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POSTERIOR CONSISTENCY OF NONPARAMETRIC
CONDITIONAL MOMENT RESTRICTED MODELS

BY YUAN LIAO AND WENXIN JIANG
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This paper addresses the estimation of the nonparametric conditional mo-
ment restricted model that involves an infinite-dimensional parameter g0. We
estimate it in a quasi-Bayesian way, based on the limited information like-
lihood, and investigate the impact of three types of priors on the posterior
consistency: (i) truncated prior (priors supported on a bounded set), (ii) thin-
tail prior (a prior that has very thin tail outside a growing bounded set) and
(iii) normal prior with nonshrinking variance. In addition, g0 is allowed to be
only partially identified in the frequentist sense, and the parameter space does
not need to be compact. The posterior is regularized using a slowly growing
sieve dimension, and it is shown that the posterior converges to any small
neighborhood of the identified region. We then apply our results to the non-
parametric instrumental regression model. Finally, the posterior consistency
using a random sieve dimension parameter is studied.

1. Introduction. We consider a conditional moment restricted model

E(ρ(Z,g0)|W,g0) = 0,(1.1)

where (ZT ,WT ) is a vector of observable random variables, and W may or may
not be included in Z. Here ρ is a one-dimensional residual function known up
to g0. The conditional expectation is taken with respect to the conditional distribu-
tion of Z given W and g0, assumed unknown. The parameter of interest is g0,
which is infinite dimensional. Moreover, suppose we observe independent and
identically distributed data {(ZT

i ,WT
i )}ni=1 of (ZT ,WT ).

Model (1.1) is a very general setting, which encompasses many important
classes of nonparametric and semiparametric models.

EXAMPLE 1.1 (Regular nonparametric regression). Consider the model

Y = g0(W) + ε

assuming E(ε|W) = 0. Let Z = (Y,W), then it can be written as the conditional
moment restricted model with ρ(Z,g0) = Y − g0(W).
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EXAMPLE 1.2 (Single index model). Consider the single index model

Y = h0(W
T θ0) + ε,

where E(ε|W) = 0. The parameter of interest is (h0, θ0), with h0 being non-
parametric. This type of model is studied by Ichimura (1993) and Antoniadis,
Grégoire and McKeague (2004). By defining Z = (Y,W), g0 = (h0, θ0) and
ρ(Z,g0) = Y − h0(W

T θ0), we can write E(ρ(Z,g0)|W,g0) = 0.

EXAMPLE 1.3 (Nonparametric IV regression). Consider the nonparametric
model

Y = g0(X) + ε,

where X is an endogenous regressor, meaning that E(ε|X) does not vanish. How-
ever, suppose we have observed an instrumental variable W for which E(ε|W) =
0; then it becomes a nonparametric regression model with instrumental variables
(NPIV), studied by Newey and Powell (2003) and Hall and Horowitz (2005). De-
fine ρ(Z,g0) = Y − g0(X), with Z = (Y,X). Then we have the conditional mo-
ment restriction.

EXAMPLE 1.4 (Nonparametric quantile IV regression). The nonparametric
quantile IV regression was previously studied by Chernozhukov and Hansen
(2005), Chernozhukov, Imbens and Newey (2007) and Horowitz and Lee (2007).
The model is

y = g0(X) + ε, P (ε ≤ 0|W) = γ,

where g0 is the unknown function of interest, and γ ∈ (0,1) is known and fixed.
Assume X is a continuous random variable. Then the conditional moment restric-
tion is given by

E(ρ(Z,g0)|W,g0) = 0, ρ(Z,g0) = I(y≤g0(X)) − γ.

If we define G(g) = EW [E(ρ(Z,g)|W,g0)]2, an equivalent way of writing
model (1.1) is then G(g0) = 0. When the unknown function g0 depends on certain
endogenous variable as in Examples 1.3 and 1.4, the identification and consistent
estimation of g0 is challenging. On one hand, there can be multiple functions in
the parameter space that satisfy the moment restriction (1.1). On the other hand,
even if g0 is identified, [in which case the functional G(g) is uniquely minimized
at g = g0, as is typically assumed in the literature], reducing G(g) toward G(g0)

does not guarantee that ‖g−g0‖s will also be close to zero, for a certain norm ‖ · ‖s

of interest. Therefore, minimizing a consistent estimator of G(g) does not lead to
a consistent estimator of g0 under ‖ · ‖s . This phenomenon is usually known as the
“ill-posed inverse problem” in the literature.
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The general form of (1.1) was first studied by Ai and Chen (2003) and Newey
and Powell (2003), where the authors considered sieve approximation of g0 and
estimated it in a compact parameter space. Recently, Chen and Pouzo (2009a) re-
laxed the compactness assumption and achieved the consistency and convergence
rate using the penalized sieve minimum distance estimation. In recent years there
has also been extensive literature on the NPIV model (Example 1.3) itself. In these
papers, the authors introduce a Tikhonov tuning parameter to play a role of “reg-
ularization” in order to overcome the ill-posed inverse problem; see, for exam-
ple, Hall and Horowitz (2005) and Darolles et al. (2011). Other related works on
the nonparametric instrumental variables can be found in Chernozhukov, Gagliar-
dini and Scaillet (2008), Johannes, Van Bellegem and Vanhems (2010), Horowitz
(2007, 2011), among others.

Compared to the growing literature from the frequentist perspective, there is
very little understanding of the consistent estimation using either a Bayesian or
a quasi-Bayesian approach. This paper proposes a quasi-Bayesian procedure and
studies the impact of various priors of g0 on the posterior consistency. Our setup is
built on a sieve approximation technique similar to Chen and Pouzo (2009a), which
assumes that g0 can be approximated arbitrarily well on a finite-dimensional sieve
space. In order to keep our procedure robust to the distribution specification and
convenient for practical implementation, without specifying a known distribution
on the data generating process, we employ a limited information likelihood [Kim
(2002) and Liao and Jiang (2010)], a moment-condition-based Gaussian approxi-
mated likelihood. The use of such a likelihood is more straightforward for models
characterized by either moment conditions or estimating equations than the com-
mon methods based on Dirichlet process priors in the nonparametric Bayesian
literature. With priors placed directly on the sieve coefficients, we show that the
proposed posterior is consistent. Due to the difficulty of identifying g0 in practice,
we do not assume g0 to be necessarily identified. As a result the posterior con-
sistency here means that, asymptotically, the posterior converges into arbitrarily
small neighborhood of the region where g0 is partially identified. Therefore, we
also extend model (1.1) to the partial identification setup [Chernozhukov, Hong
and Tamer (2007) and Santos (2012)]. We will consider three types of priors: (i)
priors supported on a bounded set (truncated prior), (ii) priors with tails decaying
fast outside a bounded set (thin-tail prior) and (iii) Gaussian priors with nonshrink-
ing variance.

Recently, Florens and Simoni (2009a) proposed a quasi-Bayesian approach for
the NPIV model. They assumed that the error term follows a normal distribution
and achieved consistency by regularizing an operator that defines the posterior
mean. Our approach differs from theirs essentially in the way of overcoming the
ill-posed inverse problem. While Florens and Simoni (2009a) put a Gaussian prior
on an infinite-dimensional function space, they require the variance of the prior to
shrink to zero. In contrast, we place the prior directly on the sieve coefficients in
a finite-dimensional vector space and require the sieve dimension to grow slowly
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with the sample size. Our approach then corresponds to Chen and Pouzo’s (2009a)
sieve minimum distance procedure using slowly growing sieves. As a result, it
is the finite-dimensional sieve that plays the role of regularization instead of a
shrinking prior. In addition, our approach allows nonnormal priors.

Models based on moment conditions as (1.1) have been proved to be essen-
tial in many statistical applications, such as financial asset pricing [Gallant and
Tauchen (1989), Chen and Ludvigson (2009)], consumer behavior in economics
[Blundell, Chen and Kristensen (2007), Santos (2012)] and return to college ed-
ucation [Horowitz (2011)]. Therefore, this paper develops a quite convenient and
straightforward quasi-Bayesian approach for these applied problems.

