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INFERRING ROOTED POPULATION TREES USING ASYMMETRIC
NEIGHBOR JOINING
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We introduce a new inference method to estimate evolutionary distances
for any two populations to their most recent common ancestral population
using single-nucleotide polymorphism allele frequencies. Our model takes
fixation into consideration, making it nonreversible, and guarantees that the
distribution of reconstructed ancestral frequencies is contained on the inter-
val [0,1]. To scale this method to large numbers of populations, we intro-
duce the asymmetric neighbor joining algorithm, an efficient method for re-
constructing rooted bifurcating nonclock trees. Asymmetric neighbor joining
provides a scalable rooting method applicable to any nonreversible evolu-
tionary modeling setups. We explore the statistical properties of asymmetric
neighbor joining, and demonstrate its accuracy on synthetic data. We vali-
date our method by reconstructing rooted phylogenetic trees from the Human
Genome Diversity Panel data. Our results are obtained without using an out-
group, and are consistent with the prevalent recent single-origin model.

1. Introduction. Recovering the path of human migration has long been a
fascinating research area for researchers in many areas including archeology, an-
thropology, linguistics and biology [Lipo (2006)]. With the rapid expansion of
genetic data available [Li et al. (2008), Pickrell et al. (2012)], statistical methods
play an increasingly important role in inferring the history of human populations
[Felsenstein (1983), Mau, Newton and Larget (1999), Li, Pearl and Doss (2000),
Huelsenbeck et al. (2001)].

Information on human migrations can be informed by the reconstruction of a
phylogenetic tree, a connected acyclic graph consisting of a set of vertices and a
set of edges [Semple and Steel (2003)]. See Figure 1 for illustrations of different
types of phylogenetic trees. The phylogenetic tree cannot be observed directly and
is often the main parameter of interest to estimate, as data is usually only available
at current populations or species, which are called leaves of the phylogenetic tree,
in the form of genetic information such as molecular polymorphism and deoxyri-
bonucleic acid (DNA) sequences.

The phylogenetic tree can be reconstructed using a range of methods. Distance-
based methods measure the similarity between current populations [Nei (1972),
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FIG. 1. (A): An unrooted bifurcating phylogenetic tree of four leaves with an outgroup v5.
(B): A star-shaped phylogenetic tree with root v0. (C): A rooted tree assuming a molecular clock
assumption. (D): A rooted bifurcating phylogenetic tree without the molecular clock assumption.

Weir and Cockerham (1984)] and then construct the tree based on the similarity
using unrooted tree construction algorithms such as neighbor joining (NJ) [Saitou
and Nei (1987)]. Probability-based methods aim to model the evolutionary process
along the branches of the tree [Felsenstein (1981), Hasegawa, Kishino and Yano
(1985), Tavaré (1986)] as a stochastic process. These stochastic processes can be
either the basis of evolutionary distances or of a joint likelihood suitable for max-
imum likelihood [Felsenstein (1981)] or Bayesian inference [Li, Pearl and Doss
(2000)].

Determining the root of a phylogenetic tree is an important step in a range of
phylogenetic studies [Huelsenbeck, Bollback and Levine (2002)]. For example,
the root of human population trees provides clues on the origin and the path of hu-
man migration [Gray, Drummond and Greenhill (2009)], and the root of the tree of
life is used to study the origins of life via reconstruction methods. However, most
classic methods estimate unrooted trees only. Distance-based methods depend on
symmetric similarity measures and classic probability-based methods depend on
reversible continuous time Markov chain (CTMC) models. Both approaches ig-
nore the direction of evolution, and thus are unable to identify the root of the tree
directly.

There are three main methods for constructing a rooted phylogenetic tree: as-
suming a molecular clock assumption (or a relaxation of the molecular clock as-
sumption), adding an outgroup, or using nonreversible models. The clock tree
assumes that all leaves are equally distant from the root [see Figure 1(C)]. This
is unrealistic, as it ignores evolution rate variation which depends on factors
such as the population size [Swofford et al. (1996), Huelsenbeck, Bollback and
Levine (2002)]. There is a large literature on relaxing the clock assumption while
modeling rooting, but these methods are generally computationally expensive
[Battistuzzi et al. (2010)].

The outgroup criterion is also widely used to root an unrooted phylogenetic tree:
the idea is to find a taxon (species or population) sufficiently far from those under
study and to use the attachment point of this taxon to the other taxa to infer the
root [see Figure 1(A)]. However, finding a reasonable outgroup is not always easy.
Previous works have shown that the outgroup criterion can lead to errors when the
outgroup is distant [Wheeler (1990), Pearson et al. (2013)], or when the traits are
changing at a high rate [Outlaw and Ricklefs (2011)], or when the outgroup does
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not exist or is unknown, for example, when studying the tree of life [Iwabe et al.
(1989)], or linguistic families [Gray, Drummond and Greenhill (2009)].

We propose a novel nonreversible model for rooted bifurcating tree [see Fig-
ure 1(D)] inference, with application to the evolutionary process of single nu-
cleotide polymorphism (SNP) frequencies. Our model is motivated by modeling
the main forces that shape the patterns of variations found in SNP frequencies
across populations: mutation, which created variations in ancestral populations; as
well as drift and fixation, which determine the allele frequencies in modern popu-
lations. Among these forces, drift over time of allele frequencies, which is usually
modeled as a reversible process, has been the focus of classical probability mod-
els. Brownian motion, in particular, provides a simple and tractable approxima-
tion of the Wright–Fisher model [Edwards and Cavalli-Sforza (1964), Felsenstein
(1973, 1981), Pickrell and Pritchard (2012)].

While the reversible Brownian approximation is accurate for frequencies
bounded away from zero and one, it breaks down at the extremities. The Brow-
nian approximation fails in this regime because it ignores fixation: the simple
observation that if all individuals in a population share the same allele, then the
drift is fixed for a significant time period (until new mutations create subsequent
drifts). Moreover, the distribution of reconstructed ancestral states according to the
Brownian motion assigns positive probability to frequencies smaller than zero and
greater than one. This limitation has motivated the development of more sophisti-
cated models which track allele counts in a more detailed way through coalescent
theory. This brings fixation back into the model, thus nonreversibility, but at the
cost of a significant increase in computational requirements and model complexity.
As a consequence, most current probability models either ignore fixation or other-
wise are limited to inference in small sets of populations at a time [RoyChoudhury,
Felsenstein and Thompson (2008)].

In this work, we present a tree reconstruction method that models both the fix-
ation and drift found in SNP frequency data while keeping the computational re-
quirements and the model complexity manageable. Our method is based on a like-
lihood model that considers only valid ancestral frequencies. Being nonreversible,
the method has the additional advantage of being able to identify the placement of
the root without using outgroups. Our approach consists two steps: first, relevant
evolutionary parameters are estimated under the nonreversible model based on
the maximum likelihood principle, then, a rooted phylogenetic tree is constructed
via a novel efficient rooted-tree reconstruction algorithm called the asymmetric
neighbor-joining (ANJ) algorithm. See Figure 2 for an illustration (with details in
Sections 3 and 4). ANJ is inspired by the popular neighbor-joining (NJ) algorithm,
but utilizes the additional information provided by our nonreversible model.

