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A standard tool for model selection in a Bayesian framework is the Bayes
factor which compares the marginal likelihood of the data under two given
different models. In this paper, we consider the class of hierarchical loglinear
models for discrete data given under the form of a contingency table with
multinomial sampling. We assume that the prior distribution on the loglinear
parameters is the Diaconis–Ylvisaker conjugate prior, and the uniform is the
prior distribution on the space of models. Under these conditions, the Bayes
factor between two models is a function of the normalizing constants of the
prior and posterior distribution of the loglinear parameters. These constants
are functions of the hyperparameters (m,α) which can be interpreted, respec-
tively, as the marginal counts and total count of a fictive contingency table.

We study the behavior of the Bayes factor when α tends to zero. In this
study, the most important tool is the characteristic function JC of the interior
C of the convex hull C of the support of the multinomial distribution for a
given hierarchical loglinear model. If hC is the support function of C, the
function JC is the Laplace transform of exp(−hC). We show that, when α

tends to 0, if the data lies on a face Fi of Ci, i = 1,2, of dimension ki , the
Bayes factor behaves like αk1−k2 . This implies in particular that when the
data is in C1 and in C2, that is, when ki equals the dimension of model Ji , the
sparser model is favored, thus confirming the idea of Bayesian regularization.

In order to find the faces of C, we need to know its facets. We show that
since here C is a polytope, the denominator of the rational function JC is the
product of the equations of the facets. We also identify a category of facets
common to all hierarchical models for discrete variables, not necessarily bi-
nary. Finally, we show that these facets are the only facets of C when the
model is graphical with respect to a decomposable graph.

1. Introduction. We consider data given under the form of a contingency ta-
ble representing the classification of N individuals according to a finite set of cri-
teria. We assume that the cell counts in the contingency table follow a multinomial
distribution. We also assume that the cell probabilities are modeled according to
a hierarchical loglinear model (henceforth called hierarchical model). The multi-
nomial distribution for the hierarchical model is a natural exponential family of
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the general form L(θ)−1 exp〈θ, t〉μ(dt) where μ is the generating measure and L

is its Laplace transform. The Diaconis–Ylvisaker [7] (henceforth abbreviated DY)
conjugate prior is the probability

I (m,α)−1L(θ)−α exp(α〈θ,m〉) dθ,(1.1)

where m and α are hyperparameters and I (m,α) is the normalization constant.
Massam et al. [16] have identified and studied the Diaconis–Ylvisaker conjugate
prior for the so called baseline constrained loglinear parametrization of the multi-
nomial for hierarchical models. This prior is a generalization of the hyper Dirichlet
defined by Dawid and Lauritzen [5] for graphical models Markov with respect to
decomposable graphs. Since decomposable graphical models, and more generally
graphical models, form a subclass of the class of hierarchical models we will call
this prior the generalized hyper Dirichlet. For the generalized hyper Dirichlet or
the hyper Dirichlet, α is a positive scalar while m is a vector. The scalar α can be
interpreted as the total sample size of a fictive contingency table, and m can be in-
terpreted as the vector of various marginal counts of the same table. It is therefore
traditional to take α small relatively to the total data count N . In this paper, we
will use the loglinear parametrization for the hierarchical model and the general-
ized hyper Dirichlet as the prior, as defined in [16].

In a Bayesian framework, the Bayes factor is one of the main tools for model
selection in the class of hierarchical models. The aim of this paper is to study the
behavior of the Bayes factor for the comparison of two hierarchical models J1 and
J2 when α is very small, that is, when α → 0. The motivation for this study is two-
fold. First, it has been observed that as α → 0, in general, the Bayes factor will
select the sparser model, that is, the model with the parameter space of smallest
dimension or equivalently the model with the least number of interactions. This is
commonly called the phenomenon of regularization. Second, Steck and Jaakkola
([19], Proposition 1) have shown that, however, this is not always the case and that,
in fact, the behavior of the Bayes factor between two Bayesian networks differing
by one edge only depends upon a quantity which they call dEDF, effective degrees
of freedom, and which depends solely on the data. Comparing two such Bayesian
networks is equivalent to comparing two graphical models on three variables, the
saturated model and the model Markov with respect to the two-link chain, with
one conditional independence. It is therefore natural to seek a generalization of the
results in [19] when two arbitrary hierarchical models are considered.

Our aim is to formally explain when the sparser model is selected, when it is not
and why. We also want to develop tools to predict what the behavior of the Bayes
factor will be for two given models.

Since in the case of the DY conjugate prior, the posterior probability of model J

given the data is equal to the ratio of the posterior and prior normalizing constants,
we will be led to study the asymptotic behavior, as α → 0, of the normalizing
constant I (m,α) in (1.1). In this study, one important mathematical object will
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surface. The multinomial distribution for a given hierarchical model J is a natural
exponential family. We denote by C the interior of the convex hull C of the support
of the measure generating this multinomial distribution. The position of the data
with respect to C, that is, whether the data is in C or on one of the faces of C, will
determine the behavior of the Bayes factor. The important object is the character-
istic function JC of this polytope C, defined in (3.1); JC(m) is also defined in the
literature as n! times the volume of the polar set of C − m; see [3]. It is through
JC that we will be able to find the asymptotic behavior of I (m,α). Our central
statistical result is that, as α → 0, the Bayes factor B1,2 between two hierarchical
models J1 and J2 behaves as follows:

B1,2 ∼ Dαk1−k2,(1.2)

where D is a positive constant and ki, i = 1,2, are, respectively, the dimension of
the face of Ci containing the data in its relative interior. When the data is in both
the open convex sets Ci, i = 1,2, we have of course that

B1,2 ∼ Dα|J1|−|J2|,
where |J | denotes the dimension of the model, and this explains that in general the
Bayes factor favors the sparser model since, in general for low-dimensional tables,
the data is in the open polytope Ci . However with modern genetic or sociological
data, we often deal with very sparse high-dimensional tables. In that case, the data
may well be on a face of dimension ki < |Ji |. Then, as shown in [19] for three-
factor models, the sparser model is not necessarily favored by the Bayes factor. We
do not consider, in this paper, the case α → +∞ since in that case, the behavior of
I (m,α) is well known; see, for example, [18] or [12].

The contents of the paper are as follows. In Section 2, we give the matrix rep-
resentation of the hierarchical loglinear model that we are going to work with, and
we recall the form of the multinomial and the DY conjugate prior for that model.
In Section 3, we show that since C is a polytope, the function JC is a quotient of
polynomials and its denominator is the product of the equations of the facets of C.
We also give the basic theorems on the behavior of I (m,α) and JC(m) when m

goes close to the boundary of C. In Section 4, we give our main statistical results
and relate them to those in [19]. In Section 5, we give a category of facets of C

common to all hierarchical models. We also show that these are the only facets in
the case of a decomposable graphical model.

Some of the proofs are given in the paper and some in the supplementary
file [15]. For ease of reference, the numbering in the supplementary file [15] is
exactly the same as in the paper.

2. Preliminaries.

2.1. The hierarchical model. While we keep the traditional notation as given
in [5] for cells and cell counts of the contingency table, we simplify the notation
introduced in [16] for the set of nonzero loglinear parameters.
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Let V be a finite set of indices representing |V | criteria. We assume that the
criterion labeled by v ∈ V can take values in a finite set Iv . We consider N indi-
viduals classified according to these |V | criteria. The resulting counts are gathered
in a contingency table such that

I = ∏
v∈V

Iv

is the set of cells i = (iv, v ∈ V ). If D ⊂ V and i ∈ I , we write iD = (iv, v ∈ D) for
the D-marginal cell. We write RI for the space of real functions i 	→ x(i) defined
on I . The element x ∈ RI is seen sometimes as a vector, sometimes as the function
i 	→ x(i) on I .

Let D be a family of nonempty subsets of V such that D ∈ D, D1 ⊂ D and D1 
=
∅ implies D1 ∈ D. In order to avoid trivialities we assume

⋃
D∈D D = V . In the

literature such a family D is called a hypergraph (see [14]) or an abstract simplicial
complex (see [9]) or more simply the generating class (see [8]). Following the
notation introduced in [4], we denote by �D the linear subspace of x ∈ RI such
that there exist functions θD ∈ RI for D ∈ D depending only on iD and such that
x = ∑

D∈D θD , that is,

�D =
{
x ∈ R

I :∃θD ∈ R
I ,D ∈ D such that θD(i) = θD(iD) and x = ∑

D∈D
θD

}
.