The remainder of this paper is organized as follows: Section 2 introduces gen-
eral theorems on two types of posterior consistency, which provide sufficient con-
ditions under which a posterior constructed on a sieve space is consistent. Section 3
specifies the priors and shows the consistency results by verifying the sufficient
conditions given in Section 2. Section 4 studies in detail the NPIV model as a spe-
cific example. Section 5 discusses the case of the random sieve dimension. Finally,
Section 6 concludes with further discussions. Proofs are given in the supplemen-
tary material.

Throughout the paper, for any two positive deterministic sequences {an}∞n=1 and
{bn}∞n=1, write an � bn and bn ≺ an if bn = o(an). In addition, an ∼ bn if there exist
c1 and c2 > 0 such that c1bn ≤ an ≤ c2bn for all large enough n.

2. General posterior consistency theorems.

2.1. Sieve approximation. Suppose we are interested in a nonparametric re-
gression function g0 ∈ (H,‖ · ‖s). which is assumed to be inside an infinite-
dimensional Banach space H endowed with norm ‖ · ‖s . Examples of the space
(H,‖ · ‖s) include: space of bounded continuous functions with norm ‖g‖s =
supx |g(x)|, the space of square integrable functions {g :E[g(X)2] < ∞} with

‖g‖s =
√

E[g(X)2], etc. In addition, suppose there exists a set of basis func-
tions {φ1, φ2, . . .} ⊂ H such that g0 ∈ H can be approximated by a truncated
sum gb = ∑qn

i=1 biφi for a vector of coefficients (b1, . . . , bqn)
T , where qn is a pre-

determined constant that grows to infinity. Then gb lies in an approximating space
Hn spanned by {φ1, . . . , φqn}. Here Hn grows to be dense in H, called a sieve
approximating space.

There is extensive literature on the posterior consistency using sieve approxi-
mation. Shen and Wasserman (2001) applied an orthogonal basis expansion to the
nonparametric regression problem. Walker (2003) and Choi and Schervish (2007)
provided general results for a class of Bayesian regression models when the data
have a normal distribution. Other results on nonparametric regression problems
can be found, for example, in Huang (2004), Ghosal and van der Vaart (2007), etc.

Suppose we are given n independent identically distributed observations Xn =
(X1,X2, . . . ,Xn). In this paper we do not assume any specific distribution of
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Xn|g0, but propose a quasi-Bayesian approach, which is based on a pseudo-
likelihood,

L(gb) = exp
(
−n

2
Ḡ(gb)

)
,

where Ḡ : Hn → [0,∞) is a stochastic functional, which we call the sample
risk functional. Suppose there exists a nonnegative functional G, such that for a
bounded set Fn ⊂ Hn,

sup
gb∈Fn

|Ḡ(gb) − G(gb)| = op(1).

We call G the objective functional or risk functional throughout the paper.
In the literature, it is often assumed that the true regression function g0 is point

identified (as opposed to “partially identified” in the following) as the unique min-
imizer of G on H, that is,

{g0} = arg min
g∈H

G(g).

Then quasi-Bayesian approaches usually construct Ḡ as the sample analog of G

[see Chernozhukov and Hong (2003)]. In many applications of the model consid-
ered in this paper, however, it is more natural to assume that G has multiple global
minimizers on H; see detailed discussions in Section 3. In this case, we say g0 is
partially identified (in the frequentist sense) on

�I = arg min
g∈H

G(g),

and �I is called the identified region. Therefore �I is the main object of interest
in this paper.

For any b = (b1, . . . , bqn)
T ∈ R

qn , let gb = ∑qn

i=1 biφi . Similarly to the standard
treatments in Smith and Kohn (1996) and Antoniadis, Grégoire and McKeague
(2004), we put prior π(b) on the sieve coefficients b = (b1, b2, . . . , bqn), and obtain
a posterior distribution,

P(gb|Xn) ∝ π(b)L(gb).

For any g1 ∈ H, define

d(g1,�I ) = inf
g∈�I

‖g1 − g‖s,

and the ε-expansion as a neighborhood of the identified region

�ε
I = {g ∈ H :d(g,�I ) < ε}.

Then the posterior consistency in this paper refers to the following: for any ε > 0,

P(g ∈ �ε
I |Xn) →p 1.
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2.2. Posterior consistency theorems. We first present two theorems of general
posterior consistency using the sieve approximation, which involve conditions on
the tail probability of π as well as the performance of Ḡ. They are based on the
following variant of an inequality from Jiang and Tanner (2008), Proposition 6.
These inequalities will be proved in the supplementary material [Liao and Jiang
(2011a)]:

LEMMA 2.1. Suppose the support of the prior π can be partitioned as Fn ∪
F c

n . Then for any deterministic sequence δn > 0,

E
{
P

(
G(gb) − inf

g∈H
G(g) > 5δn|Xn

)}

≤ P
(

sup
g∈Fn

|Ḡ(g) − G(g)| ≥ δn

)
(2.1)

+ e−2nδn

π(G(gb) − infg∈H G(g) < δn ∩ gb ∈ Fn)

+ EP(gb ∈ F c
n|Xn).

In addition,

EP(gb ∈ F c
n|Xn) ≤ P

(
sup
g∈Fn

|Ḡ(g) − G(g)| ≥ δn

)

+ π(F c
n)e2nδn

π(G(gb) − infg∈H G(g) < δn ∩ gb ∈ Fn)
.

These inequalities imply the following result on the risk consistency:

THEOREM 2.1 (Risk consistency). Suppose the following conditions hold with
respect to a deterministic positive sequence δn:

(i) Tail condition: as qn and n → ∞, either EP(gb ∈ F c
n|Xn) = o(1) or

π(F c
n) = O(e−4nδn).

(ii) Approximation condition: π(G(gb) − infg∈H G(g) < δn, gb ∈ Fn) �
e−2nδn .

(iii) Uniform convergence: P [supg∈Fn
|Ḡ(g) − G(g)| ≥ δn] = o(1).

Then we have the risk consistency result at rate δn

P
(
G(gb) − inf

g∈H
G(g) < δn|Xn

)
= 1 − op(1).

The naming of these conditions is obvious, except for (ii). There, the approx-
imation refers to the ability of the functions in Fn (proposed by the prior π ) to
approximately minimize the risk G over H with not-too-small prior probability.

When the following condition is added, the risk consistency leads to the estima-
tion consistency.
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THEOREM 2.2 (Estimation consistency). Suppose there exists a sequence δn

such that the following conditions hold:

(i), (ii), (iii) in the previous theorem;
(iv) (distinguishing ability) for any ε > 0,

inf
g∈Hn,g /∈�ε

I

G(g) − inf
g∈H

G(g) � δn.

Then for any ε > 0, we have

P(gb ∈ �ε
I |Xn) →p 1.(2.2)

PROOF. Theorem 2.1 is implied by Lemma 2.1. Now we prove Theorem 2.2.
For any ε > 0, by Theorem 2.1,

P(gb /∈ �ε
I |Xn)

≤ P
(
gb /∈ �ε

I ,G(gb) − inf
g∈H

G(g) < δn|Xn
)

+ op(1)

≤ P
(
gb /∈ �ε

I ,G(gb) ≥ inf
g∈Hn,g /∈�ε

I

G(g),G(gb) − inf
g∈H

G(g) < δn|Xn
)

+ op(1)

≤ P
(
gb /∈ �ε

I , δn < G(gb) − inf
g∈H

G(g) < δn|Xn
)

+ op(1)

= op(1),

where the third inequality is implied by condition (iv) for all large n. �

As a special case of these results, note that when g0 is point identified as the
unique minimizer of G(g) on H, that is, �I = {g0}, (2.2) then becomes

P(‖gb − g0‖s < ε|Xn) →p 1,

the regular posterior consistency result.
In the subsequent sections, we will construct a so-called limited information

likelihood Ḡ(g) and apply the previous two theorems to the conditional moment
restricted model (1.1), by verifying conditions (i)–(iv).