The main advantage of using ANJ versus using full maximum likelihood or
Bayesian methods for estimating phylogenetic tree is computational efficiency, as
it is well known that optimization over all possible trees is computationally hard
[Roch (2006), Nichols and Warnow (2008)]. However, it is worth mentioning that
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FIG. 2. An example of a rooted bifurcating tree T for 3 populations and the asymmetric dissimi-
larity matrix A with relevant parameters derived from this tree where ai,j is the sum of evolutionary
distance from the ith leave to the most recent common ancestor of the ith leaf and the j th leaf. The
first step of our inference method is to estimate A based on a nonreversible model using maximum
likelihood. The second step is to estimate T based on Â using ANJ.

incorporating maximum likelihood methods and Bayesian methods with our pro-
posed nonreversible model is also feasible. The ANJ algorithm presented here is
broadly applicable to any nonreversible setup: ANJ can turn collections of pairwise
rooted trees obtained from any nonreversible model into a joint rooted nonclock
tree. It is therefore an interesting alternative to the outgroup criterion.

We perform a series of simulation studies to assess the accuracy and robustness
of the methods. The results show that our method can recover true topologies and
root placements with higher probability than models that ignore fixation. Branch
lengths are also shown to be accurate. Our method also has a reasonable computa-
tional cost.

Using our method, we reanalyze the SNP data from 53 populations from the
Human Genome Diversity Panel (HGDP) [Cann et al. (2002)], reconstructing the
full tree with particular attention to the location of the root. The internal organiza-
tion of the tree is similar to Li et al. (2008), but also corrects some problems found
in this previous work.

There has been earlier work on the construction of tractable methods taking
fixation into account, in particular the work of Nicholson et al. (2002) which our
model builds on, but this previous work has been restricted to star-shaped trees
of closely related populations [see Figure 1(C)]. There is also a rich literature on
exact calculation of marginal densities of stochastic processes taking fixation into
account [for example, Song and Steinrücken (2012)] and on simulation of these
processes [Jenkins and Spano (2015)]. These methods can in principle be used to
estimate bifurcating trees (for example, using a particle MCMC framework [Wang,
Bouchard-Côté and Doucet (2015)]), but at a significant computational cost. While
there has been considerable progress on improving the scalability of these meth-
ods via advanced Monte Carlo and numerical methods [RoyChoudhury, Felsen-
stein and Thompson (2008), Bryant et al. (2012)], these other methods would
not easily process the datasets used in the present paper, where the number of
populations is large. For example, in a recent paper, Bryant et al. (2012) reduced
the time complexity of a multispecies coalescent model likelihood calculation to
O(LnN2 logN) for L SNPs, where n is the number of populations and N is the
total number of individuals (typically, N � n). Our method models frequencies of
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populations directly, which is beneficial when the number of individuals sampled
in each population are large. The time complexity of our algorithm is O(Ln2 +N).

2. Evolutionary models. In this section, we briefly review evolutionary mod-
els for frequency data and propose a new approximative model for genetic drift,
called the normal approximation with general fixation.

We focus on independent bi-allelic sites in this paper.

2.1. Review of evolutionary models for frequency data. Evolutionary models
play a fundamental role in phylogenetics. The Wright–Fisher model and its ap-
proximations are widely used evolutionary models for frequency data. Consider
one locus with two alleles. Suppose that there are N0 copies of one allele in N

haploid individuals. If the number of haploid individuals N is constant, then, ac-
cording to the Wright–Fisher model, the number of copies of this allele in the next
generation, N1, follows a binomial distribution,

N1|N0 ∼ Binomial(N,N0/N).

More generally, let p0 be the frequency of a binary allele in an ancestral popula-
tion. If the number of individuals in each generation is constant, then the frequency
of this allele after t generations, p(t), can be modeled by a sequence of binomial
distributions using the Wright–Fisher model. We write p(t) as p for simplicity
throughout this paper.

The distribution of p depends on both the number of generations t and the
initial frequency p0 = N0/N . For modeling the evolutionary history of all human
populations, the number of generations from the most recent common ancestor of
human populations to current human populations is large. As a result, calculating
the distribution of p is computationally expensive.

Edwards and Cavalli-Sforza (1964), Felsenstein (1973, 1981) used a Brownian
motion approximation for the Wright–Fisher model, that is,

(2.1) p ∼ Normal
(
p0, σ

2
t

)
, 0 < p0 < 1,

where σ 2
t is a measure of drift strength combining the effects of t and N . Larger

N and smaller t lead to smaller σ 2
t , that is, smaller drift. Note that t and N are

not identifiable in the normal approximation of the Wright–Fisher model and the
variance σ 2

t depends on the frequency p0, which can be further stabilized by a
transformation [Felsenstein (1973)] for frequencies which are not close to 0 and 1.

A main drawback of the Brownian motion approximation is that p is not
bounded in [0,1]. The normal approximation works well if the evolution distance
from the parent population to the child population is short, but the probability of
breaking the boundary 0 or 1 is not negligible when the evolution distance is long.

Nicholson et al. (2002) proposed a normal approximation with fixation for the
Wight–Fisher model which takes the probability of fixation in child populations
into consideration:

(2.2) p ∼ Normal
(
p0,p0(1 − p0)σ

2)
, 0 < p0 < 1,
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constrained in [0, 1] with atom mass on 0 and 1 equal to the total mass of relevant
distribution on (−∞,0) and (1,∞), respectively. In other words, p is a mixture of
continuous and discrete random variable which has a Normal density in (0,1), and
point masses at 0 and 1 respectively modeling the probability of p < 0 and p > 1
derived from the Normal density. In model (2.2), the component of the variance
which depends on p0, p0(1 − p0), is separated from the other component σ 2,
which measures the strength of the genetic drift.

Balding and Nichols (1995) used a beta distribution which matches the first
two moments of the Brownian motion model as an approximation to the Wright–
Fisher diffusion for genetic drift in island populations. This model is also widely
used in modeling the effects of genetic drift of SNP frequencies [Sirén, Marttinen
and Corander (2011), Sirén, Hanage and Corander (2013)].

The work of Nicholson et al. (2002) and Balding and Nichols (1995) both im-
pose restrictions on the allele frequencies at internal nodes. More precisely, while
both methods allow the full range of frequencies at the leaves, [0,1], the frequen-
cies of all alleles at any internal nodes are restricted to (0,1). While SNPs are
by definition polymorphic at the root of the tree, requiring each of them to be
polymorphic in all internal nodes is limiting for the purpose of medium or large
population tree reconstruction.

One should also keep in mind that the Wright–Fisher model is itself an approx-
imation for the genetic drift rather than an exact model of the genetic drift.

2.2. Normal approximation with general fixation. We generalize an approxi-
mative model to the Wright–Fisher model for genetic drift [Nicholson et al. (2002)]
by extending the domain of the ancestral frequencies p0 from (0,1) into [0,1]. We
denote this evolution model as

p ∼ FixNormal
(
p0, σ

2)
, 0 ≤ p0 ≤ 1,

where σ 2 is the drift parameter which models the strength of genetic drift. We call
this model the normal approximation with general fixation.

