ,1)T ; θ = (η,ω,π) =
(θ1, θ2, . . . , θpn·qn+pn+qn); and y = (0, . . . ,0,1)T . If some I -spline coefficients
equal 0 or all coefficients sum up to 1, then we say their corresponding con-
straints are active and let X̄θ = ȳ represent all the active constraints and a vec-
tor � of integers to index the active constraints. For example, if � = (2,1,pn ·
qn + pn + qn + 1), then the second, first and last constraints become active, and
X̄ = (x2, x1, xpn·qn+pn+qn+1)

T and ȳ = (0,0,1)T .

Let ˙̃
l(θ) and H(θ) be the gradient and Hessian matrix of the log likelihood

given by (2.2) in the I -spline form, respectively. Note that H(θ) may not be neg-
ative definite for every θ . We use W = −H(θ) + δI , where I is identity matrix,
and δ > 0 is chosen as any value that guarantees W being positive definite. With
that introduced, the generalized gradient projection algorithm is implemented as
follows.

Step 1 (Computing the feasible search direction). Compute

d = (d1, d2, . . . , dpn·qn+pn+qn)

= {
I − W−1X̄T (

X̄W−1X̄T )−1
X̄

}
W−1˙̃l(θ).

Step 2 (Forcing the updated θ to fulfill the constraints). Compute

γ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
{

min
i:di<0

{
− θi

di

}
,

1 − ∑pn·qn+pn+qn

i=1 θi∑pn·qn+pn+qn

i=1 di

}
,

if
pn·qn+pn+qn∑

i=1

di > 0,

min
i:di<0

{
− θi

di

}
, else.

Doing so guarantees that θi + γ di ≥ 0 for i = 1,2, . . . , pn · qn + pn + qn,
and

∑pn·qn+pn+qn

i=1 (θi + γ di) ≤ 1.
Step 3 (Updating the solution by step-halving line search). Find the smallest inte-

ger k starting from 0 such that

l̃n
(
θ + (1/2)kγ d; ·) ≥ l̃n(θ; ·).

Replace θ by θ̃ = θ + min{(1/2)kγ,0.5}d .
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Step 4 (Updating � and X̄). Modify � by adding indexes of new I -spline coef-
ficients when these new coefficients become 0 and adding pn · qn + pn +
qn + 1 when the sum of all I -spline coefficients becomes 1. Modify X̄

accordingly.
Step 5 (Checking the stopping criterion). If ‖d‖ ≥ ε, for small ε, go to Step 1;

otherwise, compute λ = (X̄W−1X̄T )−1X̄W−1˙̃l(θ).
(i) If the j th component λj ≥ 0 for all j , set θ̂ = θ and stop.

(ii) If there is at least one j such that λj < 0, let j∗ = arg minj :λj<0{λj },
then remove j∗th component from � and remove the j∗th row from
X̄, and go to Step 1.

5. Simulation studies. Copula models are often used in studying bivariate
event time data [Shih and Louis (1995), Wang and Ding (2000), Sun, Wang and
Sun (2006), Zhang et al. (2010)]

We consider the bivariate Clayton copula function

Cα(u, v) = (
u(1−α) + v(1−α) − 1

)1/(1−α)
,

with α > 1. For the Clayton copula, a larger α corresponds to a stronger positive
association between the two random variables. The association parameter α and
Kendall’s τ for the Clayton copula is related by τ = α−1

α+1 .
In the simulation studies, we compare the proposed sieve MLE to the con-

ventional NPMLE, computed using the algorithm developed by Maathuis (2005).
As we mentioned previously, this NPMLE is not unique. Only the total mass in
each selected rectangle is estimated, therefore the estimated joint CDF is based on
where the mass is placed in each rectangle. We denote U-NPMLE and L-NPMLE
as the NPMLE for which the probability mass is placed at the upper right and
lower left corners of each rectangle, respectively.

The proposed sieve MLE and both U-NPMLE and L-NPMLE are evaluated
with various combinations of Kendall’s τ (τ = 0.25,0.75) and sample sizes (n =
100,200). Under each of the four settings, the Monte-Carlo simulation with 500
repetitions is conducted, and the cubic (l = 4) I -spline basis functions are used in
the proposed sieve estimation method. The event times (T1, T2), monitoring times
(C1, C2) and the knots selection of the cubic I -spline basis functions are illustrated
as follows:

(i) (Event times). (T1, T2) are generated from the Clayton copula with the
two marginal distributions being exponential with the rate parameter 0.5. Under
this setting, Pr(Ti ≥ 5) < 0.1 for i = 1,2 and [L1,U1] × [L2,U2] is chosen to be
[0,5] × [0,5].

