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We provide a limit theory for a general class of kernel smoothed U-
statistics that may be used for specification testing in time series regression
with nonstationary data. The test framework allows for linear and nonlin-
ear models with endogenous regressors that have autoregressive unit roots
or near unit roots. The limit theory for the specification test depends on the
self-intersection local time of a Gaussian process. A new weak convergence
result is developed for certain partial sums of functions involving nonstation-
ary time series that converges to the intersection local time process. This re-
sult is of independent interest and is useful in other applications. Simulations
examine the finite sample performance of the test.

1. Introduction. One of the advantages of nonparametric modeling is the op-
portunity for specification testing of particular parametric models against general
alternatives. The past three decades have witnessed many developments in such
specification tests involving nonparametric and semiparametric techniques that al-
low for independent, short memory and long-range dependent data. Recent re-
search on the nonparametric modeling of nonstationary data opens up some new
possibilities that seem relevant to applications in many fields, including nonlinear
diffusion models in continuous time [Bandi and Phillips (2003, 2007)] and cointe-
gration models in economics and finance.

Cointegration models were originally developed in a linear parametric frame-
work that has been widely used in econometric applications. That framework was
extended in Park and Phillips (1999, 2001) to allow for nonlinear parametric for-
mulations under certain restrictions on the function nonlinearity. While consid-
erably broadening the class of allowable nonstationary models, the potential for
parametric misspecification in these models is still present and is important to test
in applied work.

The hypothesis of linear cointegration is of particular interest in this context,
given the vast empirical literature. Recent papers by Karlsen, Myklebust and Tjøs-
theim (2007), Wang and Phillips (2009a, 2009b, 2011) and Schienle (2008) have
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developed asymptotic theory for nonparametric kernel regression of nonlinear non-
stationary systems. This work facilitates the comparison of various parametric
specifications against a more general nonparametric nonlinear alternative. Such
comparisons may be based on weighted sums of squared differences between the
parametric and nonparametric estimates of the system or on a kernel-based U-
statistic test which uses a smoothed version of the parametric estimator in its con-
struction [e.g., Gao (2007), Chapter 3].

A major obstacle in the development of such specification tests is the technical
difficulty of developing a limit theory for these weighted sums which typically
involve kernel functions with multiple nonstationary regressor arguments. Few
results are currently available, and because of this shortage, attempts to develop
specification tests for nonlinear regression models with nonstationarity have been
highly specific and do not involve nonparametric alternatives or kernel methods.
Some examples of recent work in parametric models include Choi and Saikonnen
(2004, 2010), Marmer (2008), Hong and Phillips (2010) and Kasparis and Phillips
(2012). An exception is the recent work for testing linearity in autoregression and
parametric time series regression by Gao et al. (2009a, 2009b) who obtained a
limit distribution theory for a kernel based specification test in a setting that in-
volves martingale difference errors and random walk regressors.

The present paper makes a related contribution and seeks to provide a general
theory of specification tests that is applicable for a wider class of nonstationary
regressors that includes both unit root and near unit root processes. The latter are
important in practical work where a unit root restriction is deemed too restrictive.
The paper contributes to this emerging literature in two ways. First, we provide
a limit theory for a general class of kernel-based specification tests of parametric
nonlinear regression models that allows for near unit root processes driven by short
memory (linear process) errors. This limit theory should be widely applicable to
specification testing in nonlinear cointegrated systems.

Second, the limit theory of the specification test involves the self-intersection
local time of a Gaussian limit process. The result requires establishing weak con-
vergence to this self-intersection local time process, which is of independent in-
terest, and a feasible central limit theorem involving an empirical estimator of the
intersection local time that can be used to construct the test statistic. Thus, the re-
sults provide some new theories for intersection local time, weak convergence and
specification test asymptotics that are relevant in applications.

The paper is organized as follows. Section 2 lays out the nonparametric and
parametric models and assumptions. Section 3 gives the main results on specifica-
tion test limit theory. Section 4 reports some simulation evidence on test perfor-
mance. Section 5 provides the weak convergence theory for intersection local time.
Section 6 gives proofs of the main theorems in Section 3. The proofs of the local
time limit theory in Section 5 and some supplemental technical results in Section 6
can be found in the supplementary material [Wang and Phillips (2012)].
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2. Model and assumptions. We consider the nonlinear cointegrating regres-
sion model

yt+1 = f (xt ) + ut+1, t = 1,2, . . . , n,(2.1)

where ut is a stationary error process, and xt is a nonstationary regressor. We are
interested in testing the null hypothesis

H0 :f (x) = f (x, θ), θ ∈ �0,

for x ∈ R, where f (x, θ) is a given real function indexed by a vector θ of unknown
parameters which lie in the parameter space �0.

To test H0 we make use of the following kernel-smoothed test statistic:

Sn =
n∑

s,t=1,s �=t

ût+1ûs+1K[(xt − xs)/h],(2.2)

involving the parametric regression residuals ût+1 = yt+1 − f (xt , θ̂ ), where K(x)

is a nonnegative real kernel function, h is a bandwidth satisfying h ≡ hn → 0 as
the sample size n → ∞ and θ̂ is a parametric estimator of θ under the null H0,
that is consistent whenever θ ∈ �0.

The statistic Sn in (2.2) has commonly been applied to test parametric specifi-
cations in stationary time series regression [see Gao (2007)] and was used by Gao
et al. (2009a, 2009b) to test for linearity in autoregression and a parametric condi-
tional mean function in time series regression involving a random walk regressor.
Sn is a weighted U-statistic with kernel weights that depend on standardized dif-
ferentials (xt − xs)/h of the regressor. The weights focus attention in the statistic
on those components in the sum where the nonstationary regressor xt nearly in-
tersects itself. This smoothing scheme gives prominence to product components
ût+1ûs+1 in the sum where s and t may differ considerably but for which the
corresponding regressor process takes similar values (i.e., xt , xs � x for some x),
thereby enabling a test of H0.

The difficulty in the development of an asymptotic theory for Sn stems from
the presence of the kernel weights K((xt − xs)/h). The behavior of these weights
depends on the self intersection properties of xt in the sample, and, as n → ∞,
this translates into the corresponding properties of the stochastic process to which
a standardized version of xt converges. To establish asymptotics for Sn, we need
to account for this limit behavior, which leads to a new limit theory involving the
self-intersection local time of a Gaussian process (i.e., the local time for which the
process intersects itself).

We use the following assumptions in our development.

ASSUMPTION 1. (i) {εt }t∈Z is a sequence of independent and identically dis-
tributed (i.i.d.) continuous random variables with Eε0 = 0, Eε2

0 = 1, and with the
characteristic function ϕ(t) of ε0 satisfying |t ||ϕ(t)| → 0, as |t | → ∞.
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(ii)

xt = ρxt−1 + ηt , x0 = 0, ρ = 1 + κ/n, 1 ≤ t ≤ n,(2.3)

where κ is a constant and ηt = ∑∞
k=0 φkεt−k with φ ≡ ∑∞

k=0 φk �= 0 and∑∞
k=0 k1+δ|φk| < ∞ for some δ > 0.

ASSUMPTION 2. (i) {ut , Ft }t≥1, where Ft is a sequence of increasing σ -fields
which is independent of εk, k ≥ t + 1, forms a martingale difference satisfying
E(u2

t+1 | Ft ) →a.s. σ
2 > 0 as t → ∞ and supt≥1 E(|ut+1|4 | Ft ) < ∞.

(ii) xt is adapted to Ft , and there exists a correlated vector Brownian motion
(W,V ) such that(

1√
n

[nt]∑
j=1

εj ,
1√
nσ

[nt]∑
j=1

uj+1

)
⇒D (W(t),V (t))(2.4)

on D[0,1]2 as n → ∞.

ASSUMPTION 3. K(x) is a nonnegative real function satisfying supx K(x) <

∞ and
∫

K(x)dx < ∞.

ASSUMPTION 4. (i) There is a sequence of positive real numbers δn satisfying
δn → 0 as n → ∞ such that supθ∈�0

‖θ̂ − θ‖ = oP (δn), where ‖ · ‖ denotes the
Euclidean norm.

(ii) There exists some ε0 > 0 such that ∂2f (x,t)

∂t2 is continuous in both x ∈ R

and t ∈ �0, where �0 = {t :‖t − θ‖ ≤ ε0, θ ∈ �0}.
(iii) Uniformly for θ ∈ �0,∣∣∣∣∂f (x, t)

∂t

∣∣∣∣
t=θ

∣∣∣∣ + ∣∣∣∣∂2f (x, t)

∂t2

∣∣∣∣
t=θ

∣∣∣∣ ≤ C(1 + |x|β)

for some constants β ≥ 0 and C > 0.
(iv) Uniformly for θ ∈ �0, there exist 0 < γ ′ ≤ 1 and max{0,3/4 − 2β} < γ ≤

1 such that

|g(x + y, θ) − g(x, θ)| ≤ C|y|γ
{

1 + |x|β−1 + |y|β, if β > 0,
1 + |x|γ ′−1, if β = 0,

(2.5)

for any x, y ∈ R, where g(x, t) = ∂f (x,t)
∂t

.