The density fp of p under the FixNormal model has the following form when
0 < p0 < 1:

fp

(
p|p0, σ

2) = φ

(
p − p0

σ0σ

)
, 0 < p < 1,(2.3a)

fp

(
0|p0, σ

2) =
∫ 0

−∞
φ

(
t − p0

σ0σ

)
dt = �

(−p0

σ0σ

)
,(2.3b)

fp

(
1|p0, σ

2) =
∫ ∞

1
φ

(
t − p0

σ0σ

)
dt = 1 − �

(
1 − p0

σ0σ

)
,(2.3c)

where σ0 = √
p0(1 − p0), φ and � are the probability density and cumulative

distribution functions of the standard normal random variable. Note that the above
density is defined with respect to a reference measure composed of a uniform
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measure on (0,1) superposed with a unit point mass at each boundary point {0,1}.
This part of the density fp is the same as that of the model of Nicholson et al.
(2002).

Under the assumption that mutations are rare, we further assume that fixation
is not reversible. In other words, once fixed, the frequency at one location will not
change. Under this assumption,

fp

(
0|0, σ 2) = 1, fp

(
p|0, σ 2) = 0, 0 < p ≤ 1, σ 2 > 0,(2.4a)

fp

(
1|1, σ 2) = 1, fp

(
p|1, σ 2) = 0, 0 ≤ p < 1, σ 2 > 0.(2.4b)

Since our model does not require the variation observed at current populations
to be present in ancestral populations, it allows fixation in both current populations
and ancestral populations. This simple relaxation makes the new model a reason-
able choice for modeling SNP frequencies among distantly related populations,
and also has an important impact on the likelihood model and inference methods.

2.3. Comparisons to the Wright–Fisher model. We briefly comment on the
differences of our evolutionary model and the Wright–Fisher model. See the Sup-
plementary Material [Zhai and Bouchard-Côté (2016)] (Section 1) for simulation
studies. When σ 2 is small or when p0 is close to 0.5, the difference between
the distributions of p from our model and the Wright–Fisher model is negligi-
ble. When p is close to 0 or 1, and σ 2 is very large, there is a larger difference
between the two models.

However, this limitation is not a major concern in the types of applications we
are interested in. First, we are more interested in σ 2 rather than p. We do not need
to estimate both p and σ 2. Since we marginalize over the values of p, the effects
of those p which are close to 0 will be offset by those p which are close to 1,
especially after the symmetric transformation introduced in the next section of our
inference method. Second, in real problems, reasonable values of σ 2 are not too
large (mostly between 0 and 2 in our data analysis). One should also keep in mind
that the Wright–Fisher model is itself an approximation for the genetic drift rather
than an exact model of the genetic drift.

3. Likelihood model and inference method.

3.1. Inference method for two populations. In this paper, we assume the phy-
logenetic tree is bifurcating (see Figure 2 for an example with three leaves). We
first focus on a pair of populations and propose a new likelihood-based method to
estimate evolutionary distances from each of the two current populations to their
MRCA.

We denote the SNP frequencies in two current populations and their MRCA as
pi,1, pi,2 and pi,0 (i = 1,2, . . . ,L), respectively. We only consider independent
SNP sites in this paper. We use two sets of independent normal approximations
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with general fixation for the genetic drift after the separation of two populations,
that is,

(3.1) pi,1 ∼ FixNormal
(
pi,0, σ

2
1
)

and pi,2 ∼ FixNormal
(
pi,0, σ

2
2
)
.

Note that pi,1 and pi,2 are conditionally independent given pi,0 (i = 1,2, . . . ,L).
We also assume that the variances do not depend on the SNP sites, that is, all SNP
sites share the same σ 2

1 and σ 2
2 . The log-likelihood function for two populations is

given by

(3.2) l
(
p0, σ

2
1 , σ 2

2
) =

L∑
i=1

{
lnfp

(
pi,1|pi,0, σ

2
1
) + lnfp

(
pi,2|pi,0, σ

2
2
)}

,

where p0 = (p1,0,p2,0, . . . , pL,0), and fp is the density function defined in (2.3)
and (2.4).

For a pair of populations, there are 2L samples and L+ 2 unknown parameters,
σ 2

1 , σ 2
2 , which are univariate, and p0, which is L-dimensional. It is hard to esti-

mate pi,0 accurately from two samples pi,1 and pi,2 even if σ 2
1 and σ 2

2 are known.
However, to estimate σ 2

1 and σ 2
2 , which are shared by all loci, we can avoid esti-

mating p0 by modeling its distribution. The effects of model misspecification are
illustrated in the simulation studies.

3.2. Modeling ancestral allele frequencies. For one SNP locus, we can write
the density function of (p1,p2) as

f
(
p1,p2|σ 2

1 , σ 2
2
) =

∫ 1

0
π(dp0)fp

(
p1|p0, σ

2
1
)
fp

(
p2|p0, σ

2
2
)

=
∫ 1

0
π∗(dp0)fp

(
p1|p0, σ

2
1
)
fp

(
p2|p0, σ

2
2
)

(3.3)
+ P(p0 = 0)fp

(
p1|0, σ 2

1
)
fp

(
p2|0, σ 2

2
)

+ P(p0 = 1)fp

(
p1|1, σ 2

1
)
fp

(
p2|1, σ 2

2
)
,

where π is the distribution of p0 defined on [0, 1], and π∗ is the continu-
ous part of π defined on (0, 1). Let m0 = P(p0 = 0), m1 = P(p0 = 1), and
m2 = ∫ 1

0 π∗(p0) dp0 with a constraint m0 + m1 + m2 = 1.
If an allele is randomly chosen to measure the frequency, it is reasonable to

assume that π is symmetric with respect to 0.5.1 Under the symmetric assumption
of π , we can further combine m0 and m1 into one parameter mf ≡ 2m0 = 2m1
because m0 = m1 when π is symmetric. Then mnf ≡ 1 − mf is the proportion of

1If the allele used to measure the frequency is not randomly chosen (for example, it is chosen to be
the minor allele in the discovery panel of the SNP ascertainment process as HGDP), we can perform
a symmetric transformation by inverting half of the frequencies from p into 1 − p.
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unfixed SNPs in the ancestral population. The density of (p1,p2) in (3.3) can be
simplified as

f
(
p1,p2|σ 2

1 , σ 2
2
) =

∫ 1

0
π∗(p0)fp

(
p1|p0, σ

2
1
)
fp

(
p2|p0, σ

2
2
)
dp0

+ mf

2

{
fp

(
p1|0, σ 2

1
)
fp

(
p2|0, σ 2

2
)

(3.4)

+ fp

(
p1|1, σ 2

1
)
fp

(
p2|1, σ 2

2
)}

.

The log-likelihood of (σ 2
1 , σ 2

2 ) for L frequencies p1 = (p1,1, p2,1, . . . , pL,1) and
p2 = (p1,2, p2,2, . . . , pL,2) is given by

(3.5) l
(
σ 2

1 , σ 2
2 |p1,p2

) =
L∑

i=1

lnf
(
pi,1,pi,2|σ 2

1 , σ 2
2
)
.

We can maximize the log-likelihood (3.5) to find the maximum likelihood estimate
(σ̂ 2

1 , σ̂ 2
2 ).

In real data analysis, we do not observe pi,1 and pi,2. We observe the number of
sampled individuals ni,1 and ni,2 with the number of certain alleles xi,1 and xi,2.
We can integrate out p1 and p2 in (3.4) after adding two binomial probability mass
functions. In this paper, we focus on population frequencies directly and simply
use p̂i,l = xi,l/ni,l (i = 1,2, . . . ,L and l = 1,2) as data in the inference.