The hierarchical model generated by D is the set of probabilities p = (p(i))i∈I on
I such that p(i) > 0 for all i and such that logp ∈ �D . It is convenient to write for
p in �D

logp(i) = θ∅ + ∑
D∈D

θD(iD),(2.1)

where θ∅ does not depend on i and is thus a constant.
Needless to say, representation (2.1) is not unique. In order to make it unique,

we need to impose certain constraints on the parameters θ(iD), iD ∈ ID,D ∈ D.
To this end, we first select a special element in each Iv . For convenience we denote
it 0. By abuse of notation, we also denote 0 in I the cell with all its components
equal to 0. This special element in Iv is denoted rv in [4] and i∗ in [14] and [16],
but we find the notation 0 more convenient. Actually the choice of the special ele-
ment 0 in each Iv is arbitrary and does not affect our results. It has been proved in
[4] and later more explicitly in [14], Proposition B.4 and formula (B.11), that rep-
resentation (2.1) holds and is unique if we impose the constraints that, for D ∈ D,

if iv = 0 for some v ∈ D then θD(iD) = 0.(2.2)

Using (2.2), representation (2.1) becomes

logp(i) = θ∅ + ∑
D∈D,iv 
=0,∀v∈D

θD(iD).(2.3)
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To reach a more concise notation, we are led to define the support S(i) of a cell i

as

S(i) = {v ∈ V ; iv 
= 0}
and the particular subset J of I as follows:

J = {j ∈ I, S(j) ∈ D}.(2.4)

We see immediately that for a given D ∈ D and for a given θD(iD) such that
iγ 
= 0,∀γ ∈ D, there is only one j ∈ J such that S(j) = D and jD = jS(j) = iD
and conversely. We can therefore write

θD(iD) = θj for the unique j ∈ J with S(j) = D, iD = jD.

The unique representation (2.3) of logp ∈ �D is therefore given by the free pa-
rameters

{θj , j ∈ J },(2.5)

and (2.3) becomes

logp(i) = θ0 + ∑
j : S(j)=D,jD=iD,D∈D

θj ,(2.6)

where θ0 is the unique number such that
∑

i∈I p(i) = 1.
Again, to simplify notation, for i ∈ I and j ∈ J , we write

j � i

to mean that S(j) is contained in S(i) and that jS(j) = iS(j). Note that we use the
symbol � rather than the traditional ≺ for partial ordering because � is a partial
ordering on J but not on I . We will never use the notation i � i ′ for i and i ′ in
I \ J . However � has the property that if j, j ′ ∈ J and i ∈ I , then

j � j ′ and j ′ � i ⇒ j � i.(2.7)

Associated to the partial ordering � on J , there are two classical functions on
J × J which will be used in the sequel: the ζ function and the Moebius function
μ defined as follows:

ζ(j, j ′) = 1 if j � j ′ and 0 otherwise;(2.8)

μ(j, j ′) = (−1)|S(j ′)|−|S(j)| if j � j ′ and 0 otherwise.(2.9)

A proof of the fact that (2.9) is indeed the Moebius function of the poset (J,�)

is in the proof of Lemma 2.1 of the supplementary file [15]. Using the symbol �,
representation (2.6) becomes

logp(i) = θ0 + ∑
j�i

θj .(2.10)
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EXAMPLE 2.1. Let V = {a, b, c}, D = {a, b, c, ab, bc} and Ia = {0,1,2} =
Ib and Ic = {0,1}. Thus I has 3 × 3 × 2 = 18 elements, and

J = {100,200,010,020,001,110,210,120,220,011,021}
has 11 elements with respective supports a, a, b, b, c, ab, ab, ab, ab, bc, bc. For
i = 201 the set of j in J such that j � i is {200,001}. For i = 211 this set is
{210,200,011,001,010} and so on. For these two cells, the unique representation
(2.10) for logp(i) is

logp(201) = θ0 + θ200 + θ001,

logp(211) = θ0 + θ200 + θ010 + θ001 + θ210 + θ011.

We now proceed to give the general matrix form of the loglinear model (2.10).
We fix an arbitrary order of the elements of I and of the elements of J . Let
(gi)i∈I and (ej )j∈J be the canonical basis of RI and RJ , respectively, each en-
dowed with their natural Euclidean structure. In our example above, the gi’s are
18-dimensional vectors with components equal to 0 except for the component cor-
responding to cell i ∈ I which is 1, while the ej are 11-dimensional vectors with
all components equal to 0 except for that corresponding to the cell j ∈ J . Using
the notation

logp = (
logp(0), logp(i), i ∈ I \ {0})t , θ = (θj , j ∈ J )t

and

θ̃ = (θ0, θj , j ∈ J )

we have the following.

PROPOSITION 2.1. The loglinear model defined by the representation (2.10)
can be written under matrix form as

logp = Xθ̃,(2.11)

where X is an (|I |) × (1 + |J |) matrix. Its first column is equal to 1I , the vector
with all components equal to 1 in RI . The other columns are indexed by j ∈ J and
are equal to ∑

i∈I,j�i

gi, j ∈ J.(2.12)

The rows of X are indexed by i ∈ I and equal to f̃i
t = (1, f t

i ) ∈ RJ+1 where

fi = ∑
j∈J,j�i

ej(2.13)
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with f̃0
t = (1,0, . . . ,0). Equivalently (2.11) can be written(

log
p(i)

p(0)
, i ∈ I \ {0}

)
= X−0θ,(2.14)

where X−0 is the (|I | − 1) × |J | matrix deduced from X by removing its first row
and first column. The rows of X−0 are the f t

i , i ∈ I .
The parameter θ ∈ RJ is uniquely defined by

θj = ∑
j ′∈J ;j ′�j

(−1)|S(j)|−|S(j ′)| log
p(j ′)
p(0)

.(2.15)

Moreover, the columns of X form a basis of �D which is therefore of dimension

1 + |J | with |J | = ∑
D∈D

∏
v∈D

(|Iv| − 1).(2.16)

Under multinomial sampling, θ0 is uniquely defined by e−θ0 = p(0)−1 = L(θ),
where

L(θ) = 1 + ∑
i∈I\{0}

exp〈fi, θ〉 = ∑
i∈I

exp〈fi, θ〉.(2.17)

PROOF. The expressions (2.12), (2.13) and (2.14) follow immediately from
representation (2.10) and the definitions of gi, i ∈ I , and ej , j ∈ J . The |J | × |J |
matrix XJ obtained from X by keeping only the rows and columns indexed by J is
representative of the zeta function [see (2.8)] of �, the partial order defined above
on J . The matrix XJ is therefore invertible, and its columns are independent. The
columns of X−0 are also therefore independent. The inverse of XJ is given by the
Moebius function [see (2.9)] of the partial order on J . So (2.15) follows immedi-
ately from the Mobius inversion theorem. Since 1I ∈ R|I | is clearly independent of
the other columns of X−0 in R|I |−1, the 1 + |J | columns of X form a basis of �D .
Thus the dimension of �D is given by (2.16). This dimension is also given in [4]
and [13]. To prove (2.17), we need only observe that p(i)

p(0)
= e〈θ,fi〉, i ∈ I \ {0}, and

p(0) = 1 − ∑
i∈I\{0} p(i) and solve for p(0). �

EXAMPLE 2.2. For the model defined by V = {a, b, c}, D = {a, b, c, ab, bc}
and Ia = {0,1} = Ib = Ic, we have I = (000,100,010,110,001,101,011,111)

and J = {(100), (010), (001), (110), (011)}. Then

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
1 1 0 0 0 0
1 0 1 0 0 0
1 1 1 0 1 0
1 0 0 1 0 0
1 1 0 1 0 0
1 0 1 1 0 1
1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

f000 = (0,0,0,0,0)t ,

f100 = (1,0,0,0,0)t ,

f010 = (0,1,0,0,0)t ,

f110 = (1,1,0,1,0)t ,

f001 = (0,0,1,0,0)t ,

f101 = (1,0,1,0,0)t ,

f011 = (0,1,1,0,1)t ,

f111 = (1,1,1,1,1)t .
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We also have

XJ =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
1 1 0 1 0
0 0 1 0 0
0 1 1 0 1

⎞
⎟⎟⎟⎟⎠ and X−1

J =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0

−1 −1 0 1 0
0 0 1 0 0
0 −1 −1 0 1

⎞
⎟⎟⎟⎟⎠ .

As mentioned above, our presentation (2.10) of the hierarchical loglinear model
defined by �D relies on the characterization of this model in Proposition B.4 and
formula (B.11) of [14]; see also [4]. We offer a different proof of this characteri-
zation in Section 2.1 of the supplementary file [15].

