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‘We propose a novel approach for modeling multivariate longitudinal data
in the presence of unobserved heterogeneity for the analysis of the Health and
Retirement Study (HRS) data. Our proposal can be cast within the framework
of linear mixed models with discrete individual random intercepts; however,
differently from the standard formulation, the proposed Covariance Pattern
Mixture Model (CPMM) does not require the usual local independence as-
sumption. The model is thus able to simultaneously model the heterogeneity,
the association among the responses and the temporal dependence structure.

We focus on the investigation of temporal patterns related to the cognitive
functioning in retired American respondents. In particular, we aim to under-
stand whether it can be affected by some individual socio-economical char-
acteristics and whether it is possible to identify some homogenous groups of
respondents that share a similar cognitive profile. An accurate description of
the detected groups allows government policy interventions to be opportunely
addressed.

Results identify three homogenous clusters of individuals with specific
cognitive functioning, consistent with the class conditional distribution of the
covariates. The flexibility of CPMM allows for a different contribution of
each regressor on the responses according to group membership. In so doing,
the identified groups receive a global and accurate phenomenological charac-
terization.

1. Introduction. The Health and Retirement Study (HRS) is conducted by the
University of Michigan every two years [Juster and Suzman (1995)]. This panel
study surveys a representative sample of more than 26,000 Americans with 65
years and older, with the aim of exploring the social, economic and health changes
of the respondents through an extensive questionnaire. It is a multivariate longitu-
dinal study where multiple responses on the same individual are measured over a
set of different occasions or times and, as such, it has a three-way structure (see
the next section for a detailed description of the data).

One important goal of the study is the investigation of the cognitive functioning
of the respondents in relation to the time and to potential socio-economic covari-
ates, so that government policy interventions could be addressed.
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The cognitive functioning of an individual is a complex concept and it is mea-
sured through several items of the questionnaire in the different times. The asso-
ciation between the repeated measurements in a given occasion and the temporal
evolution of the cognitive functioning of the individuals are two important aspects
that a flexible model should be able to describe. A further issue that should be
accounted for is the unobservable heterogeneity between subjects that may not
be explained by the covariates. For instance, participants of the HRS study could
potentially have some cognitive impairments or dementia with a different tem-
poral pattern of their cognitive functioning. Thus, heterogeneous individuals may
belong to latent groups or classes that differ because they may exhibit different
temporal patterns of their cognitive functioning and different association among
the responses that define their cognitive status.

A variety of approaches for modeling multivariate longitudinal data have been
proposed in the statistical literature in recent years. They can be disentangled into
multivariate longitudinal factor models and random effects models [see, for a com-
prehensive review, Verbeke et al. (2014) and Bandyopadhyay, Ganguli and Chat-
terjee (2011)].

In the former family of methods, it is assumed that one or more underlying
variables explain the association among the multiple responses, thus reducing the
dimensionality problem. The approach can be cast within the wide framework of
the Structural Equation Modeling (SEM). See, for example, Ferrer and McArdle
(2003), Fitzmaurice et al. (2009), Timmerman and Kiers (2003) and Vasdekis,
Cagnone and Moustaki (2012), among others.

Random effects models or growth curve models assume that repeated mea-
surements of a particular response represent realizations of a latent subject-
specific evolution through the inclusion of subject-specific parameters [see Laird
and Ware (1982) and Reinsel (1984)] that typically have a continuous distribu-
tion. These models belong to the class of generalized linear mixed models [see
Goldstein (1995), McCulloch (2008), Muthén (2002) and Skrondal and Rabe-
Hesketh (2004)].

All these methods are developed under the implicit assumption of homogenous
individuals over time. In order to deal with heterogeneous observations, as it is in
our case, the simplest idea consists of the inclusion of individual-specific random
intercepts that have a discrete distribution. These models are forms of latent class
models [see Lazarsfeld and Henry (1968) and Vermunt and Magidson (2003)] and
mixture models [Fraley and Raftery (2002), McLachlan and Peel (2000), Quandt
and Ramsey (1978)]. In longitudinal data analysis, the random intercepts are typi-
cally assumed to be time-varying, that is, they are associated to latent temporal tra-
jectories via latent autoregressive models or, alternatively, latent Markov models
[Bartolucci, Farcomeni and Pennoni (2012)]. See Bartolucci, Bacci and Pennoni
(2014) for a nice review and comparison between the two formulations.

The framework of discrete (time-constant or varying) random intercepts for
modeling heterogeneity includes mixture random effect models for univariate lon-
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gitudinal data [Verbeke and Lesaffre (1996)], recently extended to deal with mul-
tivariate and mixed outcomes by Proust-Lima and Jacqmin-Gadda (2005) and
Proust-Lima, Amieva and Jacqmin-Gadda (2013), and growth mixture models,
where individuals are grouped in classes having a specific growth structure vari-
ability within them [see Muthén and Asparouhov (2009)].

In a model-based clustering perspective, Manrique-Vallier (2014) introduced a
clustering strategy based on a mixed membership framework for analyzing dis-
crete multivariate longitudinal data. For continuous responses, De la Cruz-Mesia,
Quintana and Marshall (2008) proposed a mixture of hierarchical nonlinear mod-
els for describing nonlinear relationships across time. McNicholas and Murphy
(2010) introduced a family of Gaussian mixture models by parameterizing the
class conditional covariance matrices via a modified Cholesky decomposition, that
allows to interpret the observations as derived by a generalized autoregressive pro-
cess and to explicitly incorporate their temporal correlation into the model. Both
approaches focus on model-based clustering of a single response measured on
a set of different occasions. Alternatively, Leiby et al. (2009) proposed a multi-
variate growth curve mixture model that groups subjects on the basis of multiple
symptoms measured repeatedly over time. They developed their approach by as-
suming a within-class latent factor structure explaining the correlations among the
responses. Alternatively, nonparameric Bayesian approaches have been becoming
increasingly popular for modeling longitudinal data thanks to the Dirichlet pro-
cess prior that allows for an infinite dimensional number of classes, thus capturing
the heterogeneity in a very flexible way [see, among others, Brown and Ibrahim
(2003), Kleinman and Ibrahim (1998), Miiller and Rosner (1997), Miiller et al.
(2005) and the references therein].