3. Conditional moment-restricted model.

3.1. Limited information likelihood. Consider a conditional moment condi-
tion

E[ρ(Z,g0)|W,g0] = 0,(3.1)

where g0 ∈ H is the true nonparametric structural function. Here W is d-
dimensional, with fixed d . For simplicity, throughout the paper, let us assume
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W is supported on [0,1]d , as one can always apply the transformation on each
component of W , Wi → 
(Wi), where 
(·) is the standard normal cumulative
distribution function. We focus on the case when ρ is a one-dimensional function.

Following the setting of Ai and Chen (2003) and Chen and Pouzo (2009a), we
approximate H by a sieve space Hn that grows to be dense in H. Here Hn is
a finite-dimensional space spanned by sieve basis functions{φ1, . . . , φqn} such as
splines, power series, wavelets and Fourier series.

As the first step, we transform the conditional moment restriction into uncondi-
tional moment restrictions (but still conditional on g0). Let {[(i − 1)/kn, i/kn]}kn

i=1
be a partition of [0,1], for some kn ∈ N. We then obtain a partition of the support

of W : [0,1]d = ⋃kd
n

j=1 Rn
j , where for each j = 1, . . . , kd

n ,

Rn
j =

d∏
l=1

[
il − 1

kn

,
il

kn

]
for some il ∈ {1, . . . , kn}.(3.2)

We require kn → ∞ as n → ∞. Let X = (Z,W). For each j , define

mnj (g,X) = ρ(Z,g)I(W∈Rn
j ),

where I(·) is the indicator function. Let mn(g,X) = (mn1(g,X), . . . ,mnkd
n
(g,

X))T , which is a kd
n × 1 vector. Equation (3.1) then implies

Emn(g0,X) = 0,(3.3)

where the expectation is taken with respect to the joint distribution of X = (Z,W)

conditional on g0. Throughout the paper, the expectation is always taken condition-
ally on g0. When kn > qn there are more moment conditions than the parameters,
and hence (3.3) is a problem of many moment conditions with increasing number
of moments studied by Han and Phillips (2006).

It is straightforward to verify that

V0 ≡ Var(mn(g0,X)) = diag
{
E

(
ρ(Z,g0)

2I(W∈Rn
1 )

)
, . . . ,E

(
ρ(Z,g0)

2I(W∈Rn

kd
n
)

)}
.

For each g ∈ H, and j = 1, . . . , kd
n , write m̄nj (g) = 1

n

∑n
i=1 mnj (g,Xi) and

m̄n(g) = (m̄n1(g), . . . , m̄nkd
n
(g))T . Instead of g0, we construct the posterior for

its approximating function inside Hn. Under some regularity conditions, for each
fixed k, m̄n(g0) would satisfy the central limit theorem: for any α ∈ R

k , as n goes
to infinity, ∣∣∣∣∣P (√

nV
−1/2
0 m̄n(g0) ≤ α

) −
k∏

i=1


(αi)

∣∣∣∣∣ → 0.(3.4)

This motivates a likelihood function on the sieve space Hn,

LIL(gb) ∝ exp
(
−n

2
m̄n(gb)

T V −1
0 m̄n(gb)

)
.
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According to Kim (2002), the function LIL(gb) can be more appropriately inter-
preted as the best approximation to the true likelihood function under the condi-
tional moment restriction by minimizing the Kullback–Leibler divergence, which
is known as the limited information likelihood (LIL). Note that LIL(gb) is not fea-
sible, as V0 depends on the unknown function g0; therefore Kim (2002) suggested
replacing V0 with a constant matrix (not dependent on g0), while maintaining the
order of each element. For each element on the diagonal, suppose we have the
integration mean value theorem: for some w∗ ∈ Rn

j ,

E
(
ρ(Z,g0)

2I(W∈Rn
j )

) = E
(
ρ(Z,g0)

2|W = w∗)
P(W ∈ Rn

j ) = O
(
P(W ∈ Rn

j )
)

provided that supw∈[0,1]d E[ρ(Z,g0)
2|w] < ∞. Hence each diagonal element of

V0 is of the same order as P(W ∈ Rn
j ). We replace V0 by

V̂ = diag{v̂1, . . . , v̂kd
n
} where v̂j = 1

n

n∑
i=1

I(Wi∈Rn
j ).

Each v̂j is a consistent estimate of P(W ∈ Rn
j ). We thus obtain the feasible LIL to

be used as the likelihood function throughout this paper,

L(gb) = exp
(
−n

2
m̄n(gb)

T V̂ −1m̄n(gb)

)
.(3.5)

The feasible likelihood puts more weights on the moment conditions with
smaller variance, having the same spirit of the optimal weight matrix in gener-
alized method of moments [Hansen (1982)]. A more refined approach can be based
on a second-stage estimation of V0, where a consistent first-stage estimator of g0
is used if g0 is assumed to be point identified. However, it turns out that V0 does
not have to be estimated very precisely in order to achieve the posterior consis-
tency for the inference on g. We will show that our simple estimator V̂ is already
good enough for proving posterior consistency in the development to be described
below and is simple for practical computations.

For the approximated Gaussian likelihood function (3.5), the sample risk func-
tional defined in Section 2 is given by

Ḡ(gb) ≡ m̄n(gb)
T V̂ −1m̄n(gb).(3.6)

Let

Fn =
{ qn∑

i=1

biφi(x) : max
i≤qn

|bi | ≤ Bn

}

for some sequence Bn → ∞; then we partition the sieve space into Hn = Fn ∪ F c
n .

Under some regularity conditions, it can be shown that1 Ḡ converges in probability

1We will verify this for the nonparametric IV regression model in Section 4.
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to the risk functional

G(g) = EW {[E(ρ(Z,g)|W)]2} =
∫
[0,1]d

[
E

(
ρ(Z,g)|W = w

)]2
dFW(w)(3.7)

uniformly on Fn.

3.2. Identification and ill-posedness. The identification of g0 is characterized
by minimizing G. To be specific, define the identified region for g0,

�I = {
g ∈ H :E

(
ρ(Z,g)|W = w

) = 0 for almost all w ∈ [0,1]d}
,

which is assumed to be nonempty, then

�I = arg min
g∈H

G(g) = {g ∈ H :G(g) = 0}.

If �I is a singleton, then �I = {g0}. Otherwise g0 is partially identified on �I ;
see, for example, Santos (2012).

In the conditional moment restriction literature, the problem of identification
and estimation of g0 is well known to be ill posed. The ill-posed problem was
postulated in detail by Kress [(1999), Chapter 15], which occurs, in our context,
if one of the following three properties does not hold: (1) there exist solutions to
G(g) = 0, and here we assume g0 ∈ �I ; (2) the solution is unique, that is, �I is a
singleton; (3) the solution is continuously dependent on the data; that is, roughly
speaking, when G(g) is close to zero, g should be close to �I . However, when g0
depends on the endogenous variable X, the third property may fail because for any
ε > 0, there are sequences {gn}∞n=1 ⊂ H such that

lim inf
n→∞ inf

gn /∈�ε
I

G(gn) = 0.

Throughout this paper, we call such a problem as the type-III ill-posed inverse
problem. In order to achieve the posterior consistency, we need certain regulariza-
tion scheme to make the metric d(g,�I ) be continuous with respect to the risk
functional G(g).

While the literature puts a primary interest on dealing with the type-III ill-
posedness [Hall and Horowitz (2005), etc.], there are relatively fewer results that
deal with the second type of ill-posedness: �I is not necessarily a singleton. In
this paper, we also allow g0 to be only partially identified2 by the conditional mo-
ment restriction (3.1). Such a treatment arises for two reasons. First, when the
conditional moment restriction is given by the nonparametric instrumental vari-
able regression (Example 1.3), the identification of g0 depends on the complete-
ness of the conditional distribution of X|W [Newey and Powell (2003)]; how-
ever, the completeness assumption is hard to verify if the conditional distribution

2In this paper, the partial identification is meant in the frequentist sense, as opposed to the Bayesian
identification. See a recent work by Florens and Simoni (2011) for a discussion of these concepts.
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of X|W does not belong to the exponential family. Severini and Tripathi (2006)
explored identification issues with these models and noted that the point iden-
tification can easily fail; see Example 3.2 of Severini and Tripathi (2006). For
another reason, sometimes instead of g0 itself, we are only interested in a par-
ticular characteristic of it, for example, its linear functional h(g0). For example,
in the nonparametric IV regression, if g0(x) represents the inverse demand func-
tion, then its consumer surplus at some level x∗ can be written as a functional
h(g0) = ∫ x∗

0 g0(x) dx − g0(x
∗)x∗. In this case, the identification of g0 might not

be necessary; as Severini and Tripathi (2006) showed, even if g0 is not identified,
it is still possible to point identify its functional h(g0).