2.2. The multinomial distribution as a natural exponential family. We con-
sider a contingency table with cells i = (iv, v ∈ V ) ∈ I and cell counts n =
(n(i), i ∈ I ) with

∑
i∈I n(i) = N obtained from N i.i.d. observations of a mul-

tivariate Bernoulli variable with parameter (p(i), i ∈ I ), that is, with distribution∑
i∈I p(i)δgi

. For E ⊂ V we write nE(iE) = ∑
i′∈I ;iE=i′E n(i′) for the E-marginal

count. For the particular case E = S(j), j ∈ J , we write

t (j) = nE(jE).(2.18)

Then, using (2.11), we have∑
i∈I

n(i) logp(i) = 〈logp,n〉RI = 〈Xθ̃,n〉 = 〈θ̃ ,Xtn〉,(2.19)

where, from (2.12), Xtn = (
∑

i∈I n(i),
∑

j�i n(i), j ∈ J ) = (N, t (j), j ∈ J ). We
therefore have ∑

i∈I

n(i) logp(i) = Nθ0 + ∑
j∈J

t (j)θj(2.20)

and, using (2.17)

∏
i∈I

p(i)n(i) = exp
(∑

j∈J

t (j)θj − N log
(∑

i∈I

exp〈fi, θ〉
))

(2.21)

= exp
∑

j∈J t (j)θj

L(θ)N
.

EXAMPLE 2.3. For Example 2.2, the vector tJ = (t (j), j ∈ J ) of sufficient
statistics is

(t (100), t (010), t (001), t (110), t (011))

= (na(1), nb(1), nc(1), nab(1,1), nbc(1,1)).
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The multinomial distribution for the model generated by D is therefore a natural
exponential family on RJ characterized by the set J defined in (2.4). The family
is generated by a discrete measure on RJ whose Laplace transform is L(θ)N =
(
∑

i∈I e〈θ,fi〉)N . Clearly L is the Laplace transform of the counting measure

μ = ∑
i∈I

δfi
(2.22)

on the set of vectors (fi)i∈I . This exponential family is concentrated on a bounded
set of RJ , and therefore the set of parameters θ for which L is finite is the whole
space RJ . Hence the family is regular in the sense of Barndorff-Nielsen [2] and
Diaconis and Ylvisaker [7]. Since f0 is the zero vector in RJ and (N, t (j), j ∈
J ) = Xtn = ∑

i∈I n(i)f̃i , from (2.19), (2.20) and (2.21) it is clear that the vector
of sufficient statistics

tJ

N
=

(
t (j)

N
, j ∈ J

)t

= ∑
i∈I\{0}

n(i)

N
fi = ∑

i∈I

n(i)

N
fi(2.23)

belongs to the convex hull of (fi)i∈I . Let C ⊂ RJ be the interior of this convex
hull. In Proposition 2.2 below we state that the (fi)

′s are the extreme points of its
closure C. The proof is given in the supplementary file [15].

PROPOSITION 2.2. The extreme points of the convex hull of the support of the
measure μ as defined in (2.22) are the fi, i ∈ I , as defined in (2.13).

2.3. The DY conjugate prior for the loglinear parameters. From the form
(2.21) of the multinomial distribution and Theorem 1 in [7], the DY conjugate
prior distribution for θ has density with respect to the Lebesgue measure equal to

π(θ |mJ ,α,J ) = 1

IJ (mJ ,α)
× eα〈θ,mJ 〉

L(θ)α
,

where IJ (m,α) is the normalizing constant. It is proper if and only if the hyper-
parameter (α,mJ ) is such α > 0 and mJ ∈ C. The posterior probability of θ given
the data n = (n(i))i∈I and tJ as defined in (2.23) is

π

(
θ
∣∣∣αmJ + tJ

α + N
,α + N,J

)
.

In classical Bayesian model selection, the most probable models are selected by
means of Bayes factors. More precisely, models are compared two by two by
means of the Bayes factor B1,2 between model J1 and model J2. If the prior on the
set of all hierarchical models is uniform, we have

B1,2 = I2(m2, α)

I1(m1, α)
× I1((αm1 + t1)/(α + N),α + N)

I2((αm2 + t2)/(α + N),α + N)
,(2.24)
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where, for the sake of simplicity, m, t, I are indexed by k = 1,2 rather than by
J1, J2 and where m1 and m2 have been chosen in C1 and C2, respectively. The
aim of the present paper is to find the limit of B1,2 when α → 0. If we assume
that n(i) > 0 for all i ∈ I , then tk/N is in the interior of Ck , and under these
circumstances the second factor in the right-hand side of (2.24) has the finite limit
I1(

t1
N

,N)/I2(
t2
N

,N). For the first factor in (2.24), we will show that I (m,α) ∼α→0

JC(m)α−|J | where JC(m) will be defined in the next section. Thus when α → 0
the Bayes factor is equivalent to

α|J1|−|J2| JC2(m2)

JC1(m1)
× I1(t1/N,N)

I2(t2/N,N)
.

If we do not assume that n(i) > 0 for all i ∈ I , then tk/N might be on the boundary
of Ck for at least one k = 1,2 and we will have to further study the behavior of
I (m,α) and JC(m). This is done in the following section.

3. The limiting behavior of the prior normalizing constant. We give three
fundamental theoretical results in this section. We assume that m is in the interior
of C, the convex hull of the measure μ as defined in (2.22). Theorem 3.1 gives
the general form of JC(m) in terms of the affine forms defining the facets of C.
Theorem 3.2 gives the limit of I (m,α) when α → 0, and Theorem 3.3 describes
the behavior of JC(λm + (1 − λ)y) when y ∈ C \ C and λ → 0.

3.1. The characteristic function of a convex set. Given a finite-dimensional
real linear space E, let E∗ be its dual, that is, the space of all linear forms θ on E.
We write 〈θ, x〉 instead of θ(x) when (θ, x) ∈ E∗ ×E. We fix a Lebesgue measure
dθ on E∗ and a Lebesgue measure dx on E which must be compatible (this means
that if e is a basis of E, and e∗ is the corresponding dual basis of E∗, the product of
the respective volumes of the two cubes built on e and e∗ must be one). Needless to
say when E = Rn, then E∗ = E, 〈·, ·〉 is the usual inner product, and the Lebesgue
measure is the usual one. It will, however, be important in the sequel to distinguish
between E and E∗, and we therefore keep this notation.

If C ⊂ E is an open nonempty convex set not containing an (affine) line, its
polar set is

Co = {θ ∈ E∗; 〈θ, x〉 ≤ 1 ∀x ∈ C},
its support function hC :E∗ → (−∞,∞] is

hC(θ) = sup{〈θ, x〉;x ∈ C}
and its characteristic function is the function m 	→ JC(m) defined on C by

JC(m) =
∫
E∗

e〈θ,m〉−hC(θ) dθ.(3.1)
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We note that if C contained a line, we would have hC(θ) = ∞ almost everywhere
and JC ≡ 0. Faraut and Koranyi ([10], page 10) define JC when C is an open
convex salient cone. In that case, the polar set of C is the convex cone

Co = {θ ∈ E∗; 〈θ, x〉 ≤ 0 ∀x ∈ C},(3.2)

and hC(θ) = 0 if θ ∈ Co and hC(θ) = ∞ if θ /∈ Co. When C is a bounded set,
hC(θ) is finite for all θ ∈ E∗. We also have the following important property of
JC(·). Its proof can be found in the supplementary file [15].

LEMMA 3.1. Let C be an open convex set not containing a line, and let m ∈ C.
Then JC(m) is finite.

One can prove that JC(m) = ∞ if m /∈ C. Another property of JC(m) is that
when C is an open convex set of Rn not containing a line, the following formulas
hold:

JC(m) = n!Vol(C − m)o = n!
∫
Co

dθ

(1 − 〈θ,m〉)n+1 .(3.3)

For the first equality in (3.3), see [3], page 207, and [1], page 243. For the second
one, make the change of variable θ = θ ′/(1 + 〈θ ′,m〉) in the integral

∫
(C−m)o dθ ′.

Computing JC(m) when C is associated to an arbitrary hierarchical model is usu-
ally difficult except, as we shall see in Section 5.2, when the model is a graphical
decomposable model. Consider, however, the following simple example:

EXAMPLE 3.1. Let C = (0,1) ⊆ R. In this case, hC(θ) = max(0, θ), and for
0 < m < 1, we have

JC(m) =
∫ 0

−∞
eθm dθ +

∫ ∞
0

eθm−θ dθ = 1

m
+ 1

1 − m
= 1

m(1 − m)
.(3.4)

Two more examples of JC(m) will be given after Theorem 3.2 below. We now
give a theorem that states that JC(m) is the ratio of polynomials where the denom-
inator is equal to the product of the affine forms defining the facets of C. This will
be used in Section 5 to identify the facets of C for decomposable graphical models.
We first need the following lemma which computes the characteristic function of
a simplicial cone.