(ii) (Censoring times). Both C1 and C2 are generated independently from the
uniform distribution on [0.0201,4.7698] [Pr(0 < Ti < 0.0201) = Pr(4.7698 <

Ti < 5) = 0.01, for i = 1,2]. The observation region [l1, u1] × [l2, u2] =
[0.0201,4.7698] × [0.0201,4.7698] is inside [0,5] × [0,5] and the CDFs are
bounded away from 0 and 1 inside the observation region.
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(iii) (Knots selection). As in other spline-based estimations [Lu, Zhang and
Huang (2007, 2009), Zhang, Hua and Huang (2010) and Wu and Gao (2011)],
the number of interior knots mn is chosen as [n1/3] − 1, where [n1/3] is the in-
teger part of n1/3. For moderate sample sizes, say n = 100,200, our experiments
show that mn = [n1/3] − 1 is a reasonable choice for the number of interior knots.
Therefore, we choose 4 and 5 as the numbers of interior knots for sample sizes
100 and 200, respectively. The number of spline basis functions is determined by
pn = qn = mn + 4 in our computation. Two end knots of all knot sequences are
chosen to be 0 and 5. For each sample of bivariate observation times (C1,C2),
the interior knots for {I (1),3

i }pn

i=1 and {I (2),3
j }qn

j=1 are allocated at the k/(mn + 1)

quantiles (k = 1, . . . ,mn) of the samples of C1 and C2, respectively.

Table 1 displays the estimation biases (Bias) and the square roots of mean square
errors (MSE1/2) from the Monte-Carlo simulation of 500 repetitions for the pro-

TABLE 1
Comparison of the estimation bias and square root of mean square error among the sieve MLE,

U-NPMLE and L-NPMLE at four selected points

T2

0.1 4.6

T1 Sieve U-Non L-Non Sieve U-Non L-Non

Sample size n = 100, Kendall’s τ = 0.25
0.1 Bias −5.00e–3 −1.78e–2 −1.91e–2 2.69e–2 −2.22e–3 −3.93e–2

MSE1/2 2.75e–2 2.24e–2 1.91e–2 7.32e–2 6.68e–2 5.53e–2

4.6 Bias 2.33e–2 −2.69e–2 −4.19e–2 4.04e–2 1.32e–1 1.09e–1
MSE1/2 7.18e–2 6.68e–2 5.17e–2 8.24e–2 1.49e–1 1.35e–1

Sample size n = 200, Kendall’s τ = 0.25
0.1 Bias −4.39e–3 −1.85e–2 −1.91e–2 2.26e–2 −2.87e–2 −3.89e–2

MSE1/2 2.42e–2 1.98e–2 1.91e–2 6.05e–2 5.52e–2 5.04e–2

4.6 Bias 1.65e–2 −3.29e–2 −4.03e–2 2.15e–2 1.10e–1 9.65e–2
MSE1/2 5.31e–2 5.50e–2 5.30e–2 6.10e–2 1.29e–1 1.21e–1

Sample size n = 100, Kendall’s τ = 0.75
0.1 Bias −1.81e–2 −3.62e–2 −4.33e–2 2.91e–2 −1.95e–2 −4.11e–2

MSE1/2 4.63e–2 5.36e–2 4.34e–2 7.88e–2 8.19e–2 5.62e–2

4.6 Bias 3.08e–2 −1.90e–2 −4.04e–2 1.98e–2 1.03e–1 8.09e–2
MSE1/2 8.16e–2 8.45e–2 5.83e–2 6.47e–2 1.22e–1 1.08e–1

Sample size n = 200, Kendall’s τ = 0.75
0.1 Bias −2.03e–2 −4.00e–2 −4.31e–2 2.01e–2 −2.48e–2 −3.81e–2

MSE1/2 3.86e–2 4.52e–2 4.37e–2 5.87e–2 5.90e–2 5.27e–2

4.6 Bias 2.09e–2 −2.48e–2 −3.93e–2 1.08e–2 8.37e–2 7.20e–2
MSE1/2 6.00e–2 6.27e–2 5.35e–2 5.24e–2 1.04e–1 9.40e–2
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TABLE 2
Comparison of the overall estimation biases and the overall mean square errors among sieve MLE,

U-NPMLE and L-NPMLE

Sample size

100 200

τ Sieve U-Non L-Non Sieve U-Non L-Non

0.25 |Bias| 7.56e–3 3.24e–2 4.24e–2 6.70e–3 2.62e–2 3.11e–2
MSE1/2 7.93e–2 1.25e–1 1.26e–1 6.13e–2 1.03e–1 1.03e–1

0.75 |Bias| 1.11e–2 1.50e–2 2.49e–2 7.29e–3 1.33e–2 1.88e–2
MSE1/2 7.40e–2 1.10e–1 1.11e–1 5.77e–2 8.45e–2 8.53e–2

posed sieve MLE (Sieve) and both U-NPMLE (U-Non) and L-NPMLE (L-Non)
of the bivariate CDF at 4 selected pairs of time points (s1, s2) near the corners of
the estimation region with different sample sizes and Kendall’s τ values. The esti-
mation results at those selected points are comparable among the three estimators.
Table 2 presents the overall estimation bias and mean square error for the three
estimators by calculating the average of absolute values of estimation bias and the
average of square roots of mean square error taking from 2209 pairs of (s1, s2)

with both s1 and s2 ranging uniformly from 0.1 to 4.7. It appears that the sieve
MLE outperforms its counterparts with a smaller overall bias and a smaller overall
mean square error. The mean square error of the proposed sieve MLE noticeably
decreases as sample size increases from 100 to 200.

