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The analysis of GWAS data has long been restricted to simple models
that cannot fully capture the genetic architecture of complex human diseases.
As a shift from standard approaches, we propose here a general statistical
framework for multi-SNP analysis of GWAS data based on a Bayesian graph-
ical model. Our goal is to develop a general approach applicable to a wide
range of genetic association problems, including GWAS and fine-mapping
studies, and, more specifically, be able to: (1) Assess the joint effect of mul-
tiple SNPs that can be linked or unlinked and interact or not; (2) Explore
the multi-SNP model space efficiently using the Mode Oriented Stochastic
Search (MOSS) algorithm and determine the best models. We illustrate our
new methodology with an application to the CGEM breast cancer GWAS
data. Our algorithm selected several SNPs embedded in multi-locus models
with high posterior probabilities. Most of the SNPs selected have a biological
relevance. Interestingly, several of them have never been detected in standard
single-SNP analyses. Finally, our approach has been implemented in the open
source R package genMOSS.

1. Introduction. The emergence of high-throughput technologies for SNP
genotyping and their application to large scale genome-wide association studies
(GWASs) have generated promises that the genetic basis of many common hu-
man diseases could be elucidated [Hirschhorn and Daly (2005), Kingsmore et al.
(2008), Kruglyak (2008), McCarthy and Hirschhorn (2008), Risch (2000), Risch
and Merikangas (1996)]. These GWASs have identified hundreds of genetic vari-
ants implicated in various human diseases and complex traits, providing valuable
insights into their genetic mechanisms [Hindorff et al. (2009b, 2009a)]. The ratio-
nale underlying GWAS is that common genetic variants (i.e., present in more than
1–5% of the population) can explain most of the attributable risk of common hu-
man diseases, also referred to as the “common disease, common variant (CDCV)
hypothesis”. The present paradigm for GWAS involves the collection of more than
1000 cases and 1000 controls, and an exhaustive search among >500K SNPs of
those associated with the disease outcome using simple univariate test statistics.
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Despite its relative merits at identifying new genetic variants, GWASs have also
given rise to criticisms. For example, the SNPs selected through univariate statis-
tics generally have a low predictive value, explain a fairly modest proportion of
the genetic variability of the disease and maybe, more importantly, do not usually
provide much understanding of the underlying biological process.

A few alternative approaches have been proposed to the usual GWAS paradigm.
After a pioneer paper demonstrating the feasibility of the exhaustive testing of two
genetic markers [Marchini, Donnelly and Cardon (2005)], several papers empha-
sized the power of multi-SNP approaches [Schwartz, Ziegler and Konig (2008),
Wu and Zhao (2009), Zhang and Liu (2007)]. Two general classes of methods
emerged: penalized regression and Bayesian selection methods. The most popu-
lar penalized regression approach, the LASSO [Tibshirani (1996)], has been fur-
ther extended to GWAS analysis [Hoggart et al. (2008)]. The Bayesian framework
offers various competing approaches for multi-SNP analysis, where usually a re-
gression model for the response is defined as well as a prior for the regression
coefficients associated with the SNPs. In order to deal with the high-dimensional
model space, efficient stochastic search algorithms such as MCMC are needed
to perform the model selection. While these approaches provide a step forward
compared to univariate statistics, they also have limitations. They are sometimes
restricted to low-dimensional models with only two SNPs [Zhang and Liu (2007)],
might only consider those SNPs that are in linkage disequilibrium [Verzilli, Stal-
lard and Whittaker (2006)], or could be more specifically designed for continuous
outcomes [Guan and Stephens (2011)]. They also often require a very “aggressive”
first step selection to reduce the model space [Wilson et al. (2010)]. Our goal here
is to propose a more general framework for multi-SNP analysis of GWAS data
based on Bayesian graphical models.

The ability to model complex dependency structures makes graphical models
an attractive approach for GWAS analysis. The application of graphical models
to discrete genetic data such as SNPs remains relatively rare. Among the few ex-
amples, Thomas and Camp (2004) proposed the use of graphical models to study
the patterns of allelic association between genetic markers in a small chromoso-
mal region. Their work focused on decomposable graphical models in the fre-
quentist framework and used simulated annealing for model fitting. A more re-
cent approach is based on a fully Bayesian approach where prior knowledge about
linkage disequilibrium around each marker can be incorporated [Verzilli, Stallard
and Whittaker (2006)]. The model fitting used an MCMC algorithm that yields
samples from the posterior probability and where inference is based on model av-
eraging. They used decomposable graphical models where their clique definition
was restricted to SNPs physically close to each other, ignoring the complex nature
of association patterns in GWAS. Additional work on the application of proba-
bilistic graphical models to genetic associations was also reported using either the
Bayesian [Ungvari et al. (2012), Xing et al. (2011)] or the frequentist framework
[Han, Park and Chen (2010), Jiang, Barmada and Visweswaran (2010)].
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Our goal in this paper is to develop a general approach, applicable to a wide
range of genetic association problems and, more specifically, be able to: (1) Assess
the joint effect of multiple SNPs that can be linked or unlinked and can interact or
not; (2) Explore the model space efficiently using the Mode Oriented Stochastic
Search (MOSS) algorithm [Dobra and Massam (2010)], and determine the best
multi-SNPs models. We illustrate the interest of our new methodology through an
application to the CGEM breast cancer GWAS data.

2. Discrete Bayesian graphical models for modeling the joint effect of SNPs
in GWAS.

2.1. Overview of the approach. In GWAS, we are interested in modeling the
response variable (i.e., case control status) as a function of the SNP variables. Let
X = {X1, . . . ,Xr} be a vector of random discrete variables with Y = Xr , r ∈ V

be a response variable and XA, A ⊂ V \ {r} be the set of SNPs. A typical GWAS
dataset can include several thousands of SNPs with the aim of finding a small
subset associated with the case–control status. Our goal is therefore to search for
sets A such that the probability of the regression [Y |XA] is highest. This probabil-
ity can be expressed as the ratio between the marginal likelihood of the saturated
model for (n)A∪{r} and for (n)A [Dobra and Massam (2010)], where (n)A∪{r} and
(n)A are cross-classifications involving XA∪{r} and XA, respectively:

P(Y |XA) = P(Y,XA)

P (XA)
.(1)

Because of the complex dependence structure among the SNPs in a GWAS, the
marginal likelihood of the models is expressed using graphical model methodology
and the search for the best regression models in this high-dimensional setting is
conducted using the mode oriented stochastic search (MOSS) algorithm [Dobra
and Massam (2010)] (see Section 3).

2.2. Graphical models. In this paper, we assume that the variables Xi, i =
1, . . . , r , that include the SNPs and case–control status, take a finite number of
values. Practically, the case–control status is binary with values 0 (controls) and 1
(cases), whereas the SNP variables can take up to three values. For ease of nota-
tion, we recall the theory below for binary variables only. The reader is referred to
Massam, Liu and Dobra (2009) for general notation. We consider a fixed number
N of individuals that we classify in a contingency table according to these r crite-
ria. Let E denote the collection of all nonempty subsets of V and E0 the collection
of possible subsets of V including ∅. The elements F in E0 are in 1–1 correspon-
dence with the cells in the contingency table and we can use pF to denote the cell
probability

pF = P(Xv = 1, v ∈ F,Xv = 0, v /∈ F),(2)
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that is, the probability that, for a given individual, the variables Xv, v ∈ F are all
equal to 1, while the variables Xv, v ∈ V \ F are all equal to 0.