LEMMA 3.2. Let (x1, . . . , xn) be a basis of E, and let (ξ1, . . . , ξn) be its dual
basis in E∗ (i.e., 〈ξj , xi〉 = δ

j
i ). Consider the simplicial cone A of E∗ defined by

A = {θ = θ1ξ1 + · · · + θnξn; θ1 > 0, . . . , θn > 0}
= {θ ∈ E∗; 〈θ, x1〉 > 0, . . . , 〈θ, xn〉 > 0},
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and denote by Vol(ξ1, . . . , ξn) the volume of the parallelotope

{θ = θ1ξ1 + · · · + θnξn;0 ≤ θ1 ≤ 1, . . . ,0 ≤ θn ≤ 1}.
Then for all x in −Ao ⊂ E, that is, the opposite of the dual cone of A, we have∫

A
e−〈θ,x〉 dθ = Vol(ξ1, . . . , ξn)

〈ξ1, x〉 · · · 〈ξn, x〉 .

This lemma is elementary and is obtained by writing θ in the ξ basis and by
making the change of variable from the coordinates of θ in the canonical basis of
Rn to the coordinates in the ξ basis.

Recall that a facet of a polytope C ⊂ Rn with a nonempty interior is a face of
dimension n−1. More specifically a facet is the intersection of C with a supporting
hyperplane of C which contains n affinely independent points of C.

THEOREM 3.1. Let C ⊂ E be the nonempty interior of a bounded polytope C.
Let m ∈ C. Then we have

JC(m) = N(m)

D(m)
,

where D(m) = ∏K
k=1 gk(m) is the product of affine forms gk(m) in m such that

gk(m) = 0, k = 1, . . . ,K , define the facets of C and where N(m) is a polynomial
of degree < K .

The proof is in the supplementary file [15]. The idea of the proof is to partition
the integrating space E∗ into the cones A(f ) dual to the supporting cones to C at
f for f ∈ {fi, i ∈ I }. Each A(f ) is in turn split into a sum of simplicial cones, and
Lemma 3.2 is then used to compute these integrals.

3.2. The behavior of I (m,α) as α → 0. We have the following theorem.

THEOREM 3.2. Let μ be a positive measure on the n-dimensional linear
space E with closed convex support bounded and with nonempty interior C. De-
note by L(θ) = ∫

E e〈θ,x〉μ(dx) its Laplace transform. For m ∈ C and for α > 0
consider the Diaconis–Ylvisaker integral,

I (m,α) =
∫
E∗

eα〈θ,m〉

L(θ)α
dθ.

Then

lim
α→0

αnI (m,α) = JC(m).(3.5)
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Let us note immediately that a remarkable feature of this result is that the limit
JC(m) of αnI (m,α) depends on μ only through its convex support. For instance,
if E = R, the uniform measure on (0,1) and the sum μ = δ0 + δ1 of two Dirac
measures share the same C = (0,1) and the same JC(m) = (m(1 − m))−1. We
now need the following lemma.

LEMMA 3.3. Let μ be a bounded measure on some measurable space � and
let f be a positive, bounded and measurable function on �. Then we have:

(1) ‖f ‖p →p→∞ ‖f ‖∞;
(2) The function p 	→ ‖f ‖p is either decreasing on (0,∞) or there exists p0 ≥

0 such that it is decreasing on (0,p0] and increasing on [p0,+∞).

The proof of this lemma is simple and can be found in the supplementary
file [15].

PROOF OF THEOREM 3.2. In the integral αnI (m,α) we make the change of
variable y = αθ , and we obtain

αnI (m,α) =
∫
E∗

e〈y,m〉

L(y/α)α
dy.

We now apply the last lemma to � = C, to the bounded measure μ, to the function
f (x) = e〈y,x〉 for some fixed y ∈ E∗ and to p = 1/α. Denote by S the support
of μ. One easily sees that the support function of C satisfies

hC(θ) = sup{〈θ, x〉;x ∈ C} = max{〈θ, x〉;x ∈ S}
since C is the interior of the convex hull of S. As a consequence the essential sup
of f is ehC(y) and we get limα→0 L(y/α)α = ehC(y). Furthermore, by Lemma 3.3,
the function p 	→ ‖f ‖p is monotonic for p big enough. If p 	→ ‖f ‖p is increasing,

1
‖f ‖p

is decreasing, and then by the monotone convergence theorem,

lim
α→0

∫
E∗

e〈y,m〉

L(y/α)α
dy =

∫
E∗

e〈y,m〉

limα→0 L(y/α)α
dy =

∫
E∗

e〈y,m〉−hC(y) dy = JC(m).

If p 	→ ‖f ‖p is decreasing, p 	→ 1/‖f ‖p is increasing. In order to show that we
can invert the order of limit and integration and apply the monotone convergence
theorem as we did in the previous case, we need to insure that

∫
E∗ e〈y,m〉−hC(y) dy

is finite: Lemma 3.1 shows that it is true. �

We now give two more examples of functions JC(m) which we compute using
Theorem 3.2.
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EXAMPLE 3.2. Let e0 = 0 and (e1, . . . , en) be the canonical basis of Rn. Let
C be the interior of the simplex generated by e0, . . . , en. Then C is the set of
m ∈ Rn such that m = ∑n

j=0 λjej for some unique positive λ0, . . . , λn satisfying
λ1 + · · · + λn < 1. In this case

JC(m) = 1

m1m2 · · ·mn(1 − m1 − · · · − mn)
.

This result can be obtained by computing I (m,α) for μ = δe0 + ∑n
i=1 δei

. Using
elementary methods of integration, we find that

I (m,α) =
∫

Rn

eα〈θ,m〉

(1 + ∑n
i=1 eθi )α

dθ =
∫

Rn

∏n
i=1 eαmiθi

(1 + ∑n
i=1 eθi )α

n∏
i=1

dθi

=
∏n

i=0 �(αmi)

�(
∑n

i=0 αmi)
,

where m0 = 1 − ∑n
i=1 mi . Using z�(z) = �(1 + z) →z→0= 1 we immediately

obtain that

JC(m) = lim
α→0

αnI (m,α) = 1∏n
i=0 mi

.

EXAMPLE 3.3. Consider the graphical model with decomposable graph
a• − b• − c•. For simplicity, we will assume that the variables a, b, c are bi-
nary so that m = (mj , j ∈ J ) can be written m = (mD,D ∈ D) where D =
{a, b, c, ab, bc}. We shall generalize this example in Section 5. From formula (4.8)
in [16], we know that

I (m,α) = �
(
α(1 − ma − mb + mab)

)
�

(
α(ma − mab)

)
× �

(
α(mb − mab)

)
�(α(mab))�

(
α(1 − mb − mc + mbc)

)
× �

(
α(mb − mbc)

)
�

(
α(mc − mbc)

)
�(α(mbc))

× 1

�(αmb)�(α(1 − mb))
,

and therefore using z�(z) = �(1 + z) →z→0 1 again we obtain that

lim
α→0

α5I (m,α) = JC(m)

= mb(1 − mb)

mabmbc

× 1

(1 − ma − mb + mab)(ma − mab)(mb − mab)

× 1

(1 − mb − mc + mbc)(mb − mbc)(mc − mbc)
.
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3.3. The behavior of JC(λm+ (1 −λ)y) when y ∈ C \C and λ → 0. In prac-
tice, the choice of the hyperparameters m and α is ours, and for a given model J ,
it is traditional to take m = (mj , j ∈ J ) to be the vector of J -marginal counts in
a fictive contingency table with cell counts all equal and equal to 1

|I | . In any case,
as long as all fictive cell counts are positive, m belongs to the open set C and the
behavior of I (m,α) is given by Theorem 3.2. When studying the Bayes factor, we
will have to consider the case where the data belongs to the boundary C \ C = ∂C

of C, that is to a face of C. To do so, we will need to describe the behavior of
JC(z) as z approaches the boundary of C along a straight line. This is done in the
following theorem.

THEOREM 3.3. Let C ⊂ E be an open polytope with dimE = n. Let y ∈ ∂C,
let F be the face of C containing y in its relative interior and let k be the dimension
of F . Then when λ → 0,

lim
λ→0

λn−k
JC

(
λm + (1 − λ)y

) = D,

where D is a positive constant.

The proof is in the Appendix.