In this paper, we propose a model for multivariate longitudinal data which is
based on a mixture of latent generalized autoregressive processes with order m
(m < T, where T is the number of observed time points). In our formulation the
observable variables are not required to be independent given the latent states (lo-
cal independence assumption): in fact, we account simultaneously for the associa-
tion between the responses and for the unobserved heterogeneity between subjects
in the dynamic observational process. To the best of our knowledge, the classi-
cal approaches for the analysis of longitudinal data hardly account simultaneously
for the three goals of the analysis, which arose from the three layers of the data
structure: heterogeneous units, correlated occasions and dependent variables.

In what follows, we will present our proposal in three gradual steps in order to
sequentially address the three issues, so as to finally define the complete model we
can refer to as the Covariance Pattern Mixture Model (CPMM). Each component
of the mixture corresponds to a state of a discrete random intercept and identifies
a group of individuals with the same temporal profile and similar effect of the
covariates. In this perspective, the proposed model belongs to the class of mixtures
of regression models [Griin and Leisch (2007)]. As such, it can be also viewed as
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an extension of the proposal of McNicholas and Murphy (2010) in the multivariate
context. The proposed approach will be illustrated in Section 3.

In order to make inference on the proposed model, we adopt the matrix-normal
distribution [Dutilleul (1999)] for modeling the density of the outcomes observed
in the different times conditionally to each class of observations. In so doing, we
assume equally spaced and balanced data across subjects and with regard to the
responses at each occasion. Each class-distribution is characterized by the sepa-
rability condition of the total variability into two sources related to the multiple
attributes and to the temporal evolution via the Kronecker product, in the same
perspective of Naik and Rao (2001). Although seemingly complex, the model
can be fitted using an expectation—maximization (EM) algorithm. Compared to
other methods for the analysis of multivariate longitudinal data, the algorithm con-
vergence is pretty fast, despite the dimensionality of the problem. The observed
information matrix can be derived numerically and exploited to obtain standard
errors for the regression coefficient estimates. Estimation details are presented in
Section 4. In the supplementary material, a large simulation study is illustrated,
aiming at validating the proposed model in terms of robustness and accuracy.

The flexibility of the proposed model and the advantages with respect to al-
ternative proposals are illustrated through the application to the longitudinal data
on cognitive functioning of the HRS in Section 5. A discussion of the model re-
sults in relation to their political and social implications is presented in Section 6.
Section 7 contains some final remarks on the proposed approach.

2. HRS data description. We consider data coming from the Health and
Retirement Study (HRS) started in 1992 and conducted by the University of
Michigan (USA) every two years. It is a panel study that surveys a repre-
sentative sample of more than 26,000 Americans of age 65 years and older
(http://hrsonline.isr.umich.edu/) with the aim of collecting information about in-
come, work, assets, pension plans, health insurance, disability, physical health and
functioning, cognitive functioning and health care expenditures. The HRS allows
to explore the health changes that individuals undergo toward the end of their work
lives and in the years that follow. This survey comprises a more extensive study on
Aging, Demographics and Memory (ADAMS) on a wave of 856 subjects, selected
from the total sample frame of approximately 26,000 HRS individuals.

A description of the scientific, public policy and organizational background of
the study can be found in Juster and Suzman (1995), whereas the details of the
ADAMS sample design are described in Heeringa et al. (2007).

Many aspects have been investigated on this database so far. Langa et al. (2005)
linked the ADAMS dementia clinical assessment data to the wealth of available
longitudinal HRS data to study the onset of Cognitive Impairment, Non Demented
(CIND), as well as the risk factors, prevalence, outcomes, and costs of CIND and
dementia.
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McAurdle, Fisher and Kadlec (2007) used contemporary latent variable models
to organize information in terms of both cross-sectional and longitudinal infer-
ences about age and cognition, with the aim of better describing age trends in
cognition among older adults in the HRS study from 1992 to 2004.

Furthermore, Plassman et al. (2008) estimated the prevalence of cognitive im-
pairment without dementia in the United States and determined longitudinal cog-
nitive and mortality outcomes. In Steffens et al. (2009) the national prevalence of
depression, stratified by age, race, sex and cognitive status, was estimated. Logistic
regression analyses were performed to examine the association of depression and
previously reported risk factors for the condition.

In our study, one of our aims is to investigate temporal patterns of the cognitive
functioning in order to understand whether it can be affected by some individual
characteristics and whether it is possible to identify some homogeneous groups of
respondents that share a similar cognitive profile.

In order to accomplish this objective, we consider the sample of 359 individu-
als among 856 subjects, for whom the information is complete without missing in
some entries in the years from 1998 to 2008. This sample is a cohort followed in
all waves without refreshment: the same individuals were surveyed from 1998 to
2008 every two years, for a total time span of 10 years and 6 time points (i.e., in
1998, 2000, 2002, 2004, 2006, 2008). Three responses are investigated, namely,
the “episodic memory” (EM), the “mental status” (MS) and the “mood” (MO);
they represent a summary of several assessment questions. Their scores are posi-
tively related to the performance of the individuals in the corresponding dimension.
The observed mean profile plots of the three responses in Figure 1 show different
patterns in times, suggesting the need of a proper model able to account for its
dynamic.

