
The Annals of Applied Statistics
2014, Vol. 8, No. 2, 999–1021
DOI: 10.1214/14-AOAS719
© Institute of Mathematical Statistics, 2014

A BAYESIAN NONPARAMETRIC MIXTURE MODEL FOR
SELECTING GENES AND GENE SUBNETWORKS

BY YIZE ZHAO1, JIAN KANG1,2 AND TIANWEI YU3

Emory University

It is very challenging to select informative features from tens of thou-
sands of measured features in high-throughput data analysis. Recently,
several parametric/regression models have been developed utilizing the gene
network information to select genes or pathways strongly associated with a
clinical/biological outcome. Alternatively, in this paper, we propose a non-
parametric Bayesian model for gene selection incorporating network infor-
mation. In addition to identifying genes that have a strong association with
a clinical outcome, our model can select genes with particular expressional
behavior, in which case the regression models are not directly applicable.
We show that our proposed model is equivalent to an infinity mixture model
for which we develop a posterior computation algorithm based on Markov
chain Monte Carlo (MCMC) methods. We also propose two fast computing
algorithms that approximate the posterior simulation with good accuracy but
relatively low computational cost. We illustrate our methods on simulation
studies and the analysis of Spellman yeast cell cycle microarray data.

1. Introduction. In high-throughput data analysis, selecting informative fea-
tures from tens of thousands of measured features is a difficult problem. Incor-
porating pathway or network information into the analysis has been a promising
approach. Generally the setup of the problem contains two pieces of information.
The first is the measurements of the features in multiple samples, typically with
a clinical outcome associated with each sample. The second piece of information
is a network depicting the biological relationship between the features, which is
based on existing biological knowledge. The network could contain information
such as protein interaction, transcriptional regulation, enzymatic reaction and sig-
nal transduction, etc. [Cerami et al. (2011)].

Some methods are developed using the available network topology for high-
throughput data analysis. These methods incorporate the gene-pathway relation-
ships or gene network information into a parametric/regression model. The pri-
mary goal is to identify either the important pathways or the genes that are strongly
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associated with clinical outcomes of interest. For example, there are a series of
works [Wei and Li (2007, 2008); Wei and Pan (2010)] that model the gene net-
work using a Discrete or Gaussian Markov random field (DMRF or GMRF).
Li and Li (2008) and Pan, Xie and Shen (2010) used the gene network to build
penalties in a regression model for gene pathway selection. Ma et al. (2010) incor-
porated the gene co-expression network in identification of caner prognosis mark-
ers using a survival model. Li and Zhang (2010) and Stingo et al. (2011) developed
Bayesian linear regression models using MRF priors or Ising priors that capture
the dependent structure of transcription factors or the gene network/pathway. Re-
cently, Jacob, Neuvial and Dudoit (2012) proposed a powerful graph-structured
two-sample test to detect differentially expressed genes.

Although regression models are widely used for the selection of the gene sub-
network that is associated with an outcome variable, in some situations the ques-
tion of interest is to study the expressional behavior of genes, for example, period-
icity, without an outcome variable. In other situations, the experimental design is
more complex than simple case-control. For example, some gene expression stud-
ies involve longitudinal/functional measurements for which the parametric models
[Leng and Müller (2006); Zhou et al. (2010); Breeze et al. (2011)] or the multivari-
ate testing procedure [Jacob, Neuvial and Dudoit (2012)] may not be applicable
without a major modification. A straightforward approach to this problem is to per-
form large-scale simultaneous hypothesis testing on gene behavior. A set of genes
can be selected based on the testing statistics or p-values, where a correct choice of
a null distribution for those correlated testing statistics [Efron (2004, 2010)] should
be used. However, this approach ignores the gene network information that is use-
ful to identify the subnetwork of genes with the particular expressional behavior.
Due to the diverse behavior of neighboring genes on the network, it is generally
believed that genes in close proximity on a network are likely to have joint effects
on biological/medical outcomes or have similar expressional behavior. This moti-
vates the needs of analyzing the large-scale testing statistics or statistical estimates
incorporating the network information. Another motivation is that a linear regres-
sion or parametric model of gene expression levels might not be suitable in some
cases. For example, we may be interested in finding subnetworks of genes that
have nonlinear relations with an outcome without specifying a parametric form.
To address these problems, a simple framework can be adopted. First, a certain
statistic is computed for each feature without considering the network structure.
The statistic can come from a test of nonlinear association, a test of periodic be-
havior or a certain regression model. After obtaining the feature-level statistics,
a mixture model that takes into account the network structure can be used to se-
lect interesting features/subnetworks. More recently, Qu, Nettleton and Dekkers
(2012) developed a Bayesian semiparametric model to take into account depen-
dencies across genes by extending a mixture model to a regression model over the
generated pseudo-covariates. This method could be sensitive to the choices of the
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pseudo-covariates. Wei and Pan (2012) proposed a Bayesian joint model of mul-
tiple gene networks using a two-component Gaussian mixture model with a MRF
prior. This approach assumes the Gaussian distribution for each component which
might not fit the data very well in other applications.