4. The limiting behavior of the Bayes factor. Let us recall that, under the
uniform distribution on the class of hierarchical models, the Bayes factor between
two models J1 and J2 is equal to

B1,2 = I1((αm1 + t1)/(α + N),α + N)I2(m2, α)

I2((αm2 + t2)/(α + N),α + N)I1(m1, α)
,

where ti = tJi
= (t (j), j ∈ Ji), i = 1,2. The central result of this section is Corol-

lary 4.2 which gives the behavior of B1,2 depending on where the data ti
N

sits on
Ci, i = 1,2. This result covers all possible cases. The first possible case is that
both ti

N
are in Ci . In that case, each data point is on the face of Ci of dimension

ki = |Ji |. In the second case, we have t1
N

in C1, that is, on the face of dimension
k1 = |J1|, and t2

N
in C2 \ C2 on a face of dimension k2 < |J2|. Similarly if we have

t1
N

∈ C1 \ C1 and t2
N

∈ C2. In the third case, we have both ti
N

∈ Ci \ Ci on faces of
dimension ki < |Ji |, respectively. For the first case, as we already know, we need
only look at the behavior of I (m,α) when α → 0 and the answer is given by The-
orem 3.2. We consider this case in Section 4.1. For the second and third cases, we
need to look at I (m,α) and also at I (αmi+ti

α+N
,α + N) when α → 0. This is done in

Theorem 4.1.
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4.1. The case where the data is in the interior C of C. The data is given in the
form of a contingency table with cell counts n = (n(i), i ∈ I ). We consider now
the case where the data, which appears under the form ti in models Ji , belongs
to Ci, i = 1,2, so that Ii(

ti
N

,N), i = 1,2, are finite and positive. In this case, as
α → 0, from Theorem 3.2, we know that

B1,2 ∼ α|J1|−|J2| I1(t1/N,N)JC2(m2)

I2(t2/N,N)JC1(m1)
,(4.1)

where we recall that |Ji | = dimCi . Since the numbers JCi
(mi), i = 1,2, are finite

and positive, we have the following corollary of Theorem 3.2.

COROLLARY 4.1. When the data belong to the open polytope Ci, i = 1,2, the
Bayes factor B1,2 is such that, when α → 0,

B1,2 ∼ α|J1|−|J2|.
This implies in particular that, when the data is in both Ci, i = 1,2, the Bayes
factor always favors the sparser model.

The proof follows immediately from (4.1). Moreover, when α → 0 and |J2| <

|J1|, B1,2 tends to 0. This result has been well known, at least numerically, for the
class of decomposable models, and in that case, it can be proved by expressing
the Bayes factor as in (4.8) of [16] and using the fact that �(α) ∼ α−1 as α → 0;
see Example 3 of Section 3 and Section 5.2. It has also been observed to hold
numerically, most of the time, for hierarchical models. Computations illustrating
the fact that the Bayes factor tends to favor the sparser models in the class of all
hierarchical models can be found in [16], page 3456. We have just shown that it
always holds when the data is in C1 and in C2. We will see in the next subsection
that things are more delicate when the data belongs to the boundary of at least one
of C1 or C2.

4.2. The case where the data belongs to a face of Ci, i = 1,2. When α → 0,
αmi+ti
α+N

converges to the boundary point ti
N

of Ci along the segment

s(α) = αmi + ti

α + N
= α

α + N
mi +

(
1 − α

α + N

)
ti

N
.(4.2)

We need to study the limiting behavior of B1,2 when α → 0. To do so, we will use
Theorem 3.3 to obtain the following result.

THEOREM 4.1. Suppose that t
N

∈ C \ C belongs to the relative interior of a
face F of dimension k. Then

lim
α→0

α(|J |−k)I

(
αm + t

α + N
,α + N

)
(4.3)

exists and is positive.
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The proof of Theorem 4.1 is given in the supplementary file [15]. From Theo-
rems 3.2 and 4.1, we immediately derive the following which is the object of this
paper.

COROLLARY 4.2. Consider two hierarchical models Ji, i = 1,2, of dimen-
sion |Ji |. Assume that the data ti

N
belongs to the relative interior of a face Fi of

Ci of dimension ki . Then the asymptotic behavior of the Bayes factor B1,2 when
α → 0 is given by

B1,2 ∼ Dαk1−k2,

where D is a finite positive constant. The Bayes factor favors the model which
contains the data in the relative interior of the face of Ci of smallest dimension.

The proof is immediate. According to Theorems 3.2 and 4.1, we have

B1,2 = I (m2, α)

I (m1, α)

I ((αm1 + t1)/(α + N),α + N)

I ((αm2 + t2)/(α + N),α + N)

∼ α|J1|−|J2|α(k1−|J1|)−(k2−|J2|) = αk1−k2 .

REMARK 4.1. We note that, if ti
N

∈ Ci, i = 1,2, since Ci is the face of Ci of
dimension Ji , then ki = |Ji | and Corollary 4.2 yields Corollary 4.1. For the same
reason, Corollary 4.2 also deals with the cases where ti

N
∈ Ci for only one of i = 1

or i = 2.

4.3. The results of Steck and Jaakola [19] as a particular case. In [19] Steck
and Jaakola study the behavior of the Bayes factor for two Bayesian network mod-
els differing by one edge only, when α → 0. They show it is equivalent to the
problem of comparing two Bayesian network models with three variables indexed
by {a, b, c}. The first model has directed edges (b, a), (b, c) and (a, c). The second
model has directed edges (b, a) and (b, c). These two Bayesian network models
are Markov equivalent to the two hierarchical (in fact graphical) models J1 and
J2 with, respectively, generating sets D1 = {abc} and D2 = {ab, bc}. Moreover on
these two models, the prior in [19] is equivalent to ours. We must then be able to
compare their result given in Proposition 1 of [19] and our result given in Corol-
lary 4.2. To give their results Steck and Jaakola [19] introduce the quantity

dEDF = ∑
i∈I

δ(n(i)) − ∑
iab∈Iab

δ(n(iab)) − ∑
ibc∈Ibc

δ(nibc
) + ∑

ib∈Ib

δ(n(ib)),(4.4)

where δ(·) is an indicator function which is such that δ(x) = 0 if x = 0 and
δ(x) = 1 otherwise. They state that the Bayes factor B1,2 behaves as follows:

lim
α→0

B1,2 =
{

0, if dEDF > 0,
+∞, if dEDF < 0.

This result coincides with our Corollaries 4.1 and 4.2 for three variable models. In
fact, we are going to show the following.
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PROPOSITION 4.1. Consider the two decomposable graphical models on
three variables, J1 and J2, as defined above. If the data belongs to faces of di-
mension k1 and k2 of, respectively, C1 and C2, then we have

dEDF = k1 − k2.

PROOF. The Bayes factor is equal to

I ((αm1 + t1)/(α + N),α + N)I (m2, α)

I (m1, α)I ((αm2 + t2)/(α + N),α + N)
,

where the form of the normalizing constants I (m,α) for decomposable models is
well known; see, for example, equation (4.8) of [16]. When α → 0, from Theo-
rem 3.2, we know that I (m2, α)/I (m1, α) ∼ α|J1|−|J2|.

Expressed in terms of cell counts for the full table, for the b-, ab- and bc-
marginal tables, we have

I ((αm1 + t1)/(α + N),α + N)

I ((αm2 + t2)/(α + N),α + N)

=
∏

i∈I �(αm(i) + n(i))
∏

ib∈Ib
�(αm(ib) + n(ib))∏

iab∈Iab
�(αm(iab) + n(iab))

∏
ibc∈Ibc

�(αm(ibc) + n(ibc))
.

If for some D = ∅, ab, bc, b, the marginal cell count n(iD) is different from 0,
when α → 0, �(αm(iD) + n(iD)) → �(n(iD)) which is finite. If n(iD) = 0, then
�(αm(iD) + n(iD)) ∼ 1

αm(iD)
. It follows that, when α → 0, B1,2 ∼ αq where

q =
[
|J1| −

∑
i∈I

(
1 − δ(n(i))

)]

−
[
|J2| −

∑
i∈Iab

(
1 − δ(n(iab))

)

− ∑
ibc∈Ibc

(
1 − δ(n(ibc))

) + ∑
ib∈Ib

(
1 − δ(n(ib))

)]
.

Let Ci, i = 1,2, be the interior of the convex hull corresponding to model Ji .
Consider model J1 first. It is immediate to see that, following the notation of (5.2)
and (5.3) in Section 5 below,

n(000) = g0,C1,

n(i) = gi,C1, i ∈ I,

and according to Theorem 5.1, n(000) = 0 and n(i) = 0 are the equations of the
facets of the polytope C1. Therefore the dimension of the space minus the number
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of distinct facets the data belongs to, is equal to the dimension of the face of C1
containing the data, that is,

|J1| −
∑
i∈I

(
1 − δ(n(i))

) = ∑
i∈I

δ(n(i)) = k1.(4.5)

Similarly, for model J2, according to Theorem 5.1, the equations of the facets of
C2 are given by

n(iab) = 0, iab ∈ Iab, and n(ibc) = 0, ibc ∈ Ibc.