For sample size n = 200, the estimation biases and the square roots of mean
square error of the sieve MLE and U-NPMLE for the joint CDF from the same
Monte-Carlo simulation are graphed in Figure 1 through Figure 4 for Kendall’s
τ = 0.25 and 0.75. These figures clearly indicate that the bias and the MSE of
the sieve MLE are noticeably smaller than that of U-NPMLE inside the closed
region [0.1,4.7] × [0.1,4.7]. It is also seen that the bias of the sieve MLE near

FIG. 1. Comparison of the estimation bias between the sieve MLE (left) and the U-NPMLE (right)
for the joint CDF when sample size n = 200, Kendall’s τ = 0.25.
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FIG. 2. Comparison of the estimation bias between the sieve MLE (left) and the U-NPMLE (right)
for the joint CDF when sample size n = 200, Kendall’s τ = 0.75.

the origin increases as Kendall’s τ increases. As a by-product of the estimation
methods, the average estimate of the marginal CDF of T1 from the same Monte-
Carlo simulation for both the proposed sieve MLE (Sieve) and U-NPMLE (U-Non)
are also computed and plotted in Figure 5 along with the true marginal CDF (True),
F1. Figure 5 clearly indicates that the bias of the proposed sieve MLE for the
marginal CDF is markedly smaller than that of the U-NPMLE, particularly near
the two end points of interval [0.1,4.7].

FIG. 3. Comparison of the square root of mean square error between the sieve MLE (left) and the
U-NPMLE (right) for the joint CDF when sample size n = 200, Kendall’s τ = 0.25.

FIG. 4. Comparison of the square root of mean square error between the sieve MLE (left) and the
U-NPMLE (right) for the joint CDF when sample size n = 200, Kendall’s τ = 0.75.
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FIG. 5. Comparison of the estimation bias between the sieve MLE and the U-NPMLE for estimat-
ing the marginal CDF of T1 when sample size n = 200 (left: Kendall’s τ = 0.25; right: Kendall’s
τ = 0.75).

6. Final remarks. The estimation of the joint CDF with bivariate event time
data is a challenging problem in survival analysis. Development of sophisticated
methods for this type of problems is much needed for applications. In this paper,
we develop a tensor spline-based sieve maximum likelihood estimation method for
estimating the joint CDF with bivariate current status data. This sieve estimation
approach reduces the dimension of unknown parameter space and estimates both
the joint and marginal CDFs simultaneously. As a result, the proposed method
enjoys two advantages in studying bivariate event time data: (i) it provides a unique
estimate for the joint CDF, and the numerical implementation is less demanding
due to dimension reduction; (ii) the estimation procedure automatically takes into
account the possible correlation between the two event times by satisfying the
constraints, which intuitively results in more efficient estimation for the marginal
CDFs compared to the existing methods for estimating the marginal CDFs using
only the univariate current status data.

Under mild regularity conditions, we also show that the proposed spline-based
sieve estimator is consistent and could converge to the true joint CDF at a rate
faster than n1/3 if the target CDF is smooth enough. Both theoretical and numeri-
cal results provide evidence that the proposed sieve MLE outperforms the conven-
tional NPMLE studied in the literature. The superior performance of the proposed
method mainly rests on the smoothness of the true bivariate distribution function.
In many applications of bivariate survival analysis, this assumption of smoothness
is reasonable and shall motivate the use of the proposed method.

Though the development of the proposed method is illustrated with bivariate
current status data as it algebraically simplifies the theoretical justification, the
proposed method can be readily extended to bivariate interval censored data [Song
(2001) and Maathuis (2005)] as well as bivariate right censored data [Dabrowska
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(1988) and Kooperberg (1998)] with parallel theoretical and numerical justifica-
tions. It is potentially applicable in any nonparametric estimation problem of mul-
tivariate distribution function.

While the consistency and rate of convergence are fully studied for the pro-
posed estimator, the study of its asymptotic distribution is not accomplished. With
the knowledge of asymptotic distribution of the conventional NPMLE for current
status data studied in Groeneboom and Wellner (1992) and Song (2001), it is for
sure that the asymptotic distribution of the proposed estimator will not be Gaus-
sian. Discovering the limiting distribution for the proposed estimator remains an
interesting yet a very challenging problem for future investigation.

7. Proofs of the theorems. For the rest of this paper, we denote K as a uni-
versal positive constant that may be different from place to place and Pnf =
1
n

∑n
i=1 f (Xi), the empirical process indexed by f (X).

PROOF OF THEOREM 3.1. We show τ̂n is a consistent estimator by verifying
the three conditions of Theorem 5.7 in van der Vaart (1998).

For (s, t) ∈ [l1, u1] × [l2, u2], we define � by

� = {
τ(s, t) = (

F(s, t),F1(s),F2(t)
) :

τ satisfies the following conditions (a) and (b)
}
:

(a) F(s, t) is nondecreasing in both s and t , F1(s) − F(s, t) is nondecreasing
in s but nonincreasing in t , F2(t)−F(s, t) is nondecreasing in t but nonincreasing
in s, and 1 − F1(s) − F2(t) + F(s, t) is nonincreasing in both s and t ,

(b) F(s, t) ≥ b1, F1(s) − F(s, t) ≥ b2, F2(t) − F(s, t) ≥ b3 and 1 − F1(s) −
F2(t) + F(s, t) ≥ b4, for b1 > 0, b2 > 0, b3 > 0 and b4 > 0.