In this paper, we use the Uniform(0,1) distribution multiplied by a factor mnf

to model π∗. If there is extra information on the frequencies of certain ancestral
populations, it could also be easily incorporated into our model. Other distributions
motivated by population genetics such as π∗(x) ∝ 1/{x(1 − x)} for x ∈ (0,1)

[Ewens (1973)] can also be used.
For the values of mf , we propose an empirical Bayes estimator to estimate

mf from data which works well in our simulation studies and data analysis. We
estimate

m̂0 = 1

L

L∑
i=1

I (pi,1 = 0)I (pi,2 = 0) and m̂1 = 1

L

L∑
i=1

I (pi,1 = 1)I (pi,2 = 1),

where I is an indicator function and estimate

(3.6) m̂f = m̂0 + m̂1.

Note that m̂0 ≥ m0 since, if pi,0 = 0, then pi,1 = pi,2 = 0, but pi,1 = pi,2 = 0
does not imply pi,0 = 0 (i = 1,2, . . . ,L). Similarly, m̂1 ≥ m1, and thus m̂f ≥ mf .
The bias m̂f − mf increases when σ 2

1 and σ 2
2 are larger. It is also possible to

estimate mf as a parameter together with σ 2
1 and σ 2

2 , which is not the focus of this
paper.

In Section 5, we show that using Uniform(0,1) with fixation rate mf works
well for a variety of distributions on p0 even when the model is misspecified, and
that the choice of the weight mf has a negligible effect in the estimation of σ 2

1 , σ 2
2

as long as mf is nonzero.
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3.3. Inference method for n populations. Suppose that we have SNP frequen-
cies at L independent SNP loci for n populations. We denote the SNP frequency
of the ith locus in the j th population by pij (i = 1,2, . . . ,L, and j = 1,2, . . . , n).

3.3.1. Asymmetric dissimilarity matrix. Our inference method for n popula-
tions is a generalization of our method for 2 populations. For n populations, we
can estimate the branch lengths of any two populations to their MRCA. This in-
formation is encoded in an asymmetric dissimilarity matrix A. In this section, we
discuss the relationship between asymmetric dissimilarity matrices and bifurcating
trees.

DEFINITION 1. A matrix A is said to be an asymmetric dissimilarity matrix
representation of a rooted bifurcating tree T of n populations if A is an n × n ma-
trix, with ai,i = ∞ (i = 1,2, . . . , n), and ai,j is equal to the sum of branch lengths
from population i to the most recent common ancestral population of population i

and population j (i, j = 1,2, . . . , n and i �= j).

It is easy to see that, for a given rooted bifurcating tree T , the asymmetric dis-
similarity matrix A is uniquely defined. Figure 2 provides an example for 3 popu-
lations. In the tree T , branch lengths are defined on the topology of the tree, and
they measure the evolutionary distance from the parent population to the child
population. These branch lengths are modeled by the drift parameter σ 2 in our
evolutionary model.

From the SNP frequencies of n populations, we can calculate an n × n asym-
metric dissimilarity matrix ÂL by setting

âii = ∞, 1 ≤ i ≤ n,

âij = σ̂ 2
ij , 1 ≤ i, j ≤ n, and i �= j,

where σ̂ 2
ij and σ̂ 2

ji are estimates of the branch lengths, respectively, from the ith
population and the j th population to their MRCA using our inference method
proposed in Section 3.1.

Before claiming that ÂL is a reasonable estimate of A, we need one more as-
sumption on the additivity of the branch lengths in our model to maintain the
compatibility of the model and the bifurcating tree structure. To illustrate the com-
patibility of the model and the tree, we take three populations as an example. In
Figure 2, there are three populations P1, P2 and P3, and two internal populations
P0 and P2,3. Based on the assumption that after the separation of two populations
each branch evolves independently, we model the genetic drift by

pi,1 ∼ FixNormal
(
pi,0, σ

2
1
)
, pi,23 ∼ FixNormal

(
pi,0, σ

2
2,3

)
,(3.7a)

pi,2 ∼ FixNormal
(
pi,23, σ

2
2
)
, pi,3 ∼ FixNormal

(
pi,23, σ

2
3
)
.(3.7b)
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Under this set of assumptions, we can estimate σ 2
2 and σ 2

3 by σ̂ 2
23 and σ̂ 2

32, but
we cannot estimate σ 2

2,3 using our inference method, as we do not have data for
internal population P2,3.

If we further assume

pi,2 ∼ FixNormal
(
pi,0, σ

2
2 + σ 2

2,3
)
,

(3.8)
pi,3 ∼ FixNormal

(
pi,0, σ

2
3 + σ 2

2,3
)
,

we can estimate σ 2
2,3 + σ 2

2 by σ̂ 2
21, which is the total branch length from P2 to P0

since P0 is the MRCA of P1 and P2. Similarly, we can estimate σ 2
2,3 + σ 2

3 by σ̂ 2
31.

We emphasize that, in our model, just as in the previous work [Balding and
Nichols (1995), Nicholson et al. (2002), Pickrell and Pritchard (2012)], assump-
tions of the form of (3.7a–b) do not imply that pi,2 and pi,3 are exactly distributed
as shown in (3.8). However, in the Supplementary Material (Section 2), we show
that approximation (3.8) is reasonable in practice.

4. Asymmetric neighbor-joining algorithm. We propose a new algorithm,
called asymmetric neighbor joining (ANJ), to construct a rooted bifurcating tree
based on asymmetric dissimilarity matrices A or its estimate ÂL. ANJ can be ap-
plied to the matrix derived using our methods and also to any asymmetric dis-
similarity matrix derived by other methods. ANJ shares many of NJ’s desirable
properties.

ANJ proceeds in three steps: search step, estimation step and update step. At
the search step, we propose a new cherry-picking algorithm to identify a pair of
populations which forms a cherry in the tree, that is, two distinct leaves in a tree
which are adjacent to a common vertex [Semple and Steel (2003)]. At the estima-
tion step, we estimate the branch lengths from two leaves of the cherry to the root
of the cherry. At the update step, we combine the two populations in the cherry
into one new internal population, and update the distances related to this internal
population.

Proofs can be found in the Supplementary Material (Section 7).

4.1. Identifying a cherry. First, we show that a cherry, which is a pair of adja-
cent external vertices on the tree T , can be identified by comparing elements in an
asymmetric dissimilarity matrix A induced by the tree T in Proposition 1.

DEFINITION 2. The two-matrix row minimization condition (2-MRMC) is
satisfied for the ith and j th row of a matrix A if aij is the smallest entry in the ith
row of A and aji is the smallest entry in the j th row of A.

PROPOSITION 1. For any square matrix A that is induced by a rooted bifur-
cating tree T , the 2-MRMC is satisfied for (Pi,Pj ) if and only if Pi and Pj form a
cherry.
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Algorithm 1 Cherry-picking algorithm
q ← 1
(ni, nj ) ← index of the smallest element in A
while (q < n) do

if anj ,ni
= min Anj ,· then

return (ni, nj ), break
else

ni ← nj

nj ← index of the smallest element in the ni -th row of A
end if
q ← q + 1

end while

Our cherry-picking algorithm is summarized in Algorithm 1. Its properties are
summarized in Theorem 4.1 and Proposition 2.