The cognitive functioning in a given time may indeed depend on its past values
measured in previous occasions. The correlation across time points (see Table 1)
suggests that there is a temporal association, since the values are pretty high, par-
ticularly when considering consecutive or close moments.

Episodic memory Mental status Mood
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1998 2000 2002 2004 2006 2008 1998 2000 2002 2004 2006 2008 1998 2000 2002 2004 2006 2008

FIG. 1. Individual trajectories (dashed black lines) and mean profiles (solid red lines) of the three
responses during the 6 time points.
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TABLE 1
Temporal correlation matrix

1998 2000 2002 2004 2006 2008

1998  1.000

2000  0.638  1.000

2002  0.638  0.680  1.000

2004  0.603 0.643 0.708  1.000

2006 0572 0622 0686 0.715  1.000

2008  0.564  0.633 0.665 0.702  0.733 1.000

Furthermore, Table 2 shows that an association among the different aspects of
the cognitive ability is present too: the considered responses have a mild but sig-
nificant correlation (all p-values < 2.2e—16).

We also consider some other demographic and socioeconomic information on
the respondents that may have an effect on the responses, in particular:

e gender, coded as “0” if males and as “1” if females;

e age, taken as numeric;

e level of education, in terms of years of school;

e health self-rating, coded as “1” if considered “excellent,” “2” if “very good,”
“3” if “good,” “4” if “fair” and “5” if “poor.”

Table 3 shows some descriptive statistics of the considered covariates. The ma-
jority of the respondents are females (57.1%), with an average age of 74.3 in 1998
(first time point considered). The average number of years of education is about
11, while the average rating of perceived health is about 2.8 in 1998.

The aim is to fit a model that is able to capture the temporal evolution of the
cognitive functioning, to explain the association among the responses and to si-
multaneously account for unobserved heterogeneity among the units. The selected
covariates may help in the characterization of the phenomenon, so that ad hoc
interventions to take care of elderly people needs can be made.

TABLE 2
Response correlation matrix

Episodic Mental

memory status Mood
Episodic memory 1.000
Mental status 0.520 1.000

Mood 0.200 0.219 1.000
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TABLE 3
HRS data: Descriptive statistics of the covariates

Variable Details % Mean Standard deviation
Gender Female 57.1 - -

Male 42.9 - -
Age (in 1998) - 74.3 5.6
Education (in years) - 11.1 6.2
Health self-rating ~ (in 1998) - 2.8 1.1

3. Model formulation.

3.1. Modeling the unobserved heterogeneity. We first consider the problem of
modeling the unobserved heterogeneity in the univariate context, where the num-
ber of responses, say p, is p = 1. The extension to p > 1 will be developed in
Section 3.3. Suppose we observe a continuous response on # individuals and on
each of them, observations are taken over T time points. We denote with y;, the
response for subject j (j =1,...,n)atoccasiont (t =1,...,T) and with X, the
corresponding vector of g covariates. The simple linear regression model

Vii=o+x)0+ej,

with intercept «, regression coefficients 6 and Gaussian residuals &, ~ ¢ (0, 082),
could be extended to account for the unobserved heterogeneity by including
individual-specific random intercepts and (or) random slopes. A variety of mixed
models can be defined depending on whether continuous or discrete random ef-
fects are considered [Laird and Ware (1982)]. One aim of the HRS data analysis
is the identification of groups of subjects with similar, say, cognitive functioning
that could potentially correspond to specific mental health conditions. For this rea-
son, we consider a discrete parameterization for the random effects. Let o; be the
subject-specific random intercept that may assume k possible values, denoted by
6oi, with some probabilities, say m;, with Zle mi=1fori=1,...,k. This is
equivalent to assuming the mixture model

k
(1) fOj0 =Y mid 0o +x),6.07).
i=1

A closer look to (1) shows that this formulation is barely useful, unless we allow
either regression coefficients @ or the variance o, (or both) to be somehow depen-
dent on the state of «, since otherwise the heterogeneity structure could be hardly
captured by the model. Thus, a general formulation of a full heterogeneous model
is

) Vjr =060 + XJT,O i+ &ijr with probability m;,
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where &;;; ~ ¢ (0, aiz). Thus, we obtain

k
3) Fin =Y mid(0o +x,,0i.07).
i=1

This formulation is based on the assumption that, for every unit j, the response at
the different occasions is conditionally independent given the covariates and the
individual-specific intercept denoting the group membership. This condition, well
known as local independence, is quite restrictive in practice, since the temporal
observations could be highly correlated, especially with the most recent past.

3.2. Modeling correlated temporal data. The most common formulation for
modeling the temporal correlation in longitudinal data consists of introducing con-
tinuous time-varying individual random effects that follow an autoregressive latent
model of order 1, AR(1) [Chi and Reinsel (1989)] with correlation coefficient p:

-
yjt:ajt+xjt0+8j[,
with
a1 =uji,
Ujr =0j—1)P + UjtOy, t=2,...,T

and uj; ~ ¢(0, 1). The model could be extended to allow for random slopes be-
sides the random intercepts in a very parsimonious way [see Goldstein (1995),
McCulloch (2008) and Skrondal and Rabe-Hesketh (2004)].

