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Measuring the impact of scientific articles is important for evaluating the
research output of individual scientists, academic institutions and journals.
While citations are raw data for constructing impact measures, there exist bi-
ases and potential issues if factors affecting citation patterns are not properly
accounted for. In this work, we address the problem of field variation and
introduce an article level metric useful for evaluating individual articles’ vis-
ibility. This measure derives from joint probabilistic modeling of the content
in the articles and the citations among them using latent Dirichlet allocation
(LDA) and the mixed membership stochastic blockmodel (MMSB). Our pro-
posed model provides a visibility metric for individual articles adjusted for
field variation in citation rates, a structural understanding of citation behav-
ior in different fields, and article recommendations which take into account
article visibility and citation patterns. We develop an efficient algorithm for
model fitting using variational methods. To scale up to large networks, we
develop an online variant using stochastic gradient methods and case-control
likelihood approximation. We apply our methods to the benchmark KDD Cup
2003 dataset with approximately 30,000 high energy physics papers.

1. Introduction. Measuring the impact and influence of scientific articles is
important for evaluating the work of individual scientists [Abramo and D’Angelo
(2011), Hirsch (2005)] and comparing journals [Garfield (2006), Moed (2010)].
For researchers, such information is one of the most considered factors for hiring,
promotion, funding decisions, award consideration and professional recognition.
For academic journals, it is an indicator of a journal’s stature among its peers,
which is valuable for various reasons, from being considered by prospective au-
thors for paper submission to being sought after by readers who need authoritative
opinions on a topic.

Due to the lack of a unified definition, the quality and importance of scientific
articles are often judged based on the journal in which they are published [Simons
(2008)]. In particular, a journal’s impact factor [see Garfield (2006)], defined using
a journal’s average number of citations per article, is frequently used as an indica-
tor of the “quality” of its articles and a means of evaluating the research output of
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individuals and institutions [Casadevall and Fang (2014)]. However, studies have
shown that such usage can be misleading; the journal impact factor conceals dif-
ferences in citation rates among articles, is research field dependent and does not
measure the scientific quality of individual articles [Seglen (1997)]. To improve
the assessment of scientific research by academic institutions, funding agencies
and other parties, the San Francisco declaration on research assessment3 recom-
mends (among other proposals) placing greater emphasis on the scientific content
of an article rather than the journal impact factor [see Alberts (2013)]. An increas-
ing number of publishers and organizations are also providing article level metrics
[Fenner (2014), Neylon and Wu (2009)] to enable users to gauge the impact of arti-
cles based on their own merits. These new indicators include data on usage activity,
bookmarks (e.g., CiteULike and Mendeley) and discussions/recommendations on
the Social Web (e.g., Twitter, Facebook, Blogs) in addition to citations.

Citations (and other reference counts alike) are raw data for constructing mea-
sures to evaluate the impact of scientific articles. The h-index [Hirsch (2005)], for
instance, attempts to measure the impact of an author’s published work using cita-
tions (a researcher who has published h papers each having at least h citations has
index h). However, there exist biases and potential issues in using raw citations
to compare the impact of scientific articles without accounting for other factors
which may affect citation patterns. These factors include time from publication,
journal profile, article type and social network of authors [Bornmann and Daniel
(2008)]. A well-known and highly relevant factor is the variation in citation prac-
tices among different disciplines [Garfield (1979)]. Articles in certain disciplines
(e.g., Social Science and Mathematics) are typically much less cited than others
(e.g., Molecular Biology and Immunology) and comparing articles using raw cita-
tion counts would be inappropriate. To address this issue, different procedures of
normalizing the citation counts with respect to some reference standard have been
proposed [e.g., Radicchi, Fortunato and Castellano (2008), Schubert and Braun
(1996), Vinkler (2003)]. More recently, Crespo, Li and Ruiz-Castillo (2013) and
Crespo et al. (2013) consider a model where the number of citations received by
an article depends on the subfield to which the article belongs and the scientific
influence of the article in the subfield. Their model assumes that citation impact
varies monotonically with scientific influence.

In this work, we introduce an article level measure (of citation likelihood) that
accounts for the variation in citation practices in different fields and is potentially
useful for evaluating the impact of scientific articles. This measure, named as topic-
adjusted visibility metric, derives from joint probabilistic modeling of the content
(text) in the articles and the citations (links) among them. We consider a framework
whereby the connectivity of an article in a citation network depends on (1) the cita-
tion probability of the research fields (topics) that it belongs to and (2) its visibility

3Outcome of a gathering of scientists at the Annual meeting of the American Society for Cell
Biology on December 2012.
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to articles that are in a position to cite it. Our motivation is that while a citation is
driven primarily by compatibility in research topics, the decision to cite an article
over other equally relevant ones may be due to a complex mixture of attributes of
the selected article which are unobserved/hard to quantify (e.g., research value and
quality, profile of authors, journal readership) or difficult to model directly (e.g.,
time since publication, article type). Here we use the term visibility to capture col-
lectively attributes of the article apart from research topics that accounts for its
connectivity. In our model, the topics are discovered using only the text and con-
nectivity information. It does not take into account the discipline classification of
the article by the journal. We also use the term “field” to refer to a particular topic
(area).

As citation networks are a type of relational data where content information is
available on individual nodes, our proposed model combines two well-established
models (for text and relational data, resp.): latent Dirichlet allocation (LDA [Blei,
Ng and Jordan (2003)]) and the mixed membership stochastic blockmodel (MMSB
[Airoldi et al. (2008)]). LDA is a generative probabilistic model which can uncover
research topics from the text of scientific articles, while the MMSB can detect
communities within the citation network and model inter- and intra-community
citation probabilities. As the communities detected in citation networks often cor-
relate well with research topics [Chen and Redner (2010)], these two models can
be integrated by identifying the communities in MMSB with the topics in LDA
(Pairwise-Link-LDA [Nallapati et al. (2008)]). We further introduce a latent vari-
able at the article level into the MMSB, which scales the probability of a citation
due to compatibility in research topics and acts as a measure of the visibility of
individual articles. The proposed model provides a structural understanding of the
field variation in citation behavior and a measure of visibility for individual articles
adjusted for citation probabilities within/between topics.

Our model can also provide article recommendations which take into account
individual articles’ visibility and citation patterns across different topics. Consider
a scenario where one is searching for papers on a computational technique applied
in multiple topic areas by using keywords. A method which sorts relevant articles
by citation counts may yield a list where papers in topics with higher citation rates
are overrepresented at the top. We avoid this scenario, as articles are recommended
based on the citation probability within/across topics as well as the visibility metric
which has adjusted for field variation in citation behavior. Hence, high impact
articles in topics with low citation rates will not be overlooked. As the MMSB is
able to capture both inter- and intra-topic citation probabilities, relevant articles
which integrate multiple topics can also be identified.

The proposed topic-adjusted visibility metric is novel and differs from ap-
proaches based on normalization of citation counts. While similar in motivation
with Crespo, Li and Ruiz-Castillo (2013) and Crespo et al. (2013), our model is
significantly different from theirs. First, they do not consider the text of articles and
make use of an external system provided by Thomson Reuters for classification
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(which may be limited in range), while we identify research topics in the articles
using LDA and MMSB jointly. Moreover, our model does not assume that citation
counts vary monotonically with visibility within each topic and is fully generative
for text and citations. Besides citations, other reference data (e.g., usage activity)
which are field dependent can also benefit from our proposed framework.