3.3. Prior specification. We will apply Theorems 2.1 and 2.2 to three types of
priors: (i) truncated prior, (ii) thin-tail prior and (iii) normal prior. In this section
we will focus on the first two types of priors, with which more generally consistent
results can be derived.3

Truncated prior. The prior is supported only on Fn. In particular, we consider
the uniform and truncated normal priors, respectively,

uniform prior π(b) =
qn∏
i=1

I (|bi | ≤ Bn);

truncated normal π(b) =
qn∏
i=1

f (bi)I (|bi | ≤ Bn)

P (|Zi | ≤ Bn)
,

where {Zi}qn

i=1 are i.i.d. random variables from N(0, σ 2) for some σ 2 > 0, and
f (·) is the probability density function of Zi . The tail probability

π(gb ∈ F c
n) = 0.

Thin-tail prior. The prior π on b ∈ R
qn is defined such that the density is sym-

metric in all directions, and ‖b‖r follows an exponential distribution with mean
β−r (for some β > 0, r > 0). Here ‖b‖ denotes a Euclidean norm,

π(‖b‖r > ur) = e−βrur

,

which, together with the spherical symmetry, is enough to derive the density func-
tion,

π(b) = r‖b‖r−qnβre−βr‖b‖r

Sqn

,(3.8)

3We will describe the normal prior in a later section (Section 4.4) since the technique used is some-
what different, which handles mainly the situation of the NPIV model in an identifiable situation.
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where Sqn is the area of the qn −1-dimensional unit sphere in Euclidean norm. For
this prior, the parameter 1/β is roughly the radius of most of the prior mass, and r

denotes the thinness of the tails outside. The bigger the r is, the thinner the tail.
This prior is very similar to the class of distributions defined in Azzalini (1986).

Both allow any positive power of the distance to the origin to be placed on the
exponent. Our density is slightly different and does not, in general, include the
normal density exactly. However, it is derived in a way so that the tail probability
has an exact expression. Hence it is convenient to impose a regularity condition on
the tail probability.

Florens and Simoni (2009a, 2009b) placed a Gaussian prior whose variance
decreases to zero with the sample size. Our priors specified here are similar to
theirs in the sense that the prior tail probability is small: when the truncated prior
is used, π(gb ∈ F c

n) = 0; when the thin-tail prior is used, π(gb ∈ F c
n) decreases

exponentially fast in n. Both types of priors ensure that

P
(
G(gb) ≥ δn|Xn) = op(1)

for some decaying sequence δn > 0 that depends on the convergence rate of
supFn

|Ḡ(g) − G(g)|. The technique of using a prior that decays exponentially
fast outside a bounded sieve set is commonly used in the nonparametric posterior
consistency literature; see, for example, Ghosh and Ramamoorthi (2003), Ghosal
and Roy (2006), Choi and Schervish (2007), Walker (2003) and many references
therein.

However, there is an important difference between Florens and Simoni’s prior
settings (2009a) and our own. While Florens and Simoni (2009a) put their prior on
an infinite-dimensional function space, they require the variance of the Gaussian
prior to shrink to zero as a regularization scheme in order to achieve the poste-
rior consistency. In contrast, our prior is placed directly on the sieve coefficients
(b1, . . . , bqn) in a finite-dimensional vector space, and neither the truncated prior
nor the thin-tail prior shrinks to a point mass. When qn grows slowly with n, it can
be shown that4 for any ε > 0,

inf
gb∈Hn,d(gb,�I )≥ε

G(gb) � δn;

hence the distinguishing ability condition in Theorem 2.2 is satisfied. As a result,
in our procedure it is the fact that qn grows slowly that plays the role of regular-
ization instead of a shrinking prior. Later in Section 4.4, we will also verify that
with a suitably chosen qn, a nonshrinking normal prior can be used to achieve the
posterior consistency in the identified NPIV model.

4We will verify this for the nonparametric IV regression model.
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3.4. Posterior consistency. The following assumptions are imposed.

ASSUMPTION 3.1. The data Xn = (X1, . . . ,Xn) are independent and identi-
cally distributed.

ASSUMPTION 3.2. There exists a positive sequence λn → 0 such that

sup
g∈Fn

|Ḡ(g) − G(g)| = Op(λn).

Since Fn is compact in Hn, as long as the radius of Fn grows slowly, the uni-
form convergence condition in Assumption 3.2 can be shown using similar tech-
niques to those in Han and Phillips (2006). We will verify it for the nonparametric
IV regression example in Section 4.

ASSUMPTION 3.3. (i) {φ1, φ2, . . . , φqn} forms an orthonormal basis of Hn

such that E(φi(X)φj (X)) = δij , the Kronecker δ.
(ii) There exist g0 ∈ �I , and g∗

qn
= ∑qn

i=1 b∗
i φi ∈ Hn such that ‖g∗

qn
− g0‖s =

o(1) as qn → ∞.

The existence of g∗
qn

is simply implied by the definition of a sieve space. It is
satisfied by the spaces that are spanned by commonly used sieve basis functions
such as splines, power series, wavelets and Fourier series. For example, if the pa-
rameter space is a Sobolev space W 2

p[0,1]dx , where dx = dim(X), and ‖ · ‖s is the

Sobolev norm, then ‖g∗
qn

− g0‖s = O(q
−p/dx
n ) for some p > 0; see, for example,

Kress [(1999), Chapter 8] and Chen (2007); see also Schumaker (1981) and Meyer
(1990) for splines and orthogonal wavelets in other function spaces.

ASSUMPTION 3.4. There exists C > 0 such that ∀g1, g2 ∈ H,

E|ρ(Z,g1) − ρ(Z,g2)| ≤ CE|g1(X) − g2(X)|.
This assumption is trivially satisfied by the nonparametric IV regression in Ex-

ample 1.3. Here we give another example that satisfies this assumption.

EXAMPLE 3.1 (Nonparametric quantile IV regression). Consider the model
in Example 1.4, in which the conditional moment restriction is given by

E(ρ(Z,g0)|W,g0) = 0, ρ(Z,g0) = I(y≤g0(X)) − γ.

It is straightforward to verify that for any g1, g2,

E|ρ(Z,g1) − ρ(Z,g2)| = E
∣∣I(g1(X)≤y≤g2(X)) + I(g2(X)≤y≤g1(X))

∣∣
= E

[
P

(
g1(X) ≤ y ≤ g2(X)|X)]

+ E
[
P

(
g2(X) ≤ y ≤ g1(X)|X)]

.
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Suppose there exists a constant C > 0 such that Fy|X(·), the conditional c.d.f. of
y|X, satisfies

|Fy|x(y1) − Fy|x(y2)| ≤ C|y1 − y2|
for any y1, y2 ∈ R and x in the support of X. Then the first term on the right-hand
side is bounded by

E
[
P

(
g1(X) ≤ y ≤ g2(X)|X)] ≤ E|Fy|X(g2(X)) − Fy|X(g1(X))|

≤ CE|g2(X) − g1(X)|.
Likewise, E[P(g2(X) ≤ y ≤ g1(X)|X)] ≤ CE|g2(X) − g1(X)|. Therefore As-
sumption 3.4 is satisfied.

Define

γn = sup
g∈Fn,w∈[0,1]d

∣∣E(
ρ(Z,g)|W = w

)∣∣ + 1.(3.9)

We are able to verify the conditions in Theorem 2.1 with the previous assump-
tions, and establish the following theorem:

THEOREM 3.1 (Risk consistency: truncated prior). Suppose qn = o(n) and
Bn = o(n). Assume δn = O(1) is such that there exists g0 ∈ �I whose sieve ap-
proximation g∗

qn
satisfies

max
{
G(g∗

qn
), λn,

qn

n
log(γnn)

}
= o(δn).