To mitigate problems of the current methods, we propose a Bayesian nonpara-
metric mixture model for large-scale statistics incorporating network information.
Specifically, the gene specific statistics are assumed to fall into two classes: “unse-
lected” and “selected,” corresponding to whether the statistics are generated from
a null distribution, with prior probabilities p0 and p1 = 1 − p0. A statistic has
density either f0(r) or f1(r) depending on its class, where f0(r) represents “un-
selected” density and f1(r) represents “selected” density. Thus, without knowing
the classes, the statistics follow a mixture distribution:

p0f0(r) + p1f1(r).(1.1)

As suggested by Efron (2010), it is reasonable to assume statistics are normally
distributed. This justifies the use of a Dirichlet process mixture (DPM) of normal
distributions to estimate both f0(x) and f1(x). Note that different from Wei and
Pan (2012), our model does not assume that f0 and f1 directly take the form of
a normal density function. The DPM model has been discussed extensively and
widely used in Bayesian statistics [Antoniak (1974); Escobar (1994); Escobar and
West (1995); Müller and Quintana (2004); Dunson (2010)], due to the availability
of efficient computational techniques [Neal (2000); Ishwaran and James (2001);
Wang and Dunson (2011)] and the nonparametric nature with good performance
on density estimation. The DPM has been extended to make inference for differ-
ential gene expression [Do, Müller and Tang (2005)] and estimate positive false
discovery rates [Tang, Ghosal and Roy (2007)] but without incorporating the net-
work information. In our model, we assign an Ising prior [Li and Zhang (2010)]
to class labels of all genes according to the dependent structure of the network.
As discussed previously, the class label only takes two values, “selected” and “un-
selected,” while a DPM model is equivalent to an infinity mixture model [Neal
(2000); Ishwaran and James (2001, 2002)], based on which we develop a posterior
computation algorithm. Our method selects genes and gene subnetworks automat-
ically during the model fitting. To reduce the computational cost, we propose two
fast computation algorithms that approximate the posterior distribution either us-
ing finite mixture models or guided by a standard DPM model fitting, for which
we develop a hierarchical ordered distribution clustering (HODC) algorithm. It
essentially performs clustering on ordered density functions. The fast computa-
tion algorithms can be tailored from any routine algorithms for the standard DPM
model and combined with the HODC algorithm. Also, we suggest two approaches
to choosing the hyperparameters in the model.

To the best of our knowledge, our work is among the very first to extend the
DPM model to incorporate the gene network for gene selections. Our method has
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the following features: (1) It provides a general framework for gene selection based
on large-scale statistics using the network information. It can be used for detect-
ing a particular expressional/functional behavior, as well as the association with
a clinical/biological outcome. (2) It produces good uncertainty estimates of gene
selection from a Bayesian perspective, taking into account the variability from
many sources. (3) It introduces more flexibility on model fitting adaptive to data
in light of the advantages of Bayesian nonparametric modeling. It is more robust
than a parametric model (e.g., two-component Gaussian mixture model) which is
sensitive to model assumptions. (4) The fast computational algorithms have been
developed for the posterior inference approximation. From our experience, achiev-
ing a similar accuracy, it can be 50–150 times (depending on the number of genes
in the analysis) faster than the standard Markov chain Monte Carlo (MCMC) al-
gorithm. For a data set more than 2000 genes, the analysis can be done within half
an hour using a typical personal computer. (5) Compared with the standard DPM
model, our model achieves much better selection accuracy in the simulation studies
and provides much more interpretable and biologically meaningful results in the
analysis of Spellman yeast cell cycle microarray data. One potential issue of our
method is that it only allows the borrowing of information based on the network
vicinity, without considering possible compensatory effects between neighboring
genes. Such issues can be addressed by downstream analyses after a small number
of genes/subnetworks are selected.

The rest of paper is organized as follows. In Section 2 we describe the proposed
model and an equivalent model representation. We discuss the choice of priors
and the details of the posterior computation algorithms for gene selection. In Sec-
tion 2.4 we introduce fast computational algorithms for approximating posterior
computation. In Section 3 we analyze an example data set, the Spellman yeast cell
cycle microarray data. We evaluate the performance of our model via simulation
studies in Section 4, where we compare our results with a standard DPM model
ignoring the network information. We conclude the paper with discussions and
future directions in Section 5.

2. The model. Let n be the total number of genes in our analysis. For
i = 1, . . . , n, let ri denote a statistic for gene i. It represents either a functional
behavior or the association with a clinical outcome. For the association analysis,
it is common to have an outcome Y and a gene expression profile Xi for each
gene, i. As an alternative to a regression model, we can produce statistics for each
gene, that is, ri = s(Xi, Y ), where s(·, ·) can be a covariance function or other
dependence test statistics. For a large-scale testing problem, we usually obtain p-
values, p1, . . . , pn, which can be transformed to normally distributed statistics,
that is, ri = −�−1(pi), where �(r) denotes the cumulative distribution function
for the standard normal distribution. This transformation is a monotone transfor-
mation and it ensures the “selected” genes have a larger value of ri . Let zi be the
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class label for gene selection, where zi = 1 if gene i is selected and zi = 0 is un-
selected. For i, j = 1, . . . , n, let cij denote the gene network configuration, where
cij = 1 if gene i and j are connected, cij = 0 otherwise. Write r = (r1, . . . , rn)

′,
z = (z1, . . . , zn)

′ and C = (cij ). In our model, r and C are observed data, and z is
a latent vector of our primary interest.