ASSUMPTION 5. nh2 → ∞, δ2
nn

1+β
√

h → 0 and nh4 log2 n → 0, where β

and δ2
n are defined as in Assumption 4. Also,

∫
(1 + |x|2β+1)K(x) dx < ∞ and

E|ε0|4β+2 < ∞.
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Assumption 1 allows for both a unit root (κ = 0) and a near unit root (κ �= 0)
regressor by virtue of the localizing coefficient κ and is standard in the near inte-
grated regression framework [Phillips (1987, 1988), Chan and Wei (1987)]. Com-
pared to the estimation theory developed in Wang and Phillips (2009a, 2009b) and
for technical convenience in the present work, we impose the stronger summability
condition

∑∞
k=0 k1+δ|φk| < ∞ for some δ > 0 on the coefficients of the linear pro-

cess ηt = ∑∞
k=0 φkεt−k driving the regressor xt . Under these conditions, it is well

known that the standardized process x[nt],n = x[nt]/
√

nφ converges weakly to the
Gaussian process G(t) = ∫ t

0 eκ(t−s) dW(s), where W(t) is a standard Brownian
motion. See (5.2) below or Phillips and Solo (1992).

Assumption 2(i) is a standard martingale difference condition on the equation
innovations ut , so that cov(ut+1, xt ) = E[xtE(ut+1 | Ft )] = 0. Wang and Phillips
(2009b) allowed for endogeneity in their nonparametric structure, so the equation
error could be serially dependent and cross-correlated with xt for |t − s| ≤ m0 for
some finite m0. It is not clear at the moment if the results of the present paper on
testing extend to the more general error structure considered in Wang and Phillips
(2009b), but simulation results suggest that this may be so. Assumption 2(ii) is a
standard functional law for partial sum processes [e.g., Park and Phillips (2001)].

Assumption 3 is a standard condition on K(x) as in the stationary situation.
The integrability condition is weaker than the common alternative requirement
that K(x) has compact support.

As seen in Assumption 5, the sequence δn in Assumption 4(i) may be chosen as
δ2
n = n−(1+β)/2h−1/8. As h → 0 and κ = 0 in (2.3), Assumption 4(i) holds under

very general conditions, such as those of Theorem 5.2 in Park and Phillips (2001).
Indeed, by Park and Phillips (2001), we may choose θ̂ such that supθ∈�0

‖θ̂ −θ‖ =
OP (n−(1+β)/2), under our Assumption 4(ii)–(iv). Assumption 4(ii)–(iv) is quite
weak and includes a wide class of functions. Typical examples include polynomial
forms like f (x, θ) = θ1 + θ2x +· · ·+ θkx

k−1, where θ = (θ1, . . . , θk), power func-
tions like f (x, a, b, c) = a+bxc, shift functions like f (x, θ) = x(1+θx)I (x ≥ 0)

and weighted exponentials such as f (x, a, b) = (a + bex)/(1 + ex). However, As-
sumption 4 excludes models where f (x, θ) is integrable, because parametric rates
of convergence are known to be O(n1/4) in this case [see Park and Phillips (2001)].
It seems that cases with integrable f (x, θ) require different techniques and these
are left for future investigation.

As in estimation limit theory, the condition in Assumption 5 that the bandwidth
h satisfies nh2 → ∞ is necessary. The further condition that nh4 log2 n → 0 re-
stricts the choice of h and, at least with the techniques used here, seems difficult to
relax in the general case studied in the present work, although it may be substan-
tially relaxed in less general models as discussed later in the paper. The condition
that δ2

nn
1+β

√
h → 0 holds automatically if supθ∈�0

‖θ̂ − θ‖ = OP (n−(1+β)/2). As
explained above, the latter condition holds true under very general settings such as
Assumption 4(ii)–(iv). We also impose a higher moment condition on the innova-
tion ε0 in Assumption 5 which helps in the development of the limit theory.
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3. Main results on specification. The limit distribution of Sn under standard-
ization involves nuisance parameters σ and φ, which are the limit of Eu2

t as t → ∞
and the sum of coefficients of the linear process appearing in Assumption 1; see
Corollary 3.1 below. While convenient, this formulation obviously restricts direct
use of the result in applications. The dependence on the nuisance parameters can
be simply removed by self-normalization. Indeed, by defining

V 2
n =

n∑
s,t=1,s �=t

û2
t+1û

2
s+1K

2[(xt − xs)/h],

we have the following main result.

THEOREM 3.1. Under Assumptions 1–5 and the null hypothesis, we have

Sn√
2Vn

→D N,(3.1)

where N is a standard normal variate.

The limit in Theorem 3.1 is normal and does not depend on any nuisance pa-
rameters. As a test statistic, Zn = Sn/

√
2Vn has a big advantage in applications. In

order to investigate the asymptotic power of the test, we consider the local alterna-
tive models

H1 :f (x) = f (x, θ) + ρnm(x),

where θ ∈ �0, ρn is a sequence of constants, and m(x) is a real function. This
kind of local alternative model is commonly used in the theory of nonparamet-
ric inference involving stationary data; see, for instance, Horowitz and Spokoiny
(2001).

ASSUMPTION 6. There exists a ν ≥ 0 such that

0 < inf|x|≥1

|m(x)|
|x|ν ≤ C sup

x∈R

|m(x)|
1 + |x|ν < ∞,(3.2)

and there exist 0 < γ ′ ≤ 1 and max{0,3/4 − 2ν} < γ ≤ 1 such that

|m(x + y) − m(x)| ≤ C|y|γ
{

1 + |x|ν−1 + |y|ν, if ν > 0,
1 + |x|γ ′−1, if ν = 0,

(3.3)

for any x, y ∈ R and for some constant C > 0.

Assumption 6 is quite weak which is satisfied by a large class of real func-
tions such as m(x) = a1 + a2x + · · · + akx

k−1, m(x) = a + bxc and m(x) =
(a + bex)/(1 + ex). If m(x) is positive(or negative) on R, condition (3.3) is not
necessary.
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THEOREM 3.2. In addition to Assumptions 1–6,
∫
(1+|x|2ν+2)K(x) dx < ∞

and E|ε0|4ν+2 < ∞. Then, under H1, we have

lim
n→∞P

(
Sn√
2Vn

≥ tα

)
= 1(3.4)

for any ρn satisfying ρ2
nn1/2+νh1/2 → ∞, and for any 0 < α < 1, where �(tα) =

1 − α and � is the standard normal c.d.f.

Theorem 3.2 shows that our test has nontrivial power against the local alterna-
tive whenever ρn → 0 at a rate that is slower than n−1/8−ν/2, as nh2 → ∞. This
is different from the stationary situation where in general a test has a nontrivial
power if only ρn → 0 at a rate that is slower than n−1/2. It is interesting to notice
that the rate is related to the magnitude of m(x) and the bandwidth h. The test
has stronger discriminatory power the larger the value of v. The reason is that the
nonlinear shape characteristics in m(x) are magnified over a wide domain and this
property is exploited by the test because the nonstationary regressor is recurrent.

Theorem 3.2 seems to be new to the literature. Under very strict restrictions
(namely that xt is a random walk and xt is independent of ut ), the result in The-
orem 3.1 has been considered in Gao et al. (2009a). Not only the generalization
of our result, but the techniques used in this paper are quite different from Gao
et al. (2009a, 2009b). To outline the essentials of the argument in the proof of
Theorem 3.1, under the null hypothesis, we split Sn as

Sn = 2
n∑

t=2

ut+1Ynt + 2
n∑

i,t=1
i �=t

ui+1[f (xt , θ) − f (xt , θ̂ )]K[(xt − xi)/h]

+
n∑

i,t=1
i �=t

[f (xi, θ) − f (xi, θ̂ )][f (xt , θ) − f (xt , θ̂)]K[(xt − xi)/h](3.5)

= 2S1n + 2S2n + S3n say,

where Ynt = ∑t−1
i=1 ui+1K[(xt − xi)/h]. It will be proved in Section 6.1 that terms

S2n and S3n are negligible in comparison with S1n. Furthermore it will be proved
that, under the null hypothesis,

V 2
n = σ 4

n∑
t,s=1
t �=s

K2[(xt − xs)/h] + oP (n3/2h)

(3.6)

= 2σ 2
n∑

t=2

Y 2
nt + oP (n3/2h).
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By virtue of these facts, Theorem 3.1 follows from the following theorem, giving a
joint convergence result for S1n and its conditional variance

∑n
t=2 Y 2

nt . This result,
along with the following Corollary 3.1, is of some independent interest.