Since (C2) and (C6) hold, Lemma 0.1 in the supplemental article [Wu and
Zhang (2012)] implies that there exist b1 > 0, b2 > 0, b3 > 0 and b4 > 0 small
enough to guarantee that τ0 ∈ � and �′

n ∈ �. We suppose b1, b2, b3 and b4, in
condition (b) above, are chosen small enough such that � contains both τ0 and
�′

n.
Denote L = {l(τ ) : τ ∈ �} the class of functions induced by the log likelihood

with a single observation x = (s, t, δ1, δ2), where

l(τ ) = δ1δ2 logF(s, t) + δ1(1 − δ2) log
[
F1(s) − F(s, t)

]
+ (1 − δ1)δ2 log

[
F2(t) − F(s, t)

]
+ (1 − δ1)(1 − δ2) log

[
1 − F1(s) − F2(t) + F(s, t)

]
,

with δ1 = 1[T1≤s], δ2 = 1[T2≤t]. We denote M(τ ) = P l(τ ) and Mn(τ ) = Pn(l(τ )).
First, we verify supτ∈� |Mn(τ ) − M(τ )| →p 0.
It suffices to show that L is a P -Glivenko–Cantelli, since

sup
τ∈�

∣∣Mn(τ ) − M(τ )
∣∣ = sup

l(τ )∈L

∣∣(Pn − P)l(τ )
∣∣ →p 0.



1626 Y. WU AND Y. ZHANG

Let A1 = { logF(s,t)
logb1

: τ = (F,F1,F2) ∈ �}, and G1 = {1[l1,s]×[l2,t], l1 ≤ s ≤
u1, l2 ≤ t ≤ u2}. By conditions (a) and (b), we know 0 ≤ logF(s,t)

logb1
≤ 1 and logF(s,t)

logb1
is nonincreasing in both s and t . Therefore A1 ⊆ sconv(G1), the closure of the sym-
metric convex hull of G1 [van der Vaart and Wellner (1996)]. Hence Theorem 2.6.7
in van der Vaart and Wellner (1996) implies that

N
(
ε, G1,L2(QC1,C2)

) ≤ K

(
1

ε

)4

(7.1)

for any probability measure QC1,C2 of (C1,C2). By the facts that V (G1) = 3 and
the envelop function of G1 is 1. (7.1) is followed by

logN
(
ε, sconv(G1),L2(QC1,C2)

) ≤ K

(
1

ε

)4/3

,

using the result of Theorem 2.6.9 in van der Vaart and Wellner (1996). Hence

logN
(
ε,A1,L2(QC1,C2)

) ≤ K

(
1

ε

)4/3

.(7.2)

Let

A′
1 = {

δ1δ2 logF(s, t) : τ = (F,F1,F2) ∈ �
}
.

Suppose the centers of ε-balls of A1 are fi, i = 1,2, . . . , [K(1
ε
)4/3], and then

for any joint probability measure Q of (T1, T2,C1,C2),

‖δ1δ2 logF − δ1δ2 logb1fi‖2
L2(Q)

= Q

[
δ1δ2 logb1

(
logF

logb1
− fi

)]2

= E

[
1[T1<C1,T2<C2] logb1

(
logF(C1,C2)

logb1
− fi(C1,C2)

)]2

= E

{
E

{[
1[T1<C1,T2<C2] logb1

(
logF(C1,C2)

logb1
− fi(C1,C2)

)]2∣∣∣C1,C2

}}

= EC1,C2

[
F0(C1,C2) logb1

(
logF(C1,C2)

logb1
− fi(C1,C2)

)]2

≤ EC1,C2

[
logb1

(
logF(C1,C2)

logb1
− fi(C1,C2)

)]2

= (logb1)
2
∥∥∥∥ logF

logb1
− fi

∥∥∥∥
2

L2(QC1,C2 )

.
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Let b̂1 = − logb1 then δ1δ2 logb1fi, i = 1,2, . . . , [K(1
ε
)4/3], are the centers of

εb̂1-balls of A′
1. Hence by (7.2) we have logN(εb̂1,A

′
1,L2(Q)) ≤ K(1

ε
)4/3, and it

follows that∫ 1

0
sup
Q

√
logN

(
εb̂1,A

′
1,L2(Q)

)
dε ≤

∫ 1

0

√
K

(
1

ε

)2/3

dε < ∞.

It is obvious that the envelop function of A′
1 is b̂1, therefore A′

1 is a P -Donsker
by Theorem 2.5.2 in van der Vaart and Wellner (1996).

Let

A′
2 = {

δ1(1 − δ2) log
(
F1(s) − F(s, t)

)
: τ = (F,F1,F2) ∈ �

}
,

A′
3 = {

(1 − δ1)δ2 log
(
F2(t) − F(s, t)

)
: τ = (F,F1,F2) ∈ �

}
and

A′
4 = {

(1 − δ1)(1 − δ2) log
(
1 − F1(s) − F2(t) − F(s, t)

)
:

τ = (F,F1,F2) ∈ �
}
.