Then when either the uniform prior or the truncated normal prior is used, under
Assumptions 3.1–3.4,

P
(
G(gb) < δn|Xn) →p 1.

In the following theorem, write λ(Bn) = λn and γ (Bn) = γn to indicate the
dependence of λn and γn on Bn, defined in Assumption 3.2 and (3.9), respectively.

THEOREM 3.2 (Risk consistency: thin-tail prior). Suppose there exists g0 ∈
�I with g∗

qn
being its sieve approximation in Hn, and a sequence B∗

n → ∞
such that max{G(g∗

qn
), λ(B∗

n), γ (B∗
n)e−nλ(B∗

n)/qn} = o(B∗r
n /n). In addition, sup-

pose δn = O(1) is such that

max
{
G(g∗

qn
), λ(B∗

n), γ (B∗
n)e−nλ(B∗

n)/qn
} = o(δn).

Then under Assumptions 3.1–3.4,

P
(
G(gb) < δn|Xn) →p 1.
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REMARK 3.1. (1) We will show in the next section that in the nonparametric
IV regression model, γn = O(qnBn). For the nonparametric quantile IV regression
in Example 3.1, γn is a constant that is bounded away from zero.

(2) Under the conditions of Theorems 3.1 and 3.2, δn can be fixed as a constant.
Namely, ∀δ > 0,

P
(
G(gb) > δ|Xn) = op(1).

Roughly speaking, the posterior distribution is asymptotically supported on the set
where G is minimized. This result has many important applications. For example,
in the binary treatment effect study, let Y ∈ {0,1} indicate whether a treatment is
successful, which is associated with a covariate X. Suppose we model the success
probability P(Y = 1|X = x) by a nonparametric function g(x). In this model,

G(g) = EX{[E(Y |X) − g(X)]2} = ∥∥P(Y = 1|X) − g(X)
∥∥2
s ,

where ‖g‖2
s = E(g(X)2). By Theorems 3.1, 3.2, for any ε > 0, the posterior

P
(∥∥P(Y = 1|X) − gb(X)

∥∥2
s < ε|Data

) →p 1,

which implies that the posterior of gb can recover the success probability arbitrarily
well with high probability.

(3) In data mining, this type of result is sometimes called the “risk consis-
tency.” For example, if G was the classification risk, the risk consistency result
would show that the posterior would effectively minimize the misclassification
error. The current definition of G, however, is not the classification risk. In non-
parametric regression and in the NPIV example, the risk G becomes, respectively,
EW {[E(Y |W)−g(W)]2} and EW {[E(Y |W)−E(g(X)|W)]2}, which is related to
how much E(Y |W) would be missed if it was estimated by (something derived
from) g.

The following two theorems establish the posterior consistency without assum-
ing the compactness of the parameter space H.

THEOREM 3.3 (Posterior consistency: truncated prior). Suppose there exists
g0 ∈ �I whose sieve approximation g∗

qn
satisfies ∀ε > 0

max
{
G(g∗

qn
), λn,

qn

n
log(γnn)

}
= o

(
inf

g∈Hn,g /∈�ε
I

G(g)
)
.(3.10)

Then under Assumptions 3.1–3.4, for any ε > 0,

P
(
d(gb,�I ) < ε|Xn) →p 1.

THEOREM 3.4 (Posterior consistency: thin-tail prior). Suppose there exists
g0 ∈ �I with g∗

qn
being its sieve approximation in Hn, and a sequence B∗

n → ∞
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such that max{G(g∗
qn

), λ(B∗
n), γ (B∗

n)e−nλ(B∗
n)/qn} = o(B∗r

n /n). In addition, sup-
pose ∀ε > 0,

max
{
G(g∗

qn
), λ(B∗

n), γ (B∗
n)e−nλ(B∗

n)/qn
} = o

(
inf

g∈Hn,g /∈�ε
I

G(g)
)
.(3.11)

Then under Assumptions 3.1–3.4, for any ε > 0,

P
(
d(gb,�I ) < ε|Xn) →p 1.

REMARK 3.2. (1) The restriction λ(B∗
n) = o(B∗r

n /n) in both Theorems 3.2
and 3.4 requires that r , the thin-tail prior parameter, should not be too small; oth-
erwise, no such B∗

n exists. In the NPIV model which will be illustrated in the next
section, we need r > 6d + 4, where d = dim(W).

(2) Conditions (3.10) and (3.11) are similar to Chen and Pouzo’s [(2009a),
condition (3.1)], where they require that qn grow slowly enough so that
infg∈Hn,g /∈�ε

I
G(g) does not decrease too fast for any fixed ε > 0. This will also be

illustrated in Section 4.

Let h(g0) be a linear functional of g0, whose practical meaning may be of direct
interest. For example, if h(g0) = E[g0(X)ω(X)] for some weight function ω, then
with proper choices of ω, h can be used to test some special properties of g0, such
as the monotonicity, the convexity, etc. Santos (2011). On the other hand, h itself
may have interesting meanings. For example, when g0 denotes the inverse demand
function in nonparametric regression, h(g0) can be the consumer surplus [Santos
(2012)]. Severini and Tripathi (2006) have provided conditions to point identify
h(g0) even if g0 itself is not identified.

EXAMPLE 3.2. Suppose we want to test whether the unknown function g0
is weakly increasing. Note that any weakly increasing function g(x) must sat-
isfy

∫ π
−π sin(x)g(x) dx ≥ 0; hence the functional of interest here is h(g0) =∫ π

−π sin(x)g0(x) dx. Suppose the joint distribution of (X,W) has density func-
tion fXW(x,w). By Severini and Tripathi (2006), h(g0) is point identified, if there
exists p(w) such that E[p(W)2] < ∞ and E(p(W)|X) = sin(X)/fX(X) almost
surely.

Theorems 3.3 and 3.4 imply a flexible way to consistently estimate h with-
out identifying g0. In the following assumption, condition (i) assumes the point
identification of h(g0). Condition (ii) requires the uniform continuity of h, which
is satisfied when h(g) = E[g(X)ω(X)] if supx |w(x)| < ∞ and E|g1 − g2| ≤
C‖g1(X) − g2(X)‖s for any g1, g2 ∈ H.

ASSUMPTION 3.5. (i) {h(g) :g ∈ �I } = {h(g0)}; (ii) h : (H,‖ · ‖s) → R is
uniformly continuous.
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COROLLARY 3.1. Suppose the assumptions of Theorem 3.3 (if the truncated
priors are used) and Theorem 3.4 (if the thin-tail prior is used) are satisfied. In ad-
dition, suppose Assumption 3.5 holds. When g0 is not necessarily point identified,
∀δ > 0,

P
(|h(gb) − h(g0)| < δ|Xn) →p 1.

4. Nonparametric instrumental variable regression.

4.1. The model. The nonparametric instrumental variable regression (NPIV)
model is given by

Y = g0(X) + ε,

where X is endogenous, which is correlated with ε. We consider the following
parameter space and the norm ‖ · ‖s :

H = L2(X) = {g :E[g(X)2] < ∞}, ‖g‖2
s = E[g(X)2].

In addition, suppose we observe an instrumental variable W ∈ [0,1]d such that
E(ε|W) = 0. Applications of instrumental variables can be found in many stan-
dard econometrics texts, for example, Hansen (2002). Let Z = (Y,X); the NPIV
model is then essentially a conditional moment restricted model with ρ(Z,g) =
Y − g(X).

Let {φ1, φ2, . . .} be a set of orthonormal basis functions of L2(X). We consider
the sieve space Hn = {g ∈ L2(X) :g = ∑qn

i=1 biφi}, which can be partitioned into
Hn = Fn ∪ F c

n , where Fn = {∑qn

i=1 biφi ∈ Hn,maxi≤qn |bi | ≤ Bn} as in Section 3.
We apply the feasible LIL (3.5) to construct the posterior. The log-likelihood

involves the sample risk functional

Ḡ(g) =
kd
n∑

j=1

(
1

n

n∑
i=1

(
Yi − g(Xi)

)
I(Wi∈Rn

j )

)2

v̂−1
j ,

which later will be shown to uniformly converge to

G(g) = EW

{[
E

(
Y − g(X)|W )]2}

over Fn. The identified region �I is defined as a subset of L2(X) on which
G(g) = 0.