THEOREM 3.3. Under Assumptions 1–3, nh2 → ∞ and nh4 log2 n → 0, we
have (

1

σdn

n∑
t=2

ut+1Ynt ,
1

d2
n

n∑
t=2

Y 2
nt

)
→D (ηN,η2),(3.7)

where d2
n = (2φ)−1σ 2n3/2h

∫ ∞
−∞ K2(x) dx, η2 = LG(1,0) is the self intersection

local time generated by the process G = ∫ t
0 eκ(t−s) dW(s), and N is a standard

normal variate which is independent of η2.

CORROLARY 3.1. Under Assumptions 1–5, we have

Sn

τn

→D ηN,

where τ 2
n = (8φ)−1σ 4n3/2h

∫ ∞
−∞ K2(x) dx, η2 and N are defined as in Theo-

rem 3.3.

Here and below, we define

LG(t, u) = lim
ε→0

1

2ε

∫ t

0

∫ t

0
1
[∣∣(G(x) − G(y)

) − u
∣∣ < ε

]
dx dy

(3.8)

=
∫ t

0

∫ t

0
δu[G(x) − G(y)]dx dy,

where δu is the dirac function. LG(t, u) characterizes the amount of time over
the interval [0, t] that the process G(t) spends at a distance u from itself, and
is well defined, as shown in Section 5. When u = 0, LG(t,0) describes the self-
intersection time of the process G(t). Using the definition of the dirac function,
the extended occupation times formula [e.g., Revuz and Yor (1999), page 232],
and integration by parts with the local time measure, we may write

LG(t,0) = 2
∫ t

0

∫ y

0
δ0[G(x) − G(y)]dx dy

= 2
∫ t

0
�G(s,G(s)) ds

(3.9)

= 2
∫ ∞
−∞

∫ t

0
�G(s, a) d�G(s, a) da

=
∫ ∞
−∞

�G(t, a)2 da,
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where �G(t, a) is the local time spent by the process G at a over the time interval
[0, t], namely,

�G(t, a) =
∫ t

0
δa[G(s)]ds = lim

ε→0

1

2ε

∫ t

0
1[|G(s) − a| < ε]ds.

The process �G(s,G(s)) is the local time that the process G has spent at its cur-
rent position G(s) over the time interval [0, s]. It appears in the limit theory for
nonparametric nonstationary spurious regression [Phillips (2009)]. Aldous (1986)
gave (3.9) for the case of Brownian motion.

It is interesting to note that S1n is a martingale sequence with conditional vari-
ance

∑n
t=2 Y 2

nt , suggesting that some version of the martingale central limit the-
orem [e.g., Hall and Heyde (1980), Chapter 3] may be applicable. However, the
problem is complicated by the U-statistic structure and the weak convergence of
the conditional variance, and use of existing limit theory seems difficult. To in-
vestigate the asymtotics of S1n, we therefore develop our own approach. As part
of this development, in Section 5, we provide a general weak convergence theory
to intersection local time, which is of independent interest and useful in other ap-
plications. The conditions required for this development are weaker than those in
establishing Theorem 3.3 and that section may be read separately.

We finally remark that the restrictive condition on the bandwidth h in Theorems
3.1–3.3 (i.e., nh4 log2 n → 0) is mainly used to offset the impact of the error terms
in (3.5) and (3.6). It seems difficult to relax this condition under the prevailing As-
sumption 2, which allows for endogenity in the regressor xt . See, for instance, the
proof of Proposition 6.4 given in the supplementary material [Wang and Phillips
(2012)]. The restriction nh4 log2 n → 0 on h in Theorems 3.1–3.3, however, can
be reduced to the minimal requirement h → 0, if Assumption 2 is replaced by the
following Assumption 2∗.

ASSUMPTION 2∗ . For each n ≥ 1, {ut , Ft,n}1≤t≤n forms a martingale differ-
ence satisfying limt→∞ supn≥t |E(u2

t+1 | Ft,n) − σ 2| = 0, a.s. and

sup
n≥t≥1

E(|ut+1|4 | Ft,n) < ∞,

where

Ft,n = σ(u1, . . . , ut ;x1, . . . , xn), t = 1,2, . . . , n;n ≥ 1.

Note that Assumption 2∗ holds true if xt is independent of ut , and {ut , Ft }t≥1
forms a martingale difference satisfying E(u2

t+1 | Ft ) →a.s. σ
2 > 0 as t → ∞ and

supt≥1 E(|ut+1|4 | Ft ) < ∞, where Ft is a sequence of increasing σ -fields. The
independence assumption was used in Gao et al. (2009a) to establish a similar
version of Theorem 3.1.
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4. Simulations. Simulations were conducted to evaluate the finite sample per-
formance of the statistic Zn = Sn/

√
2Vn under the null and some local alternatives

under various assumptions about the generating mechanism. The results are sum-
marized here, and more detailed findings are reported in the supplementary ma-
terial [Wang and Phillips (2012)]. The model followed (2.1) with yt+1 = f (xt ) +
ut+1, xt = xt−1 +ηt , x0 = 0, and ηt generated by an AR(1) process ηt = ληt−1 +εt

or an MA(1) process ηt = εt + λεt−1 with (ut , εt ) ∼ i.i.d. N
(
0,

(1
r

r
1

))
. A linear

null hypothesis H0 :f (x) = θ0 + θ1x was used together with polynomial local
alternatives H1 :f (x) = θ0 + θ1x + ρn|x|ν , with ρn = 1/(n1/4+ν/3h1/4). The pa-
rameter settings were θ0 = 0, θ1 = 1, ν ∈ {0.5,1.5,2,3} and r ∈ {0,±0.5,±0.75}.
Results are reported for sample sizes n ∈ {100,200,500} and bandwidth settings
h = n−p for p ∈ {1

4 , 1
3 , 1

2.5}. Note that h = n−1/4 satisfies Assumption 2∗ but not
Assumption 2. The number of replications was 5000.

Table 1 shows the actual size of the test for various n and bandwidth choices h

and for both exogenous (r = 0) and endogenous (r = ±0.5) regressor cases with
serially uncorrelated errors (λ = 0). Table 2 shows the corresponding results for
AR errors with λ = ±0.4. Size results for MA errors are similar and are given in
the supplementary material [Wang and Phillips (2012)]. Under i.i.d. errors the test
is somewhat undersized for n = 100,200 but is close to the nominal for n = 500
and for all bandwidth choices. There is some mild oversizing under serially de-
pendent ηt when λ = −0.4 for bandwidth h = n−1/4, but size seems satisfactory
for λ = 0.4 and for the smaller bandwidths h = n−1/3, n−1/2.5. Since negative λ

reduces the long run moving average coefficient φ [φ = 1/(1 − λ) for AR ηt ]

TABLE 1
Size: ηt = εt

Nominal size 5% Nominal size 1%

n h = n−1/4 n−1/3 n−1/2.5 n−1/4 n−1/3 n−1/2.5

r = 0

100 0.028 0.035 0.033 0.006 0.006 0.007
200 0.034 0.042 0.041 0.007 0.007 0.008
500 0.044 0.045 0.050 0.009 0.010 0.010

r = 0.5

100 0.030 0.035 0.040 0.006 0.007 0.007
200 0.038 0.044 0.045 0.009 0.008 0.008
500 0.041 0.045 0.048 0.008 0.009 0.009

r = −0.5

100 0.031 0.035 0.037 0.007 0.008 0.008
200 0.036 0.045 0.046 0.007 0.008 0.009
500 0.041 0.047 0.051 0.009 0.010 0.011
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TABLE 2
Size: ηt = ληt−1 + εt , r = ±0.5

Nominal size 5% Nominal size 1%

n h = n−1/4 n−1/3 n−1/2.5 n−1/4 n−1/3 n−1/2.5

r = 0.5, λ = 0.4

100 0.034 0.038 0.041 0.002 0.004 0.005
200 0.044 0.044 0.047 0.004 0.006 0.007
500 0.058 0.058 0.057 0.007 0.010 0.011

r = 0.5, λ = −0.4

100 0.038 0.042 0.046 0.013 0.013 0.011
200 0.051 0.051 0.051 0.018 0.015 0.014
500 0.070 0.061 0.057 0.026 0.022 0.016

r = −0.5, λ = 0.4

100 0.034 0.038 0.040 0.002 0.004 0.005
200 0.044 0.044 0.048 0.004 0.006 0.007
500 0.058 0.058 0.057 0.007 0.009 0.011

r = −0.5, λ = −0.4

100 0.035 0.040 0.043 0.012 0.012 0.012
200 0.050 0.049 0.050 0.018 0.015 0.013
500 0.073 0.064 0.056 0.026 0.018 0.016

these results suggest that the strength of the long run signal in xt (measured by
the long-run variance of ηt ) affects the performance of the test. On the other hand,
endogeneity at the correlation level r = ±0.5 appears to have little effect on per-
formance, which mirrors results for estimation in the nonlinear nonstationary case
[Wang and Phillips (2009b)]. Higher levels of correlation (r = ±0.75) produce
some size distortion when there is serial dependence, but not when the errors are
independent; see Table 3.