Following the same arguments for showing A′
1 being a P -Donsker, it can be

shown that A′
2,A

′
3 and A′

4 are all P -Donsker classes. So L is P -Donsker as well.
Since P -Donsker is also P -Glivenko–Cantelli, it then follows that supl(τ )∈L |(Pn −
P)l(τ )| →p 0.

Second, we verify M(τ0) − M(τ ) ≥ Kd2(τ0, τ ), for any τ ∈ �.
Note that

M(τ0) − M(τ )

= P
{
l(τ0) − l(τ )

}
= P

{
δ1δ2 log

F0

F
+ δ1(1 − δ2) log

F0,1 − F0

F1 − F

+ (1 − δ1)δ2 log
F0,2 − F0

F2 − F

+ (1 − δ1)(1 − δ2) log
1 − F0,1 − F0,2 + F0

1 − F1 − F2 + F

}

= PC1,C2

{
F0 log

F0

F
+ (F0,1 − F0) log

F0,1 − F0

F1 − F

+ (F0,2 − F0) log
F0,2 − F0

F2 − F

+ (1 − F0,1 − F0,2 + F0) log
1 − F0,1 − F0,2 + F0

1 − F1 − F2 + F

}
,
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and it follows that

M(τ0) − M(τ ) = PC1,C2

{
Fm

(
F0

F

)
+ (F1 − F)m

(
F0,1 − F0

F1 − F

)

+ (F2 − F)m

(
F0,2 − F0

F2 − F

)
(7.3)

+ (1 − F1 − F2 + F)m

(
1 − F0,1 − F0,2 + F0

1 − F1 − F2 + F

)}
,

where m(x) = x log(x) − x + 1 ≥ (x − 1)2/4 for 0 ≤ x ≤ 5.

Since F has positive upper bound,

PC1,C2

{
Fm

(
F0

F

)}
≥ PC1,C2

{
F

(
F0

F
− 1

)2/
4
}

≥ KPC1,C2(F0 − F)2

(7.4)
= K‖F0 − F‖2

L2(PC1,C2 ).

Similarly, we can easily show that

PC1,C2

{
(F1 − F)m

(
F0,1 − F0

F1 − F

)}
(7.5)

≥ K
∥∥(F0,1 − F1) − (F0 − F)

∥∥2
L2(PC1,C2 ),

PC1,C2

{
(F2 − F)m

(
F0,2 − F0

F2 − F

)}
(7.6)

≥ K
∥∥(F0,2 − F2) − (F0 − F)

∥∥2
L2(PC1,C2 )

and

PC1,C2

{
(1 − F1 − F2 + F)m

(
1 − F0,1 − F0,2 + F0

1 − F1 − F2 + F

)}
(7.7)

≥ K
∥∥(1 − F0,1 − F0,2 + F0) − (1 − F1 − F2 + F)

∥∥2
L2(PC1,C2 ).

So combining (7.4), (7.5), (7.6) and (7.7) results in

M(τ0) − M(τ ) ≥ K
(‖F0 − F‖2

L2(PC1,C2 )

+ ∥∥(F0,1 − F1) − (F0 − F)
∥∥2
L2(PC1,C2 )

+ ∥∥(F0,2 − F2) − (F0 − F)
∥∥2
L2(PC1,C2 )

)
.

Let f1 = ‖F0 − F‖2
L2(PC1,C2 ), f2 = ‖F0,1 − F1‖2

L2(PC1 ) and f3 = ‖F0,2 −
F2‖2

L2(PC2 ). If f1 is the largest among f1, f2, f3, then

M(τ0) − M(τ ) ≥ Kf1 ≥ (K/3)(f1 + f2 + f3).(7.8)
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If f2 is the largest, then

M(τ0) − M(τ ) ≥ K
[
f1 + (f2 − f1)

] ≥ Kf2 ≥ (K/3)(f1 + f2 + f3).(7.9)

If f3 is the largest, then

M(τ0) − M(τ ) ≥ K
[
f1 + (f3 − f1)

] ≥ Kf3 ≥ (K/3)(f1 + f2 + f3).(7.10)

Therefore, by (7.8), (7.9) and (7.10), it follows that

M(τ0) − M(τ ) ≥ Kd2(τ0, τ ).

Finally, we verify Mn(τ̂n) − Mn(τ0) ≥ −op(1).

Since (C2), (C3) and (C6) hold, Lemma 0.3 in the supplemental article [Wu
and Zhang (2012)] implies that there exists τn = (Fn,Fn,1,Fn,2) in �′

n such that
for τ0 = (F0,F0,1,F0,2), ‖Fn − F0‖∞ ≤ K(n−pv), ‖Fn,1 − F0,1‖∞ ≤ K(n−pv)

and ‖Fn,2 − F0,2‖∞ ≤ K(n−pv). Since τ̂n maximizes Mn(τ ) in �′
n, Mn(τ̂n) −

Mn(τn) > 0. Hence,

Mn(τ̂n) − Mn(τ0) = Mn(τ̂n) − Mn(τn) + Mn(τn) − Mn(τ0)

≥ Mn(τn) − Mn(τ0) = Pn

(
l(τn)

) − Pn

(
l(τ0)

)
(7.11)

= (Pn − P)
{
l(τn) − l(τ0)

} + P
{
l(τn) − l(τ0)

}
.