The facets containing the data are therefore those defined by n(iab) = 0 or
n(ibc) = 0. This does not mean, however, that

|J2| −
(

1 − ∑
iab∈Iab

δ(n(iab))

)
− ∑

ibc∈Ibc

(
1 − δ(n(ibc))

)

represents the dimension of the face containing the data. Indeed, if for some
i0
b ∈ Ib, we have n(i0

b) = 0, this means that n(iab) = 0; also whenever ib = i0
b and

also n(ibc) = 0 whenever ib = i0
b . Then, clearly, one of the equations n(iab) = 0

or n(ibc) = 0 is redundant, and we subtract 1 − δ(n(i0
b)) for the count of facets

defining the position of the data. It is clear then that

|J2| −
∑

i∈Iab

(
1 − δ(n(iab))

) − ∑
ibc∈Ibc

(
1 − δ(n(ibc))

) + ∑
ib∈Ib

(
1 − δ(n(ib))

) = k2,

which, together with (4.5) proves the proposition. �

In fact Proposition 4.1 can be extended to the following general result. Let Ci

and Si be the set of cliques and separators of the decomposable model Ji, i = 1,2.
We define the effective degree of freedom to be the following sum dEDF:

dEDF = ∑
C∈C1

∑
iC∈IC

δ(n(iC)) − ∑
S∈S1

∑
iS∈IS

δ(n(iS))

−
( ∑

C∈C2

∑
iC∈IC

δ(n(iC)) − ∑
S∈S2

∑
iS∈IS

δ(n(iS))

)
.

PROPOSITION 4.2. Consider two arbitrary decomposable graphical models
J1 and J2 such that the data belongs to faces of dimension k1 and k2 of C1 and C2,
respectively. Then, the following relation holds:

dEDF = k1 − k2.

The proof of this proposition follows parallel lines to the proof given above.
We therefore have a quick and easy way to know the behavior of the Bayes factor
between two decomposable models.
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5. Facets of C for some hierarchical models. From our main result, Corol-
lary 4.2, we see that the behavior of the Bayes factor between two models J1
and J2, as α → 0, is determined not only by the specification of the two models
but by the position of the data with respect to the support Ci of the multinomial
distribution of the model Ji, i = 1,2, respectively. If the data belongs to a face Fi

of dimension ki < |Ji | of Ci , Corollary 4.2 tells us that we ought to consider not
the model Ji but the reduced model with support Fi and with dimension ki . In or-
der to use the Bayes factor correctly for model selection for α small, it is therefore
crucial to know which face of Ci the data belongs to. Faces are the intersection of
a certain number of facets. So, we must be able to identify the facets of C. This is
generally not an easy task.

Facets of the polytope C have been much studied by geometers, and in Sec-
tion 5.3, we will recall some known results on these facets when the model is
binary and governed by a cycle of order n ≥ 3. But before doing so, we give two
new results on facets of polytopes associated to our models. In Theorem 5.1, we
identify a category of facets which is common to all discrete hierarchical models.
In Corollary 5.1, we show that for decomposable graphical models, the only facets
of C are given by the category of facets given in Theorem 5.1.

5.1. Facets common to all hierarchical models. Let D be the set of subsets
of V defining the hierarchical model. Let A be the family of maximal elements
of D. For the subclass of graphical models Markov with respect to a graph G, A is
the set of cliques of G. This set is traditionally denoted C , but in this particular
subsection, to avoid confusion between a clique C ∈ C and the polytope C, we use
the notation A ∈ A.

Let X be the design matrix given in Proposition 2.1 with rows equal to
(1, f t

i ), i ∈ I , and columns indexed by J0 = ∅ ∪ J . Let XJ0 be the submatrix
of X obtained by selecting the rows and columns of X indexed by J0. Its inverse
matrix X−1

J0
also has its rows and columns indexed by J0. Let h0, hj , j ∈ J , denote

the columns of X−1
J0

. For any j0 ∈ J0 and D ∈ D such that S(j0) ⊂ D, consider the

vector gj0,D ∈ RJ0 defined as follows:

(gj0,D)j =
{

(hj0)j , if j0 � j and S(j) ⊂ D,
0, otherwise.

(5.1)

The vector gj0,D is a subvector of hj0 “padded” with zeros to obtain a vector
in RJ0 . Since X−1

J0
is given by the Moebius function of the partial order on J0, the

vectors (5.1) define the following linear forms in m̃ = (1,mj , j ∈ J ):

〈g0,D, m̃〉 = 1 + ∑
j ;S(j)⊂D

(−1)|S(j)|mj,

〈gj0,D, m̃〉 = ∑
j ;S(j)⊂D,j0�j

(−1)|S(j)|−|S(j0)|mj, j0 
= ∅.
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We prefer to think of 〈g0,D, m̃〉 and 〈gj0,D, m̃〉 as, respectively, affine and linear
forms in m = (mj , j ∈ J ), and we write

g0,D(m) = 1 + ∑
j ;S(j)⊂D

(−1)|S(j)|mj,(5.2)

gj0,D(m) = ∑
j ;S(j)⊂D,j0�j

(−1)|S(j)|−|S(j0)|mj, j0 
= ∅.(5.3)

In this subsection, we will use gj,A only for A ∈ A, but as we shall see in Sec-
tion 5.2, gj,S when S is a minimal separator plays an important role also even
though S /∈ A. In the next theorem, for A ∈ A and j such that S(j) ⊂ A, we con-
sider the following affine hyperplanes of RJ :

H(j,A) = {m ∈ R
J ;gj,A(m) = 0}, j ∈ J ∪ {0},

and we prove that

F(j,A) = H(j,A) ∩ C(5.4)

is a facet of C. Recall that for T ⊂ V , we use the notation IT = ∏
v∈T Iv .

THEOREM 5.1. Let A be in the set A of maximal elements of D defining a
general hierarchical model. Let j0 ∈ J ∪ {0} such that S(j0) ⊂ A, and let i ∈ I .
Then gj0,A(fi) can only take values 0 or 1. More precisely, the following holds:

(1) gj0,A(fi) = 1 if and only if j0 � i and S(i) ∩ A = S(j0);
(2) there are exactly |I | − |IV \A| vectors fi ’s such that gj0,A(fi) = 0;
(3) the set F(j0,A) as defined in (5.4) is a facet of the polytope C.

The proof of the theorem is given in the supplementary file [15]. The proof
of parts (1) and (2) is straightforward and follow from the Moebius form of the
equation of the facets. The proof of part (3) is long and technical, but its idea is
very simple: we know from parts (1) and (2) that C is supported by H(j0,A); we
then show that if h ∈ H(j0,A) is orthogonal to all the fi contained in F(j0,A),
then h = 0, and therefore these fi ’s affinely generate H(j0,A), and F(j0,A) is a
facet of C.

Let us illustrate the results in Theorem 5.1 in the following example. We con-
sider the model studied in Example 2.1 and list the various faces and the fi ’s that
belong to them. The two vertical and horizontal lines in the two arrays below are
only there for visual comfort.

EXAMPLE 5.1. The matrix XJ0 is therefore given by the following array:
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000 100 200 010 020 110 210 120 220 001 011 021

000 1 0 0 0 0 0 0 0 0 0 0 0
100 1 1 0 0 0 0 0 0 0 0 0 0
200 1 0 1 0 0 0 0 0 0 0 0 0
010 1 0 0 1 0 0 0 0 0 0 0 0
020 1 0 0 0 1 0 0 0 0 0 0 0

110 1 1 0 1 0 1 0 0 0 0 0 0
210 1 0 1 1 0 0 1 0 0 0 0 0
120 1 1 0 0 1 0 0 1 0 0 0 0
220 1 0 1 0 1 0 0 0 1 0 0 0

001 1 0 0 0 0 0 0 0 0 1 0 0
011 1 0 0 1 0 0 0 0 0 1 1 0
021 1 0 0 0 1 0 0 0 0 0 0 1

The matrix X−1
J0

is given by:

000 100 200 010 020 110 210 120 220 001 011 021

000 1 0 0 0 0 0 0 0 0 0 0 0
100 −1 1 0 0 0 0 0 0 0 0 0 0
200 −1 0 1 0 0 0 0 0 0 0 0 0
010 −1 0 0 1 0 0 0 0 0 0 0 0
020 −1 0 0 0 1 0 0 0 0 0 0 0

110 1 −1 0 −1 0 1 0 0 0 0 0 0
210 1 0 −1 −1 0 0 1 0 0 0 0 0
120 1 −1 0 0 −1 0 0 1 0 0 0 0
220 1 0 −1 0 −1 0 0 0 1 0 0 0

001 −1 0 0 0 0 0 0 0 0 1 0 0
011 1 0 0 −1 0 0 0 0 0 −1 1 0
021 1 0 0 0 −1 0 0 0 0 −1 0 1

The two maximal elements in A are ab and bc, and

m = (m100,m200,m010,m020,m110,m210,m120,m220,m001,m011,m021).