Table 4–6 show test power against the local alternative H1 for polynomial al-
ternatives (cubic ν = 3, quadratic ν = 2 and three halves ν = 1.5). Results for the
case ν = 0.5 are given in the supplementary material [Wang and Phillips (2012)].
Again, there is little difference between the exogenous and endogenous cases, so
only the endogenous case is reported here. As may be expected, there is greater
local discriminatory power for cubic (ν = 3) than quadratic (ν = 2) or three halves
(ν = 1.5) alternatives. For n = 100 (500) power is greater than 69% (90%) for a
nominal 1% test and greater than 74% (92%) for a nominal 5% test when ν = 3
under AR errors with λ = 0.4 (Table 4). The corresponding results when ν = 2 and
n = 100 (500) are 15% (38%) for a nominal 1% test and 23% (46%) for a nominal
5% test (Table 5). Serial dependence affects power, which is higher for λ = 0.4
than for λ = −0.4 in all cases. So lower long-run signal strength in the regressor
tends to reduce discriminatory power. For ν = 1.5 and λ = −0.4, power is low even
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TABLE 3
Size: ηt = ληt−1 + εt , r = ±0.75

Nominal size 5% Nominal size 1%

n h = n−1/4 n−1/3 n−1/2.5 n−1/4 n−1/3 n−1/2.5

r = 0.75, λ = 0.4

100 0.036 0.038 0.039 0.003 0.003 0.004
200 0.043 0.049 0.050 0.005 0.006 0.007
500 0.057 0.055 0.053 0.007 0.009 0.008

r = 0.75, λ = −0.4

100 0.074 0.068 0.027 0.036 0.033 0.027
200 0.108 0.096 0.087 0.050 0.043 0.034
500 0.177 0.140 0.115 0.094 0.062 0.048

r = 0.75, λ = 0

100 0.026 0.029 0.032 0.005 0.006 0.006
200 0.037 0.044 0.046 0.007 0.008 0.010
500 0.040 0.042 0.047 0.008 0.009 0.009

r = −0.75, λ = 0

100 0.027 0.035 0.036 0.005 0.008 0.007
200 0.036 0.040 0.043 0.008 0.010 0.010
500 0.041 0.045 0.044 0.008 0.008 0.009

r = −0.75, λ = 0.4

100 0.074 0.071 0.063 0.003 0.004 0.004
200 0.103 0.085 0.074 0.011 0.012 0.011
500 0.135 0.105 0.088 0.027 0.020 0.015

r = −0.75, λ = −0.4

100 0.070 0.066 0.065 0.033 0.026 0.023
200 0.109 0.094 0.087 0.055 0.042 0.033
500 0.175 0.136 0.109 0.093 0.065 0.048

for n = 500 (2+% for a 1% test and 7+% for a 5% test, Table 6). Low power also
occurs against the local alternative with ν = 0.5 [see Wang and Phillips (2012)],
which also reduces signal strength in the regressor function. Thus, discriminatory
power is dependent on the specific alternative and, as asymptotic theory suggests,
is sensitive to the magnitude rate (ν) of m(x) as |x| → ∞.

Overall, the finite sample results reflect the asymptotic theory and seem reason-
able for practical use in testing when there is some endogeneity in nonparametric
nonstationary regression, especially if smaller bandwidth choices than usual are
employed. In cases of serial dependence when the long-run signal strength in the
regressor xt is reduced, finite sample adjustments for the test critical values may
be useful in correcting size, as has been found for i.i.d. and stationary regressors
[Li and Wang (1998)].
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TABLE 4
Local power: ν = 3, ηt = ληt−1 + εt , r = ±0.5

Nominal size 5% Nominal size 1%

n h = n−1/4 n−1/3 n−1/2.5 n−1/4 n−1/3 n−1/2.5

r = 0.5, λ = 0.4

100 0.819 0.779 0.743 0.787 0.739 0.693
200 0.906 0.878 0.845 0.892 0.849 0.811
500 0.971 0.950 0.923 0.963 0.935 0.901

r = 0.5, λ = −0.4

100 0.247 0.211 0.179 0.197 0.154 0.126
200 0.358 0.306 0.265 0.302 0.247 0.199
500 0.522 0.448 0.389 0.458 0.376 0.310

r = −0.5, λ = 0.4

100 0.829 0.780 0.743 0.792 0.742 0.696
200 0.910 0.879 0.845 0.891 0.851 0.813
500 0.965 0.947 0.921 0.957 0.931 0.903

r = −0.5, λ = −0.4

100 0.238 0.204 0.176 0.189 0.151 0.127
200 0.352 0.297 0.253 0.295 0.239 0.193
500 0.513 0.431 0.367 0.449 0.367 0.301

In practice, the exact α-level critical value �α(h) (0 < α < 1) of the finite sample
distribution of Sn/

√
2Vn depends on all the unknown parameters and functions in

the model. The development of a rigorous theory of approximation for �α(h) and
the choice of an optimal bandwidth for use in testing are challenging problems
in the nonstationary setting. Gao et al. (2009a) provided an approximate value of
�α(h) by using the bootstrap and considered numerical solutions for a bandwidth
h that optimizes the power function, both under the assumption that xt and ut are
independent. It is not clear at the moment whether similar techniques can be rig-
orously justified in the current general model and there is presently no optimal
approach to bandwidth selection. The investigation of such finite sample adjust-
ments and selection criteria is therefore left for later research. Earlier analysis of
the restrictions on the bandwidth in Theorems 3.1–3.3, in conjunction with the
simulation evidence, indicates that smaller bandwidths than usual for stationary
regression are likely to be more reliable in practical work for specification testing
of nonlinear nonstationary regression.

5. Convergence to intersection local time. Consider a linear process {ηj ,
j ≥ 1} defined by ηj = ∑∞

k=0 φkεj−k , where {εj , j ∈ Z} is a sequence of i.i.d.
random variables with Eε0 = 0 and Eε2

0 = 1, and the coefficients φk, k ≥ 0 are
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TABLE 5
Local power: ν = 2, ηt = ληt−1 + εt , r = ±0.5

Nominal size 5% Nominal size 1%

n h = n−1/4 n−1/3 n−1/2.5 n−1/4 n−1/3 n−1/2.5

r = 0.5, λ = 0.4

100 0.357 0.282 0.228 0.282 0.205 0.147
200 0.484 0.389 0.315 0.418 0.310 0.228
500 0.682 0.557 0.458 0.616 0.482 0.376

r = 0.5, λ = −0.4

100 0.058 0.054 0.053 0.027 0.020 0.016
200 0.103 0.083 0.068 0.048 0.034 0.024
500 0.169 0.118 0.094 0.098 0.057 0.036

r = −0.5, λ = 0.4

100 0.114 0.123 0.128 0.065 0.066 0.067
200 0.226 0.235 0.244 0.157 0.159 0.160
500 0.437 0.457 0.462 0.350 0.359 0.367

r = −0.5, λ = −0.4

100 0.056 0.050 0.046 0.022 0.016 0.014
200 0.102 0.082 0.066 0.053 0.031 0.022
500 0.173 0.123 0.096 0.103 0.061 0.037

assumed to satisfy
∑∞

k=0|φk| < ∞ and φ ≡ ∑∞
k=0 φk �= 0. Let

yk,n = ρyk−1,n + ηk, y0,n = 0, ρ = 1 + κ/n,(5.1)

where κ is a constant. The array yk,n, k ≥ 0 is known as a nearly unstable process
or, in the econometric literature, as a near-integrated time series. Write xk,n =
yk,n/

√
nφ. The classical invariance principle gives

x[nt],n ⇒ G(t) :=
∫ t

0
eκ(t−s) dW(s) = W(t) + κ

∫ t

0
eκ(t−s)W(s) ds(5.2)

on D[0,1], where W(t) is a standard Brownian motion [e.g., Phillips (1987),
Buchmann and Chan (2007), Wang and Phillips (2009b)]. Furthermore, {εj , j ∈
Z} can be redefined on a richer probability space which also contains a standard
Brownian motion W1(t) such that

sup
0≤t≤1

∣∣x[nt],n − G1(t)
∣∣ = oP (1),(5.3)

where G1(t) = W1(t)+κ
∫ t

0 eκ(t−s)W1(s) ds. Indeed, by noting on the richer space
that

sup
0≤t≤1

∣∣∣∣∣ 1√
n

[nt]∑
j=1

εj − W1(t)

∣∣∣∣∣ = oP (1)(5.4)
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TABLE 6
Local power: ν = 1.5, ηt = ληt−1 + εt , r = ±0.5