Define

Ln = {
l(τn) : τn = (Fn,Fn,1,Fn,2) ∈ �′

n,‖Fn − F0‖∞ ≤ K
(
n−pv)

,

‖Fn,1 − F0,1‖∞ ≤ K
(
n−pv)

,‖Fn,2 − F0,2‖∞ ≤ K
(
n−pv)}

.

Since (a +b+ c+d)2 ≤ 4(a2 +b2 + c2 +d2), then for any l(τn) ∈ Ln, we have

P
{
l(τn) − l(τ0)

}2

≤ 4P

(
δ1δ2 log

Fn

F0

)2

+ 4P

(
δ1(1 − δ2) log

Fn,1 − Fn

F0,1 − F0

)2

+ 4P

(
(1 − δ1)δ2 log

Fn,2 − Fn

F0,2 − F0

)2

(7.12)

+ 4P

(
(1 − δ1)(1 − δ2) log

1 − Fn,1 − Fn,2 + Fn

1 − F0,1 − F0,2 + F0

)2

≤ 4PC1,C2

(
log

Fn

F0

)2

+ 4PC1,C2

(
log

Fn,1 − Fn

F0,1 − F0

)2

+ 4PC1,C2

(
log

Fn,2 − Fn

F0,2 − F0

)2

+ 4PC1,C2

(
log

1 − Fn,1 − Fn,2 + Fn

1 − F0,1 − F0,2 + F0

)2

.
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The facts that ‖Fn − F0‖∞ ≤ K(n−pv) and that F0 has a positive lower bound
result in 1/2 < Fn

F0
< 2 for large n. It can be easily shown that if 1/2 ≤ x ≤ 2,

| log(x)| ≤ K|x − 1|. Hence | log Fn

F0
| ≤ K|Fn

F0
− 1|, and it follows that

PC1,C2

∣∣∣∣log
Fn

F0

∣∣∣∣
2

≤ KPC1,C2

∣∣∣∣Fn

F0
− 1

∣∣∣∣
2

≤ KPC1,C2 |Fn − F0|2 → 0.(7.13)

Similar arguments yield

PC1,C2

∣∣∣∣log
Fn,1 − Fn

F0,1 − F0

∣∣∣∣
2

≤ KPC1,C2

∣∣(Fn,1 − Fn) − (F0,1 − F0)
∣∣2 → 0,(7.14)

PC1,C2

∣∣∣∣log
Fn,2 − Fn

F0,2 − F0

∣∣∣∣
2

≤ KPC1,C2

∣∣(Fn,2 − Fn) − (F0,2 − F0)
∣∣2 → 0(7.15)

and

PC1,C2

∣∣∣∣log
1 − Fn,1 − Fn,2 + Fn

1 − F0,1 − F0,2 + F0

∣∣∣∣
2

→ 0.(7.16)

Combining (7.12)–(7.16) results in P {l(τn) − l(τ0)}2 → 0, as n → ∞. Hence

ρP

{
l(τn) − l(τ0)

} = {
varP

[
l(τn) − l(τ0)

]}1/2

(7.17)
≤ {

P
[
l(τn) − l(τ0)

]2}1/2 →n→∞ 0.

Since L is shown a P -Donsker in the first part of the proof, Corollary 2.3.12 of
van der Vaart and Wellner (1996) yields that

(Pn − P)
{
l(τn) − l(τ0)

} = op

(
n−1/2)

,(7.18)

by the fact that both l(τn) and l(τ0) are in L and (7.17).
In addition,∣∣P {

l(τn) − l(τ0)
}∣∣ ≤ P

∣∣l(τn) − l(τ0)
∣∣ ≤ K

{
P

[
l(τn) − l(τ0)

]2}1/2 →n→∞ 0.

Therefore P(l(τn) − l(τ0)) ≥ −o(1) as n → ∞. Hence,

Mn(τ̂n) − Mn(τ0) ≥ op

(
n−1/2) − o(1) ≥ −op(1).

This completes the proof of d(τ̂n, τ0) → 0 in probability. �

PROOF OF THEOREM 3.2. We derive the rate of convergence by verifying
the conditions of Theorem 3.4.1 of van der Vaart and Wellner (1996). To apply
the theorem to this problem, we denote Mn(τ) = M(τ ) = P l(τ ) and dn(τ1, τ2) =
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d(τ1, τ2). The maximizer of M(τ ) is τ0 = (F0,F0,1,F0,2).

(i) Let τn ∈ �′
n with τn satisfying d(τn, τ0) ≤ K(n−pv) and δn = n−pv . We

verify that for large n and any δ > δn,

sup
δ/2<d(τ,τn)≤δ,τ∈�′

n

(
M(τ ) − M(τn)

) ≤ −Kδ2.