2.1. A network based DPM model for gene selection. As suggested by Efron
(2010), we assume ri’s are normally distributed. Let N(μ,σ 2) denote a normal
distribution with mean μ and standard deviation σ . Let DP(G,α) represent a
Dirichlet process with base measure G and scalar precision α. Given the class
label z, we consider the following DPM model: for i = 1,2, . . . , n and k = 0,1,[

ri | μi, σ
2
i

] ∼ N
(
μi, σ

2
i

)
,[(

μi, σ
2
i

) | zi = k,Gk

] ∼ Gk,(2.1)

Gk ∼ DP[G0k, τk],
where μi and σ 2

i are latent mean and variance parameters for each ri . The random
measure Gk and the base measure G0k are both defined on (−∞,+∞)×(0,+∞).
We specify G0k = N(γk, ξ

2
k ) × IG(αk, βk), where IG(α,β) denotes an inverse

gamma distribution with shape α and scale β . Note that given latent parame-
ters μi, σ

2
i , the statistic ri is conditionally independent of zi . By integrating out

(μi, σ
2
i ), we build the conditional density of ri given zi = k in (1.1), that is,

fk(r) =
∫

π(r | θ) dGk(θ), π(r | θ) = 1

σ
φ

(
r − μ

σ

)
,(2.2)

where θ = (μ,σ 2) and φ(r) is the standard Gausian density function. This pro-
vides a Bayesian nonparametric construction of fk(r).

To incorporate the network structure, we assign a weighted Ising prior to z:

π(z | π,�,ω,C) ∝ exp

[
n∑

i=1

(
ω̃i log(πzi

) + �zi

∑
j �=i

ωj cij I [zi = zj ]
)]

,(2.3)

where π = (π0, π1) with 0 < π1 = 1 − π0 < 1, � = (�0, �1) with �k > 0 for
k = 0,1, ω = (ω1, . . . ,ωn)

′ with ωi > 0 for i = 1, . . . , n, and ω̃i = ∑n
j=1 cijωj/∑n

j=1 cij . The indicator function I [A] = 1 if event A is true, I [A] = 0 otherwise.
The parameter π controls the sparsity of z, and the parameter � characterizes the
smoothness of z over the network. For each gene i, a weight ωi is introduced to
control the information inflow to gene i from other connected genes, which can
adjust the prior distribution of zi based on biologically meaningful knowledge, if
any. The term ω̃i is introduced to balance the contribution from π and � to the
prior probability of z. When � = (0,0) and ω = (1, . . . ,1)′, the latent class labels
zi ’s are independent identically distributed as Bernoulli with parameter π1.
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2.2. Model representations. As discussed by Neal (2000), the DPM models
can also be obtained by taking the limit as the number of components goes to in-
finity. With a similar fashion, we construct an equivalent model representation of
(2.1) for efficient posterior computations. Let Discrete(a,b) denote a discrete dis-
tribution taking values in a = (a1, . . . , aL)′ with probability b = (b1, . . . , bL)′, that
is, if ξ ∼ Discrete(a,b), then Pr(ξ = al) = bl , for l = 1, . . . ,L. Let Dirichlet(α)

denote a Dirichlet distribution with parameter α. Let Lk , for k = 0,1, represent the
number of components for density fk(r). We define the index sets a0 = (−L0 +
1,−L0 + 2, . . . ,0) and a1 = (1,2, . . . ,L1). Let q0 = (q−L0+1, q−L0+2, . . . , q0)

and q1 = (q1, . . . , qL1) with
∑

g∈ak
qg = 1. Let 1n = (1, . . . ,1︸ ︷︷ ︸

n

). Then model (2.1)

is equivalent to the following model, as L0 → ∞ and L1 → ∞:

[ri | gi, θ̃] i.i.d.∼ N
(
μ̃gi

, σ̃ 2
gi

)
,

[gi | zi = k,qk] i.i.d.∼ Discrete(ak,qk),
(2.4)

θ̃g ∼ G0k for g ∈ ak,

qk ∼ Dirichlet(τk1Lk
/Lk),

where θ̃ = {̃θg}g∈a0∪a1 and θ̃g = (μ̃g, σ̃
2
g ). The index gi indicates the latent class

associated with each data point ri . Write g = (g1, . . . , gn) and z = (z1, . . . , zn). For
each class, g, the parameter θ̃c determines the distribution of ri from that class. The
conditional distributions of gi and θ̃gi

given zi = 0 and zi = 1 are different. Based
on model (2.4), the conditional density of fk(r) in (2.2) becomes

fk(r) = ∑
g∈ak

qg

σ̃g

φ

(
r − μ̃g

σ̃g

)
.(2.5)

This further implies that given L0 and L1, the marginal distribution of ri also has
a form of finite mixture normals, that is,

π(r) =
1∑

k=0

pkfk(r) =
L1∑

g=−L0+1

q̃g

σ̃g

φ

(
r − μ̃g

σ̃g

)
,(2.6)

where q̃g = p0qg if g ≤ 0, q̃g = p1qg otherwise.
Model (2.4) is not identifiable for zi in the sense that if we switch the gene

selection class label “0” and “1,” the marginal distribution of ri (2.6) is unchanged.
Without loss of generality, we assume that the “selected gene” should be more
likely to have large statistics compared to the “unselected genes.” Thus, we impose
an order restriction on the parameter θ̃ , for g = −L0 + 1, . . . ,L1,

μ̃g < μ̃g+1.(2.7)

This also sorts out the nonidentifiability of parameter θ̃ . In many cases, the func-
tional behaviors of some genes are strongly evident from prior biological knowl-
edge. Whether or not those genes are selected is not necessarily determined by
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other genes in the network. Those genes are likely to be the hubs of the networks,
thus, the determination of the status of these genes might help select genes in their
neighborhood. This suggests that it is reasonable to preselect a small amount of
genes that can be surely elicited by biologists from their experience and knowl-
edge. We refer to them as “surely selected” (SS) genes. These genes are usually
associated with very large statistics. We evaluate the performance via the simula-
tion studies in Section 4.2.