When «; has a discrete formulation (such as in our case) the temporal corre-
lation can be modeled by assuming an autoregressive process on the error term
&ijr. Here we assume that ¢;, follows a latent Generalized AutoRegressive (GAR)
process of generic order m:

min(m,t—1)

4) &ijr = Z (= Pit(t—s))€ij(t—s) T UjiVdiz,

s=1

where d;; are time-varying constants representing the innovation variances. In (4)
the summation is empty and its value is zero if the lower bound is greater than
the upper bound min(m, ¢t — 1). m is the order of the process and it can range in
{0,1,..., T — 1}. The value m = 0 means temporal independence, m = 1 denotes
a generalized autoregressive process of order 1, and so on, until the full model with
m =T — 1 that corresponds to the less interesting situation of not restricted tem-
poral structure. Notice that when d;; = d; forall t =1,..., T the GAR coincides
with the AutoRegressive (AR) process of order m.

The model (2) without covariates extended with the GAR structure in (4) has
been proposed by McNicholas and Murphy (2010) and applied to yeast sporulation
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time course data. The authors developed a family of mixture models by observ-
ing that the generalized autoregressive process in (4) is equivalent to assuming a
modified Cholesky decomposition of the T-dimensional temporal covariance ma-
trix, say ®. The modified Cholesky decomposition [Newton (1988), Pourahmadi
(1999)] establishes that a matrix @ is positive definite if and only if there exits a
unique unit lower triangular matrix U, with 1’s as diagonal entries, and a unique di-
agonal matrix D such that U®U " = D or, equivalently, ®~' = U D~'U. More
specifically, the matrix U takes the form

- 1 0 0 -
—p12 1 0 -0 - 0
_p1’3 —p2,3 1 0 D) .. 0
U= 0 ,
_,01,[ —p27[ D) .. 1
0
L—p1r —p27 -+ e+ e+ —pr—17 1A
while D is a T x T diagonal matrix with positive entries d; (t =1, ..., T), that

represent the innovation variances.
Formulation (2) together with (4) is equivalent to assuming the following mix-
ture model for the T'-dimensional vector y:

k
- -1
(5) fay) =Y meBoi +X;0;, (U D7'U) ),
i=1
where X; is the matrix of g covariates of dimension 7" x g and 6, is the
T -dimensional vector containing the intercepts. To give more flexibility to the
model, we allow for T time-varying intercepts for each group so that fp; =

[Boi1, ..., B0iT].

3.3. Modeling multivariate longitudinal data: Covariance pattern mixture mod-
els. When p > 1, a common assumption for modeling multivariate longitudinal
data is the local independence, that is, the observed variables are assumed to be
mutually independent given the latent states. We do not require the local inde-
pendence between the responses, as we explicitly model their association. This is
achieved by extending the model in the form of a matrix-variate regression model
[Viroli (2012)] with a discrete random intercept in order to take into account the
correlations among the p responses:

(6) Y;=0pc' +X;0; +E;  with probability 7;,

where Y; is a matrix of continuous responses of dimension 7' x p, X ; is the matrix
of g covariates of dimension 7 X g, ¢ is a p-dimensional vector of ones, ®; is
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a matrix of dimension g x p containing the regression coefficients and E;; is a
T x p matrix of error terms distributed according to the matrix-normal distribution
[Dutilleul (1999)]. This probabilistic model can be thought of as an extension of
the multivariate Gaussian distribution for modeling continuous random matrices
instead of the conventional vectors. Let ® be a 7 x T covariance matrix containing
the variances and covariances between the T times and €2, a p X p covariance
matrix containing the variance and covariances of the p responses. The matrices ®
and €2 are commonly referred to as the between and the within covariance matrices,
respectively. The T x p matrix-normal distribution is defined as

f(E|®, Q) = Qn) TP 0|2 |1Q T2 exp{-Jr @ ' EQT'ET)

or, in compact notation, E ~ ¢(TX”) 0, o, Q).

It is easy to show that a matrix-normal distribution has an equivalent represen-
tation as a multivariate normal distribution of dimension 7' x p, with covariance
matrix, say %, separable in the form ¥ = ® ® Q (where ® is the Kronecker prod-
uct). The separability condition has the twofold advantage of allowing the model-
ing of the temporal pattern of interest directly on the covariance matrix ® and of
representing a more parsimonious solution than that of the unrestricted X, with a
number of parameters equalto p(p+1)/24+T (T +1)/2 instead of pT (pT +1)/2.
Moreover, notice that the restricted model under the local independence assump-
tion referred to the temporal observations (or to the responses) can be obtained by
taking @ (or €2) equal to the identity matrix.

Let M;; be the systematic part of the model, that is, M;; = 0; ¢ +X O =
X j ©;, where X j 1s the matrix of covariates of dimension T" x (T + ¢g); the sub-
matrix corresponding to the first 7 columns is an identity matrix designed to in-
corporate an intercept term for each time point and ©; is a (T + ¢) X p matrix of
regression parameters.

The model (6) can be rephrased as a mixture model of k matrix-normal distri-
butions of sizes my, ..., m;, with mean matrices M;;, and two covariance matri-
ces: §2; is the response covariance matrix and ®; is a temporal covariance matrix
that can be decomposed according to the modified Cholesky representation. More
specifically, the density of the generic observed matrix Y is defined as

k
(7) f¥jlm, ©) = "me¢ T P(¥;; Mij, i, ),

i=l

where ®; = (U, D;'U)~" and ©; = {®;, U;, D;, @} withi = 1, ...,k collec-
tively denote the set of matrix normal parameters. The component density in (7) is
given by

o TP (Y5 Myj, i, 20)
= Qn)" TP\ p,~P/2 i ;T2
X exp{—%tr(UiTDi_lU,-)(Yj — )N(j(:)i)Qi_l(Yj - Xj(:)i)—r}-
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If no restriction is imposed on the mixture component parameters, the proposed
mixture model is very flexible since classes can differ with respect to specific tem-
poral patterns and according to the class conditional variability of the responses.
However, the number of parameters in the matrix-variate formulation could be high
with respect to the sample size. In addition, in some applications it could be of in-
terest to investigate whether the potential groups of individuals vary with respect
to both a different temporal correlation and a specific variable variation, or with
respect to one of the two sources only. By allowing some but not all of the matrices
Q;, U; and D; to vary among clusters, a family of different mixture models can be
defined and explored.