Since N is fixed, the cell counts nF ,F ∈ E0 follow a multinomial distribution
with the well-known density function

f
(
(n),p

) =
(

N

(n)

)
p

N−∑
F∈E nF

∅

∏
F∈E

p
nF

F ,(3)

where the parameters are the cell probabilities pF ,F ∈ E0.
An alternative representation of the multinomial distribution is to write it in a

natural exponential family form using loglinear parameters instead of cell proba-
bilities. We use the following loglinear parameters:

θE = log
∏

F⊆E,F∈E0

p
(−1)|E\F |
F with θ∅ = logp∅,(4)

where θE can be interpreted as the generalized log odds ratio.
Using the Moebius inversion lemma, we can show that (4) is equivalent to

logpE = ∑
F⊆E,F∈E0

θF with logp∅ = θ∅.(5)

After the change of variable (nF ,F ∈ E) �→ (yF ,F ∈ E), where

yF = ∑
D⊇F,D∈E0

nD(6)

and y∅ = N are the marginal F -cell counts and total counts, respectively, the
multinomial density for (n) = (nF ,F ∈ E0) becomes the following density for
y = (yF ,F ∈ E):

f (y; θ) = exp
(∑

E∈E
θEyE − N log

(
1 + ∑

E∈E
exp

( ∑
D⊆E

θD

)))
.(7)

Let us now consider the case of interest in this paper, that is, the case where the
model for X is a graphical model, which we will now define.

An undirected graph G is a pair (V ,E), where V = {1,2, . . . , r} is a finite set
of vertices, and E, the set of edges, is a subset of the set V × V of unordered
pairs of distinct vertices {i, j}, i ∈ V, j ∈ V . Let X = {X1, . . . ,Xr} be a vector
of random variables. Each variable Xi is represented by the vertex i of G. For
A ⊆ V , XA indicates the collection of random variables {Xi, i ∈ A}. In GWAS,
the vertices represent the disease status, the SNPs and occasionally confounding
variables (e.g., that control for population stratification).

For G given, a probability distribution for X is said to be Markov with respect
to G if, for any two nonadjacent vertices i, j ∈ V , Xi is independent of Xj given
XV \{i,j}. Therefore, no edge between two variables means conditional indepen-
dence between these variables given all the other variables, while an edge between
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two variables is an indication of association between these variables. A graphical
model is a family of probability distributions for X Markov with respect to a given
graph G. A discrete graphical model is a graphical model where each random
variable Xi, i = 1, . . . , r , is discrete.

For a given model with underlying graph G, let

D = {D ∈ E |D is complete in G}(8)

be the clique set of G. For E and F in E0, we will use the notation

E ⊆G F

to mean that E ⊆ F and E ∈ D. Following Massam, Liu and Dobra (2009), it can
be shown that for a graphical model Markov with respect to the graph G

θE = 0, E /∈D.(9)

Then (5) and (7) become, respectively,

logpE = ∑
F⊆GE,F∈E0

θF ,(10)

f (y; θ) = exp
( ∑

E∈D
θEyE − N log

(
1 + ∑

E∈E
exp

( ∑
D⊆GE

θD

)))
.(11)

From (10), it is immediate to derive the conditional distribution of Xv given
XV \{v}, v ∈ V and to show that P(Xv = 1|XV \{v}) is a function of (θD,D ∈ D, v ∈
D) only and, therefore, in the logistic regression of Xr where Xr represents the
disease status. If the parameter θ{r,u} = 0, u ∈ V \ {r}, we can conclude that Xr is
conditionally independent of Xu given the other variables and that therefore there
is no edge between r and u in G.

Thus, we see that graphical models together with MOSS allow us to select the
best SNPs jointly associated with the response variable, including marginal and
interaction SNP effects (see Section 3).

2.3. Bayesian graphical model (BGM). Let us assume we perform a model
search in the family of models M1, . . . ,Mk . We write the models as

Mj = {
p(x|ϑ),ϑ ∈ �j

}
, j = 1, . . . , k,(12)

where ϑ is a parameter in the parameter set �j and p(x|ϑ) is a probability density
function. In the particular case where the model is a graphical model, the parameter
space is defined by the underlying graph G and we identify models Mj with their
underlying graph Gj .

In a Bayesian framework we assume a prior probability P(Mj ), j = 1, . . . , k,
on the set of models (M1, . . . ,Mk) and a prior probability on the parameters ϑ ,
and want to derive the posterior model probabilities P(Mj |x) for each one of the
models M1, . . . ,Mk , that is, the conditional distribution of Mj given the data.
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The Bayesian solution is to choose the model with the highest posterior proba-
bility. According to Bayes’ theorem, the posterior probability for Mj is

P(Mj |x) = P(x|Mj )P (Mj )∑k
i=1 P(x|Mi )P (Mi )

.(13)

The term
∑k

i=1 P(x|Mi )P (Mi ) in (13) is a constant. Therefore, we can write

P(Mj |x) ∝ P(x|Mj )︸ ︷︷ ︸
(the Marginal Likelihood)

P (Mj )︸ ︷︷ ︸
(the Model Prior)

.(14)

In our problem, p(x|ϑ) is given by (11) and, therefore, ϑ = θ = (θD,D ∈ D)

and, since (11) is a member of a natural exponential family, the conjugate priors
for θ have density of the form

πG(θ |s, α)
(15)

= IG(s,α)−1 exp
{ ∑

D∈D
θDsD − α log

(
1 + ∑

E∈E
exp

( ∑
D⊆GE

θD

))}
,

where s = (sD,D ∈ D) ∈ �|D| and α ∈ � are hyperparameters and IG(s,α) is the
normalizing constant.

2.4. Specification of the prior. A method to construct hyperparameters of a
proper prior πD(θD|(s, α)) is to start with a fictive prior contingency table with all
cell counts νF positive, not necessarily integers. With α denoting the total count
in the given fictive contingency table, and γD denoting the marginal cell counts,
we can take as hyperparameters α = N and sD = γD,D ∈ D. Lack of prior infor-
mation can be expressed through what is sometimes called a flat prior by taking
all the fictive cell entries to be equal and equal to α

|I| . We used this latter prior
specification in our simulations and real data application.

2.5. Posterior of a model. The posterior of G is proportional to the ratio of
the two normalizing constants:

P(G | Y) ∝ IG(y + s, n + α)/IG(s,α).(16)

For G decomposable, the prior π(θ |α, s) is identical to the hyper Dirichlet [see
Massam, Liu and Dobra (2009)]. It therefore follows that the normalizing constants
IG can be computed analytically when the graph G is decomposable. When G is
nondecomposable, IG needs to be computed numerically.