THEOREM 4.1. For a given bifurcating phylogenetic tree T with asymmetric
dissimilarity matrix A, the cherry-picking algorithm will always return a cherry,
and the algorithm terminates before the iteration variable q equals n.

PROPOSITION 2. If ÂL is a consistent estimator of an asymmetric dissimilar-
ity matrix A, then the probability of identifying a cherry of the tree T using our
cherry-picking algorithm on ÂL converges to 1 as the number of loci L goes to
infinity.

By consistency, we mean in Proposition 2 that limL→∞ P(|ÂL − A| ≥ ε) =
0 for any ε > 0 where the norm of a matrix is defined as the maximum of all
elements.

Proposition 2 and Theorem 4.1 show that a cherry can be found using our
cherry-picking algorithm by searching for a pair (Pi,Pj ) which satisfies the 2-
MRMC condition. However, when we apply the algorithm on a matrix ÂL obtained
from finite data, it is possible that there is no pair (Pi,Pj ) satisfying the 2-MRMC
condition. If no pair satisfies the 2-MRMC condition, the algorithm stops when
q = n, and selects the two populations on hold as a cherry. A consequence of the
proof of Proposition 2 is that the probability of this happening goes to zero as
L → ∞.

4.2. Estimation step and update step. Let P = {P1,P2, . . . ,Pn} denote the set
of all populations. Assume that (Pi,Pj ) is the selected cherry, and denote the
internal node linking Pi and Pj as Pi,j . In our ANJ algorithm, we estimate the
distance from Pi and Pj to Pi,j respectively by

(4.1) d̂i,ij = ai,j and d̂j,ij = aj,i .
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We update the distance from any other population Pm (m �= i, j) to the new
internal node Pi,j by

(4.2) am,ij = (am,i + am,j )/2,

and update the distance from Pi,j to Pm by

(4.3) aij,m = (ai,m + aj,m − d̂i,ij − d̂j,ij )/2.

We remove the ith and j th columns and the ith and j th rows of A, add a new
column and a new row for Pi,j , using am,ij and aij,m, and set aij,ij = ∞ to form a
reduced matrix r(A). If ÂL is used instead of A, replace all a· with â· in the above
equations to form a reduced estimated matrix r(ÂL).

We define the reduced populations r(P) = P − {Pi,Pj } + {Pi,j }, and the re-
duced true tree r(T ) as a rooted bifurcating tree with leaf populations r(P), that is,
a subtree of T without descendants of Pi,j . We denote the asymmetric dissimilarity
matrix of tree r(T ) as Ar(T ).

Lemmas 1 and 2 establish the relationships between Ar(T ), r(A) and r(ÂL).

LEMMA 1. If a matrix A is an asymmetric dissimilarity matrix representation
of a rooted bifurcating tree T , then, after a cherry of T is removed, the reduced
matrix r(A) is an asymmetric dissimilarity matrix representation of the reduced
tree r(T ), that is, r(A) = Ar(T ), when the leaf populations r(P) are arranged in
the same order.

LEMMA 2. If ÂL is a consistent estimator of an asymmetric dissimilarity ma-
trix A, then the reduced estimated matrix r(ÂL) is a consistent estimator of r(A)

(i.e., Ar(T )) when the leaf populations r(P) are arranged in the same order.

We repeat the search, estimation and update steps until we have only one node
left, which is the MRCA for all populations being considered.

Alternatively, estimation and update steps analogous to NJ and unweighted
neighbor joining (UNJ) [Gascuel (1997)] can also be used. However, we found
these alternatives not to work as well. This can be explained by the fact that ANJ
uses only short branch lengths to construct the tree and short branch length esti-
mates are more accurate than long branch length estimates using our method (see
Section 5.2). If more accurate branch length estimates can be obtained using other
methods for long branches, the asymmetric versions of NJ and UNJ may perform
better than ANJ by utilizing more branch length estimates to reconstruct the tree.

Algorithm 2 summarizes our algorithm for constructing a rooted bifurcating
tree from an asymmetric dissimilarity matrix A. A bifurcating tree can be fully
recovered from the recorded pairs (Pi,Pj ) and the branch lengths (d̂i,ij , d̂j,ij ).
The properties of ANJ are summarized in Theorem 4.2 and Proposition 3.
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Algorithm 2 Constructing a tree from an asymmetric dissimilarity matrix
index = {1,2, . . . , n}
for k = 1 to n − 1 do

pick up a cherry (Pi,Pj ) using the Cherry–Picking algorithm (Algorithm 1)
estimate d̂i,j and d̂j,i

record (Pi,Pj ) and (d̂i,j , d̂i,j )

combine (Pi,Pj ) into a new node Pn+k

remove Pi,Pj and associated rows and columns from A (or ÂL)
index ← index − {i, j}
for l in index do

update the distance from Pl and Pn+k to their MRCA
end for
Add a new row and a new column in A for Pn+k using updated distances
index ← index + {n + k}

end for

THEOREM 4.2. If a matrix A is an asymmetric dissimilarity matrix represen-
tation of a rooted bifurcating tree T , then asymmetric neighbor joining can recover
T correctly from A, in terms of both topology and branch lengths.

PROPOSITION 3. If ÂL is a consistent estimator of an asymmetric dissimi-
larity matrix A, then the probability of recovering the topology of the true tree T

using asymmetric neighbor joining on ÂL converges to 1 when the number of loci
L → ∞. Moreover, the branch length estimates are also consistent.

It is worth mentioning that if our inference method is used to estimate ÂL,
then ÂL is not a consistent estimator of A, as we do not know the true marginal
distributions of SNP frequencies in any of the internal populations. However, ÂL

can still serve as a useful estimate of A since the asymptotic biases of the estimates
are roughly proportional to the magnitude of the true branch lengths in the model,
as shown in the next section, which means the branch lengths are scaled but still
maintain their general relative lengths.

5. Simulation studies. We conduct simulation studies to investigate the per-
formance of our inference method, both in the well-specified and misspecified
cases. We first conduct simulation studies for two populations to investigate the
consistency of our branch length estimators. Then we conduct simulation stud-
ies for more than two populations to investigate the performance of our inference
method in recovering true tree topology and estimating branch lengths of larger
trees.

For a pair of two populations, our method gives consistent estimates of branch
lengths when the distribution of SNP frequencies in the ancestral population used
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in our likelihood model is the true distribution used in simulation. When the two
distributions are different, the estimates of branch lengths are not guaranteed to be
consistent, but still reflect the relative lengths of the branches. For more than two
populations, our method identifies the root of the phylogenetic tree correctly in all
simulation runs.

Source code is available at https://github.com/yzhai220/anj.

5.1. Simulation for two populations. First, we generate three sets of SNP fre-
quencies of an ancestral population P0 using a mixed distribution with a contin-
uous part from uniform(0, 1), beta(0.5, 0.5) or beta(2, 2), and discrete parts on 0
and 1 with mass m0 and m1. The proportion of frequencies which are fixed in P0 is
denoted mf = m0 +m1. In the simulation, we set m0 = m1 = 0.1. We generate the
values p0 of L independent SNPs with L = 100,1000,10,000 in this simulation
study.

Second, we generate SNP frequencies for the leaf populations P1 and P2, p1 and
p2, based on p0 using the normal approximation with general fixation model with
parameters σ 2

1 and σ 2
2 , respectively, as shown in (3.1). We set σ 2

1 = 0.1,0.5,1.0,
and σ 2

2 = 2σ 2
1 so that it is not a clock tree.