With reference to the temporal “between” covariance matrices, ®;, besides the
heteroscedastic situation for different values of m, we also model the scenarios of
homoscedastic components ®; = & for all i, and of isotropic constraint D; = d; I,
which implies that all the innovation parameters do not depend on the time, thus
modeling an autoregressive process.

With regard to the “within” covariance matrix €2;, we consider the spectral de-
composition parameterization given in Celeux and Govaert (1995) and Banfield
and Raftery (1993) and used by Viroli (2011) in mixtures of matrix-normal distri-
butions. This parameterization consists in expressing €2; in terms of its eigenvalue
decomposition as 2; = A; V; A; VI-T, where Vl-T is the matrix of eigenvectors, A; is a
diagonal matrix whose elements are proportional to the eigenvalues of €2; and A; is
the associated constant of proportionality. By considering homoschedastic or vary-
ing quantities across the mixture components, different submodels can be defined
using the nomenclature in Fraley and Raftery (2002): VVV refers to heteroscedas-
tic components with respect to the within covariance matrix, EEE indicates com-
ponents with homoscedastic within covariance matrices, VVI denotes diagonal but
varying variability components, EEI refers to diagonal and homoscedastic com-
ponents and, finally, VII and EII denote spherical components with and without
varying volume. For an exhaustive summary of the covariance pattern structures
see Table 4.

Therefore, a large family of possible mixture models can be defined, allowing
for special pattern structures on both the temporal and response covariance ma-
trices. In this family, the model parameters can be efficiently estimated through
the EM algorithm which alternates between the expectation and the maximiza-
tion steps until convergence. Model selection can be performed by the BIC and
AIC information criteria. In the next section model fitting is developed and illus-
trated.

3.4. Model validation. In order to validate the model and to explore its robust-
ness and its accuracy, several simulation studies were performed. The results show
that the model is robust in finding the true temporal structure (when it actually
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TABLE 4
Pattern covariance structures and number of parameters

No. of covariance

Pattern Description parameters*
Nontemporal
\'AAY% Heteroscedastic components k w
EEV Ellipsoidal, equal volume and equal shape p+ k%
EEE Homoscedastic components p(pTH)
I Spherical components with unit volume 0
VVI Diagonal but varying variability components kp
EEI Diagonal and homoscedastic components p
VI Spherical components with varying volume k
EIl Spherical components without varying volume 1
Temporal
GAR(m) Heteroscedastic components, m =0,1,...,7 — 1 kT + k¢
GARI(m) GAR -+ isotropic for D k+ k¢
EGAR(m) Homoschedastic GAR components T+¢
EGARI(m) EGAR + isotropic for D components 1+¢

*¢ refers to the number of parameters of the generic ®;: ¢ = T(Tz_l) - (T_m_é)(T_m ).

exists); furthermore, it yields a good classification of the units and a good estimate
accuracy even when the model was misspecified. Finally, the algorithm recovered
the true number of groups in the majority of the cases, regardless of the correct
specification of the temporal structure.

A full description is given in the Supplementary Material [Anderlucci and Viroli
(2015)].

4. Likelihood inference. The model parameters can be efficiently estimated
through the EM algorithm, where the missing data are the group membership la-
bels [Dempster, Laird and Rubin (1977)]. Let z; be the vector of dimension k de-
noting the component membership of each matrix sample, ¥;. Then the complete-
data likelihood of the proposed pattern mixture model is given by

n k
L(Y,z;m,0) =[] [] f¥j. zjism. ©)
j=li=1

®)
n k .
=[] []Gio" P (v;: Mij, & 20))°,
j=li=1

where T = {mq,...,m;} and @ = {@y, ..., O}.
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Given the allocation variable, the complete density f (Y, z; &, @) defined in (8)
can be decomposed into the product of the two densities

k
fGlr, @) =]]=",
i=1
from which f(z; = 1|x,®) = x; and f(Y|z; = 1; &, 0) = ¢(TXP)(Y;MU,
;, €2;).
The conditional expectation of the complete log-density given the observable
data, using a fixed set of parameters z” and @', is

argmax Eyyy. o' [log f (Y. 2, ©)]
) 7
— argmaécEzly;n,’@,/[log f(Y|z;m, ©) +log f(z|m, ©)],
T,

which is equivalent to maximizing the following function with respect to & and ©:

O(r,0|Y, 1)

n

= Z Z Tij log[ﬂi¢(TXp)(Yj; Mij, b, QZ)]
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where Y = Yl, ...,Yn,ni = Z?:lfija S,’ = (1/ni)Z’}:1"7ij(Yj —)N(jéi)Q;l(Yj -

X j@i)‘r and T = {7;;} are the posterior probabilities f(z;;|Y;; m, ®) derived for
a fixed set of parameters by the Bayes’s theorem [McLachlan and Peel (2000)] as

i TP (Y5 Myj, @i, )
YK adTXP) (Y5 Myj, @, Q)