4.2. Risk consistency. Under mild conditions, we can derive the convergence
rate of supg∈Fn

|Ḡ(g) − G(g)|. The following assumptions are imposed.

ASSUMPTION 4.1. (i) k−d
n = O(minj≤kd

n
P (W ∈ Rn

j ));

(ii) maxj≤kd
n
P (W ∈ Rn

j ) = O(k−d
n ).
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This assumption is satisfied, for example, when W has a continuous density
function on [0,1]d that is bounded away from both zero and infinity.

ASSUMPTION 4.2. There exists C > 0 such that for all i = 1, . . . , qn:

(i) supw E(Y 2|W = w) < C, supw E(φi(X)2|W = w) < C;
(ii) E(Y |W = w) is Lipschitz continuous with respect to w on [0,1]d ;

(iii) for any w1,w2 ∈ [0,1]d ,∣∣E(
φi(X)|W = w1

) − E
(
φi(X)|W = w2

)∣∣ ≤ C‖w1 − w2‖.

Condition (iii) requires that the family {E(φi(X)|W = w) : i ≤ qn} is Lipschitz
equicontinuous on [0,1]d , which is satisfied, for example, when X has a density
function that is bounded away from zero on the support of X; in addition, X|W
has a conditional density function fX|W such that for some C > 0,∣∣fX|W(x|w1) − fX|W(x|w2)

∣∣ ≤ C‖w1 − w2‖
for all x and w1,w2 ∈ [0,1]d .5

ASSUMPTION 4.3. There exist g0 ∈ �I , g∗
qn

= ∑qn

i=1 b∗
i φi with

∑∞
i=1 b∗2

i <

∞, and a positive sequence {ηj }∞j=1 that strictly decreases to zero as j → ∞ such
that ‖g∗

qn
− g0‖s = O(ηqn) as qn → ∞. (We will choose g∗

qn
to be the projection

of g0 onto Hn, unless otherwise noted.)

Examples of the rate ηqn are discussed earlier behind Assumption 3.3.

THEOREM 4.1. Assume q2
nB2

n = o(min{√n/k
3d/2
n , kn}). Then under Assump-

tions 3.1, 4.1, 4.2,

sup
g∈Fn

|Ḡ(g) − G(g)| = Op

(
q2
nB2

nk
3d/2
n√

n
+ q2

nB2
n

kn

)
.

Define a semi-norm ‖ · ‖w , which is weaker than ‖ · ‖s , as

‖g‖2
w = EW {(E(g(X)|W))2}.(4.1)

It can be easily verified that ‖ · ‖w satisfies the triangular inequality, but ‖g‖w = 0
does not necessarily imply g = 0 if the conditional distribution X|W is not com-
plete. Note that G(g) = ‖g0 − g‖2

w; hence this semi-norm induces an equivalence
class characterized by the identified region �I = {g ∈ L2(X) :E(Y − g(X)|W) =

5This is simple to show: for any w1,w2, |E(φi(X)|W = w1) − E(φi(X)|W = w2)| ≤
(inffX(x))−1 ∫ |φi(x)fX(x)||fX|W (x|w1)−fX|W (x|w2)|dx ≤ C‖w1 −w2‖E|φi(X)| ≤ C′‖w1 −
w2‖, where the fact that E|φi(X)| is bounded away from infinity is guaranteed by condition (i).
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0, a.s.}, such that ‖g − g0‖w = 0 if and only if g ∈ �I . In other words, we can
say that g0 is weakly identified under ‖ · ‖w , since for any g ∈ �I , g and g0 are
equivalent under ‖ · ‖w .

The following theorem is a straightforward application of Theorems 3.1 and 3.2:

THEOREM 4.2 (Risk-consistency). Under Assumptions 3.1, 4.1–4.3, suppose
δn = O(1) is such that:

(i) for the truncated priors assuming q2
nB2

n = o(n1/(3d+2)),

max
{
η2

qn
, q2

nB2
n

(
k

3d/2
n√

n
+ 1

kn

)}
= o(δn),

(ii) for the thin-tail prior with r > 6d + 4, assuming qn = o(n1/(6d+4)−1/r ),

max
{
η2

qn
, n2/(r−2)q2r/(r−2)

n

(
k

3d/2
n√

n
+ 1

kn

)r/(r−2)}
= o(δn),

then

P(‖gb − g0‖w > δn|Xn) = op(1).

4.3. Ill-posedness and posterior consistency. Define

T :L2(X) → {ζ :E[ζ(W)2] < ∞}, T (g) = E(g(X)|W)

and write E(Y |W = w) ≡ ζ(w). Then the NPIV model can be equivalently written
as

T g0 = ζ.(4.2)

Under Assumption 4.4, T is a compact linear operator [see Carrasco, Florens
and Renault (2007)], and therefore is continuous. Equation (4.2) is usually called
the Fredholm integral equation of the first kind.

ASSUMPTION 4.4. The joint distribution (Y,X,W) is absolutely continuous
with respect to the Lebesgue measure. In addition, suppose fXW(x,w), fX(x),
fW(w) denote the density functions of (X,W), X and W , respectively, then∫ ∫ (

fXW(x,w)

fX(x)fW(w)

)2

fX(x)fW (w)dx dw < ∞.

As described before, the problem of inference about g0 is ill-posed in two as-
pects. The first ill-posedness comes from the identification, which depends on the
invertibility of T . If T is nonsingular, in which case its null space is {0}, g0 can be
point identified by g0 = T −1ζ , but not otherwise. See Severini and Tripathi (2006)
and D’Haultfoeuille (2011) for detailed descriptions of the identification issues.
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Even when g0 is identified, in which case T −1 exists, as pointed out by Florens
(2003) and Hall and Horowitz (2005), since L2(X) is of infinite dimension, and T

is compact, T −1 is not bounded (therefore is not continuous). As a result, small in-
accuracy in the estimation of ζ can lead to large inaccuracy in the estimation of g0,
which is known as the type-III ill-posed inverse problem described in Section 3.2.
When g0 is partially identified, this problem is still present when

lim inf
n→∞ inf

g∈Hn,g /∈�ε
I

G(g) = lim inf
n→∞ inf

g∈Hn,g /∈�ε
I

E{[T (g − g0)]2} = 0.

By Theorems 3.3, 3.4 and 4.2, in order to achieve the posterior consistency, it
suffices to verify

δ∗
n = o

(
inf

g∈Hn,g /∈�ε
I

G(g)
)
,(4.3)

where

for truncated prior δ∗
n = max

{
η2

qn
, q2

nB2
n

(
k

3d/2
n√

n
+ 1

kn

)}
,

for thin-tail prior δ∗
n = max

{
η2

qn
, n2/(r−2)q2r/(r−2)

n

(
k

3d/2
n√

n
+ 1

kn

)r/(r−2)}
.

Hence it requires us to derive a lower bound of infg∈Hn,g /∈�ε
I
G(g) first, and, in

addition, this lower bound should decay at a rate slower than δ∗
n .

When g0 is point identified and a slowly growing finite-dimensional sieve is
used, Chen and Pouzo (2009a) showed the existence of such a lower bound using
the singular value decomposition of T . Their approach is briefly illustrated in the
following example.

EXAMPLE 4.1. Let 〈g1, g2〉X = E[g1(X)g2(X)] denote the inner product of
two elements in L2(X), and {νj ,φ1j , φ2j }∞j=1 be the ordered singular value system
of T such that

T φ1j = νjφ2j , ν2
1 ≥ ν2

2 ≥ · · · .
Suppose T is nonsingular, then {φ1j }∞j=1 forms an orthonormal basis of L2(X).