2.3. Posterior computation. In model (2.4), given L0 and L1, we have the
full conditional distribution of gi = g and zi = k given g−i = (g1, . . . , gi−1, gi+1,

. . . , gn), z−i = (z1, . . . , zi−1, zi+1, . . . , zn) and data r:

π(gi = g, zi = k | g−i , z−i , r, θ̃)

∝ 1

σ̃g

φ

(
ri − μ̃g

σ̃g

)
n−ig + τk/Lk

τk + mk − 1
(2.8)

× exp
(
ω̃i log(πk) + �k

∑
j �=i

ωj cij I [zj = k]
)
,

where mk = ∑n
i=1 I [zi = k] is the number of genes in class k and n−ig =∑

j �=i I [gj = g] represents the number of gj for j �= i that are equal to g.
As L0 → ∞ and L1 → ∞, if (g, k) = (gj , zj ) for some j �= i, then

π(gi = g, zi = k | g−i , z−i , r, θ̃)

∝ n−ig

τk + mk − 1
exp

(
ω̃i log(πk) + �k

∑
j �=i

ωj cij I [zj = k]
)

(2.9)

× 1

σ̃g

φ

(
ri − μ̃g

σ̃g

)
and

π(gi �= gj , zi �= zj for all j �= i | g−i , z−i , r, θ̃)

∝ τk

τk + mk − 1
exp

(
ω̃i log(πk) + �k

∑
j �=i

ωj cij I [zj = k]
)

(2.10)

× (αk + 1/2)β
αk

k√
2π(αk)ξk

∫
φ

(
μ − γk

ξk

)(
βk + 1

2
(ri − μ)2

)−(αk+1/2)

dμ,

where the integral can be efficiently computed by the Gaussian quadrature method
in practice. See Section A in the supplemental article [Zhao, Kang and Yu (2014)]
for the derivations of equations (2.9) and (2.10).
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The full conditionals of μ̃g and σ̃ 2
g for g ∈ {g1, . . . , gn} are given by

[
μ̃g | σ̃ 2

g , r
] ∼ N

(
σ̃ 2

g γk + ξ2
k

∑
i:gi=g ri

σ̃ 2
g + ξ2

k ng

,
σ̃ 2

g ξ2
k

σ̃ 2
g + ξ2

k ng

)
,(2.11)

[
σ̃ 2

g | μ̃g, r
] ∼ IG

(
αk + ng

2
, βk + 1

2

∑
i:gi=g

(ri − μ̃g)
2
)
,(2.12)

where k = I [g > 0] and ng = ∑n
i=1 I [gi = g]. We summarize this algorithm in

Section B.1 in the supplemental article [Zhao, Kang and Yu (2014)] and refer to it
as NET-DPM-1. It is computationally intensive when n is very large. To mitigate
this problem, we propose two fast algorithms to fit finite mixture models (FMM)
with appropriate choices of the number of components.

2.4. Fast computation algorithms.

2.4.1. FMM approximation. When L1 and L0 fit the data well, we can accu-
rately approximate the infinite mixture model (2.1) by the FMM (2.4). Given a
fixed L0 and L1, it is straightforward to perform posterior computation for model
(2.4) based on (2.8). We refer to this algorithm as NET-DPM-2 (see Section B.2 in
the supplemental article [Zhao, Kang and Yu (2014)] for details). This algorithm
does not change the dimension of θ̃ over iterations. In this sense, it simplifies the
computation. Also, in order to keep computation efficient, we search for smaller
values of L0 and L1 which fit the data well. This can be achieved under the guid-
ance of a DPM density fitting for which we introduce an algorithm in the next
section.

2.4.2. Hierarchical ordered density clustering. Without using the network in-
formation, a DPM model fitting on data r provides an approximation to the
marginal density (2.6). It generates posterior samples for mixture densities, where
the mean number of components should be close to L0 + L1. Let us focus on one
sample. Suppose L0 + L1 is equal to the number of components in this sample.
To further obtain an estimate of L0 and L1 for this sample, we need to parti-
tion the L0 + L1 components into two classes. Thus, we propose an algorithm to
cluster a set of ordered densities. We call it hierarchical ordered density cluster-
ing (HODC). Here, the density order is determined by the mean location of that
density. For example, a set of Gaussian density functions are sorted according to
their mean parameters. Similar to the classical hierarchical clustering analysis, we
define a distance metric of density functions:

d
(
f,f ′) =

∫ +∞
−∞

[
f (x) − f ′(x)

]2
dx,(2.13)

where f and f ′ are two univariate density functions. Let P = {(μ̂g, σ̂
2
g , p̂g)}L0+L1

g=1
denote parameters for L0 + L1 Gaussian densities, where μ̂g < μ̂g+1, g =
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1,2, . . . ,L0 + L1 − 1. This is the input data to the HODC algorithm totally con-
sisting of L0 + L1 − 2 steps. At the m step, there are L0 + L1 − m clusters of
densities and let s(m)

l , for l = 1, . . . ,L0 + L1 − m, denote the density indices in
cluster l. To simplify, we define

φ̃(r; s,P) = ∑
g∈s

p̂g

σ̂g

φ

(
r − μ̂g

σ̂g

)/∑
g∈s

p̂g,(2.14)

which represents a mixture of Gaussian densities, where the components indexed
by s are a subset of {φ[(r − μ̂g)/σ̂g]/σ̂g}L0+L1

g=1 .
HODC:

Input: Parameters for a mixture of Gaussian densities, that is, P .