(10) Tjj =
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By maximizing (9) the parameter estimates for given values of m and k and a
fixed pattern structure can be obtained. All the estimates are in closed form. With
n
Tij
reference to the weights, we have 77; = @
The estimators of the regression coefﬁ01ents are

n -1 n

= ST —1 v T —1

@Z[Zﬁﬂ%¢iXﬂ Do uiX; @Y.
j=1 j=1

With reference to the temporal covariance matrices, the derivative of (9) with re-

spect to D; leads to ﬁ,- = UisiU

can be obtained by solving

00(x,0|Y, T _
(11) iﬁ——L—l=—mqlw&=a
oU;
Since only the lower triangular part of U; contains the autocorrelations to be esti-
mated, the expression in (11) leads to a system of simple linear equations for each

. The estimates of the parameters contained in U;

r =2, ..., T that have the closed-form solution
ﬁr,r—m
Pr,r—m+1
Pr,r—1
-1
Sr—m,r—m Sr—m+1,r—m s Sr—1,r—m Sr,r—m
_ |\ Sr—-myr—m+1 Sr—m+1,r—m+1 ' Sr—lLr—m+1 Srr—m+1
Sr—m,r—1 Sr—m+1,r—1 s Sr—1,r—1 Srr—1
where r =2, ..., T and s are the elements of S;.

Finally, the estimator of the pattern structure of the within covariance matrices
under the general form VVV is

& Yo Tij(Yj— Xj(:)i)Tci)i_l(Yj —-X;0))
l T i j '

The solution is unique up to a multiplicative constant, say a # 0, since ®; ®
Q=ad; ® alQi. In practice, a way to obtain a unique solution is to impose the

identifiability constraint tr 2; = p or, alternatively, } ., . winc = pz, where h and ¢
indicate the rows and columns of €2; and w is the single element of €2;.

The estimator under the other parameterizations can be obtained in a similar
way [see Viroli (2011) and McNicholas and Murphy (2010)].

Once the maximum likelihood estimates have been obtained, the standard errors
of the regression coefficients may be computed in order to identify the significant
covariates in each group of subjects. These may be obtained on the basis of the
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observed information matrix, IH((:)) =— Z'}:] [Q; ((:))], where Q; is the Hessian
matrix of the likelihood function evaluated at its maximum for observation j with
j=1,...,n, computed using the package numDeriv of R. The algorithm has
been implemented in R code and it is available upon request.

5. Case study: HRS panel data. In order to adequately model the data, we
estimated the proposed CPMM, both with and without the inclusion of covariates,
allowing for a different number of components (i.e., k = 1, ...,5), for different
structures for €2 (the nontemporal patterns in Table 4), for different structures for ®
(i.e., GAR, GARI, EGAR, EGARI and all the nontemporal structures), and for
different orders of the generalized autoregressive process (i.e., form =0, ..., T —
1 =5, where m = 0 indicates time-independent data). All of these models have
been estimated in a multistart strategy, so as to avoid possible EM problems of
local maxima.

For comparative purposes, we have also estimated latent class mixed models
for longitudinal data with the R package 1cmm, allowing for models with a dif-
ferent number of clusters (i.e., k =1, ...,5). We considered the models with and
without covariates, with random intercepts only and with both random intercepts
and slopes. On the HRS data we have also tried to estimate the growth mixtures
models with Mplus; unfortunately, we have encountered convergence problems
of the algorithm with k& > 1.

A summary of the estimated models is reported in Table 5, where the best num-
ber of clusters, k*, for each family of models according to the Bayesian Informa-
tion Criterion (BIC) is shown. The table shows the computational time (in sec-
onds), the maximum log-likelihood, the value of the BIC, the preferred number
of clusters k* by BIC and the preferred structure of the two CPMM covariance
matrices.

TABLE 5
Estimation results of HRS data of the proposed CPMM model and of the multivariate mixed model
CPMM with random time-specific intercept (CPMM-i) and random slopes (CPMM-is). The table
shows the computational time (in seconds), the maximum log-likelihood, the Bayesian Information
Criterion (BIC), the preferred number of clusters k* and the preferred structure of the two CPMM
covariance matrices according to the BIC. In the last column, the root-mean-square deviation
(RMSD) of the predicted values by the fitted models is reported

Time
Model (sec.) logLik BIC k* P Q RMSD
CPMM (no cov.) 26 —14,129 28,940 4 EGARm =4 VvV 2.53
CPMM (with cov.) 13 —14,030 28,777 3 EGARm =3 VvV 2.42
LCMM-i (no cov.) 7 —15,184 30,439 1 — - 3.16
LCMM-i (with cov.) 267 —14,802 29,780 2 - - 2.95
LCMMe-is (with cov.) 425 —14,801 29,802 2 - - 2.95
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In order to compare the adequacy of the different fitted models, we have also
computed a predictive measure of their performance, given by the root-mean-
square deviation (RMSD) of the predicted values:

Z’}:] Zthl Zle(f’jth - yjth)2
T-n-p ’

RMSD =

The best fit of the data according to the BIC is the one obtained by the CPMM
model with the inclusion of covariates, that consists of Kk = 3 components; they
are heteroscedastic with respect to the within covariance matrix €2 (i.e., structure
“VVV?”), and they have a “EGAR” structure with m = 3 for the temporal covari-
ance matrix ®. The second preferred model is again the CPMM, but without the
inclusion of covariates; this modeling requires a further component in order to ex-
plain heterogeneity in the data and a larger autoregressive order. The same insight
is given by the RMSDs that are a measure of the adequacy of the fitted models in
terms of their predictive performance.

The latent class mixed model with no covariates fails to find a clustered struc-
ture; when covariates are included, the preferred model consists in two classes, but
there is no specification of the temporal pattern and the predictive performances
are worse.