Nominal size 5% Nominal size 1%

n h = n−1/4 n−1/3 n−1/2.5 n−1/4 n−1/3 n−1/2.5

r = 0.5, λ = 0.4

100 0.058 0.051 0.045 0.021 0.012 0.010
200 0.087 0.065 0.057 0.040 0.022 0.015
500 0.158 0.103 0.077 0.096 0.046 0.024

r = 0.5, λ = −0.4

100 0.043 0.040 0.041 0.016 0.014 0.012
200 0.061 0.058 0.055 0.024 0.019 0.015
500 0.096 0.074 0.070 0.038 0.031 0.023

r = −0.5, λ = 0.4

100 0.066 0.053 0.050 0.025 0.015 0.011
200 0.093 0.065 0.052 0.046 0.023 0.015
500 0.152 0.094 0.090 0.088 0.042 0.023

r = −0.5, λ = −0.4

100 0.049 0.049 0.049 0.018 0.017 0.013
200 0.063 0.058 0.059 0.024 0.021 0.017
500 0.092 0.074 0.064 0.037 0.029 0.021

[see, e.g., Csörgő and Révész (1981)], and using this result in place of the fact that
1√
n

∑[nt]
j=1 εj ⇒ W(t) on D[0,1], the same technique as in the proof of Phillips

(1987) [see also Chan and Wei (1987)] yields

sup
0≤t≤1

∣∣∣∣∣ 1√
n

[nt]∑
j=1

ρ[nt]−j εj − G1(t)

∣∣∣∣∣ = oP (1).

The result (5.3) can now be obtained by the same argument, with minor modifica-
tions, as in the proof of Proposition 7.1 in Wang and Phillips (2009b).

The aim of this section is to investigate the asymptotic behavior of a functional
S[nr] of the xk,n, defined by

S[nr] = cn

n2

[nr]∑
k,j=1

g[cn(xk,n − xj,n)],(5.5)

where g is a real function on R, and cn is a certain sequence of positive constants.
Under certain conditions on g(x), ε0 and cn, it is established that, for each fixed
0 < r ≤ 1, S[nr] converges to an intersection local time process of G(t). Explicitly,
we have the following main result.
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THEOREM 5.1. Suppose that
∫ ∞
−∞ |g(x)|dx < ∞, ω ≡ ∫ ∞

−∞ g(x) dx �= 0 and∫ ∞
−∞ |Eeitε0 |dt < ∞. Then, for any cn → ∞, n/cn → ∞ and fixed r ∈ (0,1],

S[nr] →D ωLG(r,0),(5.6)

where LG(t, u) is the intersection local time of G(t) defined in (3.8). Furthermore,
under the same probability space for which (5.3) holds, we have that, for any
cn → ∞ and n/cn → ∞,

sup
0≤r≤1

∣∣S[nr] − ωLG1(r,0)
∣∣ →P 0.(5.7)

The integrability condition on the characteristic function of ε0 can be weakened
if we place further restrictions on g(x). Indeed, we have the following theorem.

THEOREM 5.2. Theorem 5.1 still holds if
∫ ∞
−∞ |Eeitε0 |dt < ∞ is replaced by

the Cramér condition, that is, lim sup|t |→∞|Eeitε0 | < 1, and, in addition to the
stated conditions already on g(x), we have |g(x)| ≤ M/(1 + |x|1+b) for some
b > 0, where M is a constant.

It is interesting to notice that the additional condition on g(x) in Theorem 5.2
cannot be reduced without further restriction on ε0 like that in Theorem 5.1. This
claim can be explained as in Example 4.2.2 of Borodin and Ibragimov (1994) with
some minor modifications. On the other hand, the asymptotic behavior of S[nr]
when cn = 1 is quite different, as seen in the following theorem.

THEOREM 5.3. Suppose that g(x) is Borel measurable function satisfying

lim
h→0

∫ K

−K
|x|α−1 sup

|u|≤h

|g(x + u) − g(x)|dx = 0(5.8)

for all K > 0 and some 0 < α ≤ 1. Then, under the same probability space for
which (5.3) holds, we have

sup
0≤r≤1

∣∣∣∣∣ 1

n2

[nr]∑
k,j=1

g(xk,n − xj,n) −
∫ r

0

∫ r

0
g[G1(u) − G1(v)]dudv

∣∣∣∣∣ = oP (1).(5.9)

We mention that condition (5.8) is quite weak. Indeed, example 2.8 and the
discussion following Theorem 2.3 in Berkes and Horváth (2006) shows that (5.8)
cannot be replaced by

lim
h→0

∫ K

−K
|x|α−1|g(x + u) − g(x)|dx = 0

for all K > 0 and some 0 < α ≤ 1.
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Local time has figured in much recent work on parametric and nonparamet-
ric estimation with nonstationary data. Motivated by nonlinear regression with
integrated time series [Park and Phillips (1999, 2001)] and nonparametric esti-
mation of nonlinear cointegration models, many authors [Phillips and Park (1998),
Karlsen and Tjøstheim (2001), Karlsen, Myklebust and Tjøstheim (2007), Wang
and Phillips (2009a)] have used or proved weak convergence to the local time of a
stochastic process, including results of the following type: under certain conditions
on the function g, the limiting stochastic process G(t), a sequence cn → ∞, and
normalized data xk,n

cn

n

[nr]∑
k=1

g(cnxk,n) →D ω�G(1,0),(5.10)

where �G(t, s) is the local time of the process G(t) at the spatial point s. We
refer to Borodin and Ibragimov (1994) (and their references for related work) for
the particular situation where cnxk,n is a partial sum of i.i.d. random variables,
and to Akonom (1993), Phillips and Park (1998), Jeganathan (2004) and de Jong
and Wang (2005) for the case where cnxk,n is a partial sum of a linear process.
Wang and Phillips [(2009a), Theorem 2.1] generalized these results to include not
only linear process partial sums but also cases where cnxk,n is a partial sum of a
Gaussian process, including fractionally integrated time series.

Our present research on the statistic S[nr] in (5.5) has a similar motivation to
this earlier work on convergence to a local time process. However, the statistic
S[nr] has a much more complex U-statistic form, and the technical difficulties of
establishing weak convergence are greater. The approach of Wang and Phillips
[(2009a), Theorem 2.1] remains useful, however, and is implemented in the proofs
of Theorems 3.1–3.3.

Finally we mention some earlier work investigating the intersection local time
process and weak convergence for certain specialized situations. This work re-
stricts the function g in (5.5) to the indicator function and the discrete process yk,n

in (5.1) to a lattice random walk taking integer values; see, for instance, Aldous
(1986), van der Hofstad, den Hollander and König (1997), van der Hofstad and
König (2001) and van der Hofstad, den Hollander and König (2003). The present
paper seems to the first to consider weak convergence to intersection local time for
a general linear process and a general function g.

The proofs of Theorems 5.1–5.3 are given in the supplementary material [Wang
and Phillips (2012)].

6. Proofs of Theorems 3.1–3.3. We start with several propositions. Their
proofs are given in the supplementary material [Wang and Phillips (2012)].
Throughout the section, we let C,C1, C2, . . . be constants which may differ at
each appearance.
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PROPOSITION 6.1. Suppose Assumptions 1 and 2 hold. For any α1, α2 ≥ 0, if
supx |p(x)| < ∞,

∫
(1 + |x|max{[α1],[α2]}+1)|p(x)|dx < ∞ and E|ε0|[α1]+[α2]+2 <

∞, then

�n :=
n∑

s,t=1
s �=t

g(us+1)g1(ut+1)(1 + |xs |α1)(1 + |xt |α2)p[(xt − xs)/h]

(6.1)
= OP (n3/2+α1/2+α2/2h),

where g(x) and g1(x) are real functions such that

sup
s≥1

E{[g2(us+1) + g2
1(us+1)] | Fs} < ∞.

If additionally α1 > 0, then

�̃n := ∑
1≤s<t≤n

g(us+1)(1 + |xs |α1−1)p[(xt − xs)/h]
(6.2)

= OP

(
nmax{3/2,1+α1/2}h

)
.

PROPOSITION 6.2. Suppose Assumptions 1–3 hold. Then, for any g(x, θ) sat-
isfying (2.5) and |g(x, θ)| ≤ C(1 + |x|β), where θ ∈ �0, we have

�n :=
n∑

s,t=1
s �=t

us+1g(xt , θ)K[(xt − xs)/h] = OP (n5/4+β/2h3/4),(6.3)

provided that nh2 → ∞, nh4 → 0,
∫
(1 + |x|β+1)K(x) dx < ∞ and E|ε0|β+2 <

∞. Similarly, (6.3) holds true if we replace g(x, θ) and β by m(x) and ν, respec-
tively, where m(x) is defined as in Assumption 6.