Initialization: Set m = 0 and s(0)
l = {l}, for l = 1,2, . . . ,L0 + L1;

Repeat the following steps until m = L0 + L1 − 2:
Step 1: Find

l(m) = arg min
l

d
(
φ̃

(·; s(m)
l ,P

)
, φ̃

(·; s(m)
l+1,P

))
.

Step 2: For l = 1,2, . . . ,L0 + L1 − m − 1, set

s(m+1)
l =

⎧⎪⎪⎨⎪⎪⎩
s(m)
l if l < l(m),

s(m)
l ∪ s(m)

l+1 if l = l(m),

s(m)
l+1 if l > l(m).

Step 3: Set m = m + 1.
Output: {s(m)

l }L0+L1−m
l=1 for m = 1,2, . . . ,L0 + L1 − 2.

Figure 1 illustrates the HODC algorithm. The algorithm stops when m = L0 +
L1 − 2, where the ordered density components are partitioned into two classes
indexed by s(m)

1 and s(m)
2 . This suggests that the number of indices in s(m)

k+1, denoted

by |s(m)
k+1|, is an estimate for Lk in model (2.4). By running the HODC, we can

obtain one Lk estimate for each posterior sample generated from a DPM fitting.
We take the average of Lk estimates over all the posterior samples as the input of
NET-DPM-2. The HODC also provides an approximation to fk(r) in (2.5), that is,
φ̃(r; s(m)

k+1,P). This implies that we can further simplify the computation with the
algorithm in the following section.

2.4.3. FMM guided by a DPM model fitting. From a DPM model fitting, we
obtain V posterior samples of the parameters for the marginal density of r. We
denote them as Pv = {(μ̂vg, σ̂

2
vg, p̂vg)}Lv0+Lv1

g=1 , for v = 1,2, . . . , V . For each Pv ,
the HODC algorithm partitions Lv0 +Lv1 components into two classes, where the
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FIG. 1. An illustration of the HODC algorithm for six density components: the HODC starts with
clustering densities 1 and 2 as a mixture density labeled as 7, since the “distance” between 1 and 2
is shorter than all other adjacent density pairs. Then the HODC computes the “distance” between
densities 3 and 7, densities 3 and 4, . . . , to proceed the clustering. Following this procedure, the
HODC ends up with clustering densities 1, 2, 3 as a mixture density (labeled as 8) and 4, 5, 6 as
another mixture density (labeled as 10).

class-specific components are indexed by av,0 and av,1. This leads to V approxi-
mations of fk(r), that is, φ̃(r;av,k,Pv). Given fk(r), our proposed gene selection
model reduces to

[ri | zi = k] i.i.d.∼ fk(r)(2.15)

for i = 1,2, . . . , n and k = 0,1, and z follows (2.3). To make inference on the pos-
terior distribution of z by combining all V approximations of fk(r), we consider

π(z | r) ≈ 1

V

V∑
v=1

π(z | r, φ̃v),(2.16)

where φ̃v = {φ̃(r;av,0,Pv), φ̃(r;av,1,Pv)}. For each v, the full conditional of zi

is given by

π(zi = k | z−i , r, φ̃v)
(2.17)

∝ φ̃(ri;av,k,Pv) exp
(
ω̃i log(πk) + �k

∑
j �=i

ωj cij I [zj = k]
)
.

We refer to this algorithm as NET-DPM-3 (see Section B.3 in the supplemen-
tal article [Zhao, Kang and Yu (2014)] for details). It is extremely fast with a
moderate V . Since the marginal density is estimated without using the network
information, it might introduce bias on the distribution of zi and underestimate
the variability of zi . From our experience, those issues do not affect the selection
accuracy much. Some examples are provided in Section 4.

2.5. The choice of hyperparameters. To proceed NET-DPMs, we need to
specify the hyperparameters π , � and ω in (2.3). We assume that ω is prespec-
ified according to biological information. In this paper, we choose equal weight,
that is, ω = 1n without incorporating any biological prior knowledge. We suggest
two approaches to choosing π and �: (1) we assign hyperpriors on π and � and
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make posterior inference; (2) for a set of possible choices of π and �, we em-
ploy the Bayesian model averaging. The details are provided in Section C in the
supplemental article [Zhao, Kang and Yu (2014)].

3. Application. To demonstrate the behavior of our method, we apply the pro-
posed method to the analysis of the Spellman yeast cell cycle microarray data
set [Spellman et al. (1998)]. The data set is intended to detect genes with peri-
odic behavior along the procession of the cell cycle. It has been extensively used
in the development of computational methods. The network is summarized from
the Database of Interacting Proteins (DIP) [Xenarios et al. (2002)]. We use the
high-confidence connections between yeast proteins from the DIP. Eventually, the
network contains 2031 genes, where the mean, median, maximum and minimum
edges per gene are 3.948, 2, 57 and 1, respectively.

There is no outcome variable in the cell-cycle data set. In this demonstration we
focus on the selection of genes with periodic behavior in light of the network. It
is known that such genes show different phase shifts along the cell cycle and may
not be correlated with each other [Yu (2010)]. We first perform the Fisher’s exact
G test for periodicity [Wichert, Fokianos and Strimmer (2004)] for each gene. We
then transform the p-values to normal quantiles, ri = −�−1(pi) for gene i. We
apply the fully Bayesian inference (NET-DPM-1), one fast computation approach
(NET-DPM-3) and the standard DPM model fitting (STD-DPM) to this data set.
For the NET-DPM-1, set τ0 = 10, τ1 = 2; following the results by STD-DPM, set
γk = μk, ξ

2
k = σ 2

k, βk = 10, αk = σ 2
k/ξ

2
k +1 with k = 0,1, where {μk} and {σ 2

k} are
preliminary estimations by the STD-DPM. We also conduct a sensitivity analysis
for the hyperparameters specification (see the details in Section E in the supple-
mental article [Zhao, Kang and Yu (2014)]) to verify the robustness of the proposed
methods. For both methods, the choices of π0 and � for the model averaging al-
gorithm are (0.75,0.8,0.85,0.9) and (0.5,1,5,10,15) × (0.5,1,5,10,15) with
restriction �0 < �1. We run all the algorithms 5000 iterations with 2000 burn-in.
In this article, the standard DPM fitting is obtained by an R package: DPpackage
and all the proposed algorithms are implemented in R.