For model fitting, we adopt a Bayesian approach and develop efficient varia-
tional methods [Jordan et al. (1999)] for fast approximate posterior inference. As
real-world citation networks are often massive and the computational cost of ana-
lyzing every pairwise interaction in the MMSB scales as the square of the number
of nodes, we develop an online variant of our variational algorithm by subsampling
the full network using case-control likelihood approximation techniques [Raftery
et al. (2012)] and stochastic variational inference [Hoffman et al. (2013)]. Previ-
ously, stochastic variational inference has been employed successfully for LDA
[Hoffman, Blei and Bach (2010)] and the hierarchical Dirichlet process [Wang,
Paisley and Blei (2011)]. At each iteration, it subsamples the data and optimizes the
variational objective using stochastic approximation methods [Robbins and Monro
(1951)], thus reducing both computational and storage costs. Recently, Gopalan
and Blei (2013) extended stochastic variational inference to massive networks for
detecting overlapping communities by using a variant of the MMSB. They sampled
node pairs using “informative set sampling,” where the sets of pairs are defined us-
ing network topology information. A related idea is the stratified sampling scheme
for MCMC estimation of latent space models [Raftery et al. (2012)], where stra-
tums are defined by shortest path lengths. Adapting case-control designs in epi-
demiology, they approximated the log-likelihood function by sampling all links
for each node and only a small proportion of nonlinks from each stratum. This ap-
proach is feasible as large networks are often sparse. It assumes that “closer” nodes
contain more information and are more relevant in estimating each other’s latent
position. Motivated by these methods, we propose a novel strategy for sampling
node pairs that is suitably adapted to our model requirements.

We apply our methods to the Cora dataset with 2410 scientific publications in
computer science research and the benchmark KDD Cup 2003 dataset with ap-
proximately 30,000 high energy physics papers. We also evaluate the performance
of our model using a simulation study. A particularity of citation networks is that
articles join the network over time, and published articles cannot cite articles ap-
pearing at a later date. Hence, the absence of such links cannot be construed as
true “zeros” and should be omitted from the likelihood. We show that taking into
account publication times (when available) can significantly improve performance
of our model.

The rest of the paper is organized as follows. Section 2 lays out the details of our
model and reviews closely associated models. Section 3 introduces a variational
algorithm for obtaining approximate posterior inference and Section 4 describes
how the algorithm can be scaled up to large networks using stochastic optimiza-
tion methods. Section 5 discusses comparisons with alternative approaches and
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Section 6 predictions and article recommendations based on our proposed model.
Section 7 presents application results using simulations and real data. We conclude
with discussion in Section 8.

2. Model description. Our proposed model combines LDA with the MMSB,
and introduces a latent variable for each article which acts as a measure of its
visibility adjusted for topic-level variation in activity level. Before describing our
model, we review LDA, MMSB and other associated models.

2.1. Review of LDA, MMSB and Pairwise-Link-LDA. LDA is a generative
probabilistic model for text copora which can be used for tasks such as detect-
ing themes, summarization and classification. It assumes that word order can be
disregarded (“bag-of-words” model) and that each document in the corpus exhibits
K topics with varying proportions. Let the number of documents in the corpus be
D and the size of the vocabulary be V . Each topic βk is a V × 1 vector with a
Dirichlet(η) prior, representing a probability distribution over the vocabulary. For
each document d , the topic proportion θd is a K × 1 vector with a Dirichlet(α)
prior, representing the probability of each topic occurring in the document. Let
the number of words in document d be Nd . The nth word in document d , wdn, is
generated by drawing a topic assignment zdn from Multinomial(θd) and the word
from Multinomial(βzdn

). Both zdn and wdn are indicator vectors with a single one.
If the kth element of zdn is one, wdn is drawn from the topic βzdn

, which refers
to βk (slight abuse of notation).

On the other hand, MMSB is a mixed membership model for relational data
that can detect communities within a network. Suppose the relational data is rep-
resented by a directed graph. For each node pair (d, d ′) where d �= d ′, we define
the binary variable ydd ′ to be 1 if there is a directed edge from d to d ′ and 0
otherwise. The MMSB assumes that there are K latent communities (groups) and
each node belongs to the K groups with varying degrees of affiliation. Specifi-
cally, each node d is associated with a K × 1 membership vector, θd , drawn from
a Dirichlet(α) prior, representing the probability of the node belonging to each of
the K groups. Each node may assume different membership when interacting with
different nodes. The blockmodel B is a K × K matrix where Bij represents the
probability of a directed link from a node in group i to a node in group j . For each
(d, d ′), membership indicator vectors for the sender (sdd ′) and receiver (rdd ′) are
first drawn from Multinomial(θd) and Multinomial(θd ′) respectively. If the ith and
j th elements of sdd ′ and rdd ′ are ones respectively, the value of the interaction ydd ′
is sampled from Bernoulli(Bsdd′ rdd′ ), where Bsdd′ rdd′ refers to Bij . The generating
process of LDA and MMSB is shown in Figure 1.

Citation networks are a type of relational data where the nodes are the docu-
ments/articles and the directed links are the citations between them (there is a di-
rected link from d to d ′ if d cites d ′). Pairwise-Link-LDA [Nallapati et al. (2008)]
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LDA (For modeling text)

1. Draw topic βk ∼ Dirichlet(η) for k =
1, . . . ,K .

2. For each document d = 1, . . . ,D:
(a) Draw topic proportion

θd ∼ Dirichlet(α).
(b) For each position n = 1, . . . ,Nd ,

draw:

• Topic assignment
zdn ∼ Multinomial(θd).

• Word wdn ∼ Multinomial(βzdn).

MMSB (For modeling links)

1. For each node d = 1, . . . ,D, draw mixed mem-
bership vector θd ∼ Dirichlet(α).

2. For each node pair (d, d ′), draw:

• Membership indicator for sender sdd ′ ∼
Multinomial(θd).

• Membership indicator for receiver rdd ′ ∼
Multinomial(θd ′).

• Interaction ydd ′ ∼ Bernoulli(Bsdd′ rdd′ ).

FIG. 1. Generating process for LDA (left) and MMSB (right). These two models can be combined
by identifying the communities in MMSB with the topics in LDA, that is, the topic proportions with
the mixed membership vectors (both denoted by θd ).

combines MMSB with LDA to jointly model text in articles and the citations be-
tween them by identifying the topics in LDA with the communities in MMSB. As
links between documents indicate a certain level of similarity in topics, it is be-
lieved that network information, when suitably incorporated, would improve topic
modeling [Ho, Eisenstein and Xing (2012), Kleinberg (1999)].

2.2. Proposed model: LMV. In Pairwise-Link-LDA, any two documents with
the same topic proportions have equal probability of being cited. This assumption
is easily violated in real-world citation networks, as factors other than research
topics affect the citation probability. For instance, a well-cited document’s higher
chances of being cited may be due to its quality, novelty and the authors’ social net-
works. Our proposed model aims to capture, collectively via the visibility measure,
attributes of the cited document that explain this variation in citation probability
given compatibility in topics.

Our proposed model is presented in Figure 2. The text is generated as in LDA.
For the generation of links, we introduce a latent variable τd ′ for each document d ′,
drawn from a Beta(g0, h0) prior, which modifies the citation probability by scaling
the blockmodel. Given that the ith element of sdd ′ and the j th element of rdd ′ are
ones, the probability of a document d from the ith topic citing a document d ′ from
the j th topic becomes τd ′Bij , which is dependent on the characteristic τd ′ of the
document d ′ receiving the citation.

We define τd ′ as the topic-adjusted visibility of document d ′, which is a scal-
ing factor that adjusts the universal probability of being cited based on citation
probabilities within/between topics. It is a characteristic of d ′ that accounts for the
variation in citation probability among documents with equal topic proportions.
This variation might be due to attributes of d ′ which are unobserved, hard to quan-
tify or not directly modeled. The topic-adjusted visibility is potentially useful as
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Generative process of LMV

1. Draw topic βk ∼ Dirichlet(η) for k = 1, . . . ,K .
2. For each document d = 1, . . . ,D:

• Draw visibility τd ∼ Beta(g0, h0).
• Draw topic proportion θd ∼ Dirichlet(α).
• For each position n = 1, . . . ,Nd , draw:

– Topic assignment zdn ∼ Multinomial(θd).
– Word wdn ∼ Multinomial(βzdn).