3. SNP selection with the MOSS algorithm. The mode oriented stochastic
search (MOSS) algorithm is a two-stage Bayesian variable selection procedure that
aims at identifying combinations of SNPs (rather than single SNPs) that are asso-
ciated with a response variable. The first stage of MOSS consists of identifying the
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best saturated graphical models including the response variable and a small subset
of SNPs (typically between 2 to 6 SNPs in a GWAS). The second stage is used
to search the space of log-linear models to identify the most relevant interactions
among the variables in each of the top models. By using the generalized hyper
Dirichlet prior of Massam, Liu and Dobra (2009), the computations in both steps
is done efficiently. The principle of MOSS is the following.

Let M denote a set of possible regression models. We associate with each can-
didate model m ∈ M a neighborhood nbd(m) ⊂ M. Any two models m,m′ ∈ M
are connected through a path m = m1,m2, . . . ,ml = m′ such that mj ∈ nbd(mj−1)

for j = 2, . . . , l. The neighborhood of m = [Y |XA] is obtained by addition moves,
deletion moves and replacement moves. For details see Edwards and Havránek
(1985) and Dellaportas and Forster (1999). In an addition move, we include in A

any variable in V \A, one at a time. In a deletion move, we delete any variable that
belongs to A, one at a time. For a replacement move, we replace any one variable
in A with any one variable in V \ A. The first stage of the MOSS procedure is as
follows:

We make use of a current list of regressions M that is updated during the search.
Define

M(c) =
{
m ∈ M : P(m) ≥ c max

m′∈M
P

(
m′)},

where c ∈ (0,1). A regression m ∈ M is called explored if all of its neighbors
m′ ∈ nbd(m) have been visited.

1. Initialize a starting list S of regressions. For each m ∈ S, calculate and record
its marginal likelihood P(m). Mark m as unexplored.

2. Let L be the set of unexplored regressions in S. Sample an m ∈ L according
to probabilities proportional with P(m) normalized within L. Mark m as unex-
plored.

3. For each m′ ∈ nbd(m), check if m′ is currently in S. If it is not, evaluate and
record its marginal likelihood P(m). Eliminate the regressions S \ S(c′) for
some prechosen value 0 < c′ < c.

4. With probability q , eliminate from S the regressions in S \ S(c).
5. If all the regressions in S are explored, STOP. Otherwise return to step 2.

The role of the parameters c, c′ and q is to limit the number of regressions
that need to be visited to a manageable number. In our simulations and real data
application, the values c, c′ and q were set to control the false discovery rate (FDR)
at a given level.

At the end of the first stage, we have a set of top regressions [Y |XA], each
involving a small number of SNPs. At this point, we relax the assumption that the
saturated model holds for all the variables V . In the second stage, we search the
space of log-linear models [Y,XA] to identify the most relevant interactions among
the SNPs and between the SNPs and the response variable in each regression. We
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do a separate search for each regression identified in the first stage, looking for the
log-linear model m = [Y,XA] with the highest marginal likelihood. To do this, we
once again begin by defining the concept of the neighborhood of a model and, for
a given set of variables, the algorithm tries to find m that maximizes P(m) in an
analogous way to the algorithm described above.

At the end of the second stage of MOSS, we also add a pruning procedure where
any of the variables XA that are not interacting with the response variable Y in the
log-linear model are removed from the list of SNPs selected. In this second stage,
we use a small α (i.e., α = 0.01) to favor sparser models to be selected [Letac
and Massam (2012)] and found this strategy to perform well in all our simulation
scenarios.

4. Risk estimation and prediction based on Bayesian model averaging.
Once MOSS has identified a set of regression models S for some c ∈ (0,1), one
can estimate the risk associated with the selected SNPs and perform risk predic-
tion. This is done using Bayesian Model Averaging. Let us consider a regression
model mj ∈ S(c), which is [Y |XAj

] with Aj ⊂ V \ {r} and j ∈ B . Here B is a set
of indices for the collection of models over which we are averaging. The regres-
sion model of Y on the selected variables XAj

(i.e., SNPs) is a weighted average of
the regression models in S , where the weights represent the posterior probability
of each regression model [see, e.g., Yeung, Bumgarner and Raftery (2005)]:

Pr
(
Y = y|(n)

) = ∑
j∈B

Pr
(
Y = y|(n)Aj

) · Pr
(
mj |(n)

)
.(17)

Since we assumed that all models are a priori equally likely, the posterior proba-
bility of each regression is equal to its marginal likelihood normalized over all the
models in S :

Pr
(
mj |(n)

) = Pr(r|Aj)∑
l∈B Pr(r|Al)

.

It is shown in Madigan and Raftery (1994) that the weighted average of regres-
sions in (17) has a better predictive performance than any individual model in S .
The relevance of each predictor Xj can be quantified by its posterior inclusion
probability defined as the sum of the posterior probabilities of all the models that
include Xj .

To estimate the parameters of a given graphical model, one can use the algo-
rithm described in Dobra and Massam (2010), called the Bayesian iterative pro-
portional fitting algorithm. Alternatively, we can estimate parameters at the mode
of the posterior distribution, as implemented in our R package genMOSS.

5. Simulation study.

5.1. Simulation scenarios. To assess the performance of this novel BGM, we
simulated datasets that mimic real GWAS data. In Scenarios 1 to 3, we simulated
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GWAS data according to the breast cancer study analyzed in Section 7, which in-
cludes 1145 cases and 1142 controls. This represents a typical GWAS problem
where the SNPs are tag SNPs with low linkage disequilibrium (LD). In addition,
we also simulated 53K SNPs taken from the original breast cancer GWAS in Sec-
tion 7 and assumed them to be independent from the disease status. This represents
approximately 10% of the total number of SNPs available for this study. Since
these SNPs were extracted from a real SNP array, they have a realistic genome-
wide correlation structure. Scenarios 4 and 5 correspond to a fine mapping prob-
lem where the SNPs are in high LD and are extracted from a small chromosomal
region.

In our Scenario 1, we consider a 5-SNP main effects model with an interac-
tion between SNP2 and SNP3. For each individual, the case–control status was
generated from a Bernoulli trial with probability p of being a case given by

logit(p) = β0 + ∑
i=1,...,5

βiSNPi + β23SNP2 × SNP3.

We chose the β’s to reflect the range of SNP effects found in our real GWAS data
(Section 7), that is, β1 = 0.405, β2 = 0.916, β3 = 0.182, β4 = −0.405, β5 = 1.386
and β23 = β2 × β3, corresponding to the odds ratio for the genetic association of
1.5, 3.0, 1.2, 0.67, 5.0, 1.92, respectively. The parameter β0 was determined to get
1145 cases and 1142 controls as in our real dataset.

For each SNP, we generated two genotypes with probability fi,1 − fi, i =
1, . . . ,5 from a Bernoulli trial with fi equal to 0.10, 0.10, 0.36, 0.36 and 0.02
for the five SNPs. These genotype frequencies correspond to a minor allele fre-
quency (MAF) of 0.05, 0.05, 0.2, 0.2 and 0.025, respectively, under a dominant
genetic model, and thus represent a wide spectrum of uncommon, common and
rare SNPs.

Scenario 2 corresponds to a SNP–SNP interaction model with three 2-way in-
teractions without main effects. For each individual, the case–control status was
generated from a Bernoulli trial with probability p of being a case given by

logit(p) = β0 + β23SNP2 × SNP3 + β34SNP3 × SNP4 + β45SNP4 × SNP5.