The three groups of the selected CPMM model consist of 60, 187 and 112 indi-
viduals, respectively. Table 6 summarizes the mean values of the three responses
in the obtained clusters. Groups look easily interpretable. In fact, by looking at the
mean values in Table 6, people in Group 1 are those with the lowest episodic mem-
ory and mental status, yielding to a moderate low mood; respondents in Group 3
are on average the happiest, those with the highest score in mental status and
episodic memory. Finally, individuals in Group 2 place in an intermediate posi-
tion with respect to the others.

Figure 2 gives a visual representation of the cluster means for each response
along time; the observed mean profile is in between the mean profiles of subjects
in Groups 1 and 3, partially overlapping the profile of Group 2 members.

TABLE 6
HRS data: group sizes (n;) and means of the observed
variables separately by group

Groupl Group2 Group3

n; 60 187 112
Episodic memory 5.11 7.59 9.08
Mental status 7.89 9.99 11.18

Mood 8.77 8.46 11.38
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FIG. 2. Mean profiles of the three responses according to cluster memberships. The black solid
lines represent the empirical mean values.

Following Erosheva, Matsueda and Telesca (2014), we also plotted predicted
group mean trajectories for each response (solid red lines) along with the observed
trajectories (dashed green lines) from the individual classified in each group (Fig-
ure 3). The individual trajectories have been color coded such that the more intense
green corresponds to higher posterior probability. These graphics allow us to vi-
sualize how much of the individual variability is explained by group means, how
much the identified groups overlap and how stable the classification is. It is evi-
dent that there is not a clear separation between individual trajectories observations
from different groups, although the classification is quite stable since the posterior
probabilities for most individuals are close to 1.

Furthermore, our approach allows to estimate regression coefficients separately
on groups and p-values are computed according to the Wald test to check sig-
nificance. Table 7 contains the regression coefficient estimates (significant values
are denoted in bold). The interesting point is that covariates may or may not have
a significant effect on some responses depending on groups; the contribution of
each regressor on the dependent variables according to group membership is a
free benefit of our proposed model. Indeed, as an example consider the variable
“Education.” It has a significant positive effect on “Episodic memory” and on
“Mental status” as far as respondents belong to Group 2 or 3; therefore, it may
mean that for people in Group 1 which are on average older and less educated,
one year more of education would not determine any significant change in any of
the responses, whereas it may improve the mood of people with features similar
to Group 2 members. Conversely, the “Self-rating health” has significant negative
effect on the “Mood” (remember that this response has a reverse scale), indepen-
dently on group membership; the same global negative effect is carried out by age
on the episodic memory.

Some further insight can be also offered by the covariate distributions condi-
tional on groups, so that differences in the attributes can be highlighted. From
Figure 4 we can see that Group 1 has the highest prevalence rate of females with



794

Episodic Memory
5 10 15 20 25

0

Mental status
5 10 15 20 25

0

25

Group 1

0
~

Group 2

. ANDERLUCCI AND C. VIROLI

Group 3

T
2000

T
2002

T
2004

T
2006

v

1
2008

25

20

T
2000

2002

2004

2006

2008

2000

T
2002

T
2004

2006

2008

T
2000

T
2002

T
2004

T
2006

1
2008

25

T
2000

T
2002

T
2004

T
2006

2008

T
2000

T
2002

T
2004

T
2006

15 20
I

Mood

10

o J

T T T T T 1 T T T T T
1998 2000 2002 2004 2006 2008 1998 2000 2002 2004 2006

2008 1998 2000 2002 2004 2006 2008

FIG. 3. Responses of profiles according to cluster memberships. The solid red lines represent the
predicted class-conditional mean profiles. Individual trajectories (dashed lines) have been color
coded such that more intense colors correspond to higher posterior probabilities.

respect to males; its respondents are older than individuals in other groups and
look less educated. Remembering that the health self-rating variable has a reverse
scale, respondents in Group 3 scored lower points than individuals in Group 1.
Indeed, people in the former group are the youngest and the most educated with
respect to the whole sample. This characterization is consistent with the response
mean values.

Finally, Tables 8 and 9 contain the estimated temporal and responses correlation
matrices, respectively. They refer to the error term and if compared to the observed
ones (see Tables 1 and 2), we can see that estimated entries are smaller. This means
that the introduction of the covariates into the model actually explained a large part
of the observed correlation.

6. Discussion. The results presented in Section 5 allow for an accurate de-
scription of the cognitive functioning in elderly people, by allowing for an identi-
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TABLE 7
Regression coefficient estimates and standard errors of the model with k = 3 groups, separately for
each response (EM = Episodic Memory, MS = Mental Status and MO = Mood). The p-values are
referred to as the asymptotic Wald test

Group 1 Group 2 Group 3

EM MS MO EM MS MO EM MS MO

Gender  Estimates —0.96 —2.71 0.65 1.67 0.19 -0.93 1.42 0.25 -0.07
St.Err. 0.90 1.25 0.96 0.45 0.25 0.47 0.71 0.54 0.26
p-value 0.144 0.015 0.249 0.000 0.224 0.024 0.022 0.320 0.389

Age Estimate -0.07 0.01 -0.00 -0.16 -0.05 0.05 -0.08 0.01 —-0.00
St.Err. 0.02 0.02 003 004 003 004 002 004 0.02
p-value 0.001 0329 0454 0.000 0.015 0.078 0.001 0.406 0.492

Education Estimate  0.05 0.05 0.02 0.41 0.48 0.11 0.24 0.25 0.05
St.Err. 0.11 0.10 0.12 0.06 0.03 0.05 0.09 0.08 0.04
p-value 0.335 0.331 0450 0.000 0.000 0.010 0.002 0.001 0.101