The equation of the facets with A = ab are obtained by following the definition
(5.1) of gj0,A:

g0,ab(m) = 1 − m100 − m200 − m010 − m020 + m110

+ m210 + m120 + m220,

g100,ab = m100 − m110 − m120,

g200,ab = m200 − m210 − m220,

g010,ab = m010 − m110 − m210,

g020,ab = m020 − m120 − m220,

g110,ab = m110,
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g210,ab = m210,

g120,ab = m120,

g220,ab = m220.

The equation of the facets with A = bc follows a similar pattern, and as we shall
see in Corollary 5.1, these are the only facets of C.

Let Fj0,A denote the facet given by C ∩ Hj0,A. The facets can also be described
by their extreme points fi . It is easier to give those fi not in the facet Fj0,A. For
F∅,ab, f0 and f001 are the only fi not in the face. For F100,ab, f100 and f101 are
the only fi not in the face while for F120,ab, f120 and f121 are the absent vectors.

5.2. Facets of C when G is decomposable. When the graph G is decompos-
able, the normalizing constant I (m,α) is the normalizing constant of the hyper
Dirichlet as defined in [5]. In the theorem below, we restate, in our present nota-
tion, the expression of I (m,α) as given in formula (4.8) of [16] and directly derive
the form of JC(m) for decomposable models. A corollary giving the facets of C

when the model is decomposable follows immediately from the theorem.

THEOREM 5.2. Let (V , E ) be a decomposable graph, let C be the family of its
cliques, let S be the family of its minimal separators and let ν(S) be the multiplicity
of the minimal separator S. Then for m in the interior C of the convex hull of the
fi ’s, we have

I (m,α) =
∫

RJ
eα〈θ,m)L(θ)−αdθ

(5.5)

=
∏

C∈C �(αg0,C(m))
∏

{j∈J ;S(j)⊂C} �(αgj,C(m))

�(α)
∏

S∈S [�(αg0,S(m))
∏

{j∈J ;S(j)⊂S} �(αgj,S(m))]ν(S)

and

lim
α→ α|J |I (m,α) = JC(m)

(5.6)

=
∏

S∈S [g0,S(m)
∏

{j∈J ;S(j)⊂S} gj,S(m)]ν(S)∏
C∈C g0,C(m)

∏
{j∈J ;S(j)⊂C} gj,C(m)

.

COROLLARY 5.1. In the case of a hierarchical model associated to a decom-
posable graph, all the facets of C are of the type F(j0,C) described in Theo-
rem 5.1, with j0 ∈ J , with C in the set C of cliques and S(j0) ⊂ C.

PROOF. We know from Theorem 5.1 that the affine forms in the denominator
of JC(m) in (5.6) define facets of C. From Theorem 3.1, we know that they are the
only ones. �
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In fact we conjecture, as mentioned in the Introduction, that if a model is such
that the only facets of C are of the type given in Theorem 5.1, then it is a decom-
posable graphical model.

EXAMPLE 5.2. If V = a• − b• − c• and if I = {0,1,2}×{0,1}×{0,1}, we have

g0,bc(m) = 1 − m001 − m010 + m011,

g001,bc(m) = m001 − m011,

g010,bc(m) = m010 − m011,

g011,bc(m) = m011,

g0,ab(m) = 1 − m100 − m200 − m010 + m110 + m210,

g100,ab(m) = m100 − m110,

g200,ab(m) = m200 − m210,

g010,ab(m) = m010 − m110 − m210,

g110,ab(m) = m110,

g210,ab(m) = m210,

g0,b(m) = 1 − m010,

g010,b(m) = m010.

In this case I (m,α) is a quotient: the numerator is the product of 10 gamma func-
tions and the denominator is �(α)�(α(1 − m010))�(αm010). As a consequence,
JC(m) is

(g0,b(m)g010,b(m))

× (
g0,bc(m)g001,bc(m)g010,bc(m)g011,bc(m)g0,ab(m)g100,ab(m)

× g200,ab(m)g010,ab(m)g110,ab(m)g210,ab(m)
)−1

.

5.3. Facets of C when the model is binary and the model is governed by a cy-
cle. For the sake of completion and the convenience of the reader, we recall some
known results giving the facets of the polytope C when the model is hierarchical,
binary and governed by a cycle G of order n ≥ 3. The reader is referred to Theo-
rem 27.3.3 in [6] and [13] and some references within for an explicit description of
these facets. In this subsection, we will simply translate the equation of the facets
given there in our own coordinates. The results are given in the following theorem.
The coordinates of m ∈ RJ will be denoted mv if they are indexed by a vertex
v ∈ V and by me if they are indexed by an edge e ∈ E.
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THEOREM 5.3. Let G = (V ,E) be a cycle of order n ≥ 3. Assume the hierar-
chical model is binary and governed by G, that is, D = {v ∈ V, e ∈ E}. Then the
polytope C is defined by the following equations and the facets are defined by the
corresponding equalities:

(1) for any edge (a, b) ∈ E,

mab ≥ 0, ma − mab ≥ 0,(5.7)

mb − mab ≥ 0, 1 − ma − mb + mab ≥ 0;(5.8)

(2) for any subset F ⊆ E with odd cardinality |F |,∑
(a,b)∈F

(ma + mb − 2mab) −
(∑

v∈V

mv − ∑
e∈E

me

)
≤ |F | − 1

2
.(5.9)

The total number of facets for the polytope C of the model governed by the cycle
of order n is Fn = ∑

k∈N,k odd,k≤n

(n
k

)
.

We see that the facets given by the first four equations are those described in
Theorem 5.1 corresponding to the cliques {(a, b) ∈ E} while the others are specific
to models governed by a cycle. We illustrate this theorem in the case of the cycles
of order 3, 4 and 5. We will not repeat the facets (5.7) and (5.8) common to all
hierarchical models. We will give the facets of type (5.9) only.

For n = 3, let V = {a, b, c} and E = {(a, b), (b, c), (c, a)}. The four facets of
type (5.9) are

1 − ma − mb − mc + mab + mbc + mac ≥ 0,
(5.10)

mab + mc − mbc − mac ≥ 0,

and the other two facets obtained from (5.10) by permutations of the edges of G.
For n = 4, let V = {a, b, c, d} and E = {(a, b), (b, c), (c, d), (d, a)}. The eight

facets of type (5.9) are

1 − mb − mc + mab + mbc + mcd − mda ≥ 0,(5.11)

mc + md + mab − mbc − mcd − mda ≥ 0,(5.12)

and the other three facets obtained from each of (5.11) and (5.12) by permutations
of the edges of G.

For n = 5, let V = {a, b, c, d, e} and E = {(a, b), (b, c), (c, d), (d, e), (e, a)}.
The sixteen facets of type (5.9) are

mab + mc + md + me − mbc − mcd − mde − mda ≥ 0,(5.13)

1 − ma − mb + mea + mab + mbc + md − mcd − med ≥ 0,(5.14)

1 − md + mab + mcd + mde − mbc − mae ≥ 0,(5.15)

2 − ma − mb − mc − md − me + mab + mbc + mcd + mde + mea ≥ 0,

and the other four facets obtained from each of (5.13), (5.14) and (5.15) by permu-
tations of the edges of G.
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6. Conclusion. Our paper gives the description of the behavior of the Bayes
factor as α → 0. We have shown that, in this study, what counts is the dimension of
the face to which the data belongs rather than the dimension of the model. More-
over, it is not surprising to see that C, the convex hull of the support of the gener-
ating measure of the multinomial for the hierarchical model, is important since the
multinomial is a natural exponential family. We know that it is equally important
in the study of the existence of the maximum likelihood estimate of the parameter;
see, for example, Eriksson et al. [9], Geiger et al. [11] or Rinaldo [17]. However,
the role of the characteristic function JC(·) of C has only been uncovered here
in the study of the Bayes factor, and we can add JC to the toolkit of exponential
families. It is remarkable that in our case, when C is a bounded polytope, JC can
be expressed as a rational function such that its denominator describes the facets
of C.

We note that Theorem 3.1 is proved under the assumption that the polytope C is
bounded, and our present result are valid for the multinomial only, but we believe
that they can be extended to the case when the sampling distribution is Poisson
(and also product multinomial). This is the topic of current work.

A secondary contribution of this paper is our results on the identification of the
facets of a polytope. We have two new results for polychotomous models (i.e., not
necessarily binary): the first giving a particular category of facets common to all
hierarchical models, the second giving the complete set of facets for decomposable
models.

For decomposable models, we extend the notion of effective degree of freedom
given in [19] and give a quick way to predict the behavior of the Bayes factor
without using the concept of face or facets of a polytope.