3. For i, j ∈ {1, . . . ,K}, draw Bij ∼ Beta(a0, b0).
4. For each document pair (d, d ′) where d �= d ′:

• Draw topic indicator for sender:
sdd ′ ∼ Multinomial(θd ).
Receiver: rdd ′ ∼ Multinomial(θd ′).

• Draw ydd ′ ∼ Bernoulli(τd ′Bsdd′ rdd′ ).

FIG. 2. Left: Outline of LMV. Right: Graphical representation of a two-document segment. The
complete model contains ydd ′ for every document pair. Circles denote variables and observed vari-
ables are shaded. The plates contain variables to be replicated and the number of times is indicated
in the lower left corner.

a descriptive article level measure of citation likelihood that adjusts for the differ-
ences in citation practices in different topic areas. We use the acronym LMV for
our model, taking the first letter from LDA, MMSB and visibility.

Our model reduces to Pairwise Link-LDA [Nallapati et al. (2008)] when τd ′
is identically one. One computational issue associated with LDA and MMSB
is the multi-modality of these models, whereby multiple model configurations
give equivalent fits to the data [see, e.g., Ho, Parikh and Xing (2012)]. Com-
bining content and connectivity information in a citation network may alleviate
the multi-modality issue of MMSB. On the other hand, the communities detected
in the citation network regularize the topic modeling on the content informa-
tion.

We assume that the hyperparameters a0, b0, g0, h0, η and α are known. The
latent variables sdd ′ and rdd ′ give rise to a more tractable joint distribution, which
leads to significant simplification of the variational optimization procedure to be
introduced in Section 3.

2.3. Review of associated methods. The relational topic model (RTM [Chang
and Blei (2010)]) also uses LDA as a basis for modeling document networks. RTM
does not consider every pairwise interaction, however, and models only observed
links. It uses a symmetric probability function with a diagonal weight matrix,
which allows only within topic interactions. To improve the RTM, extensions have
been proposed. For instance, Chen et al. (2013) define generalized RTM with a
full weight matrix and perform regularized Bayesian inference where a log-logistic
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loss is minimized. A regularization parameter is used to control influence from link
structures. Zhang, Zhu and Zhang (2013) propose sparse RTM where normal and
Laplace priors are placed respectively on the topic and word representations, and
word counts are Poisson distributed. Different regularization parameters are used
for links and nonlinks in the minimization of a log-loss.

Some other extensions of LDA to document networks include the TopicBlock
[Ho, Eisenstein and Xing (2012)], which uses text and links to induce a hierar-
chical taxonomy, and block LDA [Balasubramanyan and Cohen (2013)], which
considers documents annotated with entities and models only realized links be-
tween entities using a stochastic blockmodel. Zhu et al. (2013) propose a Poisson
mixed-topic link model that combines LDA with a variant of the MMSB, called
the Ball–Karrer–Newman model, where the number of links between two docu-
ments is Poisson distributed instead of Bernoulli. Neiswanger et al. (2014) present
a latent random offset model that augments the topic proportions of the cited doc-
ument with a vector to capture contents of citing documents in link predictions.
These models do not address the issue that documents with similar topics may
have different connectivity due to unobserved factors of impact.

To improve the understanding of large text corpora, models that incorporate ad-
ditional information about the corpus or document metadata into text analysis have
also been introduced recently. These models investigate the relationship between
text data and observed variables that may affect the text composition (e.g., authors,
date, political affiliation and quality ratings). To overcome the difficulty of incorpo-
rating high-dimensional text data into statistical analyses for predicting sentiment
variables, multinomial inverse regression [Taddy (2013)] uses the inverse condi-
tional distribution of text given sentiment to obtain low-dimensional document
representations that preserve sentiment information. The inverse regression topic
model [Rabinovich and Blei (2014)] extends multinomial inverse regression to
the mixed-membership (multiple topics) setting, while distributed multinomial re-
gression [Taddy (2015)] tackles high-dimensional sentiment variables by modeling
document-word counts as independent Poisson distributed variables. Roberts et al.
(2013) propose the structural topic model, which uses generalized linear models
as priors to incorporate document-level covariates. In this paper, we adopt a dif-
ferent approach to the exploration of large text copora by modeling text and links
between documents jointly. Further incorporating document metadata into our pro-
posed model will be an interesting direction for future research.

3. Posterior inference. As the true posterior of our model is not available in
closed form, we develop an efficient variational algorithm for posterior approx-
imation. Let � denote the set of unknown variables in the LMV. In variational
methods, the true posterior is approximated by more tractable distributions which
are optimized to be close to the true posterior in terms of Kullback–Leibler diver-
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gence. Here we consider a fully-factorized family,

q(�) = ∏
d

{
qD(θd |γd)

∏
n

qM(zdn|φdn)
∏

d ′ �=d

[
qM(sdd ′ |κdd ′)qM(rdd ′ |νdd ′)

]}

× ∏
k

qD(βk|λk)
∏
i,j

qB(Bij |aij , bij )
∏
d ′

qB(τd ′ |gd ′, hd ′),

where qD , qM , qB denote the Dirichlet, multinomial and beta distributions re-
spectively and {λ,γ,φ, κ, ν, a, b, g,h} are variational parameters to be optimized.
Discussion on assumptions made in the variational approximation and their impli-
cations can be found in the supplement [Tan, Chan and Zheng (2016)].

From Jensen’s inequality, minimizing the Kullback–Leibler divergence between
q(�) and the true posterior is equivalent to maximizing a lower bound L on the
log marginal likelihood, where L is given by∑

(d,d ′)
Eq

[
logp(ydd ′ |τd ′,B, sdd ′, rdd ′) + logp(sdd ′ |θd) + logp(rdd ′ |θd ′)

]

+ ∑
d,n

Eq

[
logp(zdn|θd) + logp(wdn|zdn,β)

] + ∑
i,j

Eq

[
logp(Bij |a0, b0)

]
(3.1)

+ ∑
d

Eq

[
logp(τd |g0, h0) + logp(θd |α)

] + ∑
k

Eq

[
logp(βk|η)

] + H(q).

In (3.1), Eq denotes expectation with respect to q(�) and H(q) denotes the en-
tropy of q . All terms in L can be evaluated analytically except Eq{log(1−τd ′Bij )}.
We expand this expectation using a first-order approximation about the mean
[Braun and McAuliffe (2010)] so that

Eq

{
log(1 − τd ′Bij )

} ≈ log
(
1 − Eq(τd ′)Eq(Bij )

)
(3.2)

= log
(

1 − gd ′

gd ′ + hd ′
aij

aij + bij

)
.

The approximate lower bound obtained using (3.2) is denoted by L∗. Discussion
on the first-order approximation and the expression for L∗ can be found in the
supplement [Tan, Chan and Zheng (2016)].

We optimize L∗ with respect to the variational parameters via coordinate as-
cent (see Algorithm 1). For {λ,γ,φ, κ, ν}, closed-form updates can be derived by
differentiating L∗ with respect to each parameter and setting the gradient to zero.
For {a, b, g,h}, the likelihood is nonconjugate with respect to the prior and we
use nonconjugate variational message passing [Knowles and Minka (2011)]. This
is a fixed point iteration method for optimizing the natural parameters of varia-
tional posteriors in exponential families. The advantages of this approach are that
it yields closed-form updates and extends to stochastic variational inference nat-
urally. However, L∗ is not guaranteed to increase at each step and updates for
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Algorithm 1 Coordinate ascent procedure for the LMV

Initialize λ, γ , φ, κ , ν, a, b, g and h. Cycle the following updates until convergence is
reached.