Table 1 presents the gene selection results based on three methods in a two-
by-two table format. The number of the “selected” genes by the NET-DPM-1, the
NET-DPM-3 and the STD-DPM are 201, 216 and 114, respectively. The sum-
mation of the diagonal elements of the table comparing the NET-DPM-3 and the
NET-DPM-1 is larger than that for NET-DPM-3 and the STD-DPM. This indicates
a stronger agreement between the two algorithms for NET-DPM.

We focus our discussion on the NET-DPM-3 results. After removing all unse-
lected genes, as well as selected genes not connected to any other selected genes,
163 of the 216 genes fall into 11 subnetworks. Of the 11 subnetworks, 10 are very
small, each containing 5 or less genes. The remaining subnetwork contains 135
genes. Considering the purpose of the study is to find genes with periodic behav-
ior, and most such genes are functionally related and regulated by the cell cycle
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TABLE 1
Gene selection results by the three methods for the cell cycle data set

NET-DPM-1 STD-DPM

Selected Unselected Selected Unselected

NET-DPM-3
Selected 170 46 100 116
Unselected 31 1784 14 1801

process, this result is expected. We present the subnetwork in Figure 2. Sixty-one
of the 135 genes belong to the mitotic cell cycle process based on gene ontology
[Ashburner et al. (2000)]. The yeast mitotic cell cycle can be roughly divided into
the M phase and the interphase, which contains S and G phases [Ashburner et al.
(2000)]. We do not further divide the interphase because the number of genes an-
notated to its descendant nodes are small. Among the 135 genes, 45 are annotated
to the M phase, and 21 are annotated to the interphase. By coloring the M phase
genes in red, the interphase genes in blue and the genes annotated to both phases
in green, we see that the majority of the selected M phase genes are clustered on

FIG. 2. A subnetwork composed of genes with periodic behavior. The subnetwork consists of 135
genes. Red nodes: genes functionally involved in the M-phase of cell cycle; blue node: genes func-
tionally involved in the interphase of cell cycle; green nodes: genes functionally involved in both M
and interphase of cell cycle.
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the subnetwork, while the selected interphase genes are somewhat scattered, with
7 falling into a small but tight cluster.

We show part of the subnetwork detected by the NET-DPM-3 with the corre-
sponding one under the STD-DPM in Figure 3, where the genes that are linked by
a dashed line are connected to other genes that are not shown in the figure. In this
subnetwork, the gene selection results by the NET-DPM-1 agree with the NET-
DPM-3 except for only one gene “YML064” for which the NET-DPM-1 does not
select it with probability 0.478, while the NET-DPM-3 selects it with probability
0.687. This implies that both methods provide large uncertainty on this gene. Com-
paring the top panel (our method, NET-DPM-3) and bottom panel (STD-DPM), we
observe a number of genes selected by NET-DPM but not by STD-DPM, and al-
most all such genes are cell cycle-related (denoted by a star by the ORF name).
Examples include YAL041W (CLS4), which is required for the establishment and
maintenance of polarity and critical in bud formation [Chenevert, Valtz and Her-
skowitz (1994); Cherry et al. (2012)]. The gene only shows moderate periodic
behavior, as denoted by the color of the node. However, due to its links to other
genes that have strong periodic behavior, it is selected by our method as an inter-
esting gene. Another example is YFL008W (SMC1). It is a subunit of the cohesion
complex, which is essential in sister chromatid cohesion of mitosis and meiosis.
The complex is also involved in double-strand DNA break repair [Strunnikov and
Jessberger (1999); Cherry et al. (2012)]. Similar to CLS4, the periodic behavior of
SMC1 is not strong enough. It is only selected when the information is borrowed
from linked genes that are functionally related and show strong periodic behavior.
A number of other cell cycle-related genes in Figure 3 are in a similar situation,
for example, YBR106W, YDR052C, YJL157C, YGL003C and YMR076C. These
examples clearly show the benefit of utilizing the biological information stored in
the network structure.