PROPOSITION 6.3. Suppose Assumptions 1–3 hold and nh2 → ∞. Then, for
any real function g(x) satisfying sups≥1 E{g2(us+1) | Fs} < ∞, we have

�n :=
n∑

s,t=1
s �=t

g(us+1)(u
2
t+1 − σ 2)K2[(xt − xs)/h] = oP (n3/2h).(6.4)

PROPOSITION 6.4. In addition to Assumptions 1–3, we have |uj | ≤ A and
nh2 → ∞. Then,

Rn :=
n∑

t=1

t−1∑
i,j=1
i �=j

ui+1uj+1K[(xt − xi)/h]K[(xt − xj )/h] = oP (n3/2h).(6.5)
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PROPOSITION 6.5. Under Assumptions 1–3 and h log2 n → 0, we have

EZ2
tkr ≤ C max

1≤i,j≤n
E[|ui |(1 + |uj |)](1 + h

√
t − r − k

)
(6.6)

for 1 ≤ k ≤ t − r and r ≥ 1, where Ztkr = ∑t−r
i=k ui+1K[(xt − xi)/h]. Similarly,

E

{
t−1∑
i=1

[u2
i+1 − E(u2

i+1 | Fj )]K2[(xt − xi)/h]
}2

≤ C
(
1 + h

√
t
)
.(6.7)

If in addition |uj | ≤ A, where A is a constant, then

EZ4
t12 ≤ Ch3t3/2,(6.8)

and for any 1 ≤ m ≤ t/2,

EZ∗2
tm ≤ Ch2t2

m3/2 + Ch2t log(t − m)√
m

+ Ch2t

m
,(6.9)

where Z∗
tm = ∑t−m−1

i=1 ui+1E(K[(xt − xi)/h] | Ft−m).

6.1. Proof of Theorem 3.1. By virtue of (3.5) and Theorem 3.3, it suffices to
verify (3.6) and show that

S2n = oP

(
n3/4

√
h
)

and S3n = oP

(
n3/4

√
h
)
.(6.10)

To this end, for δ > 0, let �n = {θ̂ :‖θ̂ − θ‖ ≤ δδn, θ ∈ �0}, where δn is given in
Assumption 4(i).

We first prove (6.10). Note that �n ⊂ �0 for all n sufficiently large. Under
Assumption 4, it follows by Taylor’s expansion that, whenever n is sufficiently
large and θ̂ ∈ �n,

S2n = (θ − θ̂ )

n∑
i,t=1
i �=t

ui+1
∂f (xt , θ)

∂θ
K[(xt − xi)/h] + S2n1,(6.11)

where

S2n1 ≤ C|θ̂ − θ |2
n∑

i,t=1
i �=t

|ui+1|(1 + |xt |β)K[(xt − xi)/h].

By Proposition 6.2 with g(x, θ) = ∂f (x,θ)
∂θ

and δ2
nn

1+β
√

h → 0, the first term in the
decomposition of S1n is equal to

OP (δnn
5/4+β/2h3/4) = oP

(
n3/4

√
h
)
.

On the other hand, by Proposition 6.1 and nh2 → ∞, we get

S2n1 = OP (δ2
nn

3/2+β/2h) = oP

(
n3/4

√
h
)
.



746 Q. WANG AND P. C. B. PHILLIPS

These facts imply, for any δ > 0,

P
(|S2n| ≥ δn3/4

√
h
)

≤ P
(|S2n| ≥ δn3/4

√
h, θ̂ ∈ �n

) + P(‖θ̂ − θ‖ ≥ δδn)(6.12)

→ 0 as n → ∞.

Similarly, by using Proposition 6.1 and noting

|S3n| ≤ C|θ̂ − θ |2
n∑

i,t=1
i �=t

∣∣∣∣∂f (xi, θ)

∂θ

∣∣∣∣∣∣∣∣∂f (xt , θ)

∂θ

∣∣∣∣K[(xt − xi)/h]

≤ Cδ2
n

n∑
i,t=1
i �=t

(1 + |xi |β)(1 + |xt |β)K[(xt − xi)/h](6.13)

= OP (δ2
nn

3/2+βh) = oP

(
n3/4

√
h
)
,

whenever θ̂ ∈ �n, we obtain, for any δ > 0,

P
(|S3n| ≥ δn3/4

√
h
)

≤ P
(|S3n| ≥ δn3/4

√
h, θ̂ ∈ �n

) + P(|θ̂ − θ | ≥ δδn)(6.14)

→ 0 as n → ∞.

Combining (6.12) and (6.14), we obtain (6.10).
We next prove (3.6). We may write

V 2
n =

n∑
s,t=1
s �=t

u2
s+1u

2
t+1K

2[(xt − xs)/h]

+
n∑

s,t=1
s �=t

(û2
s+1 − u2

s+1)û
2
t+1K

2[(xt − xs)/h]

(6.15)

+
n∑

s,t=1
s �=t

u2
s+1(û

2
t+1 − u2

t+1)K
2[(xt − xs)/h]

:= V1n + V2n + V3n.

Recall |f (xs, θ) − f (xs, θ̂)| ≤ Cδn(1 + |xs |β) whenever θ̂ ∈ �n and |û2
t+1 −

u2
t+1| = 2|ut+1||f (xs, θ) − f (xs, θ̂)| + |f (xs, θ) − f (xs, θ̂)|2. It is readily seen
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from Proposition 6.1 that, given θ̂ ∈ �n,

|V2n| + |V3n| ≤ Cδn

n∑
s,t=1
s �=t

|us+1|u2
t+1(1 + |xs |β)K[(xt − xs)/h]

+ Cδ2
n

n∑
s,t=1
s �=t

u2
t+1(1 + |xs |2β)K[(xt − xs)/h]

+ Cδ3
n

n∑
s,t=1
s �=t

|us+1|(1 + |xs |β)(1 + |xt |2β)K[(xt − xs)/h]

+ Cδ4
n

n∑
s,t=1
s �=t

(1 + |xs |2β)(1 + |xt |2β)K[(xt − xs)/h]

= OP (n3/2h)(δnn
β/2 + δ2

nn
β + δ3

nn
3β/2 + δ4

nn
2β)

= oP (n3/2h),

since nh2 → ∞ and δ2
nn

1+β
√

h → 0. As for V1n, by Proposition 6.3, we have

V1n = σ 4
n∑

s,t=1
s �=t

K2[(xt − xs)/h] +
n∑

s,t=1
s �=t

(u2
t+1 + σ 2)(u2

s+1 − σ 2)K2[(xt − xs)/h]

= σ 4
n∑

s,t=1
s �=t

K2[(xt − xs)/h] + oP (n3/2h).

Taking these estimates into (6.15), we get the first part of (3.6).
In order to prove the second part of (3.6), we first assume |uj | ≤ A. In this case,

simple calculations together with Propositions 6.3 and 6.4 yield that

n∑
t=2

Y 2
nt =

n∑
t=2

t−1∑
s=1

u2
s+1K

2[(xt − xs)/h]

+
n∑

t=1

t−1∑
i,j=1
i �=j

ui+1uj+1K[(xt − xi)/h]K[(xt − xj )/h](6.16)

= σ 2

2

n∑
s,t=1
s �=t

K2[(xt − xs)/h] + oP (n3/2h)
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as required. The idea to remove the restriction |uj | ≤ A is the same as in the proof
of Theorem 3.3. We omit the details. The proof of Theorem 3.1 is now complete.

6.2. Proof of Theorem 3.2. Put û∗
t+1 = ut+1 + f (xt , θ) − f (xt , θ̂ ). Under H1,

we may write

Sn = S1n + 2S2n + S3n − S4n + S5n,(6.17)

where S1n, S2n, S3n are defined as in (3.5), and

S4n = 2ρn

n∑
i,t=1
i �=t

m(xi)û
∗
t+1K[(xt − xi)/h],

S5n = ρ2
n

n∑
i,t=1
i �=t

m(xi)m(xt )K[(xt − xi)/h].

Thus (3.4) will follow if we prove

Sjn = OP (n3/4h1/2), j = 1,2,3,(6.18)

S4n = OP (ρnn
5/4+ν/2h3/4),(6.19)

V 2
n = OP (n3/2h + ρ4

nn3/2+2νh) under H1,(6.20)

and for any εn → 0,

S5n ≥ εnρ
2
nn3/2+νh in Probab.(6.21)

Here and below, the notation An ≥ Bn, in Probab. means that limn→∞ P(An ≥
Bn) = 1, as n → ∞. Indeed, by choosing ε−2

n = min{ρ2
nn1/2+ν

√
h,n3/2

√
h}, it

is readily seen that εn → 0, |Sjn| = OP (εnS5n) = oP (S5n) for j = 1,2,3,4 and
S5n/Vn ≥ ε−1

n , in Probab. Hence Sn/Vn ≥ ε−1
n /2, in Probab., which yields (3.4).

We next prove (6.19)–(6.21). The proof of (6.18) for j = 2,3 is given in (6.10),
and the result for j = 1 is simple by martingale properties and Proposition 6.5.