The MAF of the SNPs was 0.25, 0.25, 0.36, 0.36 and 0.15, respectively, for the
five SNPs, and the regression coefficients for the interactions were β23 = 1.099,
β34 = 0.916 and β45 = 1.609.

The analyses were performed with main effects models only under this scenario
since some of the methods used in our simulations cannot model specifically the
interactions.

Scenario 3 corresponds to a fine-mapping problem, where a causal SNP (SNP2)
is associated with a disease status Y and where SNP2 is in linkage disequilibrium
(LD) with two other SNPs, SNP1 and SNP3. These two other SNPs are condition-
ally independent of the disease status given SNP2, so that only one causal locus in
the region is observed. The 3 SNPs constitute a cluster of SNPs and are denoted
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X1, X2 and X3 for simplicity. The distribution of the four discrete variables in the
graph was generated from a multinomial distribution and can be represented by a
4-way contingency table with joint cell probabilities given by the log-linear model

logPijkl = θY
i + θ

X1
j + θ

X2
k + θ

X3
l + θ

YX2
ik + θ

X1X2
jk + θ

X2X3
kl ,

where the subscripts i, j, k, l ∈ {0,1} index the levels of the variables Y , X1,
X2 and X3, respectively. We chose as parameters θY

1 = 0, θ
X1
1 = θ

X2
1 = θ

X3
l =

ln(0.2) = −1.6, θ
YX2
11 = 0.717, θ

X1X2
11 = θ

X2X3
11 = 1.792. All the other parameters

were set to 0. The association among SNPs has a level of LD of Q = 0.71 and
D′ close to 0.55 [Devlin and Risch (1995)], which is a moderate/strong level, as
generally observed for the SNPs in the same haplotype block. The MAF was 0.20
for all three SNPs and we assumed a dominant model for SNP2.

Scenarios 4 and 5: After a GWAS, the main loci discovered are often followed
up by a fine-mapping study with the goal to refine the location of the causal ge-
netic variants. These two scenarios correspond to a fine-mapping problem and are
motivated by a real data analysis on prostate cancer (PCa). We used real data from
an ongoing study focusing on SNPs located in the Kallikrein (KLK) region on
chromosome 19 and we simulated the fine-mapping data with a similar LD struc-
ture. This study included 772 cases and 1052 controls and the KLK region was
originally composed of 308 SNPs (Scenario 4). To assess the sensitivity of the
multiple-SNP models to the SNP density in the region, we also imputed an ad-
ditional 590 SNPs from the 1000 genomes reference data to reach a total of 898
SNPs (Scenario 5). The KLK family consists of 15 genes clustered in a region
that spans about 261,558 bp on chromosome 19q13.3-4 and displays significant
homology to each other [Diamandis and Youssef (2002)]. PSA is a member of
the KLK family, a very important gene family in PCa diagnosis. The KLK region
was partitioned into 51 haplotype blocks based on the Haploview software [Barrett
et al. (2005)]. We assumed 3 causal SNPs located in the haplotype blocks 7, 19 and
49, associated with the outcome with an OR of 2.0, all with a dominant effect and
a MAF of 19.2%, 15.6% and 18.6%, respectively. The noncausal SNPs (303 SNPs
and 896 SNPs in Scenarios 4 and 5, respectively) were taken from the original data
and analyzed with 3 genotype categories. Their MAFs were all >2%.

5.2. Method comparison. For our method comparison, we used the penalized
regression method LASSO [Tibshirani (1996)]; two Bayesian approaches, BVRS
[Guan and Stephens (2011)] and BEAM3 [Zhang (2012)]; and a simple test statis-
tic based on an χ2 statistic with either Bonferonni or FDR correction for multiple
testing and applied all these methods to our simulated datasets.

For LASSO, we used the HyperLASSO formulation proposed for GWAS data
by Hoggart et al. (2008), which is based on shrinkage priors. Each regression co-
efficient is assigned an independent shrinkage prior with a density function that is
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sharply peaked at zero. The prior density function can be defined either as a dou-
ble exponential (DE) or a normal exponential gamma (NEG) distribution. Param-
eter estimates are obtained by maximizing the posterior density p(β|X,y) over β ,
where X is the normalized genotype data and y the response variable (i.e., the
case–control status). Taking logarithms in Bayes’ theorem, the problem can be
thought of as maximizing the penalized log-likelihood function:

logp(β|y,X) = L(β) − f (β) + const,

where L is the log-likelihood for the logistic regression model and f is the log-
prior density with a minus sign to allow f to be interpreted as a penalty function.
With the DE prior, the maximization of the penalized log-likelihood is equivalent
to the LASSO procedure. An SNP j is included in the final regression whenever∣∣L′(βj = 0)

∣∣ > f ′(βj = 0+)
.

We used the NEG distribution prior in our simulations. To control the FDR at a
given level, we changed the hyperparameters of the prior NEG distribution.

The BVSR approach is based on a linear multi-SNP regression model and de-
fines some normal priors for the regression coefficients associated with the SNPs
as well as for the probability of each regression coefficient to be zero in the model,
which controls the sparsity of the model. An important feature of this approach
is to have the normal prior distribution for the regression coefficients that depend
on a parameter that controls the proportion of genetic variability explained (PVE)
by the selected SNPs (which itself is a function of the sparsity parameter). This
prevents the risk that more complex models explained substantially higher PVE.
The induced prior for PVE given the sparsity parameter is a “flat” prior in the
range (0,1). BVSR was initially developed for continuous outcomes, but was then
extended to binary responses using a probit link function. The inference is based
on MCMC and models with the highest posterior PVE are selected. In our sim-
ulations, we allowed the model size for BVSR to vary between 1 and 5 and the
hyperparameters were chosen so that the control of FDR was similar to that of the
other approaches whenever possible.

BEAM3 is a Bayesian graphical method recently developed for large-scale as-
sociation mapping [Zhang (2012)]. BEAM3 can simultaneously detect single-SNP
and SNP–SNP interactions in genetic association studies. It was described as a
powerful method for analyzing a large number of SNPs even in the context where
the SNPs are in strong LD [Zhang (2012)]. The rationale behind BEAM3 is to
define two sets of SNPs, that is, those associated with the response and those not
associated. The SNPs within these two sets are embedded into two distinct cliques
of a graph that account for SNP dependency and for which a joint probability distri-
bution is specified. The method also requires to define a prior inclusion probability
for the SNPs to be included in the associated and nonassociated sets as well as a
prior distribution for the clique partition and clique interactions for the associated
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set. The inference is done with MCMC and can be summarized through a posterior
probability of inclusion for the associated SNPs.

The MOSS algorithm is described above. We fitted 3-SNP models in all simula-
tion scenarios with the following settings: α = 1, c = 0.005, c′ = 0.0005, q = 0.1,
replicates = 10 in the first stage of MOSS and α = 0.01, c = 0.005, c′ = 0.0005,
q = 0.1 in the second stage. These settings gave us the best performance of MOSS
in all the simulation scenarios.