To assess the functional relevance of the selected genes globally, we resort
to mapping the genes onto gene ontology biological processes [Ashburner et al.
(2000)]. We limit our search to the GO Slim terms using the mapper of the Sac-
charomyces Genome Database [Cherry et al. (2012)]. The full result is listed in
the supplementary file. Clearly, the overrepresented GO Slim terms are centered
around cell cycle. Here we discuss some GO terms that are nonredundant. Among
the 216 selected genes, 70 (32.4%, compared to 4.5% among all genes) belong to
the process response to DNA damage stimulus (GO:0006974). The term shares a
large portion of its genes with DNA recombination (GO:0006310) and DNA repli-
cation (GO:0006260) processes, which are integral to the cell cycle. Sixty-seven
of the selected genes (31.0%, compared to 4.7% among all genes) belong to the
process mitotic cell cycle (GO:0000278). Twenty-six of the 67 genes are shared
with response to DNA damage stimulus (GO:0006974). Forty-one of the selected
genes (19.0%, compared to 3.0% among all genes) belong to the process regula-
tion of cell cycle (GO:0051726), among which 29 also belong to mitotic cell cycle
(GO:0000278). Thirty-one of the selected genes (14.4%, compared to 2.6% among
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FIG. 3. A portion of the subnetwork shown in Figure 2, together with the immediate neighbors
of the selected genes. Upper panel: NET-DPM-3 results; lower panel: STD-DPM results. The node
labels indicate the gene name; circles and triangles represent “selected” and “unselected” genes;
colors denote the value of the normal quantiles; a star in superscript represents the genes functionally
annotated to the cell cycle process. Dash lines denote connections to genes not shown in the figure.
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all genes) belong to the process meiotic cell cycle (GO:0051321), among which
12 are shared with mitotic cell cycle (GO:0000278). Other major enriched terms
include chromatin organization (12.5%, compared to 3.5% overall), cytoskeleton
organization (12.5%, compared to 3.4% overall), regulation of organelle organiza-
tion (9.7%, compared to 2.4% overall) and cytokinesis (7.9%, compared to 1.7%
overall). These terms clearly show strong relations with the yeast cell cycle.

4. Simulation studies. In this section we illustrate the performance of our
methods (NET-DPMs) using simulation studies with various network structures
and data settings compared with other methods. In Simulation 1 we study the sim-
ilarity between the fully computational algorithm NET-DPM-1 and two fast com-
putation approaches NET-DPM-x, x = 2,3, in terms of gene selection accuracy
and uncertainty estimations. Each of the three algorithms can be used along with
one of the two methods for choosing hyperparameters: the posterior inference and
model averaging. In Simulation 2 we focus on the gene network selection under
a particular network structure and two types of simulated data to demonstrate the
flexibility of the proposed methods. In both simulations we compare the NET-
DPMs with a STD-DPM combined with the HODC algorithm without using any
network information. In Section D in the supplemental article [Zhao, Kang and
Yu (2014)], we also demonstrate the flexibility of the proposed methods by con-
ducting a simulation on the selection of genes that are strongly associated with an
outcome variable, and compare our NET-DPMs with a network based Bayesian
variable selection (NET-BVS) proposed by Li and Zhang (2010).

4.1. Simulation 1. In this simulation we investigate the performance of the
proposed algorithms using a simulated data set that mimic the real data in Sec-
tion 3. We generate a scale-free network with 1000 genes based on the rich-get-
rich algorithm [Barabási and Albert (1999)], that is, n = 1000. Two hub genes
with 64 and 69 connections to other genes are in this network; the mean and me-
dian edges per gene are 1.998 and 1. The partial network structure with the two
hub genes included is shown in Figure 4. From the network structure, we generate
z from the Ising model (2.3) with the sparsity parameter π0 = 0.8 and smoothness
parameters � = (�0, �1) = (5,10). For i = 1, . . . , n, in light of the results in Sec-
tion 3, we simulate data ri given zi from the empirical distributions (Figure 5) of

FIG. 4. Partial network structure with the dash lines representing connections to other nodes not
shown in the figure.
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FIG. 5. Empirical distributions of “selected” genes (upper panel) and “unselected” genes (lower
panel) in the Spellman yeast cell cycle data estimated by the NET-DPM-3 (right panel) and the
STD-DPM (left panel).

the test statistics for “selected” and “unselected” genes in the Spellman yeast cell
cycle microarray data. As shown in Section 3, the NET-DPM-3 (Scenario 1) and
the STD-DPM (Scenario 2) provide different gene selections results. We set both
scenarios as the truth to simulate data.

We apply the NET-DPM-x, for x = 1,2,3, and the STD-DPM to the sim-
ulated data set. To choose the sparsity and smoothness parameters, the NET-
DPM-1 and the NET-DPM-3 are both combined with model averaging, where
the possible choices of π0 and � are (0.75,0.8,0.85,0.9) and (1,5,10,20,50) ×
(1,5,10,20,50), while the NET-DPM-2 is combined with the posterior inference
on (π0,�). As for other hyperparameters, we specify τk, ξk, γk, βk,αk;k = 0,1 the
same way as in the data application for the NET-DPM-x, for x = 1,2. With ran-
dom starting values, each algorithm is run 10 times under 10,000 iterations with
2000 burn-in. For each gene i, the mode of the marginal posterior probability of zi

is taken to determine whether gene i is selected or not. The selection performance
for each method based on the average of the 10 runs is presented in Table 2. We
also compare the posterior probability estimates of z between different algorithms
under Scenario 1 in Figure 6.



BAYESIAN GENE AND GENE SUBNETWORK SELECTION 1015

TABLE 2
Gene selection accuracy in Simulation 1

STD-DPM NET-DPM-1 NET-DPM-2 NET-DPM-3

Scenario 1
True positive rate 0.893 0.973 0.920 0.920
False positive rate 0.292 0.001 0.000 0.006
False discovery rate 0.801 0.014 0.000 0.080

Scenario 2
True positive rate 1.000 1.000 1.000 1.000
False positive rate 0.232 0.000 0.000 0.007
False discovery rate 0.741 0.000 0.000 0.085