The box plots of σ̂ 2
1 and σ̂ 2

2 from 100 simulation runs are shown in Figure 3
[Uniform(0,1) used for p0], Figure S7 [Beta(0.5,0.5) used for p0 in the Supple-
mentary Material] and Figure S9 [Beta(2,2) used for p0 in the Supplementary
Material].

From Figure 3, we can see that the estimates σ̂ 2
1 and σ̂ 2

2 are very accurate. The
variances of the estimates decrease when the number of SNPs increases for all true
values used. The effect of using m̂f versus using mf on the estimates σ̂ 2

1 and σ̂ 2
2

is generally small. There are slight biases for larger values of σ 2
1 and σ 2

2 , which
can be explained by the fact that, for larger values of branch lengths, m̂f tends to
overestimate mf .

From Figure S7 of the Supplementary Material, we can see that the estimates
of σ̂ 2

1 and σ̂ 2
2 are highly accurate for the smaller branch length σ 2

1 , but they under-
estimate the larger branch length σ 2

2 when the continuous part of p0 is generated
from Beta(0.5,0.5) and estimated using Uniform(0,1). This can be explained by
the shape of the Beta(0.5,0.5) density. The effects of using empirical Bayes esti-
mators m̂f (3.6) are similar to the effects observed in Figure 3. Although biases
are introduced, the relative magnitudes of estimated branch lengths are preserved.

5.2. Simulation for more than two populations. We investigate the perfor-
mance of our methods for datasets containing more than two populations. In order
to obtain realistic simulation scenarios, we use trees estimated from real data as
references. The two reference trees used to simulate population SNP frequencies
are based on an estimated subtree of 8 African populations, and an estimated sub-
tree of 7 American and Oceanic populations (with an extra outgroup, namely, the

https://github.com/yzhai220/anj
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FIG. 3. Boxplots of σ̂ 2
1 and σ̂ 2

2 in 100 simulation runs for two populations when p0 is generated
from Uniform(0,1) with point mass 0.1 at 0 and 1. In the three left panels, the true value mf = 0.2
is used in estimation, and in the three right panels, the empirical Bayes estimate m̂f (3.6) is used in

estimation. Grey lines indicate true values of σ 2
1 and σ 2

2 = 2σ 2
1 .

Hazara population). The estimated tree comes from our data analysis results using
the HGDP data of 53 human populations. Results on the full tree are presented in
the next section.

We first generate p0, the SNP frequencies at the root of the subtree, using a
mixed distribution with a continuous part from Uniform(0,1) and discrete parts on
0 and 1. Then we generate SNP frequencies of internal nodes and leaf populations
based on the true tree from the root to leaves using our normal approximation with
a general fixation model. We keep only the SNP frequencies of leaf populations
for inference. We also conduct simulation studies when the Wright–Fisher model
is used to generate data. See the Supplementary Material for results.

We set m0 = m1 = 0.1, L = 5000 in the simulation for African populations, and
L = 2000 for American and Oceanic populations.

We construct a rooted bifurcating tree based on the asymmetric dissimilarity
matrix for the leaf populations using our inference method and our asymmetric
neighbor-joining algorithm. For comparison, we also construct an unrooted bifur-
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FIG. 4. Simulation results for African populations. Panel 1 shows the true tree and its branch
lengths. Panels 2 and 3 show the consensus rooted tree using our method and the consensus unrooted
tree using NJ, respectively, with the numeric annotations being successful recovery rates of clades
in 200 simulation runs. Panels 4 and 5 show the consensus rooted trees with unscaled and scaled
estimated branch lengths, and Panel 6 shows the consensus unrooted tree with scaled branch lengths.

cating tree based on a symmetric dissimilarity matrix for the leaf populations using
Nei’s symmetric dissimilarity measure [Nei (1972)] and NJ, a classical method
that is still widely used because of its efficiency and accuracy. We further root
those unrooted trees from NJ results with an outgroup (Mozabite for African pop-
ulations and Hazara for American and Oceanic populations) by setting the root at
the midpoint from the outgroup to the clade containing all other populations for
illustration and comparison purposes. We use empirical Bayes estimates m̂f (3.6)
for each pair of populations in our likelihood model.

We compute consensus trees [Felsenstein (2004), Paradis, Claude and Strimmer
(2004), Paradis (2012)] from 200 simulation runs. The true tree, the consensus
rooted tree of estimated rooted trees using our method and the consensus unrooted
tree of estimated unrooted trees using NJ are shown in Figure 4 (for African pop-
ulations) and Figure 5 (for American and Oceanic populations).

Note that, in all comparisons in this section, we set a higher standard for results
using our methods than results using traditional methods. When we compare esti-
mated trees with the true tree, we use estimated rooted trees using ANJ directly,
and use estimated unrooted trees using NJ with extra information on rooting, that
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FIG. 5. Simulation results for American and Oceanic populations. Panel 1 shows the true tree and
its branch lengths. Panels 2 and 3 show the consensus rooted tree with unscaled and scaled estimated
branch lengths. Panel 4 shows the consensus unrooted tree with scaled estimated branch lengths.

is, a correct outgroup specified as the root. In other words, ANJ estimates one more
node than NJ in all simulation runs, but, on the other hand, we set the correct loca-
tion of this node for trees estimated by NJ so that results using both methods can
be compared. We scale the total branch lengths of the estimated trees so that they
have the same total branch length as the true tree. Results are reported for both
unscaled and scaled trees.

Note that our method correctly identifies the location of the root of the phyloge-
netic tree in all simulation runs. In Figure 4, the branch lengths in the true tree of
African populations (panel 1) are short, with the shortest edge length only 0.002.
Our method achieves a high rate of clade recovery on this data (panel 2 shows the
results obtained using our method, and panel 3 shows the results obtained using
NJ, which uses additional information). The consensus branch lengths estimated
by our method (panels 4 and 5) achieve a high level of accuracy, even without
rescaling them (panel 4). This contrasts with the NJ method, which is less accurate
in terms of branch length estimates, even after rescaling (panel 6).

In Figure 5, our method recovers the true tree topology in each of 200 simula-
tion runs for American and Oceanic populations. We do not show panels 2 and 3
of Figure 4 in Figure 5 as the recovery rates are 1 for all clades. Panels in Figure 5
show similar results to those in Figure 4. Panels 1, 2 and 3 show that branch lengths
which are shorter or closer to leaf populations are estimated more accurately than
branch lengths which are longer and closer to the root. This observation is consis-
tent with our results in previous sections that our estimates are more accurate for
shorter branch lengths and branches which are close to leaf populations. However,
our method still works well for longer branch lengths in terms of estimating the
relative magnitude.

Table 1 summarizes the mean distances between the estimated trees and the true
trees under several different distance measures for phylogenetic trees: the propor-
tion of trees which have the same topology as the true tree, the Penny–Hendy
(PH) distance [Penny and Hendy (1985)], the Kuhner–Felsenstein (KF) distance
[Kuhner and Felsenstein (1994)] and the geodesic distances [Billera, Holmes and
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TABLE 1
Mean distances between estimated trees and true trees calculated from 200 simulations

African-ANJ African-NJ American-ANJ American-NJ

Correct rate 0.555 0.590 1 1
PH 1.110 0.820 0 0
KF (unscaled) 0.016 0.045 0.109 0.331
KF (scaled) 0.015 0.013 0.065 0.062
Geodesic (unscaled) 0.030 0.459 0.123 0.584
Geodesic (scaled) 0.027 0.092 0.098 0.157

Vogtmann (2001), Chakerian and Holmes (2012)]. The PH distance equals two
times the number of clades being mistakenly specified. The KF distance measures
the number of misspecified clades as well as differences of internal branch lengths.
The geodesic distance measures the number of misspecified clades and differences
of all branch lengths.