1. For each document pair (d, d ′), cycle the following updates until κdd ′ and νdd ′ converge.

κdd ′i ∝ exp
{
ψ(γdi) − ψ

(∑
i

γdi

)
+ ∑

j

νdd ′j ςdd ′(i, j)

}
for i = 1, . . . ,K,

νdd ′j ∝ exp
{
ψ(γd ′j ) − ψ

(∑
j

γd ′j

)
+ ∑

i

κdd ′iςdd ′(i, j)

}
for j = 1, . . . ,K,

where

ςdd ′(i, j) =
⎧⎪⎨
⎪⎩

ψ(aij ) − ψ(aij + bij ) + ψ(gd ′) − ψ(gd ′ + hd ′), if ydd ′ = 1,

log
(

1 − gd ′

gd ′ + hd ′
aij

aij + bij

)
, if ydd ′ = 0.

2. For d = 1, . . . ,D, n = 1, . . . ,Nd , k = 1, . . . ,K ,

φdnk ∝ exp
{
ψ(γdk) − ψ

(∑
k

γdk

)
+ ∑

v

wdnv

[
ψ(λkv) − ψ

(∑
v

λkv

)]}
.

3. For d = 1, . . . ,D, γd = α + ∑
n φdn + ∑

d ′ �=d(κdd ′ + νd ′d).
4. For k = 1, . . . ,K , v = 1, . . . , V , λkv = ηv + ∑

d

∑
n wdnvφdnk .

5. Cycle updates in (a) and (b) until convergence is reached.

(a) For i = 1, . . . ,K , j = 1, . . . ,K ,
[aij

bij

] ← (1 − st )
[aij

bij

] + st
[âij

b̂ij

]
, where

[
âij

b̂ij

]
=

⎡
⎣a0 + ∑

(d,d ′):ydd′=1

κdd ′iνdd ′j

b0

⎤
⎦ + 1

|Iaij ,bij
|(aij + bij )2

×
[
(aij + bij )ψ

′(aij + bij ) − bijψ
′(bij )

aijψ
′(aij ) − (aij + bij )ψ

′(aij + bij )

] ∑
(d,d ′):ydd′=0

κdd ′iνdd ′j
gd′

gd′+hd′
1 − gd′

gd′+hd′
aij

aij +bij

.

Start with st = 1. If any aij ≤ 0 or bij ≤ 0, reduce st (say by half each time) until
all aij > 0 and bij > 0. Accept update only if L∗ increases.

(b) For d ′ = 1, . . . ,D,
[gd′
hd′

] ← (1 − st )
[gd′
hd′

] + st
[ĝd′
ĥd′

]
, where

[
ĝd ′
ĥd ′

]
=

[
g0 + ∑

d

ydd ′

h0

]
+ 1

|Igd′ ,hd′ |(gd ′ + hd ′)2

×
[
(gd ′ + hd ′)ψ ′(gd ′ + hd ′) − hd ′ψ ′(hd ′)
gd ′ψ ′(gd ′) − (gd ′ + hd ′)ψ ′(gd ′ + hd ′)

]∑
i,j

∑
d:ydd′=0 κdd ′iνdd ′j

aij

aij +bij

1 − gd′
gd′+hd′

aij

aij +bij

.

Start with st = 1. If any gd ′ ≤ 0 or hd ′ ≤ 0, reduce st (say by half each time) until
all gd ′ > 0 and hd ′ > 0. Accept update only if L∗ increases.

Note: |Ia,b| denotes determinant of the Fisher information matrix of Beta(a, b). See
supplement [Tan, Chan and Zheng (2016)].
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{a, b, g,h} may be negative at times. To resolve these issues, we use the fact that
nonconjugate variational message passing is a natural gradient ascent method with
step size 1 and smaller step sizes may also be taken. In Algorithm 1, we start
with step size 1 and reduce the step size where necessary to ensure updates of
{a, b, g,h} are positive. If L∗ increases, these updates are accepted. Otherwise,
we revert to the former values. Updates for {a, b, g,h} are derived in the supple-
ment [Tan, Chan and Zheng (2016)]. As updates of {a, b} and {g,h} are highly
interdependent, we introduce a nested loop for cycling these updates in step 5 of
Algorithm 1.

4. Stochastic optimization of variational objective. We develop an online
variant of Algorithm 1 that scales well to large networks using stochastic varia-
tional inference [Hoffman et al. (2013)]. In this approach, variational parameters
are classified as local (specific to each node) or global (common across all nodes)
parameters. At each iteration, a minibatch of nodes are randomly sampled from the
whole dataset and local parameters corresponding to these nodes are optimized.
Global parameters are then updated based on optimized local parameters using
stochastic gradient ascent [Robbins and Monro (1951)]. The algorithm converges
to a local maximum of the variational objective provided the step sizes and the
objective function satisfy certain regularity conditions [see Spall (2003)].

Currently, Algorithm 1 has to update the variational parameters κdd ′ and νdd ′
for each document pair (d, d ′) at every iteration. This computational cost scales
as O(D2) and makes our model infeasible for large networks. To apply stochas-
tic variational inference, we regard κdd ′ and νdd ′ as local parameters and perform
these updates only for a random subset of all document pairs at each iteration. Re-
maining variational parameters are regarded as global parameters and are updated
using stochastic gradient ascent.

4.1. Proposed sampling strategy. We devise a novel scheme for sampling doc-
ument pairs. While simple random sampling is a possibility, it does not utilize in-
formation provided by the links. Raftery et al. (2012) propose a stratified sampling
scheme where stratums are defined by shortest path lengths. Assuming “closer”
nodes contain more information and that large networks are often sparse, they
sample all links for each node and only a small proportion of nonlinks from each
stratum. Gopalan and Blei (2013) consider “informative set sampling,” where the
“informative set” for a node consists of all links and nonlinks of path length 2.
Remaining nonlinks are partitioned into “noninformative sets.” At each iteration,
either an “informative” set is chosen with high probability or one of the “non-
informative sets” is chosen with low probability. These schemes are not directly
applicable to our model. To update γd (Algorithm 1, step 2), unbiased estimates of∑

d ′ �=d κdd ′ and
∑

d ′ �=d νd ′d are required. That is, samples have to be drawn from
cases where d is the citing document as well as cases where d is the cited doc-
ument. As Gopalan and Blei (2013) treat links as undirected while Raftery et al.
(2012) do not subsample documents, they do not face these restrictions.
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We propose the following sampling scheme. Consider the adjacency matrix y of
ones and zeros, where the rows and columns denote the citing and cited documents
respectively (diagonal is undefined). We associate each document pair (d, d ′) with
an inclusion probability πdd ′ , where πdd ′ is a decreasing function of the short-
est path length from d to d ′. While other definitions are plausible, we define, for
simplicity,

πdd ′ =
{

1/ldd ′, ldd ′ > n0,
1/n0, otherwise,

(4.1)

where ldd ′ denotes the shortest path length from d to d ′ and n0 is a positive integer.
When ydd ′ = 1, πdd ′ = 1. Hence, all links are included and more “informative”
nonlinks (in the sense of shorter path length) have a higher probability of being
included. In the examples, we set n0 = 100. This implies that document pairs with
a shortest path length of 100 or more have a probability of 0.01 of being included.
It is possible to experiment with other values depending on the application and
computational constraints. A smaller n0 implies a larger sample of document pairs.
At each iteration, we:

1. Select a random sample S of |S| documents from the whole dataset.
2. Perform a Bernoulli trial with success probability πdd ′ for each (d, d ′) where

d ∈ S or d ′ ∈ S .
3. Select document pairs with successful trials (denote this set as P).