Univariate test statistics: We also calculated an χ2 statistic for testing single
SNP associations. Since the SNPs had 2 genotypes in simulation Scenarios 1 to 3
and 3 genotypes in Scenarios 4 and 5, the number of degrees of freedom for the
χ2 statistics was respectively 1 and 2 in these situations. A correction for multiple
testing was performed using either a Bonferroni or an FDR adjustment.

5.3. Control of false and true discovery rates. For our different simulation
scenarios, we estimated the False Discovery Rate (FDR) [see Benjamini and
Hochberg (1995)] by the proportion of noncausal SNPs among all the SNPs dis-
covered by a particular approach. The main effect FDR (FDRm) for a SNP j is
defined for a particular method as

FDRm =
∑

k=1···Nd
I (SNP j is discovered in dataset k ∩ SNP j /∈ causal SNPs)∑

k=1···Nd
I (SNP j is discovered in dataset k)

,

where Nd is the number of simulated datasets and I (·) is the indicator function.
In Scenarios 4 and 5 of the simulations, we also computed the cluster FDR

(FDRc) where the cluster C corresponds to the haplotype block and the lenient
cluster FDR (FDRlc) defined as

FDRc =
∑

k=1···Nd
I (SNP j is discovered in dataset k ∩ SNP j /∈ cluster C)∑

k=1···Nd
I (SNP j is discovered in dataset k)

and

FDRlc = ∑
k=1···Nd

I
(
SNP j is discovered in dataset

k ∩ SNP j /∈ clusters {C − 1,C,C + 1})
/( ∑

k=1···Nd

I (SNP j is discovered in dataset k)

)
.

We also computed the true discovery rate (TDR) for each individual SNP j

associated with the outcome as

TDR =
∑

k=1···Nd
I (SNP j is discovered in dataset k)

Nd

and an overall TDR as

TDRall =
∑

k=1···Nd

∑
j=1···Ns

I (SNP j is discovered in dataset k)

Nd × Ns

,
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where Ns is the number of causal SNPs associated with the outcome.
In Scenarios 1 and 2 of our simulations, we computed a TDR for each specific

pair of SNPs (j, j ′) corresponding to the interaction term in our simulated model
as

TDRpair =
∑

k=1···Nd
I (SNPs j and j ′ are discovered in dataset k)

Nd

.

In Scenarios 4 and 5, we also computed a TDR for the cluster (haplotype block)
and a lenient cluster TDR defined as

TDRc = ∑
k=1···Nd

∑
j=1···Ns

I (SNP j is discovered in dataset

k ∩ SNP j ∈ cluster C )
/

(Nd × Ns)

and

TDRlc = ∑
k=1···Nd

∑
j=1···Ns

I
(
SNP j is discovered in dataset

k ∩ SNP j ∈ cluster {C − 1,C,C + 1})/(Nd × Ns).

5.4. Control of FDR. We tried to control FDRm at the same level with all
the methods compared to get a fair comparison of the TDR statistics. This was
achieved by varying the tuning parameter of the NEG distribution with the Hy-
perLASSO and the SNP inclusion probability with the three Bayesian approaches
MOSS, BVSR and BEAM3. However, the control of FDRm could not always be
achieved for all the methods in certain situations. Along with the FDR and TDR
statistics, we also computed the rank of each SNP based on an χ2 statistic with 1
df (Scenarios 1 to 3) or 2 df ’s (Scenarios 4 and 5).

6. Simulation results.

6.1. GWAS simulation results (Scenarios 1 to 3). FDR and TDR results are
presented in Table 1 and in Supplement B [Briollais et al. (2016b)].

In Scenario 1, all methods control FDRm at a level <20% except BEAM3 for
which FDRm is much higher (30%). Under very similar simulation scenarios, pre-
vious results reported FDR levels very close to ours [Hoggart et al. (2008), He and
Lin (2011)]. TDR estimates vary substantially across methods, with the best results
obtained with BVSR (62.2%) and MOSS (56.8%). The pairwise SNP effects are
better detected by BVSR and MOSS with TDRpair of 71% and 30%, respectively.
The AUC values are all close to each other, from 58.0 to 61.1%. In Scenario 2, all
methods control FDRm at a very low level (i.e., <6.1%). MOSS yields the best
TDR results with 73.7%, while BVSR performs the worst (TDR = 18.5%). The
AUCs vary between 53.2 to 59.8%. MOSS also performs very well to detect pair-
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TABLE 1
Simulation results: False Discovery Rate (FDR) and True

Discovery Rate (TDR) (in %) in Simulation Scenarios 1 to 3

Scenario Method FDR∗ TDR† AUC

1 MOSS 15.7 56.8 61.2
1 LASSO 19.4 29.0 58.0
1 BVSR 16.8 62.2 59.6
1 BEAM3 30.0 31.2 58.3

1 BONFmain‡ 1.0 38.0 58.4

1 FDRmain§ 15.8 54.4 61.1

2 MOSS 5.7 73.7 59.8
2 LASSO 2.5 39.2 57.7
2 BVSR 5.1 18.5 53.2
2 BEAM3 5.6 46.2 56.1
2 BONFmain 1.8 33.2 57.8
2 FDRmain 6.1 45.7 58.3

3 MOSS 1.0 100.0 56.6
3 LASSO 47.0 36.0 53.9
3 BVSR 28.1 94.0 57.1
3 BEAM3 16.7 100.0 56.6
3 BONFmain 23.6 100.0 56.7
3 FDRmain 30.5 100.0 57.2

∗FDRm: FDR for SNP main effects.
†TDRm: TDR for SNP main effects; TDRpair: TDR for a
pair of SNPs; TDRall: TDR for SNP main effects over all the
SNPs.
‡TDR corresponding to a χ2(1) statistic and Bonferroni cor-
rected p-value.
§TDR corresponding to a χ2(1) statistic and FDR corrected
p-value.

wise SNP interactions. Scenario 3 is the most complex since the goal is to find one
single causal variant among a group of 3 SNPs in strong linkage disequilibrium.
This complex situation is reflected by an overall higher level of FDRm compared to
Scenarios 1 and 2 and a larger difference across methods (i.e., with FDRm varying
from 1.0% to 47.0% ). In that situation, BVSR and LASSO were the only methods
to not find the causal variant in all the simulated datasets. MOSS has the lowest
FDRm in that scenario, that is, 1%, while all the other methods have much larger
FDRm statistics (varying from 16.7% to 47.0%). In all three scenarios, MOSS has
better performance than the univariate chi-square statistic with either Bonferroni
or FDR adjustment for multiple testing.
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TABLE 2
Simulation results: False Discovery Rate (FDR) and True Discovery Rate (TDR) (in %) in

Simulation Scenarios 4 and 5

False Discovery Rate True Discovery Rate

FDRm
∗ FDRc

∗ FDRlc
∗ TDRm

† TDRc
† TDRlc

† AUC

4 MOSS 10.0 5.8 3.6 96.3 97.0 98.3 68.5
4 LASSO 18.0 13.4 10.9 89.0 90.3 90.7 68.5
4 BVSR 28.8 23.4 17.8 87.0 87.3 87.7 67.8
4 BEAM3 46.2 19.6 15.8 59.7 83.3 86.0 67.9
4 BONFmain 92.2 79.5 57.0 100.0 100.0 100.0 70.7
4 FDRmain 73.6 61.7 48.5 86.6 86.6 86.6 68.3