Equation (6.21) first. We may write

S5n = S5n1 + S5n2,(6.22)

where S5n1 = 2ρ2
n

∑
1≤i<t≤n m2(xi)K[(xt − xi)/h] and

|S5n2| ≤ 2ρ2
n

∑
1≤i<t≤n

|m(xi)||m(xt ) − m(xi)|K[(xt − xi)/h].
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Let ν′ = ν if ν > 0 and ν′ = γ ′ if ν = 0. It follows from (3.3) and Proposition 6.1
that

|S5n2| ≤ Chγ ρ2
n

∑
1≤i<t≤n

(1 + |xi |ν)(1 + |xi |ν′−1 + |xt − xi |ν)Kγ [(xt − xi)/h]

≤ Chγ ρ2
n

∑
1≤i<t≤n

{(1 + |xi |ν′−1 + |xi |ν+ν′−1)Kγ [(xt − xi)/h]

+ hν(1 + |xi |ν)Kν+γ [(xt − xi)/h]}(6.23)

= OP

(
h1+γ ρ2

n

[
nmax{3/2,1+(ν+ν′)/2} + n3/2+ν/2])

= OP (h1+γ ρ2
nn3/2+ν),

where Ku(x) = |x|uK(x), u > 0 and we have used the fact that supx |Ku(x)| < ∞
whenever

∫
Ku(x)dx < ∞ [recall supx |K(x)| < ∞]. Since h → 0 and 0 < γ ≤ 1,

to prove (6.21), it only needs to show that, for any hγ/2 ≤ εn → 0,

S5n1 ≥ εnρ
2
nn3/2+ν in Probab.(6.24)

In fact, by (5.3) and letting x[ns],n = x[ns]/(
√

nφ),

inf
n/2≤j≤n

|xj | ≥ √
nφ

(
inf

1/2≤s≤1
|G1(s)| − sup

1/2≤s≤1

∣∣x[ns],n − G1(s)
∣∣)

(6.25)
≥ ε1/4ν

n

√
n in Probab.

Similarly, by using (5.7) in Theorem 5.1, we have∑
n≥t>i≥n/2

K[(xt − xi)/h] ≥ ε1/4
n n3/2h in Probab.(6.26)

Combining (3.2), (6.25) and (6.26), we obtain that

S5n1 ≥ ε1/2
n ρ2

n

∑
n≥t>i≥n/2

|xi |2νI (|xi | ≥ 1)K[(xt − xi)/h]

≥ ε3/4
n ρ2

nnν
∑

n≥t>i≥n/2

K[(xt − xi)/h]

≥ εnρ
2
nn3/2+νh in Probab.

This provides (6.24) and also completes the proof of (6.21).
Next prove (6.19). We have

S4n = 2ρn

n∑
i,t=1
i �=t

m(xi)ut+1K[(xt − xi)/h] + S4n1,
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where, by recalling |f (xt , θ)−f (xt , θ̂)| ≤ C‖θ̂ − θ‖(1 +|xt |β) by Assumption 4,
it follows from Proposition 6.1 that

|S4n1| ≤
n∑

i,t=1
i �=t

(1 + |xi |ν)|f (xt , θ) − f (xt , θ̂ )|K[(xt − xi)/h]

≤ Cρn‖θ̂ − θ‖
n∑

i,t=1
i �=t

(1 + |xi |ν)(1 + |xt |β)K[(xt − xi)/h]

= OP (ρnδnn
3/2+ν/2+β/2h).

This, together with Proposition 6.2, yields that

S4n = OP (ρnδnn
3/2+ν/2+β/2h) + OP (ρnn

5/4+ν/2h3/4)

= OP (ρnn
5/4+ν/2h3/4),

since δ2
nn

1+β
√

n → 0. The result (6.19) is proved.
Finally, we prove (6.20). Under H1, we have

V 2
n =

n∑
s,t=1,s �=t

[û∗
t+1 + ρnm(xt )]2[û∗

s+1 + ρnm(xs)]2K2[(xt − xs)/h]
(6.27)

≤ 2V6n + 4V7n + 2V8n,

where

V6n =
n∑

s,t=1
s �=t

û∗2
t+1û

∗2
s+1K

2[(xt − xs)/h],

V7n = ρ2
n

n∑
s,t=1
s �=t

û∗2
t+1m

2(xs)K
2[(xt − xs)/h],

V8n = ρ4
n

n∑
s,t=1
s �=t

m2(xt )m
2(xs)K

2[(xt − xs)/h].

By recalling |m(x)| ≤ C|x|ν and

û∗2
t+1 ≤ 2

(
u2

t+1 + |f (xt , θ) − f (xt , θ̂ )|2)
≤ C[u2

t+1 + OP (δ2
n)(1 + |xt |2β)],
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it following repeatedly from Proposition 6.1 and δ2
nn

1+β
√

h → 0 that

V6n ≤ C

n∑
s,t=1
s �=t

[u2
s+1 + OP (δ2

n)(1 + |xs |2β)][u2
t+1 + OP (δ2

n)(1 + |xt |2β)]

× K2[(xt − xs)/h]
= OP (n3/2h) + OP (δ2

nn
3/2+βh) + OP (δ4

nn
3/2+2βh)

= OP (n3/2h).

Similarly, we have

V7n ≤ Cρ2
n

n∑
s,t=1
s �=t

[u2
s+1 + OP (δ2

n)(1 + |xs |2β)](1 + |xt |2ν)]K2[(xt − xs)/h]

= OP (ρ2
nn3/2+νh) + OP (ρ2

nδ2
nn

3/2+β+νh) = OP (ρ2
nn3/2+νh),

V8n ≤ ρ4
n

n∑
s,t=1
s �=t

(1 + |xt |2ν)(1 + |xs |2ν)K2[(xt − xs)/h]

= OP (ρ4
nn3/2+2νh).

Combining all these estimates, we obtain

V 2
n = OP (n3/2h) + OP (ρ2

nn3/2+νh) + OP (ρ4
nn3/2+2νh)

= OP (n3/2h + ρ4
nn3/2+2νh)

as required. The proof of Theorem 3.2 is complete.

6.3. Proof of Theorem 3.3. We first assume |ut | ≤ A, where A is a constant.
This restriction will be removed later. Write Gn(t) = x[nt]/

√
nφ and Vn(t) =∑[nt]

j=1 uj+1/
√

nσ . Under Assumptions 1 and 2, the same arguments as those in
Buchmann and Chan (2007) or Wang and Phillips (2009b), with minor modifica-
tions, show that

(Gn,Vn) ⇒D (G,V )(6.28)

on D[0,1]2, where G(t) = W(t) + κ
∫ t

0 eκ(t−s)W(s) ds. By virtue of (6.28), it fol-
lows from the so-called Skorohod–Dudley–Wichura representation theorem that
there is a common probability space (�, F ,P ) supporting (G0

n,V
0
n ) and (G,V )

such that

(Gn,Vn) =d (G0
n,V

0
n ) and (G0

n,V
0
n ) →a.s. (G,V )(6.29)
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in D[0,1]2 with the uniform topology. Moreover, as in the proof of Lemma 2.1 in
Park and Phillips (2001), V 0

n can be chosen such that, for each n ≥ 1,

V 0
n (k/n) = V (τnk/n), k = 1,2, . . . , n,(6.30)

where τn,k,1 ≤ k ≤ n, are stopping times with respect to F 0
n,k in (�, F ,P ) with

F 0
n,k = σ {V (r), r ≤ τn,k/n;G0

n(s/n), s = 1, . . . , k + 1},
satisfying τn,0 = 0,

sup
1≤k≤n

∣∣∣∣τn,k − k

nδ

∣∣∣∣ →a.s. 0(6.31)

as n → ∞ for any 1/2 < δ < 1, and

E[(τn,k − τn,k−1) | F 0
n,k−1] = σ−2E[u2

k+1 | Fk] and
(6.32)

E[(τn,k − τn,k−1)
2m | F 0

n,k−1] ≤ Cσ−4mE[u4m
k+1 | Fk], m ≥ 1, a.s.

for some constant C > 0. We mention that result (6.32) does not explicitly ap-
pear in Lemma 2.1 of Park and Phillips (2001); however, it can be obtained by a
construction along the same lines as Theorem A1 of Hall and Heyde (1980).

It follows from (6.30) that, under the extended probability space,(
1

σdn

n∑
t=2

ut+1Ynt ,
1

d2
n

n∑
t=2

Y 2
nt

)
(6.33)

=d

(
n∑

t=2

[V (τn,t /n) − V (τn,t−1/n)]Y ∗
n,t ,

1

n

n∑
t=2

Y ∗2
nt

)
,

where, with cn = √
nφ/h,

Y ∗
nt = nσ

dn

t−1∑
i=1

[V (τn,i/n) − V (τn,i−1/n)]K{cn[G0
n(t/n) − G0

n(i/n)]}.