Chen and Pouzo (2009a) showed that when {φ1j }qn

j=1 is used as the basis in the

sieve approximation space, ∀ε > 0, ν2
qn

= O(infg∈Hn,g /∈�ε
I
G(g)). Therefore, con-

dition (4.3) is satisfied if we assume δ∗
n = o(ν2

qn
). In addition, suppose {ν2

j }∞j=1

decays at a polynomial rate j−α for some α > 0; then we require qn = o(δ
∗−1/α
n ),

a slowly growing sieve dimension.

We impose the following assumption to derive a lower bound for
infg∈Hn,g /∈�ε

I
G(g) and verify (4.3), which, in the identified case, uses more gen-

eral basis functions for the sieve space. Therefore we allow the sieve basis to be
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different from the eigenfunctions of T . A similar approach was used by Chen and
Reiss [(2011), Section 6.1], who used the wavelets as the sieve basis functions
while the eigenfunctions of T form a Fourier basis.

ASSUMPTION 4.5. There is a continuous and increasing function ϕ(·) > 0
satisfying limt→0+ ϕ(t) = 0 such that, for {g0, g

∗
qn

, {ηj }∞j=1} as defined in Assump-
tion 4.3 and some constants C1,C2 > 0:

(i) ‖g − g0‖2
w ≥ C1

∑∞
j=1 ϕ(η2

j )|〈g − g0, φj 〉X|2 for all g ∈ L2(X);

(ii) ‖g∗
qn

− g0‖2
w ≤ C2

∑
j ϕ(η2

j )|〈g0 − g∗
qn

, φj 〉X|2.

REMARK 4.1. (1) This assumption implies a generalization of the relation
ν2
qn

= O(infg∈Hn,g /∈�ε
I
G(g)) in Example 4.1. In this assumption, {φj }∞j=1 are the

basis functions whose first qn terms span the sieve approximation space. In the
identified case, {φj }∞j=1 can be a general set of basis functions that is different
from the eigenfunctions of T . Chen and Pouzo [(2009a), Section 5.3] identified the
singular value ν2

j of Example 4.1 as a special case of the general ϕ(η2
j ), in which

case Assumption 4.5 is satisfied. In its general form, Assumption 4.5 is standard in
the literature for the linear ill-posed inverse problem when the convergence rate of
the estimator is studied; see, for example, Nair, Pereverzev and Tautenhahn (2005),
Chen and Pouzo [(2009a), Assumption 5.2], Chen and Reiss [(2011), Section 2.1],
etc. As described above, however, this assumption is also needed in order to verify
(4.3) and show consistency when general basis functions are used. Blundell, Chen
and Kristensen (2007) provided sufficient conditions of Assumption 4.5 for the
NPIV model setting.

(2) In the partially identified case when �I is not a singleton, Assumption 4.5
is still satisfied, if we take {φj }∞j=1 to be the eigenfunctions of T ∗T that corre-
spond to its nonzero eigenvalues, where T is the conditional expectation operator,
and T ∗ is its adjoint. The spectral theory of compact operators [Kress (1999)] im-
plies that ‖T (g − g0)‖2

s = ∑∞
j=1 ν2

j |〈g − g0, φj 〉X|2 for all g ∈ L2(X), where {ν2
j }

represent all the (nonzero) eigenvalues of T ∗T , and {φj } are the corresponding
eigenfunctions (the zero eigenvalues of T ∗T do not contribute to the right-hand
side of the spectral decomposition). Therefore, Assumption 4.5 remains valid with
ϕ(η2

j ) = ν2
j , with {ν2

j } denoting the sequence of decreasing nonzero eigenvalues.
This idea of using the spectral representation of T ∗T is related to the commonly
used “general source condition” in the literature [Tautenhahn (1998) and Darolles
et al. (2011)], where, for example, Darolles et al. (2011) used this condition to de-
rive the convergence rate of their kernel-based Tikhonov regularized estimator in
NPIV regression.

(3) When a more general sieve basis {φj }∞j=1 is used in the partially identified
case, condition (i) of Assumption 4.5 is not generally satisfied. For example, sup-
pose there exists g ∈ �I , but g �= g0. By the definition of ‖ · ‖w , ‖g − g0‖2

w = 0,
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but the right-hand side of the displayed inequality in condition (i) is strictly posi-
tive unless {φj }∞j=1 are the eigenfunctions of T ∗T . To allow for more general sieve
basis in this case, a possible approach is to assume the true g0 in the data gener-
ating process to lie in a compact set �, for example., a Sobolev ball [Chen and
Reiss (2011)]. It is then not hard to show that infg∈�,g/∈�ε

I
G(g) is bounded away

from zero. Restricting g0 inside a compact set is actually a quite common approach
in nonparametric IV regression, and the literature is found in Newey and Powell
(2003), Blundell, Chen and Kristensen (2007), Chen and Reiss (2011), etc. Re-
cently, Santos (2012) extended this approach to the partially identified case, with
the compactness restriction. We do not pursue this approach here, since our other
results on posterior consistency allow a noncompact parameter space.

As in Chen and Pouzo (2009a), generally the degree of ill-posedness has two
types:

(1) mild ill-posedness: ϕ(η) = ηα for some α > 0.
(2) severe ill-posedness: ϕ(η) = exp(−η−α) for some α > 0.

Under Assumption 4.5, it can be shown that ϕ(η2
qn

) = O(infg∈Hn,g /∈�ε
I
G(g))

for any ε > 0; see Lemma C.5 of the supplementary material. Intuitively speaking,
ϕ(·) is associated with the singular values of T and is related to how severe the
type-III ill-posed inverse problem is. When the nonzero singular values decay at
a polynomial rate, ϕ corresponds to the mildly ill-posed case; when the singular
values decay at an exponential rate, it corresponds to the severely ill-posed case.

Before formally presenting our posterior consistency result, we briefly com-
ment on the role of condition (ii) of Assumption 4.5. Assumption 5.2(ii) is the
so-called “stability condition” in Chen and Pouzo (2009a) that is required to hold
only in terms of the sieve approximation error on one element in �I . By The-
orems 3.3 and 3.4, we require G(g∗

qn
) = o(infg∈Hn,g /∈�ε

I
G(g)). It can be easily

shown that G(g∗
qn

) = O(η2
qn

), and hence G(g∗
qn

) was replaced with η2
qn

in the con-
dition of Theorem 4.2. In addition, condition (i) of Assumption 4.5 implies that
ϕ(η2

qn
) = O(infg∈Hn,g /∈�ε

I
G(g)). With condition (ii) of Assumption 4.5, it can be

further shown that G(g∗
qn

) = O(η2
qn

ϕ(η2
qn

)) (see Lemma C.6 in the supplemen-
tary material). Since η2

qn
= o(1), G(g∗

qn
) = o(ϕ(η2

qn
)) = o(infg∈Hn,g /∈�ε

I
G(g)) is

verified.
Under this framework, we have the posterior consistency under ‖ · ‖s :

THEOREM 4.3 (Posterior consistency). Under Assumptions 3.1, 4.1–4.5, sup-
pose:

(i) for the truncated priors assuming q2
nB2

n = o(n1/(3d+2)),

q2
nB2

n

(
k

3d/2
n√

n
+ 1

kn

)
= o(ϕ(η2

qn
));(4.4)
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(ii) for the thin-tail prior with r > 6d + 4, assuming qn = o(n1/(6d+4)−1/r ),

n2/(r−2)q2r/(r−2)
n

(
k

3d/2
n√

n
+ 1

kn

)r/(r−2)

= o(ϕ(η2
qn

)).(4.5)

Then for any ε > 0,

P
(
d(gb,�I ) > ε|Xn) = op(1).

4.4. Normal prior. When g0 is point identified, we can also establish the pos-
terior consistency using normal priors

π(b) =
qn∏
i=1

πi(bi), πi(bi) ∼ N(0, σ 2),(4.6)

for some constant σ 2 > 0. As discussed previously, by restricting qn to grow
slowly as n → ∞, we do not need a shrinking prior to function as a penalty term at-
tached to the log-likelihood for the regularization purpose.6 Therefore σ 2 is treated
to be a fixed constant that does not depend on n.