From Table 1, we can see that for African populations the probability of recover-
ing the full true tree topology using ANJ is similar to that using NJ. ANJ performs
better in terms of KF for unscaled trees and in terms of geodesic distances for both
scaled and unscaled trees, but performs worse than NJ in terms of PH. For Amer-
ican and Oceanic populations, both methods recover the true tree topology all the
time, but our method performs better in all distance measures considered expect
for KF for scaled trees.

More importantly, our method identifies the root of the tree correctly in all cases,
an inference which cannot be obtained using symmetric dissimilarity measures,
unless extra information in the form of an outgroup is available.

5.3. Computational cost. For a pair of populations, the main computational
cost of our method is the calculation of the likelihood for various parameters
(σ 2

1 , σ 2
2 ), which is required in the optimization of the likelihood. Calculation of

the likelihood for a fixed (σ 2
1 , σ 2

2 ) involves a univariate numerical integration for
each SNP location, which is vectorized and numerically solved using Gaussian
quadratures with 40 points in our simulation and data analysis. The numerical op-
timization cost can be reduced by choosing a reasonable starting point. It can also
be further improved by learning those parameters using a small portion of SNPs
and then using those estimates as starting points with more SNPs.

In our simulation studies, calculating branch lengths for a pair of populations
takes around 0.14 seconds (L = 100), 1.40 seconds (L = 1000) and 14.7 seconds
(L = 10,000) for σ 2

1 = 0.1 and σ 2
2 = 0.2 and Uniform(0,1). The results vary for

different parameters but remain similar. All analyses are run on a 2.8 GHz CPU
Mac Mini (Intel dual core i5) using R version 3.1.0.

For more than two populations, we estimate the asymmetric dissimilarity ma-
trix using our method applied to each pair of populations. The computational cost
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is of order
(n
2

)
times the cost for one pair. Overall, this gives a running time of

O(Ln2) for the computation of the asymmetric dissimilarity matrix, and it can be
also easily paralleled. In our simulation studies, calculating the asymmetric dissim-
ilarity matrix for eight African populations takes 37.5 seconds per run on average
(L = 2000), and 41.3 seconds per run on average (L = 2000) for seven Ameri-
can and Oceanian populations. The computational cost for the construction of the
trees from an asymmetric dissimilarity matrix using our algorithm is negligible
compared to the cost of forming the asymmetric dissimilarity matrix.

6. Data analysis: Human genome diversity panel. We apply our methods
on a subset of the data from the Human Genome Diversity Panel (HGDP). The
HGDP contains 650,000 common SNP loci data for 938 unrelated individuals from
53 populations from Africa, Europe, the Middle East, Asia and the Americas. The
number of individuals in one population varies from 5 to 46.

Li et al. (2008) obtained an unrooted phylogenetic tree for 51 populations (with
Han and Han North China combined as Han, and Bantu South Africa and Bantu
Kenya combined as Bantu) using contml, which is implemented based on the
pruning algorithm proposed by Felsenstein (1973). By genotyping two chimpanzee
samples, Li et al. (2008) defined the putative ancestral allele for most of the SNPs,
and used the chimpanzee data to locate the root of the tree, that is, the MRCA of
all human populations, at the node linking San and all other populations. Pickrell
and Pritchard (2012) analyzed the same data sets to investigate population admix-
tures. Pickrell and Pritchard (2012) obtained a similar phylogenetic tree as Li et al.
(2008), but not all populations within the same geographical regions are clearly
grouped together in their results, even after adjusting for population admixtures.
Pickrell and Pritchard (2012) also removed two Oceanian populations (Melanesian
and Papuan) from the analysis because, according to the authors, including these
two populations will lead to confusing results. Our method does not suffer from
this issue and reconstructs a high-quality phylogenetic tree from the full dataset.

6.1. Human population tree. To reduce correlation among SNPs, we subsam-
ple the SNPs to one for every tenth loci, and we focus on a subset of the original
data set containing 131,329 SNPs. As a result, our data contains frequencies of
13,133 SNPs in 53 populations, that is, the data matrix X = (xij ) is a 53 × 13,133
matrix with each row representing one population and each column representing
one SNP locus. The results obtained are consistent when other subsets of SNPs are
used.

Since the HGDP records frequencies of the minor SNP, we symmetrize the SNP
frequencies so that the prior over the ancestral frequencies can be assumed to be
symmetric:

x∗
ij =

{
xij , for i = 1,2, . . . ,53, and j = 1,3, . . . ,13,133,

1 − xij , for i = 1,2, . . . ,53, and j = 2,4, . . . ,13,132.
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FIG. 6. (A): Rooted phylogenetic tree for 53 human populations in HGDP using our method.
(�) indicates the root of our tree. Populations are colored according to regions as specified in Li
et al. (2008). (B): Zoomed dendrogram for European populations using our method. (C): Zoomed
dendrogram for European populations reproduced using contml [Felsenstein (1989)], the same
subtree as in Li et al. (2008).

We calculate the asymmetric dissimilarity matrix for the 53 populations using
the data X∗ = (x∗

ij ). We then construct a rooted bifurcating phylogenetic tree using
asymmetric neighbor joining on the asymmetric dissimilarity matrix proposed in
this paper (see Figure 6). Our results are obtained using less SNPs than Li et al.
(2008) and without chimpanzee data.

From Figure 6, we can see that populations from the same continents are
grouped together, which is consistent with our knowledge of human migrations.
The pattern of human populations moving out of African can be observed clearly
from Figure 6(A) and is consistent with the prevalent consensus [Cavalli-Sforza
and Feldman (2003)]. American and Asian populations are farthest from the root,
while African and Middle Eastern populations are closest to the root.



2068 Y. ZHAI AND A. BOUCHARD-CÔTÉ

Our results are more accurate than the results of Li et al. (2008) and Pickrell and
Pritchard (2012), in terms of estimating phylogenetic trees for closely related pop-
ulations. For example, from historical records, the Tuscan and Italian populations
are closely related, and this relationship is correctly identified using our method
[see Figure 6(B)], but not in Li et al. (2008) [see Figure 6(C)]. Similarly, we can
say the same for the Adygei and Russian populations. Our result clearly identifies
closely related populations within the same regions into subgroups [see colors in
Figure 6(A)], while this is not the case in Pickrell and Pritchard (2012), as they
failed to group all Middle Eastern populations together and failed to incorporate
two Oceanian populations.

More importantly, our method identifies the root of the human population tree
without using extra data from Chimpanzee or Neandertal as in Li et al. (2008) and
Pickrell and Pritchard (2012). In our results, the root is located between a clade
containing current middle and southern African populations, and a clade contain-
ing current northern African and non-African populations [see � in Figure 6(A)].
However, results in this region of the tree should be treated with caution as both
models ignore effects such as recent admixtures which have a large effect on the
SNP frequencies in African populations [Pickrell et al. (2012)].