Since d(τ, τ0) ≥ d(τ, τn) − d(τ0, τn) ≥ δ/2 − K(n−pv), then for large n,
d(τ, τ0) ≥ Kδ. In the proof of consistency, we have already established that
M(τ ) − M(τ0) ≤ −Kd2(τ, τ0) ≤ −Kδ2. And as shown in the proof of con-
sistency, M(τ0) − M(τn) ≤ Kd2(τ0, τn) ≤ K(n−2pv). Therefore, for large n,
M(τ )−M(τn) = M(τ )−M(τ0)+M(τ0)−M(τn) ≤ −Kδ2 +K(n−2pv) = −Kδ2.

(ii) We shall find a function ψ(·) such that

E
{

sup
δ/2<d(τ,τn)≤δ,τ∈�′

n

Gn(τ − τn)
}

≤ K
ψ(δ)√

n

and δ → ψ(δ)/δα is decreasing on δ, for some α < 2, and for rn ≤ δ−1
n , it satisfies

r2
nψ(1/rn) ≤ K

√
n for every n.

Let

Ln,δ = {
l(τ ) − l(τn) : τ ∈ �′

n and δ/2 < d(τ, τn) ≤ δ
}
.

First, we evaluate the bracketing number of Ln,δ .

Let Fn = {F : τ = (F,F1,F2) ∈ �′
n, δ/2 ≤ d(τ, τn) ≤ δ}, Fn,1 = {F1 : τ =

(F,F1,F2) ∈ �′
n, δ/2 ≤ d(τ, τn) ≤ δ} and Fn,2 = {F2 : τ = (F,F1,F2) ∈ �′

n,

δ/2 ≤ d(τ, τn) ≤ δ}.
Denote τn = (Fn,Fn,1,Fn,2). Lemma 0.5 in the supplemental article [Wu

and Zhang (2012)] implies that there exist ε-brackets [DL
i ,DU

i ], i = 1,2, . . . ,

[(δ/ε)Kpnqn] to cover Fn − Fn. Moreover, Lemma 0.6 in the supplemental arti-
cle [Wu and Zhang (2012)] implies there exist ε-brackets [D(1),L

j ,D
(1),U
j ], j =

1,2, . . . , [(δ/ε)Kpn], to cover Fn,1 − Fn,1, and there exist ε-brackets [D(2),L
k ,

D
(2),U
k ], k = 1,2, . . . , [(δ/ε)Kqn], to cover Fn,2 − Fn,2.

Denote FL
i ≡ DL

i + Fn, FU
i ≡ DU

i + Fn, F
(1),L
j ≡ D

(1),L
j + Fn,1, F

(1),U
j ≡

D
(1),U
j + Fn,1, F

(2),L
k ≡ D

(2),L
k + Fn,2 and F

(2),U
k ≡ D

(2),U
k + Fn,2. Let

lUi,j,k = δ1δ2 logFU
i + δ1(1 − δ2) log

(
F

(1),U
j − FL

i

)
+ (1 − δ1)δ2 log

(
F

(2),U
k − FL

i

)
+ (1 − δ1)(1 − δ2) log

(
1 − F

(1),L
j − F

(2),L
k + FU

i

)
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and

lLi,j,k = δ1δ2 logFL
i + δ1(1 − δ2) log

(
F

(1),L
j − FU

i

)
+ (1 − δ1)δ2 log

(
F

(2),L
k − FU

i

)
+ (1 − δ1)(1 − δ2) log

(
1 − F

(1),U
j − F

(2),U
k + FL

i

)
.

Then for any l(τ ) ∈ {Ln,δ + l(τn)}, there exist i, j, k, for i = 1,2, . . . , [(δ/ε)Kpnqn],
j = 1,2, . . . , [(δ/ε)Kpn] and k = 1,2, . . . , [(δ/ε)Kqn], such that lLi,j,k ≤ l(τ ) ≤
lUi,j,k and the number of brackets [lLi,j,k, lUi,j,k]′s is bounded by (δ/ε)Kpnqn ·
(δ/ε)Kpn · (δ/ε)Kqn.

Note that∥∥lUi,j,k − lLi,j,k
∥∥∞

≤
∥∥∥∥log

FU
i

FL
i

∥∥∥∥∞
+

∥∥∥∥log
F

(1),U
j − FL

i

F
(1),L
j − FU

i

∥∥∥∥∞

+
∥∥∥∥log

F
(2),U
k − FL

i

F
(2),L
k − FU

i

∥∥∥∥∞
+

∥∥∥∥log
1 − F

(1),L
j − F

(2),L
j + FU

i

1 − F
(1),U
j − F

(2),U
j + FL

i

∥∥∥∥∞
.

Since for any τ ∈ �′
n, F has a positive lower bound, then for a small ε,

FL
i can be made to have a positive lower bound as well. Combining with the

fact that FU
i (s, t) is close to FL

i (s, t) guarantees that 0 ≤ FU
i

FL
i

− 1 ≤ 1 for i =
1,2, . . . , [(δ/ε)Kpnqn]. Note that by logx ≤ (x − 1) for 0 ≤ (x − 1) ≤ 1, therefore

log
FU

i

FL
i

≤ FU
i

FL
i

− 1.