The Bernoulli trial is performed only once for each document pair even if both d

and d ′ are in S . The sampling strategy is illustrated in the supplement [Tan, Chan
and Zheng (2016)].

4.2. Stochastic variational algorithm. In the stochastic variational algorithm
(Algorithm 2), updates for κdd ′ and νdd ′ are cycled until convergence for each
(d, d ′) ∈P so that local parameters are optimized at the current global parameters.
The global parameters are then updated using stochastic gradient ascent. For a
parameter λi , we consider an update

λi ← λi + st ∇̃λi
L∗,(4.2)

where st denotes a small step taken in the direction of ∇̃λi
L∗ (natural gradient of

L∗ with respect to λi). In variational Bayes and nonconjugate variational message
passing, the natural gradient [Amari (1998)] is ∇̃λi

L∗ = λ̂i − λi , where λ̂i is the
optimal update of λi . See supplement [Tan, Chan and Zheng (2016)] for details.
Hence the update in (4.2) can be written as

λi ← (1 − st )λi + st λ̂i .

In stochastic gradient ascent, we replace the true natural gradients with unbiased
estimates. For convergence, the step sizes should satisfy the conditions st → 0,∑∞

t=0 st = ∞ and
∑∞

t=0 s2
t < ∞.
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Algorithm 2 Stochastic variational procedure for the LMV

Initialize γ , λ, κ , φ, ν, a, b, g, h. At each iteration:

1. Obtain a random sample S of |S| documents from the corpus.
2. For each document pair (d, d ′), where d ∈ S or d ′ ∈ S , perform a Bernoulli trial with

success probability πdd ′ . Let P denote the set of document pairs with successful trials.
Let Pd· = {(l, l′) ∈P|l = d} and P·d = {(l, l′) ∈ P|l′ = d}.

3. Update κdd ′ and νdd ′ iteratively as in Algorithm 1 for each (d, d ′) ∈ P until conver-
gence.

4. Update φdnk for d ∈ S , n = 1, . . . ,Nd and k = 1, . . . ,K as in Algorithm 1.
5. For d ∈ S , γd ← (1 − st )γd + st γ̂d where

γ̂d = α + ∑
n

φdn + ∑
(l,l′)∈Pd·

κll′

πll′
+ ∑

(l,l′)∈P·d

νll′

πll′
.

6. For k = 1, . . . ,K and v = 1, . . . , V , λkv ← (1 − st )λkv + st λ̂kv , where

λ̂kv = ηv + D

|S|
∑
d∈S

∑
n

wdnvφdnk.

7. For i = 1, . . . ,K and j = 1, . . . ,K ,
[aij

bij

] ← (1 − st )
[aij

bij

] + st
[âij

b̂ij

]
, where

[
âij

b̂ij

]
=

⎡
⎢⎣a0 + D

|S|
∑
d ′∈S

∑
(l,l′)∈P·d′ :yll′=1

κll′iνll′j

b0

⎤
⎥⎦ + 1

|Iaij ,bij
|(aij + bij )2

×
[
(aij + bij )ψ

′(aij + bij ) − bijψ
′(bij )

aijψ
′(aij ) − (aij + bij )ψ

′(aij + bij )

]

× D

|S|
∑
d ′∈S

∑
(l,l′)∈P·d′ :yll′=0

κll′i νll′j
πll′

gd′
gd′+hd′

1 − gd′
gd′+hd′

aij

aij +bij

.

If any aij ≤ 0 or bij ≤ 0, reduce st for this update (say by half each time).

8. For d ′ ∈ S ,
[gd′
hd′

] ← (1 − st )
[gd′
hd′

] + st
[ĝd′
ĥd′

]
, where

[
ĝd ′
ĥd ′

]
=

⎡
⎣g0 + ∑

d

ydd ′

h0

⎤
⎦ + 1

|Igd′ ,hd′ |(gd ′ + hd ′)2

×
[
(gd ′ + hd ′)ψ ′(gd ′ + hd ′) − hd ′ψ ′(hd ′)
gd ′ψ ′(gd ′) − (gd ′ + hd ′)ψ ′(gd ′ + hd ′)

]

× ∑
i,j

∑
(l,l′)∈P·d′ :yll′=0

κll′i νll′j
πll′

aij

aij +bij

1 − gd′
gd′+hd′

aij

aij +bij

.

If any gd ′ ≤ 0 or hd ′ ≤ 0, reduce st for this update (say by half each time).
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Using our proposed sampling scheme, unbiased estimates of the true natu-
ral gradients can be computed via the Horvitz–Thompson estimator [see, e.g.,
Kolaczyk (2009)]. Let Pd· = {(l, l′) ∈ P|l = d} and P·d = {(l, l′) ∈ P|l′ = d}
denote samples in P lying in the dth row and column of the adjacency matrix
respectively. We have, for example, the following unbiased estimates:

∑
(l,l′)∈Pd·

κll′

πll′
≈ ∑

d ′ �=d

κdd ′ and
D

|S|
∑

(l,l′)∈P·d′
d ′∈S

κll′iνll′j
πll′

≈ ∑
(d,d ′)

κdd ′iνdd ′j .(4.3)

The estimator on the right arises from a two-stage cluster sampling scheme which
involves sampling the columns (d ′ ∈ S) in the first stage and then sampling docu-
ment pairs from these columns in the second stage. We show that this estimator is
unbiased in the supplement [Tan, Chan and Zheng (2016)].

The stochastic variational algorithm for our model is outlined in Algorithm 2.
Implementation details are given in the supplement [Tan, Chan and Zheng (2016)].

5. Comparison with alternative approaches. We compare our model with
the most representative peer methods, RTM and Pairwise-Link-LDA. As a base-
line for comparing methods which integrate the modeling of text and links, we
also consider “LDA + Regression,” which involves fitting an LDA model to the
documents followed by a logistic regression model to the links. The covariates cor-
responding to the observation ydd ′ are γ̄d � γ̄d ′ , where � denotes the Hadamard
product and the kth element of γ̄d is γdk/

∑
l γdl . This approach models text and

links separately and information from topic modeling is not utilized in the link
structure. The RTM accounts for both text and links structure. However, it assumes
a symmetric probability function and considers a diagonal weight matrix that al-
lows only within topic interactions. In addition, RTM only models observed links
and does not deal explicitly with the imbalance between links and nonlinks. We
consider the RTM with an exponential link probability function. Pairwise-Link-
LDA combines LDA and MMSB. Comparing Pairwise-Link-LDA with LMV il-
lustrates the importance of the visibility measure in link prediction.

All models are estimated using variational methods and the code for these al-
gorithms are reproduced in R by ourselves. For LDA + Regression, RTM and
Pairwise-Link-LDA, we have tried to follow the implementations suggested by
the original authors as closely as possible. Variational parameters in LMV, RTM
and Pairwise-Link-LDA are initialized using the fitted LDA and the same priors
are used across all models. Details on priors and stopping criteria are given in the
supplement [Tan, Chan and Zheng (2016)].

6. Prediction and article recommendations. We discuss how our model can
be used to predict links for new documents assuming knowledge only of the text.
An important application of the predictive probabilities is in recommending sci-
entific articles, for instance, to researchers searching for information on certain
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research topics or who are preparing manuscripts and looking for relevant articles
to cite. Using a short paragraph of text or even just keywords (as text of the “new
document”), predictive probabilities of links to documents in the training set can be
computed and used as a means to rank documents and construct recommendation
lists. As our model captures both inter- and intra-topic citation probabilities and
estimates the visibilities of individual articles (which are adjusted for field vari-
ation in citation practices), it can identify relevant articles which are multi-topic
or of high visibility but coming from topics with low citation rates. Wang and
Blei (2011) and Gopalan, Charlin and Blei (2014) consider recommendation of
scientific articles to readers of online archives based on article content and reader
preferences. They do not consider citations among articles and make use of col-
laborative filtering.