It takes 7.88 hours to calculate the asymmetric dissimilarity matrix for 52 pop-
ulations (without parallel computation) and less than 1 second to reconstruct the
rooted tree based on the dissimilarity matrix.

6.2. Assessing uncertainty of the estimated tree. Assessing uncertainty of the
estimated tree is not a simple task. The uncertainty of the estimated tree comes
from not only the topology of the estimated tree, but also the associated branch
lengths.

The bootstrap method has been widely used to assess the uncertainty of the
estimated tree [Felsenstein (1983), Zharkikh and Li (1995)]. Summarizing boot-
strap estimates in a meaningful way is not straightforward if more than one tree
topology is present in the bootstrap estimated trees. A similar problem arises in
the Bayesian phylogenetic framework when summarizing sample trees from the
posterior distritbution [Yang and Rannala (1997)].

The consensus tree is a popular tool to summarize a set of phylogenetic trees in
practice. The consensus tree usually consists of only the topology [Zharkikh and Li
(1995), Gray and Atkinson (2003), Smeulders et al. (2011), Song and Steinrücken
(2012)]. One question is how the average branch lengths should be calculated for
trees of different topology since the branch lengths are conditional on the phylo-
genetic tree and are meaningful only for specific trees [Yang, Goldman and Friday
(1995)]. Some software calculate the mean branch lengths of the consensus tree
by averaging branch length estimates from only trees that have the same topol-
ogy as the consensus tree [Sukumaran and Holder (2010), Revell (2012)]. This
approach is debatable, as it ignores all other estimated trees of different topology
[Felsenstein (2004)]. For the same reason, a sound definition of variances of branch
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length estimates is only available for the mean estimated tree if all estimated trees
share the same topology.

On the other hand, Billera, Holmes and Vogtmann (2001) investigated the ge-
ometry of the space of phylogenetic trees and proposed the geodesic distance,
which enables averaging phylogenetic trees and the construction of a convex hull
of a family of trees as a measure of variability of the estimated tree. Efficient al-
gorithms have been developed to calculate the Fréchet mean tree and the Fréchet
variance of the estimated tree [Owen and Provan (2011), Benner, Bačák and Bour-
guignon (2014)] based on the geodesic distance. The Fréchet mean tree is defined
as the tree that achieves the minimum mean square geodesic distance to all trees
considered, and the Fréchet variance is the mean square geodesic distance between
the Fréchet mean tree to all trees considered. The Fréchet variance can be inter-
preted as the uncertainty measure for the estimated tree as a whole. However, this
approach does not straightforwardly provide uncertainty measures for individual
nodes or individual branch length estimates. As a consequence, it could be argued
that the Fréchet variance is not easy to interpret.

We illustrate how to use the bootstrap method to assess the uncertainty of the
estimated phylogenetic tree based on our methods. For each bootstrap run, we
sample SNPs with replacement and then estimate the phylogenetic tree using the
bootstrap sample. We then construct the consensus tree of all 5000 bootstrap trees
with uncertainty measure on each node, and the Fréchet mean tree of all boot-
strap trees with the Fréchet variance. The geodesic mean tree and its variance are
calculated using TrAP [Benner, Bačák and Bourguignon (2014)]. To provide an
example where the uncertainty is relatively large, we show a reconstruction us-
ing only 1314 SNPs (i.e., every hundredth of the 131,329 SNPs) from six sample
populations across the world.

Figure 7 shows that the root of the estimated tree is placed at the node separating
African populations with all other populations with probability 1 in this analysis.
The consensus tree [Figure 7(3)] and the Fréchet mean tree [Figure 7(4)] share
the same topology and almost identical branch length estimates. Uncertainty of
the estimated tree topology is observed on the node of the consensus tree linking

FIG. 7. (1): Estimated tree based on 1314 SNPs. (2): Consensus tree with estimated node uncer-
tainty from 5000 bootstrap samples. (3): Consensus tree with estimated branch lengths and their
standard deviations in brackets. (4): Fréchet mean tree with estimated branch length. The Fréchet
variance of this Fréchet mean tree is 0.0013.
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Han, Papuan and Maya [0.7968 in Figure 7(2)], meaning that this node does not
appear in approximately 20% of the bootstrap estimate trees. Uncertainty of the
estimated branch lengths are summarized by the standard deviations of the branch
length estimates in the consensus tree [Figure 7(3)].

Note that uncertainty of the estimated tree rapidly reduces when the number of
SNPs used in the analysis increases. When all 13,133 SNPs are used, the Fréchet
variance decreases to less than 0.0001 from 0.0013, and the proportion of boot-
strap estimate trees that share the same topology as the consensus tree increases to
99.82% from 79.66% (see Figure S11 in the Supplementary Material).

In conclusion, reasonably accurate human population trees can be identified
using a relatively small number of SNPs based on our method. The uncertainty of
this root placement is extremely low even when the number of SNPs used in the
analysis is small. This result shows that the information on the root of the human
population tree is stored in the gene of human populations, and can be recovered
using nonreversible models on the evolutionary process of SNP frequencies of
human populations, which does not depend on the choice of outgroups.

7. Discussion. We have presented a simple and effective method for recon-
structing rooted trees from multi-population SNP frequencies. By modeling fix-
ation in a principled way, and generalizing neighbor-joining methods, we can
perform joint tree and rooting inference without requiring an outgroup. We have
shown in simulations and real worldwide genome-wide data that this rooting can
be more accurate despite using less data. The method is also computationally ef-
ficient with time complexity O(Ln2), where L is the number of sites and n is the
number of populations.

One key element we have ignored thus far is the effect of admixture, which
could potentially bias the analysis [Pickrell et al. (2012)]. To take admixture into
account, one could design rooted network inference algorithms from dissimilar-
ity matrices. Note also that it may be feasible to detect admixtures automatically
by looking at iterations of Algorithm 2 where no population pair satisfies the 2-
MRMC (this property is only guaranteed to hold for matrices derived from a tree).
We have not detected such cases in our data analysis, suggesting that the tree ap-
proximation might be reasonable at the tree scales of the HGDP dataset. We have
also ignored sampling errors, but since the pairwise asymmetric distance calcula-
tions are based on a probability model, it is possible to include an error model at
the cost of a more expensive optimization. Similarly, ascertainment bias may also
be incorporated into the likelihood model via a correction term [Nicholson et al.
(2002)]. The effect of selection is ignored in our model. It is generally unclear how
strong the effect of selection has been in human populations, although Hernandez
et al. (2011) showed that strong selective sweeps appeared rare.

A more fundamental limitation is that our model ignores the internal structure of
each leaf population. This is mostly of concern for inferring relationships among
closely related populations, where it may be difficult to cluster individuals into
well-separated subpopulations. In such cases, computationally expensive coales-
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cent and ancestral graph methods [Bryant et al. (2012)] may be preferable. For
medium- and large-scale tree inference, however, we have demonstrated that our
method is an accurate and computationally affordable alternative.
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SUPPLEMENTARY MATERIAL

Supplement to: “Inferring rooted population trees using asymmetric neigh-
bor joining” (DOI: 10.1214/16-AOAS964SUPP; .pdf). We provide additional
simulation studies and proofs on the properties of the algorithms in the supple-
mentary material [Zhai and Bouchard-Côté (2016)].
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