Hence,∥∥∥∥log
FU

i

FL
i

∥∥∥∥∞
≤

∥∥∥∥FU
i

FL
i

− 1
∥∥∥∥∞

≤
∥∥∥∥ 1

FL
i

(
FU

i − FL
i

)∥∥∥∥∞
≤ K

∥∥FU
i − FL

i

∥∥∞ ≤ Kε.

Similarly, by the definition of �′
n, we can easily show that

∥∥∥∥log
F

(1),U
j − FL

i

F
(1),L
j − FU

i

∥∥∥∥∞
≤ Kε,

∥∥∥∥log
F

(2),U
k − FL

i

F
(2),L
k − FU

i

∥∥∥∥∞
≤ Kε

and ∥∥∥∥log
1 − F

(1),L
j − F

(2),L
j + FU

i

1 − F
(1),U
j − F

(2),U
j + FL

i

∥∥∥∥∞
≤ Kε.

Hence, the fact that L2-norm is bounded by L∞-norm results in

N[ ]
{
ε, Ln,δ,L2(P )

} ≤ N[ ]
{
ε, Ln,δ,‖ · ‖∞

} ≤ (δ/ε)Kpnqn.(7.19)
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Next, we show that P {l(τ ) − l(τn)}2 ≤ Kδ2 for any l(τ ) − l(τn) ∈ Ln,δ . Since
for any τ = (F,F1,F2) with d(τ, τn) < δ, ‖F − Fn‖L2(PC1,C2 ) ≤ d(τ, τn) ≤ δ.
Then with (C1), (C3) and (C5), Lemma 0.7 in the supplemental article [Wu and
Zhang (2012)] implies that for a small δ > 0 and a sufficiently large n, F and Fn

are both very close to F0 at every point in [l1, u1] × [l2, u2]. Therefore, F and Fn

are very close to each other at every point in [l1, u1]×[l2, u2]. Then the fact that Fn

has a positive lower bound results in 1/2 < F
Fn

< 2. Hence | log F
Fn

| ≤ K| F
Fn

− 1|,
and it follows that

PC1,C2

∣∣∣∣log
F

Fn

∣∣∣∣
2

≤ KPC1,C2

∣∣∣∣ F

Fn

− 1
∣∣∣∣
2

≤ KPC1,C2 |F − Fn|2 ≤ Kδ2.

Again by the definition of �′
n, we can similarly show that, given a small δ > 0,

when n is large enough, the following inequalities are true:

PC1,C2

∣∣∣∣log
F1 − F

Fn,1 − Fn

∣∣∣∣
2

≤ Kδ2, PC1,C2

∣∣∣∣log
F2 − F

Fn,2 − Fn

∣∣∣∣
2

≤ Kδ2

and

PC1,C2

∣∣∣∣log
1 − F1 − F2 + F

1 − Fn,1 − Fn,2 + Fn

∣∣∣∣
2

≤ Kδ2.

Hence for any l(τ ) − l(τn) ∈ Ln,δ , it is true that P {l(τ ) − l(τn)}2 ≤ Kδ2. It
is obvious that Ln,δ is uniformly bounded by the structure of the log likelihood.
Lemma 3.4.2 of van der Vaart and Wellner (1996) indicates that

EP ‖Gn‖Ln,δ ≤ KJ̃[ ]
{
δ, Ln,δ,L2(P )

}[
1 + J̃[ ]{δ, Ln,δ,L2(P )}

δ2
√

n

]
,

where

J̃[ ]
{
δ, Ln,δ,L2(P )

} =
∫ δ

0

√
1 + logN[ ]

{
ε, Ln,δ,L2(P )

}
dε ≤ K(pnqn)

1/2δ,

by (7.19). This gives ψ(δ) = (pnqn)
1/2δ + (pnqn)/(n

1/2). It is easy to see that
ψ(δ)/δ is a decreasing function of δ. Note that for pn = qn = nv ,

n2pvψ
(
1/npv) = n2pvnvn−pv + n2pvn2vn−1/2 = n1/2{

npv+v−1/2 + n2pv+2v−1}
.

Therefore, if pv ≤ (1 − 2v)/2, n2pvψ(1/npv) ≤ 2n1/2. Moreover, n1−2v ×
ψ(1/n(1−2v)/2) = 2n1/2. This implies if rn = nmin{pv,(1−2v)/2}, then rn ≤ δ−1

n and
r2
nψ(1/rn) ≤ Kn1/2.

It is obvious that M(τ̂n)−M(τn) ≥ 0 and d(τ̂n, τn) ≤ d(τ̂n, τ0)+ d(τ0, τn) → 0
in probability. Therefore, it follows by Theorem 3.4.1 in van der Vaart and Wellner
(1996) that rnd(τ̂n, τn) = Op(1). Hence, by d(τn, τ0) ≤ K(n−pv)

rnd(τ̂n, τ0) ≤ rnd(τ̂n, τn) + rnd(τn, τ0) = Op(1). �
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for the proofs of Theorems 3.1 and 3.2.
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