The predictive probability of a link to a document in the training set can be
computed as follows. First, we fit the LMV model to documents in the training set.
Then we perform variational inference on the new document d to obtain its topic
proportions [see, e.g., Nallapati et al. (2008)]. That is, we iterate till convergence
the updates:

1. γd ← α + ∑
n φdn,

2. φdnk ∝ exp{ψ(γdk) − ψ(
∑

k γdk) + ∑
v wdnv[ψ(λkv) − ψ(

∑
v λkv)]} for n =

1, . . . ,Nd , k = 1, . . . ,K ,

where λ is obtained from the fitted model. The first update is similar to step 3 of
Algorithm 1. In this case, we do not assume knowledge of the links of the new
document. Hence, parameters associated with the links are absent. Let wd and wT

denote the words of the new document d and the training set respectively and let
yT denote links within the training set. Approximating the true posterior by the
variational approximation q(�), the posterior predictive probability that d will
cite any document d ′ in the training set is

p(ydd ′ = 1|wd,wT , yT ) ≈ Eq(τd ′)Eq(θd)T Eq(B)Eq(θd ′)
(6.1)

= gd ′

gd ′ + hd ′

(
γd∑K

k=1 γdk

)T a

a + b

γd ′∑K
k=1 γd ′k

.

6.1. Predictive rank. In the examples, we compute the average predictive rank
of held-out documents, following Chang and Blei (2010), as a way to evaluate
the fit between considered models and the data. The predictive rank captures a
model’s ability to predict documents that a test document will cite given only its
words. To compute the predictive rank of a test document for model M, first fit
model M to documents in the training set. Using the fitted topics, obtain the topic
proportions of the test document using just its words as described above. Compute
the posterior predictive probability that the test document will cite each document
in the training set [use (6.1) for LMV] and rank the documents according to this
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probability. The predictive rank is the average rank of the documents which the
held-out document actually did cite. Lower predictive rank indicates a better fit,
and it also implies that the articles that were actually cited are placed closer to the
top of a recommendation list for a test article.

7. Applications. We apply our methods to two real datasets. To assist under-
standing of our proposed model and to evaluate Algorithms 1 and 2, a simulation
study is also provided in the supplement [Tan, Chan and Zheng (2016)]. In this
study, we generate datasets from the LMV and demonstrate that Algorithms 1
and 2 are able to recover the structure of the blockmodel B as well as the visibility
of each document. We also show that our model performs significantly better than
LDA + Regression, RTM and Pairwise-Link-LDA in link predictions. Predictive
results from Algorithms 1 and 2 are very close and our subsampling strategy helps
to reduce computation times.

In the following, the blockmodels, visibilities, topic proportions and topic as-
signments of documents are estimated using the posterior means of corresponding
variational approximations. For each citation, a hard assignment of topics to the
citing and cited documents is obtained by taking the positions of the maximum
elements of κdd ′ and νdd ′ respectively. For instance, if κdd ′ = [0.8,0.2,0, . . . ,0]
and νdd ′ = [0.3,0.7,0, . . . ,0], we interpret the citation as being from topic 1 to 2.
For visualization of fitted topics, we order terms in the vocabulary using the term
score [Blei and Lafferty (2009)],

term-scorekv = λ̄kv log
{

λ̄kv

(
∏K

k=1 λ̄kv)1/K

}
,

where λ̄kv = λkv/
∑

l λkl denotes the posterior mean probability of the vth term
appearing in the kth topic. The second part of the expression downweights terms
that have high probability of appearing in all topics. This term score is inspired by
the TFIDF term score used in information retrieval [Baeza-Yates and Ribeiro-Neto
(1999)]. Further discussion on ways to examine the quality of uncovered topics can
be found in the supplement [Tan, Chan and Zheng (2016)].

We denote LDA + Regression and Pairwise-Link-LDA by LDA + Reg and
PLLDA respectively. Methods with subsampling have a “S” added at the end, for
example, LMVS denotes LMV with subsampling. If publication times are taken
into account, we add a “(t)” at the end.

7.1. Cora dataset. The Cora dataset from the R package lda [Chang (2012)]
has 2410 documents, 4356 links and a vocabulary of 2961 terms. This dataset is
relatively small and it allows us to compare the predictive performance and CPU
times of Algorithms 1 and 2. We randomly divide the dataset into five folds; each
fold is used in turn as a test set and the remaining folds are used for training.
During training, only documents in the training set and links within them are used.
We investigate the predictive performance of different models for number of topics
K ranging from 5 to 13. For Algorithm 2, we set the minibatch size as 200.
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FIG. 3. Cora: Average predictive ranks and CPU times in seconds for different methods.

7.1.1. Predictive performance and computation times. The average predictive
ranks and CPU times of different approaches are shown in Figure 3. We consider
the hyperparameter η, which controls the concentration of the topic distribution,
to be 0.1 or 0.5 (if η is small, the probability distribution on the vocabulary will be
concentrated on a small number of terms). Except for the RTM, predictive perfor-
mance of all other methods are better when η is 0.5 as compared to 0.1. LMV
achieved significantly better predictive performance than the other models and
attained 60–76% improvement in predictive rank over baseline.4 Predictive per-
formance of Algorithm 2 is close to that of Algorithm 1 even with subsampling
and computation times reduced, particularly when η = 0.1. For large datasets, Al-
gorithm 2 presents an avenue for overcoming computational and memory con-
straints while maintaining the same level of predictive performance. Predictive
performance for the LMV stabilizes at around 9–11 topics when η = 0.5. In the
following, we concentrate on the fitted models corresponding to K = 9 and η = 0.5
for one of the folds.

7.1.2. Evaluating accuracy of Algorithm 2. Repeating the LMVS (Algo-
rithm 2) runs 50 times, we compute the average visibilities and blockmodel over
these 50 runs and plot these quantities against corresponding values estimated by
LMV (Algorithm 1) in Figure 4. There is very good agreement between the visi-
bilities and blockdiagonal elements estimated by Algorithms 1 and 2. For the left
plot, there is greater variation near zero, while the biggest two values appear to be
slightly overestimated by LMVS in the right plot.

7.1.3. Visibilities of individual articles. Figure 5 plots the visibility of docu-
ments in the training set estimated by Algorithm 1 against their citation counts.
There is a general trend of visibility increasing with citation counts. Hence, the

4Predictive rank computed by random guessing is n+1
2 , where n is the number of documents in

the training set.
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FIG. 4. Cora: Visibilities (left) and blockmodel elements (right) estimated by LMVS and averaged
over 50 runs against corresponding qualities estimated by LMV. Points lying close to the dotted line
(y = x) indicate good agreement between LMV and LMVS.

topic-adjusted visibility metric is capturing some degree of popularity. However,
the relationship between visibility and citation counts is not monotone; a higher
citation count does not necessarily imply a higher measure of visibility. The visi-
bility metric τd ′ captures a complex mix of attributes of document d ′ that accounts
for the variation in citation probability among documents with similar topic pro-
portions. These include but are not limited to popularity.

To illustrate how the incorporation of visibilities improves predictive perfor-
mance, let us consider as an example the test document: “Some extensions of the
k-means algorithm for image segmentation and pattern classification.” This article
cited two documents from the training set: (1) A Theory of Networks for Approx-
imation and Learning and (2) Self-Organization and Associative Memory. The
citations, estimated visibility and predictive ranks of these documents are given
in Table 1. The predictive ranks assigned by LMV and LMVS are significantly
lower than the other methods. Interestingly, if visibility is not taken into account,
the ranking by LMV will be similar to Pairwise-Link-LDA (120 and 357 for doc-
uments indexed 1 and 2 in order). However, factoring in the visibilities of these
documents, which are much higher than the average of 0.42, improves predictive
ranks tremendously. On average, LMV improves predictive performance by more
than 30% over RTM, PLLDA and LDA + Reg when η = 0.5. This provides an
indication of the favorable performance of LMV in article recommendation.