APPENDIX: PROOF OF THEOREM 3.3

Without loss of generality, we assume that m = 0 so that JC(λm + (1 − λ)y) =
JC((1 − λ)y). From (3.3) we have

JC((1 − λ)y)

n! =
∫
Co

dθ

(1 − (1 − λ)〈θ, y〉)n+1 .(A.1)

Recall that C0 is closed. In order to study the behavior of this last integral when
λ → 0, we are going to build a parametrization of Co which gives a special role
to F̂ , the face of Co dual to the face F of C containing y in its interior.

Let E the set of extreme points of C and I ⊂ E the set of extreme points of F .
To F we associate the dual face of Co defined by

F̂ = {θ ∈ Co|〈θ, f 〉 = 1 ∀f ∈ I}.(A.2)

It is a classical result (see [3]) that F̂ has dimension n− k − 1. Let us now observe
that we have an equivalent representation of F̂ in (A.2) as

F̂ = {θ ∈ Co|〈θ, y〉 = 1}.(A.3)
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Indeed, since y is in the relative interior of F we write

y = ∑
f ∈I

λf f,

where λf > 0 and
∑

f ∈I λf = 1. Here λf > 0 is important in the argument
to follow. Clearly F̂ ⊂ {θ ∈ Co; 〈θ, y〉 = 1}. Conversely if 〈θ, y〉 = 1 then∑

f ∈I λf (1−〈θ, f 〉) = 0. If furthermore θ ∈ Co we have 1−〈θ, f 〉 ≥ 0 and there-
fore 1 − 〈θ, f 〉 = 0 which shows F̂ ⊃ {θ ∈ Co; 〈θ, y〉 = 1} and proves (A.3).

Next, for ε > 0 small, we consider the following approximation F̂ε of F̂

F̂ε = {θ ∈ Co; 〈θ, y〉 = 1 − ε},(A.4)

which is a (n − 1)-dimensional convex subset of Co and we want to prove that
voln−1F̂ε ∼ cεk for some positive constant c. Using (A.3) and(A.2), we can rewrite
(A.4) as

F̂ε =
{
θ ∈ Co; ∑

f ∈I
λf (1 − 〈θ, f 〉) = ε

}
.(A.5)

To show voln−1F̂ε ∼ cεk we parametrize F̂ε as follows: let θ 	→ x = ϕ(θ) be the
affine map from E∗ to RI defined by

xf = λf (1 − 〈θ, f 〉), f ∈ I,(A.6)

which is equivalent to 〈θ, f 〉 = 1 − xf

λf
. The set Sε = ϕ(F̂ε) is therefore the inter-

section of the simplex{
x ∈ R

I ;xf ≥ 0 ∀f ∈ I,
∑
f∈I

xf = ε

}
(A.7)

and of the convex set ϕ(Co) which is contained in the affine manifold ϕ(E∗) ⊂ RI .
If x ∈ Sε then its preimage by ϕ is the set

ϕ−1(x) =
{
θ ∈ E∗; 〈θ, f 〉 = 1 − xf

λf

∀f ∈ I
}
,

which is an affine subspace of E∗ parallel to the linear space

H0 = {θ ∈ E∗; 〈θ, f 〉 = 0 ∀f ∈ I},(A.8)

which has dimension n − k − 1 since F has dimension k. As a result we can write
F̂ε as the following union of disjoint sets

F̂ε = ⋃
x∈Sε

(
ϕ−1(x) ∩ Co),(A.9)

which is saying that F̂ε can be parametrized by (x, z) where x ∈ Sε , a convex set
of dimension k, and where z ∈ ϕ−1(x) ∩ Co, a convex set of dimension n − k − 1.
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The bijection θ 	→ (x, z) is the restriction to F̂ε of an affine map and therefore its
Jacobian K such that dθ = K dx dz is a constant:

voln−1F̂ε =
∫
F̂ε

dθ = K

∫
Sε

(∫
ϕ−1(x)∩Co

dz

)
dx.

If we fix x0 in the simplex (A.7), then the behavior of
∫
ϕ−1(εx0)∩Co dz is easy to

describe since limε ϕ−1(εx0) ∩ Co = F̂ in the sense of polytopes, which implies

lim
ε→0

∫
ϕ−1(εx0)∩Co

dz = lim
ε→0

voln−k−1
(
ϕ−1(εx0) ∩ Co) = voln−k−1(F̂ ).

Let us now observe that 0 is an extreme point of ϕ(Co). If not there exist x = ϕ(θ)

and x′ = ϕ(θ ′) with θ and θ ′ ∈ Co such that x + x′ = 0, that is, for all f ∈ I ,

1 − λf 〈θ, f 〉 + 1 − λf 〈θ ′, f 〉 = 2 − λf [〈θ, f 〉 + 〈θ ′, f 〉] = 0.

Since 0 ≤ λf ≤ 1, this in turn implies λf = 1 and 〈θ, f 〉+〈θ ′, f 〉 = 2. Since 〈θ, f 〉
and 〈θ ′, f 〉 are ≤ 1 this implies xf = x′

f = 0 for all f ∈ I , a contradiction. Now
we use the fact that Co is a polytope and so is ϕ(Co) which has dimension k + 1.
For ε small enough (say 0 < ε ≤ ε0) the intersection Sε of the simplex given in
(A.7) with ϕ(Co) coincides with the intersection of the simplex with the support
cone of ϕ(Co) at its vertex 0. Since a cone is invariant by dilations we can claim
that there exists a number c1 > 0 such that for 0 < ε ≤ ε0 we have volk(Sε) = c1ε

k .
Finally

voln−1F̂ε ∼ c1K voln−k−1(F̂ )εk.(A.10)

The parametrization of θ in (A.1) is therefore (x, z, ε) where (x, z) is as given in
(A.9) and the range of ε is such that, for that range, Fε describes all of Co. We
note that the bounded function voln−1F̂ε = f (ε) is zero if ε is big enough since
then F̂ε becomes empty and, of course, voln−1F̂0 = voln−1F̂ . Let b be such that
f (ε) = 0 when ε > b. When ε varies from 0 to +∞, F̂ε generates all of Co. Then,
following (A.10), equation (A.1) becomes∫

Co

dθ

(1 − (1 − λ)〈θ, y〉)n+1 =
∫ ∞

0

voln−1F̂ε dε

(1 − (1 − λ)(1 − ε))n+1

=
∫ ∞

0

f (ε) dε

(1 − (1 − λ)(1 − ε))n+1 .

Using f (ε) ∼ cεk we will now show that

lim
λ→0

λn−k
∫ ∞

0

f (ε) dε

(1 − (1 − λ)(1 − ε))n+1 = cB(k + 1, n − k),(A.11)

which concludes the proof. To derive (A.11), we first show that for 0 < a < b:

(1) λn−k
∫ a

0
εk dε

(λ+ε−λε)n+1 →λ→0 B(k + 1, n − k),

(2) limλ→0 λn−k
∫ b
a

dε
(λ+ε−λε)n+1 = 0.
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Statement (1) is shown by the change of variable ε = λt and the theorem of domi-
nated convergence. Indeed, for 0 < λ ≤ λ0 < 1, we have

λn−k
∫ a

0

εk dε

(λ + ε − λε)n+1 =
∫ a/λ

0

tkdt

(1 + t − λt)n+1 ≤
∫ a/λ

0

tkdt

(1 + t − λ0t)n+1 ,

which tends to 1
(1−λ0)

k+1 B(k + 1, n − k) when λ → 0. Since this is true for any
λ0 > 0, statement (1) follows.

Statement (2) is obvious since
∫ b
a

dε
(λ+ε−λε)n+1 <

∫ b
a

dε
εn+1 is finite.

Next, fix δ > 0. There exists a < b such that |f (ε)

εk − c| ≤ δ if 0 < ε ≤ a. Writing

this as −δεk < f (ε) − cεk < δεk , integrating and using (1) yields

lim sup
λ→0

∣∣∣∣ 1

B(k + 1, n − k)

∫ a

0

f (ε) dε

(1 − (1 − λ)(1 − ε))n+1 − c

∣∣∣∣ ≤ δ.

Since f is bounded (2) implies that

lim sup
λ→0

λn−k
∫ +∞
a

f (ε) dε

(1 − (1 − λ)(1 − ε))n+1

= lim sup
λ→0

λn−k
∫ b

a

f (ε) dε

(1 − (1 − λ)(1 − ε))n+1 = 0.

Thus for all δ > 0 we have

lim sup
λ→0

∣∣∣∣ 1

B(k + 1, n − k)

∫ ∞
0

f (ε) dε

(1 − (1 − λ)(1 − ε))n+1 − c

∣∣∣∣ ≤ δ,

which implies (A.11).
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