5 MOSS 16.1 4.9 3.6 93.7 96.0 96.7 68.6
5 LASSO 18.4 13.4 10.3 93.0 94.7 94.7 68.9
5 BVSR 14.9 12.0 6.2 85.3 85.3 85.6 67.5
5 BEAM3 20.9 11.8 10.7 53.0 54.7 55.0 65.1

5 BONFmain‡ 91.3 77.8 57.2 100.0 100.0 100.0 70.5

5 FDRmain§ 38.7 9.1 4.5 6.3 6.7 6.7 52.5

∗FDRm: FDR for SNP main effects; FDRc: FDR for the cluster of SNPs; FDRlc: FDR for the lenient
cluster of SNPs.
†TDRall: TDR for SNP main effects; TDRc: TDR for the cluster of SNPs; TDRlc: TDR for the
lenient cluster of SNPs.
‡Bonferroni corrected p-value based on a χ2(2) statistic for the main effects.
§FDR corrected p-value based on a χ2(2) statistic for the main effects.

6.2. Fine-mapping simulations (Scenarios 4 and 5). FDR and TDR results are
presented in Table 2.

In Scenario 4, it was not possible to control FDRm at a similar level with all
the different methods. The best results are obtained with MOSS both in terms
of FDR (all values below 10.0%) and TDR (>96.3%). The LASSO also per-
forms well under this scenario but with inflated FDR values compared to MOSS
(FDRm = 18.0%) and TDR values >89.0%. The single SNP analyses BONFmain
and FDRmain gave very poor results. The AUCs vary between 67.8% (with BVSR)
and 70.7% (with BONFmain). In Scenario 5, all the multi-SNP methods control
FDRm at a level <20.9%, while the two single SNP analyses showed huge in-
flation of this statistic: BONFmain (91.3%) and FDRmain (38.7%). MOSS has
the highest TDR statistics (based on TDRm, TDRc and TDRlc) and reaches levels
>93.7%. LASSO also has levels of TDR >93%, but to the price of the increased
level of FDRc and FDRlc. The AUC values vary from 52.5% (with FDRmain) to
70.5% (with BONFmain). Additional simulation results are given in Supplement C
[Briollais et al. (2016c)].

6.3. Computation time. In simulation Scenarios 1 to 3, the median compu-
tation time to fit one simulated dataset was about 6 hours for a 2-SNPs model
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and 17.9 hours for a 3-SNPs model with MOSS, 13 mins with the LASSO and
5–6 mins with BEAM3 and BVSR. For the simulation Scenarios 4 and 5, the com-
putation time was about 4–5 mins for a 2-SNPs model and about 6 mins for a
3-SNPs model with MOSS, 1 min with the LASSO, about 10 secs with BEAM3
and 5 mins with BVSR. The longer computation time required by MOSS could be
explained by the extensive model search performed by this algorithm compared to
the other methods.

6.4. Sensitivity to prior specification with MOSS. We noticed that the perfor-
mance of MOSS in terms of FDR and TDR remain unchanged for various spec-
ifications of the priors (results not shown). In particular, defining the prior cell
counts to be all 1 or proportional to the sample size of the observed cell counts
with various possible proportions did not change our main conclusions Supple-
ment D [Briollais et al. (2016d)].

7. Analysis of the CGEM breast cancer GWAS data.

7.1. The breast cancer paradigm. In most Western populations, approxi-
mately one in ten women develop breast cancer. Epidemiological studies have
shown that women who have first-degree relatives with a history of breast cancer
have a twofold increase in risk of the disease [Collaborative Group on Hormonal
Factors in Breast Cancer (2002)]. The risk ratio increases with increasing the num-
ber of affected first-degree relatives. Twin studies have indicated that most of the
excess familial risk is due to inherited predisposition [Peto and Mack (2000)].
Particularly, BRCA1 and BRCA2 are the most important susceptibility genes con-
ferring, when mutated, high lifetime risks of breast cancer [Thompson, Easton and
Breast Cancer Linkage Consortium (2002); The Breast Cancer Linkage Consor-
tium (1999)]. Mutations in BRCA1 and BRCA2 account for about 16% of the
familial risk of breast cancer [Anglian Breast Cancer Study Group (2000)]. Muta-
tions in other genes (TP53, PTEN, STK11, CDH) are also associated with elevated
risks, but it is unlikely that mutations in these six genes account for more than
20% of the familial risk of the disease. Therefore, the remaining 80% of the famil-
ial risk remains to be explained. The search for this “missing heritability” has led
to the identification of other high-penetrant mutations in candidate genes such as
CHEK2, ATM, BRIP1 and PALB2. However, they still confer a small contribution
to the familial risk of breast cancer [Thompson and Easton (2004)]. Alternatively,
common low-penetrant alleles have been sought through GWAS. So far, only a
small number of such variants have been identified and confirmed in different pop-
ulations and they just modestly improved the performance of risk models for breast
cancer [Gail (2008), Wacholder et al. (2010)]. The bulk of breast cancer genetic
susceptibility thus remains to be determined.
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7.2. The CGEM study. The CGEM genome-wide association studies (GWAS)
for breast cancer have been completed in the Nurses’ Health Study (NHS) with
nearly 550,000 SNPs genotyped. The analysis includes 1145 individuals who de-
veloped breast cancer during the observational period and 1142 age-matched in-
dividuals who did not develop breast cancer during the same time period. Both
the genotype data and the precomputed analyses based on the genotype data were
retrieved from the following website (http://cgems.cancer.gov/). The first GWAS
study using the CGEM breast cancer data identified several SNPs within the gene
FGFR2 [Hunter et al. (2007)] and this result has been replicated in many indepen-
dent studies. A SNP close to the gene BUB3 was also very significant in the initial
study but has not been replicated yet.

7.3. Data preprocessing. Our initial dataset included 555,341 SNPs and 2287
observations (1145 affected individuals and 1142 controls). After exclusion of
SNPs with a high rate of missing genotypes (missing rate ≥10%), we had 546,540
SNPs left. For the remaining SNPs, we imputed the missing genotype values using
the program MACH [Li et al. (2010)]. Our final number of SNPs after imputa-
tion was 546,253. We assessed the presence of population stratification using the
program EIGENSTRAT [Price et al. (2006)], which is based on principal compo-
nent analysis (PCA). Using projections on the two first principal components, we
found 20 individuals (9 cases and 11 controls) who appear to be outliers and were
removed from our analysis. We also estimated the identity by state (IBS) matrices
in cases and controls separately based on all the SNPs and compared the mean
IBS values between the 2 groups using permutation testing as implemented in the
software PLINK [Purcell et al. (2007)]. Because we did not find any significant dif-
ference, no adjustment for population stratification was performed in our analysis.
We did not filter out SNPs based on either their MAF or on the Hardy–Weinberg
disequilibrium test since there was no evidence of deviation of this test in our data
[Hunter et al. (2007)].