FIG. 5. Cora: Visibility against number of citations for each document in training set.
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TABLE 1
Cora: Citations, visibility and predictive ranks of two cited documents

Index Citations τ̂ LDA + Reg RTM PLLDA LMV LMVS

1 26 0.96 98 108 120 10 9
2 48 0.98 385 1082 336 53 61

7.1.4. Citation behavior among fitted topics. Figure 6 provides a visualization
of the LMV fitted using Algorithm 1, where (a) shows the estimated blockmodel
B and top words of each topic and (b) shows the citation activity in the train-
ing set. Figure 6(b) is based on raw citation counts and tends to be dominated
by topics with high citation frequency or a large number of publications. On the
other hand, Figure 6(a) shows the citation probabilities within/between topics. It
provides a more structured and unbiased understanding of the citation tendencies
within/between topics. From Figure 6(a), topic 2 tends to be cited strongly by top-

FIG. 6. (a) Shows the citation patterns between different topics and the topic-to-topic citation ten-
dencies. Each element Bij is represented by a belt from topic i to j and the width of the belt is
proportional to Bij . The value on the inner arc of topic i represents the probability that topic i will
cite any topic, while the value on the outer arc represents the total probability that topic i will cite
or be cited by any topic. The top 7 words of each topic are displayed in word clouds and the font size
is proportional to the term score. (b) Shows the actual citation activity among different topics. The
width of each belt is proportional to the number of citations between the topics connected by the belt.
The value on the inner arc is the total number of citations originating from a topic, while the value
on the outer arc is the total number of citations coming from and going to that topic. The direction
of the belts can be inferred from the presence (at the origin) and absence (at the destination) of the
inner arcs.
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ics 3, 5–7 and 9. It also tends to cite nearly all other topics besides itself. Topic 9
tends to cite topics 1 and 2, and topic 8 has the highest tendency to cite documents
within its own topic. Information such as this is helpful in understanding how cita-
tion behavior varies from one scientific area to another, and even among different
research fields within a discipline.

7.2. KDD high energy physics dataset. The high energy physics (HEP) dataset
for the KDD Cup 2003 competition [see Gehrke, Ginsparg and Kleinberg (2003)]
contains 29,555 papers added to arXiv from 1992–2003 and is available at
http://www.cs.cornell.edu/projects/kddcup/index.html. We consider the abstracts
of 25,224 papers added between 1992–2001 and the 271,838 citations among
them as the training set. We use 4064 papers which have cited at least one pa-
per from the training set and were added between 2002–2003 as the test set. There
are 60,914 citations from the test set to the training set. The vocabulary consists of
7211 terms after stemming and removal of stop words and infrequent terms. We
have the dates when the papers were published online at the library of the Stan-
ford Linear Acceleration Center (SLAC), as well as the year and month in which
the papers were added on arXiv. As some papers were first published on SLAC
and later added on arXiv or vice versa, we use the earlier of the two dates as the
date when a paper is first available. Memory constraints render running the algo-
rithms for Pairwise-Link-LDA and LMV in batch mode infeasible. Hence, we only
use Algorithm 2 and Pairwise-Link-LDA is also implemented using our proposed
subsampling strategy. A minibatch size of 2000 was used.

7.2.1. Predictive performance and computation times. Figure 7 shows the av-
erage predictive ranks and CPU times5 of different approaches for number of top-
ics K ranging from 10 to 30 and η ∈ {0.5,0.1,0.01}. LMV provides better predic-
tive performance than Pairwise-Link-LDA and RTM for all η and K , and taking
into account publication times yields significantly better predictions. This is likely
due to more accurate estimation of the visibilities, as documents published at later
dates are not penalized for not being cited by documents published before them.
LMVS(t) achieved 73–83% improvement over baseline and optimal predictive per-
formance at K = 20 and η = 0.5. In the following, we consider the model fitted by
LMVS(t) when K = 20 and η = 0.5.

7.2.2. Interpreting citation trends in HEP. Figures 8 and 9 provide visualiza-
tions of the estimated blockmodel and the citation activity in the training set re-
spectively. These plots may be read as in Figure 6. The blockmodel in Figure 8

5LDA was run in batch mode and CPU times are for model fitting only. We do not compute
predictive ranks for LDA + Reg, as logistic regression for this dataset is prohibitively expensive.
Note that LDA may also be implemented with stochastic variational inference.

http://www.cs.cornell.edu/projects/kddcup/index.html
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FIG. 7. KDD: Average predictive ranks (first row) and CPU times in hours (second row) of different
approaches. The columns correspond to η ∈ {0.5,0.1,0.01} from left to right.

indicates high probability of within-topic citation generally, while across-topic ci-
tation is much weaker in comparison. Figure 9 indicates that a large proportion of
citations in the corpus occurred within topics 1–2.

Next, we focus on topics 1–4, 6 and 8–9 where interconnectivity is higher
among them. Figure 10 provides a visualization of the citation patterns between
these topics and reveals some interesting trends in the citation landscape of HEP.
First, there is a strong tendency for within-topic citations, while the probability of
across-topic citations is much weaker. However, the across-topic citation relations

FIG. 8. Blockmodel B .
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FIG. 9. Citation activity.

that do exist are unsurprising, as theoretical HEP deals with the fundamental as-
pects of Particle Physics and there are vast and deep links between these topics.
It is also worth noting that certain topics do not have a high tendency to cite each
other (e.g., topics 3 and 6) even though there are overlaps in the body of knowledge
(e.g., supersymmetries and string theory). A possible reason is that HEP physicists
may not always be aware of one another’s work (especially among the 3 main

FIG. 10. KDD: Visualization of citation patterns for topics 1–4, 6 and 8–9. Width of arrows are
proportional to the citation strengths in the estimated blockmodel. Only elements greater than 0.001
are visualized. Dashed arrows represent elements less than 0.005. Top 8 words of each topic are
shown. Font size within each topic is proportional to the term score.
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groups: experimental, phenomenological and theoretical). The articles from these
groups have a different focus and may constitute different topics.

Topics 1 and 2 are both associated with string theory, which claims that the
fundamental objects that make up all matter are strings (like rubber bands) in-
stead of particles [e.g., Gubser (2010)]. The emphasis of topic 1 is on branes,
which are multi-dimensional membranes that generalize the concept of particle
(zero-dimensional brane) and string (one-dimensional brane) to higher dimen-
sions. Topic 2 is associated with gauge theory and orbifold, which are both related
to geometry. Duality, an important concept in string theory, relates branes (topic 1)
to gauge theory and supersymmetry (topic 2). Thus, the citation relationship be-
tween topics 1 and 2 is expected. From Figure 10, these two topics also have a
relatively higher probability of receiving citations from other topics. This could be
socially driven by the authors’ inclination to cite papers from which their respec-
tive topics originated. There may also be a tendency for researchers to appeal to
popular topics and cite earlier successful theories such as the gauge theory, which
is the fundamental edifice of high energy particle physics.

The prefix “super” is found in topics 1, 2 and 6. It is associated with super-
symmetric theories which attempt to unify bosons and fermions under one gen-
eralized scheme by relating fractional spin to integral spins, and finally unifying
force and matter particles. Links from topic 6 to topics 1 and 2 are therefore rea-
sonable and expected. Topics 1 and 3 are clearly related, namely, brane, string and
gravity. String theory holds the promise to unify gravity to the other fundamental
forces in Physics at the expense of introducing more dimensions that need to be
compactified mathematically. In the case of topic 4, research concerning entropy
may be cited in relation to the event horizon of the black hole and this constitutes
within-topic citations. Mini black holes may also be regarded as a collection of
dbranes, resulting in citations from topics 4 to 1. For future investigation, it may
be of interest to narrow the study to a certain HEP group (e.g., experimental, phe-
nomenological or theoretical) and a period when a particular topic is in fashion.