With the assumptions imposed in Sections 4.2 and 4.3, we can verify all the
conditions in Theorem 2.2, which then leads to the following theorem:

THEOREM 4.4 (Posterior consistency using Gaussian prior). Assume g0 is
point identified. Under Assumptions 3.1, 4.1–4.5, suppose the normal prior (4.6)
is used, and

qn

(
k

3d/2
n√

n
+ 1

kn

)1/3

= o(ϕ(η2
qn

)),(4.7)

then for any ε > 0,

P(‖gb − g0‖s > ε|Xn) = op(1).

4.5. Choice of tuning parameters. To choose (kn, qn,Bn) that satisfy (4.4)
(4.5) and (4.7) for each specified prior, consider the case where ηqn is decreas-
ing as some power of qn [see, e.g., Schumaker (1981) and Meyer (1990)], and kn

grows at a polynomial rate of n, that is,

ηqn ∼ q−v
n for some v > 0,

(4.8)
k

3d/2
n√

n
+ 1

kn

∼ n−p, 0 < p ≤ 1

3d + 2
.

We then have the following corollaries:

6We thank a referee for pointing this out.
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COROLLARY 4.1 (Truncated prior). Suppose the truncated prior (either uni-
form or truncated normal) is used; then the following choice of (qn,Bn) achieves
the posterior consistency, for b < p:

(i) in the mildly ill-posed case,

B2
n ∼ nb, qn = o

(
n(p−b)/(2+2αv));

(ii) in the severely ill-posed case,

B2
n ∼ nb, qn = o

(
(logn)1/(2αv)).

COROLLARY 4.2 (Thin-tail prior). Suppose the thin-tail prior is used; then
the following choice of qn achieves the posterior consistency, for pr > 2:

(i) in the mildly ill-posed case,

qn = o
(
n(pr−2)/(2r+2αv(r−2)));

(ii) in the severely ill-posed case,

qn = o
(
(logn)1/(2αv)).

COROLLARY 4.3 (Normal prior). Suppose the normal prior is used, and g0 is
point identified, the following choice of qn achieves the posterior consistency:

(i) in the mildly ill-posed case,

qn = o
(
np/(3(1+2αv)));

(ii) in the severely ill-posed case,

qn = o
(
(logn)1/(2αv)).

In the conditions of these consistency results, the choice of tuning parameters
(qn, Bn, r) depend on some parameters that one either knows or chooses (d , p),
as well as some parameters related to the true model (α, v). The latter, although
undesirable, cannot be totally avoided when we study the frequentist convergence
properties under ill-posedness. [Conditions depending on the true model are also
used, e.g., by Chen and Pouzo (2009a), directly in their Corollary 5.1, and indi-
rectly at the end of their Section 3.1.]

On the other hand, these results can still have meaningful implications that do
not explicitly depend on the indexes α and p (which are probably unknown in
practice). For example, we note that in the mildly ill-posed situations, the condition
on qn would be satisfied if it grows as any finite power of logn. Likewise, in the
severely ill-posed situations, the condition on qn would be satisfied if it grows as
any finite power of log logn.

In addition, we will indicate in the next section that the current Bayesian-
flavored treatment can even allow a data-driven choice of the sieve dimension qn,
using a posterior distribution derived from a mixed prior.
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5. Random sieve dimension. As the sieve dimension qn plays an important
role not only in dealing with the ill-posed inverse problem, but also in many ap-
plied sieve estimation methods, in this section we briefly discuss the possibility of
choosing it based on a posterior distribution. This will require specifying a prior
distribution on the sieve dimension first. Since the conditions of a deterministic qn

for consistency only restricts the growth rate, as a result, Mqn would also lead to
consistency for a positive constant M > 1, if qn ensures consistency.

We denote the sieve dimension by q , let it be random and place a discrete uni-
form prior

π(q) = Unif{1, . . . ,Mqn}(5.1)

for some deterministic sequence qn → ∞ and constant M > 1. Then the prior on
the sieve coefficients b becomes a mixture prior

π(b) =
Mqn∑
q=1

π(q)π(b|q) =
Mqn∑
q=1

(Mqn)
−1π(b|q),(5.2)

where π(b|q) follows a prior as specified before for a given sieve dimension q .
The feasible limited information likelihood is, as before, denoted by Ln(b, q). We
have the joint posterior

p(gb, q|Xn) ∝ π(b|q)Ln(b, q).

It can be shown that the uniform mixture prior can also lead to the posterior
consistency.

THEOREM 5.1 (RANDOM q). For each theorem in Sections 3 and 4, suppose
the corresponding conditions are satisfied for the deterministic sieve dimension
Mqn instead of qn, for some M > 1. Then all the posterior consistency results
stated in Sections 3 and 4 (on risk consistency and on estimation consistency)
remain valid for the mixed prior (5.2) with random q following prior (5.1), with no
extra conditions, with the following two exceptions:

(1) We will additionally assume that (logqn)/n = o(δn) holds for the statement
of Theorem 3.2 to hold.

(2) We will additionally assume that (logqn)/n = o(infg∈Hn,g /∈�ε
I
G(g)) for the

statement of Theorem 3.2 to hold.

Note that the uniform prior is used for q , which gives zero prior probability on
very large choice beyond Mqn. However, from a technical point of view, the result
can be extended to the case with tails of prior on q extending to infinity, as long as
the tail is thin enough so that π(q > Mqn) is dominated by a small enough upper
bound.

The marginal posterior of q is given by

p(q|Xn) ∝
∫

π(b|q)Ln(b, q) db.(5.3)

Practically, we can choose q from p(q|Xn).
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6. Conclusion and discussion. We studied the nonparametric conditional
moment restricted model in a quasi-Bayesian approach, with a special focus on
the large sample frequentist properties of the posterior distribution. There was no
distribution assumed on the data generating process. Instead, we derived the pos-
terior using the limited information likelihood (LIL), allowing the proposed pro-
cedure to be simpler than the traditional nonparametric Bayesian approach which
would model the data distribution nonparametrically. There are several alternative
moment-condition-based likelihood functions. The empirical likelihood [Owen
(1990))] and the generalized empirical likelihood [Imbens, Spady and Johnson
(1998), Newey and Smith (2004) and Kitamura (2006)] are typical examples. It is
still possible to establish the posterior consistency if these alternative nonparamet-
ric likelihoods are used, which is left as a future research direction.

The parameter space H does not need to be compact. We approximate H using a
finite-dimensional sieve space Hn, and the regularization is carried out by a slowly
growing sieve dimension qn. We then studied in detail the NPIV model and verified
all the sufficient conditions proposed in Section 3 in order for the posterior to be
consistent.

It is also possible to achieve the posterior consistency using a larger sieve di-
mension qn. In this case, the regularization is carried out by a truncated normal
prior with shrinking variance, and the log-prior is then a regularization penalty
attached to the log-likelihood. Conditions (3.10), (3.11) and Assumption 4.5 can
be relaxed. We describe this procedure in the Technical Report [Liao and Jiang
(2011b)].

An interesting research direction is to derive the convergence rate. With all the
tools given in this paper, it is possible to obtain the rate of convergence of our
procedure. However, the rate would be sub-optimal, possibly due to the technical
bound (2.1) used in this paper. It would be interesting to develop a method based
on a bound tighter than (2.1), in order to prove the nonparametric minimax optimal
rate of convergence as in Chen and Pouzo (2009b).

In applications, our method requires a priori choices of (kn, qn), and Bn for the
truncated prior. We conjecture that the finite sample behavior of the posterior is
robust to the choice of (kn,Bn). However, it should be sensitive to qn, as a large
value of qn may lead to over-fitting. Therefore, we proposed an approach to allow
for a random sieve dimension by putting a discrete uniform prior on it and select-
ing it from its posterior. With the upper bound of the uniform prior Mqn growing
under the same rate restriction as before, the posterior consistency is also achieved.
This feature, however, requires specifying Mqn. In practice, one may start with a
moderate level Mqn that is less than ten. In the NPIV setting, Horowitz (2010)
recently introduced an empirical approach for selecting qn. Moreover, develop-
ing methods of selecting (kn,Bn) in a Bayesian (or quasi-Bayesian) approach is
another important research topic.
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