7.4. Analyses with MOSS. We searched for regression models containing at
most 2 and 3 SNPs, but since the selection of the best SNPs was very similar un-
der these 2 models, we only present the simple 2 SNP models in Table 3. The total
number of possible 2-SNP regressions was 1.49197 × 1011. The number of mod-
els evaluated by MOSS in each of the 1000 instances was considerably smaller
and varied between 209,445 and 837,778, with a mean of 497,065. The eight re-
gressions in the resulting S(0.5) involve twelve SNPs embedded or very close to
known genes (Table 3).

MOSS selected 12 SNPs with MAF varying between 0% and 42% in the Euro-
pean population. Three SNPs have a MAF lower than 5%. In general, frequentist
approaches applied to GWAS would not be able to perform a test statistic for these
SNPs. Most of the SNPs detected by MOSS have a high rank when using the more
conventional univariate p-value criteria. The two SNPs in the gene FGFR2 were

http://cgems.cancer.gov/
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TABLE 3
SNPs with the highest posterior probability found by MOSS based on two-locus models from the breast cancer GWAS data

Location log Bayes‡ MOSS post Rank¶ Rank‖ Other related
SNP ID Chr # (in Kb) Allele1 Allele2 MAF∗ p-value† factor probability§ (p-value) (MOSS) Closest gene∗∗ genes Function††

rs3130544 6 31,167 C A 0.15 1.7 × 10−4 2.50 0.349 76 1 C6orf15 (20 kb) DPCR1, CDNA, TCF19 –
rs10510126 10 124,992 C T 0.14 2.0 × 10−6 4.50 0.281 1 2 BUB3 (80 kb) – –
rs2249938 20 60,857 A G 0.14 1.6 × 10−4 2.63 0.211 70 3 NTSR1 (0 kb) – Yes
rs2274352 10 13,742 C T 0.08 2.2 × 10−3 1.91 0.192 1214 4 FRMD4A (0 kb) PRPF18 Yes
rs722936 4 91,190 G T 0.19 9.8 × 10−4 2.19 0.178 544 5 KIAA1680 (<60 kb) – –
rs17344557 5 45,613 C T 0.14 8.8 × 10−3 0.60 0.178 4844 6 HCN1 (0 kb) – Yes
rs2427448 20 60,866 C T 0.11 3.6 × 10−4 2.28 0.138 184 7 NTSR1 (1 kb) – –
rs16910213 8 83,400 G A 0.0 NA 0.85 0.131 NA 8 HNRNPA1P4 (30 kb) – –
rs1219648 10 123,336 A G 0.42 1.2 × 10−5 4.10 0.120 4 9 FGFR2 (0 kb) – –
rs1882619 5 112,107 T C 0.07 0.79 0.88 0.083 421,682 10 APC (0 kb) SRP19, REEP5 –
rs2420946 10 123,341 C T 0.40 1.5 × 10−5 4.00 0.072 6 11 FGFR2 (0 kb) – Yes
rs6995588 8 61,167 C T 0.0 NA 0.80 0.067 NA 12 CA8 (100 kb) – –

∗Minor allele frequency (= Allele1) in the Hapmap European population.
†p-value from single marker test using logistic regression adjusted for age, region, three main population stratification principal components. NA means
that the SNP was not analyzed due to MAF = 0.
‡Bayes Factor from single marker test.
§MOSS posterior probability normalized with respect to the models retained in our list of top models (see Table 2).
¶Rank based on single-marker p-value. NA means that the SNP was not analyzed due to MAF = 0.
‖Rank based on MOSS posterior probability for each single marker.
∗∗Closest gene based on physical distance.
††Function is associated with transcription regulatory mechanisms.
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previously identified from univariate analysis of the CGEM data [Hunter et al.
(2007)] and have been replicated in multiple studies. The SNP in the gene BUB3
was also identified in the initial analysis of the CGEM data but not further repli-
cated. It is noteworthy that MOSS was able to replicate some initial findings from
the CGEM study. Additionally, several novel SNPs emerge from our analysis. An
example is the SNP rs3130544 associated with the highest posterior probability.
To our knowledge, this SNP has never been identified in previous breast cancer
GWAS. We also noticed that the SNP rs1882619 in the gene APC which has a very
low rank based on univariate analysis would have never been selected with a stan-
dard approach. This SNP has been selected by MOSS because it has a joint effect
with the SNP in the gene BUB3. While MOSS is able to detect more SNPs associ-
ated with the disease of interest in GWAS, the question remains to know whether
these results have any biological validity. In the following tables and Supplement E
[Briollais et al. (2016e)], we give more insights into the biological interpretation
of our results.

Interestingly, 4 out of 17 genes in our list have been previously implicated in
breast cancer, including BUB3, NTSR1, FGFR2 and APC. Furthermore, eight
genes have a previous relation to cancers, which suggests an enrichment of cancer
genes in the MOSS selection. The most interesting gene found by MOSS is the
gene C6orf15. This gene is located in the HLA region and does not have a very
clear function. However, it is located in a region characterized by a dense clus-
ter of genes which has been found over-expressed in many cancer types. This is
therefore a region that would be worth sequencing to find potential causal variants
associated with breast cancer or other cancers.

Table 4 displays the best eight two-SNP models identified by MOSS and their
associated marginal likelihood and Bayes Factor (BF). We first notice that the BFs
for these models are much higher (from 18.32 to 17.18) than any of the BFs for
the single SNP models in Table 3 (i.e., the maximum value was 4.50 for the SNP
rs10510126 close to gene BUB3). There is also a certain level of internal repli-
cation. Indeed, two pairs of models (1,3) and (5,7) appear almost identical since
they involve the same two genes but different pairs of SNPs. The two SNPs that
belonged to the same gene were in linkage disequilibrium (LD) in both cases. It is
therefore remarkable that MOSS was able to identify SNPs strongly in LD through
the selection of the best models. In some models, the interaction term between the
two SNPs was not included. In most instances, the best models include one strong
marginal SNP effect (log odds > 1) and a weaker one (| log odds | < 1), the sign
of the coefficient for this latter being either positive (risk effect) or negative (pro-
tective effect). In terms of allele frequency, rare, uncommom and common SNPs
correspond to a MAF of <5%, ≥5% and <10% and ≥10%, respectively. Among
the eight models detected by MOSS, four of them involve two common SNPs, two
include one common and one uncommon SNP, and the last two models entail one
rare and one common SNP. It is therefore of interest that MOSS was able to select
these latter two models since most common approaches for GWAS are limited to
common SNPs.
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TABLE 4
Best models with the highest posterior probability found by MOSS based on two-locus models from the breast cancer GWAS data

Log marginal Gene 1 Gene 2 log odds† log odds† log odds†

Model likelihood log Bayes Factor SNP1 (MAF) SNP1 SNP2 (MAF) SNP2 SNP1 SNP2 SNP1 × SNP2