7.2.3. Visibilities of individual articles. As in Figure 5, Figure 11 plots the
estimated visibility of documents in the training set against their citation counts.
There is a general trend of visibility increasing with citations as before. However,

FIG. 11. KDD: Visibility against number of citations for each document in the training set.
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the estimated visibility for each citation count now varies over a wide range. This
range increases as the citation count increases from 0 but starts to gradually de-
crease as the citation count exceeds 20. It is more evident here than in Figure 5
that visibility correlates with but does not increase monotonically with citations.
Hence, the visibility metric captures a complex mixture of attributes that includes
but goes beyond popularity.

7.2.4. Application: Article recommendation. We use an example to illustrate
the advantages that LMV can provide in article recommendation. Using the ab-
stract of the article “Open Strings” from the test set as a query, we compute pre-
dictive probabilities of links from this article to each document in the training set
using LMV, Pairwise-Link-LDA and RTM. In practice, key words or a short para-
graph of text may be used as a search query if the abstract or manuscript is not
available. Figure 12 lists the top fifteen recommended articles for each approach
based on predictive probabilities (articles ranked closer to the top have higher prob-
abilities of a link). Information such as topic proportions (in the form of barplots),
title, citation counts, year of publication and visibility metric (for LMV) are also
provided. This is a realistic representation of recommendation systems that can be
constructed based on our proposed model.

In this example, five of the fifteen articles (marked by red asterisks) recom-
mended by LMV were actually cited, while none recommended by RTM or
Pairwise-Link-LDA was cited. Comparing the topic proportions of the test article
with those of the recommended articles, we note that RTM tends to recommend
articles with high proportions of topic 9. This is likely because RTM only allows
within-topic interaction and the test article exhibits high proportions of topic 9.
On the other hand, Pairwise-Link-LDA and LMV are able to model across-topic
citation tendencies and the probability of topic 9 citing topics other than itself is
quite high (see Figures 8 and 10). Hence, Pairwise-Link-LDA recommends articles
mainly from topics 1 and 3, while articles recommended by LMV exhibit a higher
degree of mixing with topics from 1–3 mainly and smaller proportions of some
other topics. The articles recommended by LMV tend to have more citations than
those recommended by Pairwise-Link-LDA and RTM. This is because the visibil-
ity metric captures a certain degree of popularity as shown in Figure 11. However,
articles are not ranked based on citations alone; both topic compatibility and article
visibility play a part in the ranking. For LMV, there is also a good mix of articles
published from 1993–2000. While our model does not explicitly model time from
publication, the visibility metric accounts for this to a certain degree in that old
articles which have accumulated many citations will have high visibility, but so
will recent articles which have managed to garner a proportionately smaller num-
ber of citations. This example highlights some of the advantages that LMV has to
offer for article recommendation such as being able to identify relevant multi-topic
articles and taking article visibility into account in rankings.
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FIG. 12. KDD: Top 15 articles recommended by LMV, Pairwise-Link-LDA and RTM. Asterisks
indicate articles actually cited by test article. This figure is intended to be read in color (color version
available in online publication).

7.2.5. Visibility as a topic-adjusted measure. We examine the behavior of the
visibility measure by plotting the estimated visibilities by topic and by year of
publication in Figure 13. We note that the visibilities do not vary radically from
one topic to another and are in fact much more comparable across different topics
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FIG. 13. KDD: First row shows a barplot of the average number of citations in each topic (left)
and boxplots of the visibilities of training documents classified by topic (right). Second row shows
a barplot of the average number of citations in each year (left) and boxplots of the visibilities of
training documents classified by year (right).

than the average number of citations per article. The boxplots of visibilities by year
does not display any systematic correlation with time of publication as well. Inter-
estingly, even as the average number of citations per year is decreasing rapidly for
articles published in the later years, the visibilities are not showing any decreasing
trend. This could be due to the tendency to cite the newest and latest research.

Figure 14 is a barplot showing the topic proportions of documents with 40 cita-
tions. We have fixed the number of citations in order to study how visibility varies
with topic proportions. As visibility increases, there is a transition in the color of
the bars from being dominantly blue to red. That is, for the same citation count
(40 in this case), the estimated visibility of an article from topics with low cita-
tion rates (red) tends to be greater than an article from topics with high citation
rates (blue). This phenomenon demonstrates that the visibility metric adjusts for
differences in citation frequency among different topics by assigning higher visi-
bilities to articles from topics with lower citation rates for the same citation count.
For example, consider an article from Mathematics and another from Molecular
Biology having the same number of citations. As the citation rate in Mathematics
is much lower than in Molecular Biology, it is inappropriate to compare the raw
citation counts of these articles directly. Citations in Mathematics ought to be as-
signed higher weights and this can be achieved through normalization procedures,
for example, by dividing citation counts by the average number of citations per
article for a discipline [Radicchi, Fortunato and Castellano (2008)]. However, the
choice of a suitable reference standard is a very intricate issue. The topic-adjusted
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FIG. 14. KDD barplot: Each bar represents the topic proportions of a document with 40 citations.
The documents are arranged by visibility in increasing order. The legend indicates the color repre-
senting each topic. The topics are ordered by average number of citations received; topic 1 has the
highest and topic 20 the lowest average number of citations. This figure is intended to be read in
color (color version available in online publication).

visibility metric that we propose offers an alternative to tackle the problem of field
variation.

8. Conclusion. Citation activities of scientific applications and other article-
centric activities (shares on social web, for instance) are of interest for the evalua-
tion of scientific merit and impact of published research. In particular, the citation
network among published articles is a special case of a relational network. Com-
munities detected in a citation network have been shown to correlate well with
scientific areas and research topics. A unique feature of a citation network is that
content information is available on individual nodes, which is arguably influenced
by the same mixed group structure underpinning the citation connectivity. Com-
bining content and connectivity information in a citation network may alleviate
the multi-modality issue of community detection in network analysis. On the other
hand, communities detected in the citation network regularize the topic modeling
on the content information.

The probability of being cited for a particular article is determined not only
by its membership in one or more topic domains and the topic-level citation rates
(within and between domains), but also factors that are unique to this publication
such as timing, visibility of the authors, and novelty and importance of the results.
In this paper we introduce a model for citation networks that infers the topic do-
main structure of the articles and their citation links, and estimates the citation
activity rates at both the topic domain level and the article level. For each article,
we introduce a latent variable that serves as a topic-adjusted visibility metric of
this article. A higher value of this latent metric indicates that this article is more
likely to be cited than other articles that are located close by in the topic domain.
As we have shown in our application to real datasets, this metric correlates with
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raw citation counts but is not merely a measure of popularity, as it accounts for
variation in activity levels among different topics. The proposed model leads to
significant improvement in link predictions, which can be helpful in article recom-
mendation. It provides a better visibility metric for comparing individual scientific
publications across different fields.

The inference of the proposed model is realized via a novel variational Bayes
algorithm. For real-world large document networks, we propose a subsampling
strategy that enables the use of stochastic variational inference, which is compu-
tationally efficient and achieves a similar level of predictive performance as the
variational Bayes algorithm.
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SUPPLEMENTARY MATERIAL

Supplement to “Topic-adjusted visibility metric for scientific articles”
(DOI: 10.1214/15-AOAS887SUPP; .pdf). We provide additional material to sup-
port the results in this paper. This includes further discussions, detailed derivations,
illustrations and a simulation study.
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