To establish our main result, we extend
∑n

i=2[V (τn,t /n) − V (τn,t−1/n)]Y ∗
n,t to

a continuous martingale. This can be done by defining

Mn(r) =
j−1∑
t=2

Y ∗
nt

[
V

(
τn,t

n

)
− V

(
τn,t−1

n

)]
+ Y ∗

n,j

[
V (r) − V

(
τn,j−1

n

)]
(6.34)

for τn,j−1/n < r ≤ τn,j /n, j = 1,2, . . . , n, and

Mn(r) =
n∑

t=2

Y ∗
nt

[
V

(
τn,t

n

)
− V

(
τn,t−1

n

)]
+ 1√

n

[
V (r) − V

(
τn,n

n

)]
(6.35)
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for r ≥ τn,n/n. It is readily seen that Mn is a continuous martingale with quadratic
variation process [Mn] given by

[Mn]r =
j−1∑
t=2

Y ∗2
nt

(
τn,t

n
− τn,t−1

n

)
+ Y ∗2

n,j

(
r − τn,j−1

n

)
(6.36)

for τn,j−1/n < r ≤ τn,j /n, j = 1,2, . . . , n, and

[Mn]r =
n∑

t=2

Y ∗2
nt

(
τn,t

n
− τn,t−1

n

)
+ 1

n

(
r − τn,n

n

)
(6.37)

for r ≥ τn,n/n. Similarly, the covariance process [Mn,V ] of Mn and V is given by

[Mn,V ]r =
j−1∑
t=2

Y ∗
nt

(
τn,t

n
− τn,t−1

n

)
+ Y ∗

n,j

(
r − τn,j−1

n

)
(6.38)

for τn,j−1/n < r ≤ τn,j /n, j = 1,2, . . . , n, and

[Mn,V ]r =
n∑

t=2

Y ∗
nt

(
τn,t

n
− τn,t−1

n

)
+ 1√

n

(
r − τn,n

n

)
(6.39)

for r ≥ τn,n/n.
Write ρn(t) = inf{s : [Mn]s > t}, a sequence of time changes. Note that

[Mn]∞ = ∞ for every n ≥ 1 and

[Mn,V ]ρn(t) →P 0 as n → ∞(6.40)

for every t ∈ R, by (6.42) in Proposition 6.6 below. Theorem 2.3 of Revuz and Yor
[(1999), page 524] yields that, if we call Bn [i.e., Bn(r) = Mn{ρn(r)}] the DDS
Brownian motion [see, e.g., Revuz and Yor (1999), page 181] of the continuous
martingale Mn defined by (6.34) and (6.35), then Bn converges in distribution to
a Wiener process W . Since the law of the processes Bn are all given by Wiener
measure, it is plain that Bn(r) ⇒ W(r) (mixing), where the concept of mixing
can be found in Hall and Heyde (1980), page 56. This, together with (6.43) in
Proposition 6.7 below, yields that (Bn(r), [Mn]1) ⇒ (W(r), η2), where W is inde-
pendent of η2 = LG(1,0), defined as in (3.8). Now, by noting that Mn(1) is equal
to Bn([Mn]1), the continuous mapping theorem implies that

(Mn(1), [Mn]1) →D (ηN,η2),(6.41)

where N is a normal variate independent of η.
By virtue of (6.33) and (6.41), the required result of the theorem follows (6.44)

and (6.45) in Proposition 6.7 and Proposition 6.8 below.
It remains to show the following Propositions 6.6–6.8, whose proofs are given in

the supplementary material [Wang and Phillips (2012)]. The proof of Theorem 3.3
under |uj | ≤ A is now complete.
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PROPOSITION 6.6. In addition to Assumptions 1–3, assume that |uj | ≤ A,
nh2 → ∞ and h log2 n → 0. Then, as n → ∞,

[Mn,V ]r → 0 in Probab.(6.42)

uniformly on r ∈ [0, T ], where T is an arbitrary given constant.

PROPOSITION 6.7. In addition to Assumptions 1–3, assume that |uj | ≤ A,
nh2 → ∞ and nh4 log2 n → 0. Under the extended probability space used in
(6.29), we have

[Mn]1 →P η2,(6.43)

where η2 = LG(1,0) is defined as in (3.8), and

[Mn]1 − 1

n

n∑
t=1

Y ∗2
nt = oP (1).(6.44)

PROPOSITION 6.8. In addition to Assumptions 1–3, assume that |uj | ≤ A,
nh2 → ∞ and nh4 log2 n → 0. Then,

Mn(1) −
n∑

t=2

Y ∗
nt

[
V

(
τn,t

n

)
− V

(
τn,t−1

n

)]
= oP (1).(6.45)

We next remove the restriction |uj | ≤ A. To this end, let

u1j = ujI (|uj | ≤ A/2) − E[uj I (|uj | ≤ A/2) | Fj−1],
u2j = ujI (|uj | > A/2) − E[uj I (|uj | > A/2) | Fj−1]

and

Y1nt =
t−1∑
i=1

u1,i+1K[(xt − xi)/h], Y2nt =
t−1∑
i=1

u2,i+1K[(xt − xi)/h].

With this notation, we may write

1

dn

n∑
t=2

ut+1Ynt = 1

dn

n∑
t=2

u1,t+1Y1nt + 1

dn

n∑
t=2

u1,t+1Y2nt + 1

dn

n∑
t=2

u2,t+1Ynt

(6.46)

:= 1

dn

n∑
t=2

u1,t+1Y1nt + �1n + �2n,

1

d2
n

n∑
t=2

Y 2
nt = 1

d2
n

n∑
t=2

Y 2
1nt + 2

d2
n

n∑
t=2

Y1ntY2nt + 1

d2
n

n∑
t=2

Y 2
2nt

(6.47)

:= 1

d2
n

n∑
t=2

Y 2
1nt + �3n + �4n.
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Recall that |u1j | ≤ A, and u1j is a martingale difference satisfying

E(u2
1t | Ft−1) = E

(
u2

t I (|ut | ≤ A) | Ft−1
)

− [
E

(
utI (|ut | ≤ A) | Ft−1

)]2

→ σ 2 a.s.

as j,A → ∞. It follows from the proof of (3.7) under |uj | ≤ A that, when n → ∞
first, and then A → ∞,(

1

σdn

n∑
t=2

u1,t+1Y1nt ,
1

d2
n

n∑
t=2

Y 2
1nt

)
→D (ηN,η2).(6.48)

Now it is readily seen that the required result will follow if we prove

�in →P 0, i = 1,2,3,4,(6.49)

as n → ∞ first, and then A → ∞. In fact, by virtue of (6.6) in Proposition 6.5,

sup
1≤i≤n

Eu2
i ≤ sup

1≤i≤n

(Eu4
i )

1/4 < ∞

and supx K(x) < ∞, we have, for 1 ≤ t ≤ n,

EY 2
nt ≤ 2 sup

x
K(x)Eu2

t + 2E

(
t−2∑
i=1

ui+1K[(xt − xi)/h]
)2

≤ C sup
1≤i≤n

Eu2
i

(
1 + h2√t log t + h

√
t
) ≤ C1h

√
n,

since h logn → 0 and nh2 → ∞. Similarly,

EY 2
1nt ≤ C sup

1≤i≤n

Eu2
i I (|ui | ≤ A)

(
1 + h2√t log t + h

√
t
) ≤ C1h

√
n,

EY 2
2nt ≤ C sup

1≤i≤n

Eu2
i I (|ui | > A)

(
1 + h2√t log t + h

√
t
) ≤ C1A

−2h
√

n.

These results, together with the fact that u1j and u2j both are martingale difference
satisfying

sup
j

E(u2
1,j+1 | Fj ) ≤ sup

j

[E(u4
j | Fj )]1/2 ≤ C,

sup
j

E(u2
2,j+1 | Fj ) ≤ sup

j

E
(
u2

j I|uj |>A | Fj

)
≤ A−2 sup

j

E(u4
j | Fj ) ≤ CA−2,
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yield that, as n → ∞ first, and then A → ∞,

E�2
1n ≤ C

n3/2h

n∑
t=2

EY 2
2nt ≤ CA−2 → 0,

E�2
2n ≤ CA−2

n3/2h

n∑
t=2

EY 2
nt ≤ CA−2 → 0,

E�4n ≤ C

n3/2h

n∑
t=2

EY 2
2nt ≤ CA−2 → 0,

E|�3n| ≤ C

n3/2h

n∑
t=2

(EY 2
1nt )

1/2(EY 2
2nt )

1/2 ≤ CA−1 → 0.

This proves (6.49), and hence the proof of Theorem 3.3 is complete.
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SUPPLEMENTARY MATERIAL

Supplement to “A specification test for nonlinear nonstationary models”
(DOI: 10.1214/12-AOS975SUPP; .pdf). Further details on the derivations in the
present paper and supporting lemmas and proofs of the main results on conver-
gence to intersection local time are contained in the supplement to the paper, Wang
and Phillips (2012).
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