1 −15,239.10 14.01 rs3130544 (0.15) C6orf15 rs2249938 (0.14) NTSR1 1.91 [0.94; 3.07] −0.40 [−0.59; −0.21] –
2 −15,239.27 13.84 rs722936 (0.36) KIAA1680 rs17344557 (0.14) HCN1 0.36 [0.17; 0.54] 1.73 [0.61; 3.16] –
3 −15,239.52 13.59 rs3130544 (0.15) C6orf15 rs2427448 (0.11) NTSR1 1.88 [0.96; 3.08] −0.38 [−0.57; −0.18] –
4 −15,239.58 13.53 rs16910213 (0.0) HNRNPA1P4 rs10510126 (0.14) BUB3 2.58 [0.96; 5.20] −0.52 [−0.73; −0.32] –
5 −15,239.66 13.45 rs1219648 (0.42) FGFR2 rs2274352 (0.08) FRMD4A 1.22 [0.85; 1.62] 0.55 [0.36; 0.73] −1.26 [−1.78; −0.81]
6 −15,240.03 13.08 rs1882619 (0.07) APC rs10510126 (0.14) BUB3 5.28 [1.45; 17.38] −0.51 [−0.72; −0.29] –
7 −15,240.17 12.94 rs2274352 (0.08) FRMD4A rs2420946 (0.40) FGFR2 1.21 [0.82; 1.61] 0.54 [0.34; 0.72] −1.25 [−1.71; −0.77]
8 −15,240.24 12.87 rs6995588 (0.0) CA8 rs10510126 (0.14) BUB3 5.35 [1.97; 15.15] −0.52 [−0.73; −0.32] –

∗Log marginal likelihood normalized across all the models retained in the selected list.
†Bayesian posterior log odds estimate and 95% interval estimate based on Bayesian Iterative Proportional Fitting.



806 L. BRIOLLAIS ET AL.

7.5. Risk prediction with Bayesian model averaging. The model prediction
was obtained by Bayesian model averaging of the eight regression models using
500 iterations of twofold cross-validation. The area under the ROC curve (AUC)
was estimated to be 63.5%. By comparison, the prediction obtained from the set of
the best seven common SNPs identified through previous GWAS on breast cancer
(based on univariate analysis) was only 57.4% [Gail (2008)]. A selection of the
best 10 SNPs combined with the major known epidemiological risk factors for
breast cancer resulted in an AUC of 61.3% [Wacholder et al. (2010)]. Therefore,
MOSS improves substantially the AUC and the addition of known epidemiological
and clinical factors (which were not available for this study) to our model could
provide even better predictive ability. MOSS yielded an AUC estimate very similar
to that given by other modeling approaches, that is, 63.7%, 64.3% and 63.6% with
BEAM3, BVSR and HyperLASSO, respectively.

7.6. The R package genMOSS. To run MOSS on the example data set simuCC
dataset, we use the function MOSS_GWAS:

R>MOSS_GWAS(alpha = 1, c = 0.1, cPrime = 0.0001, q = 0.1,
replicates = 5, maxVars = 3, data, dimens, confVars = NULL,
k = NULL)

The parameters alpha, c, cPrime and q, have been described in Section 2. Repli-
cates is the number of instances the first stage of the MOSS procedure is run. The
top regressions are culled from the results of all the replicates. The parameter max-
Vars is the maximum number of variables allowed in a regression (including the
response). Data is a data frame containing the genotype information for a set of
SNPs. It must be organized such that each row refers to a subject and each col-
umn to a SNP; the last column in the data is interpreted as the binary response.
Rows with missing values (i.e., NA’s) are ignored. Dimens is the number of possi-
ble values for each column in the dataset. In our example, this is three except for
the case–control status which is binary. The parameter k is the fold for the cross-
validation. If k is NULL, then only the first stage of MOSS is carried out. Finally,
confVars determines the number of confounding variables to be forced to be in ev-
ery regression (e.g., population stratification variables). In this example, we used
the default values for all the parameters (except for k, which is NULL by default,
and the parameters data and dimens which, of course, are based on the dataset).
A complex R code to simulate and analyze genetic data is given in Supplement A
[Briollais et al. (2016a)].

8. Summary and discussion. GWAS has emerged as one of the most spectac-
ular advances in genetic research with thousands of novel genetic variants discov-
ered and implicated in many complex human diseases [Hindorff et al. (2009b)].
Despite this success, the clinical and biological relevance of these findings still
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remains to be determined. The current challenge in GWAS goes beyond the iden-
tification of SNPs that have main effects and also entails the elucidation of more
complex genetic mechanisms including SNP by SNP interactions and LD patterns
in fine-mapping studies. The ultimate goal is to improve the biological relevance
of the genetic discoveries. To answer some of these challenges, we proposed a
Bayesian graphical model to search for multi-SNP models in the context of GWAS
analysis.

Our simulation studies and real data application demonstrate the versatility of
MOSS for analyzing complex GWAS data. We showed that MOSS was able to
identify genetic variants associated with a binary response in a wide range of as-
sociation studies where the SNPs could be linked or unlinked, and could have
main effects and/or interaction effects on the response variable. MOSS can also
be applied to fine-mapping problems where it can reveal more complex patterns
of association with the response. Our simulations showed that MOSS has the best
performances overall when compared to more standard approaches for multi-SNP
analyses.

Our real application to breast cancer GWAS data confirms the interest of our
novel approach and its relevance for genetic research. We found 12 SNPs embed-
ded in 8 two-SNPs models associated with breast cancer. These two-SNP models
included both common and rare variants. We replicated some known associations,
for example, with SNPs in the FGFR2 gene, but also discovered new ones that are
biologically very promising. Many of these genetic associations would not have
been discovered by conventional approaches, which are generally limited to single
SNP analyses or simple multi-SNP models. This is the case of the two SNPs we
found associated with the genes APC and BUB3. The association with the SNP in
APC and breast cancer has never been reported in the original paper because it is
a rare SNP [Hunter et al. (2007)]. Biological information about BUB3 shows that
it interacts physically with APC, thus validating biologically one of the two-SNP
models we discovered.

Some future extension of MOSS could include the discovery of complex gene
networks. While our results suggest that MOSS can find simple SNP–SNP inter-
actions, further work is needed to infer these more complex networks.

Acknowlegments. We would like to thank Olia Vesselova for her part in the
development of the R package genMOSS as well as the Associate Editor and the
referees for their very constructive comments. This paper is published in memo-
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SUPPLEMENTARY MATERIAL

Supplement A: Example of R code (DOI: 10.1214/16-AOAS909SUPPA;
.pdf). This is a simple example of code to run our R package genMOSS.

http://dx.doi.org/10.1214/16-AOAS909SUPPA
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Supplement B: Complete Table 1 results (DOI: 10.1214/16-
AOAS909SUPPB; .pdf). This table is similar to Table 1 but adds additional FDR
results for each of the five SNPs simulated and for the SNP pairwise interactions.

Supplement C: Additional simulation results (DOI: 10.1214/16-
AOAS909SUPPC; .pdf). We performed additional simulations to assess the per-
formance of MOSS where it is compared to the standard Bonferroni correction.
The R code used to generate the data is given in Supplement A [Briollais et al.
(2016a)].

Supplement D: Sensitivity analyses (DOI: 10.1214/16-AOAS909SUPPD;
.pdf). In this section, we assess the sensitivity of the priors to the detection of
rare and common genetic variants.

Supplement E: Additional real data analyses (DOI: 10.1214/16-
AOAS909SUPPE; .pdf). This section provides additional results from the real
data analysis.
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