Health Estimate  0.09 005 -0.67 —-0.09 -0.05 -0.62 —-0.15 —0.04 -0.33
self-rating St.Err. 0.24 0.32 040 013 0.09 0.11 022 0.18 0.08
p-value 0.355 0.435 0.045 0.249 0302 0.000 0.253 0.405 0.000

Gender Age

O Males
O Females

°

1

60 80 100
1 1

1

==
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1 1
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F1G. 4. Covariate distributions conditional on groups. The panel (a) shows the histograms of the
males and females separately for each group. Panels (b), (c) and (d) show the boxplots of the dis-
tribution of the covariates “Age,” “Education” and “Health self-rating” conditional on the three
groups.
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TABLE 8
Estimated temporal correlation matrix

1998 2000 2002 2004 2006 2008

1998 1.000

2000  0.408  1.000

2002 0407 0.449  1.000

2004 0345 0378 0487  1.000

2006  0.260 0.355 0455 0481 1.000

2008 0.225 0272 0415 0448 0.525 1.000

fication of three groups of individuals that share a common response pattern. The
partial overlap of the groups may suggest that this is an approximation to an un-
derlying continuum of variability in different temporal patterns.

In particular, it is possible to identify a group of respondents (Group 3) that
scored on average the highest results on the tests and, hence, those that require
comparatively less attention. These individuals are on average younger and could
benefit from more years of education, as it has a significant impact on episodic
memory and mental status. Females in this group have an advantage in episodic
memory compared to men. As one may expect, age has a negative effect on mem-
ory, but it is less remarkable compared to other groups.

Conversely, members of Group 1 are approximately the oldest in age and those
who received less years of education. This is the more problematic set, since indi-
viduals are more depressed and they reported the lowest scores in episodic memory
and mental status. For these respondents, their perceived health status is an impor-
tant determinant of their mood, whereas education does not significantly affect any
of their responses. Females in this group have a large disadvantage in mental sta-
tus: this result tells us that interventions should target elderly ladies by developing
psychiatric and health assistance.

Finally, the last considered group is the one whose members obtained scores
that lie in between the two extremes (Group 2). Mood is significantly affected by
the respondents perceived health status and it is significantly worse for females,

TABLE 9
Estimated responses correlation matrix across
the three groups

Episodic Mental

memory status Mood
Episodic memory 1.00
Mental status 0.155 1.000

Mood 0.020 0.005 1.000
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on average. Age has an important effect on episodic memory and on mental status,
but those negative effects are balanced by education: this is an important deter-
minant for all the responses. Efforts here should be directed to improving heath
assistance and by creating or reinforcing moments of social aggregation where
cultural initiatives are promoted. Particularly, attention should be focused on indi-
viduals that received less education: these individuals had lower performances in
all responses. Members of this group (and later members of Group 3) could be the
future Group 1, so it is important to prevent and to dedicate care to the aspects that
would be more crucial in the future.

Since the elderly ladies resulted in having more mental issues, some awareness
campaigns to sensitize public opinion on female care and assistance should be
promoted; the same philosophy should guide funds allocation decisions and tax
reduction policies, particularly when dealing with associations that serve health
and mental assistance.

Cognitive impairment and depression are, in fact, costly. States should consider
developing a comprehensive action plan to respond to the needs of people with
cognitive impairment and their families, to empower people to seek help and to
support recovery, involving different agencies, as well as private and public or-
ganizations, and to expand research on this topic. Further investigations on other
possible determinants of the cognitive functioning (such as genetic predisposition
and presence of important comorbidities) can be explored, so as to highlight other
features of the phenomenon and to better understand its temporal evolution.

7. Concluding remarks. In this work we have presented a novel approach
for modeling multivariate longitudinal data in the presence of unobserved hetero-
geneity. It is defined as a particular linear mixed model with discrete individual
random intercepts, but differently from the standard random effects models, the
proposed CPMM does not require the usual local independence assumption; in
this way the temporal structure and the association among the responses can be
explicitly modeled.

The proposal has the benefit of being very flexible and parsimonious at the same
time, provided that specific pattern structures are suitably chosen in the model
selection phase. Its flexibility freely adds meaningful interpretation to the study
under analysis since, besides the temporal dependence and the response associa-
tion (that can be both class-specific), it allows for a different contribution of each
regressor on the responses according to group membership. In so doing, the iden-
tified groups receive a global and accurate phenomenal characterization, as shown
in the HRS application. From the computational point of view, the algorithm is
pretty fast (in our real application a few seconds are required) compared to the
alternative approaches, and no convergence problems have been observed.

The price to be paid for this great flexibility and computational feasibility is
connected to the kind of data structures that can be analyzed when the matrix-
normal distribution is assumed: this probabilistic model implies that the observed
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times and the number of responses are equally spaced and balanced. This aspect
could limit the applicability of the proposed approach to all the observational stud-
ies where the number of responses is not constant across times and subjects or
when data are incomplete. On the other hand, the extension of the model to deal
with incomplete data under the missing at random (MAR) mechanism could be
developed in the same framework of the EM algorithm by splitting each set of ob-
servations into the missing and observed components through permutation matri-
ces. This issue and the related estimation scheme are aspects that deserve further
attention. Furthermore, in our formulation we confined our attention to continu-
ous responses. A natural extension consists of generalizing our model to either
binary or categorical response variables (or mixed-type). This extension may be
performed by considering generalized matrix-regression models with discrete ran-
dom intercepts, although new computational problems would be involved.

Acknowledgments. We are grateful to the Center for the Study of Aging of
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SUPPLEMENTARY MATERIAL

Simulation study (DOI: 10.1214/15-A0AS816SUPP; .pdf). The supplemen-
tary material contains the description and the results of the simulation studies that
involved and investigated many aspects of the model validation.
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