Typical computation time (hrs) 0.100 8.500 2.800 0.150

From Table 2, it is clear that the NET-DPMs achieve a better selection perfor-
mance than the STD-DPM method under both scenarios. The STD-DPM with-
out using the gene network information provides an extreme high false discovery
rate in each scenario. This implies that it is critical to incorporate the gene net-
work information to control FDR. Table 2 also suggests the NET-DPM-2 and
the NET-DPM-3 approximate the NET-DPM-1 very well in terms of the gene
selection accuracy with a substantial lower computational cost (3.4 GHz CPU,
8 GB Memory, Windows System). In addition, a comparison between the NET-
DPM-2 and the NET-DPM-3 shows that the Bayesian model averaging over hy-

FIG. 6. Marginal posterior probabilities of the class labels of all 1000 genes by the different meth-
ods: NET-DPM-3 vs. NET-DPM-2 (left panel) and NET-DPM-2 vs. NET-DPM-1 (right panel). The
probability values are jittered by tiny random noises for better presenting.
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perparameters (π0,�) provides an efficient alternative to the standard Bayesian
posterior inference procedure. For the posterior probability estimates, the NET-
DPM-2 and the NET-DPM-3 achieve a good agreement, as shown in the left panel
of Figure 6. However, in the right panel of Figure 6, compared with the NET-
DPM-1, the NET-DPM-3 tends to provide larger probability estimates for the “se-
lected” genes, but smaller probability estimates for “unselected” genes. This im-
plies the fast computation approaches underestimate the uncertainty of gene selec-
tion.

4.2. Simulation 2. In this simulation we demonstrate the flexibility of the pro-
posed methods and their ability to identify subnetworks of interest. We consider a
94-gene network which consists of an 11-gene subnetwork by design and an 83-
gene scale-free network simulated from the rich-get-rich algorithm. The mean and
median edges per node for the whole network are 2.02 and 1. Figure 7 shows the
designed 11-gene subnetwork, where genes 5, 6 and 11 are connected with three
other genes from the 83 gene scale-free network. Rather than simulating from pri-
ors, we directly specify the class label z as zi = 1 for i ∈ {1,2,3,4,5,8,9,10},
zi = 0 otherwise. In Figure 7 the blue nodes represent the “selected” genes and
the red nodes are “unselected” genes. In addition, all other genes in the scale-free
network (not shown in the figure) are “unselected.” The gene subnetwork of in-
terest includes genes 1, 2, 3, 4 and 5, which are encircled by a rectangle frame in
Figure 7. The null distribution for “unselected” ri is specified as a standard normal
distribution: [ri | zi = 0] ∼ N(0,1). For the distribution of “selected” genes, we

FIG. 7. Partial simulated gene network structure: the blue nodes represent “selected” genes and
the red nodes represent “unselected” genes. Dash lines denote connections to genes not shown in the
figure. A subnetwork of interest includes nodes 1, 2, 3, 4 and 5, which are encircled by a rectangle
frame.
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TABLE 3
Selection accuracy of gene subnetwork∗ by TPR (true positive rate), FPR (false positive rate) and

FDR (false discovery rate) in Simulation 2

Gaussian data Non-Gaussian data

Method TPR FPR FDR TPR FPR FDR

NET-DPM-3 63% 11% 15% 60% 5% 8%
STD-DPM 15% 33% 69% 17% 26% 60%

∗For gene subnetwork selection, the TPR is defined as the percentage of exactly selecting the correct
network. The FPR is the percentage of selecting a larger network containing the correct network and
at least one more other gene that has connection to the network. The FDR is the proportion of falsely
selecting a larger network among all the network discoveries (selecting a correct or larger network).

consider two settings:

Gaussian data: [ri | zi = 1] ∼ 0.4 × N(3,1) + 0.6 × N(2,0.5),

Non-Gausian data: [ri | zi = 1] ∼ 0.4 × G(5,2) + 0.6 × G(6,3),

where G(a, b) denotes a gamma distribution with shape a and rate b. According
to the above procedure, we simulate 100 data sets for each type of data. We ap-
ply the NET-DPM-3 and the STD-DPM to each data set. We utilize the model
averaging for choosing hyperparameters and a set of possible choices are given
by {1,2,5,10,15} for both �0 and �1, and {0.8, 0.85, 0.9, 0.95} for π0. We run
10,000 iterations with 2000 burn-in on each data set for both methods. In each
simulated data set, we predetermine one gene as a “sure selected” gene. It has the
largest number of connections with the “selected” genes estimated by the STD-
DPM model.

Table 3 summarizes the selection accuracy of the gene subnetwork based on
the 100 simulated data sets for each type of data. It is clear that the NET-DPM-3
provides much higher accuracy of the subnetwork selection than the STD-DPM.
The NET-DPM-3 achieves a more than 60% accuracy rate in correctly identifying
the subnetwork with an additional low false positive and false negative occurrences
regardless of the type of data. This verifies the overall better performance of NET-
DPM-3 than the STD-DPM in terms of identifying the gene subnetwork and the
robustness of the proposed methods on different types of data.

5. Discussion. In the article we propose a Bayesian nonparametric mixture
model for gene/gene subnetwork selection. Our model extends the standard DPM
model incorporating the gene network information to significantly improve the
accuracy of the gene selections and reduce the false discovery rate. We demon-
strate that the proposed method has the ability to identify the subnetworks of
genes and individual genes with a particular expressional behavior. We also show
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that it is able to select genes which are strongly associated with clinical variables.
We develop a posterior computation algorithm along with two fast approxima-
tion approaches. The posterior inference can produce more accurate uncertainty
estimates of gene selection, while the fast computing algorithms can achieve a
similar gene selection accuracy. Due to the nonparametric nature, our method
has the flexibility to fit various data types and has robustness to model assump-
tions.

When we observe gene expression data along with measurements of a clini-
cal outcome, we need to create statistics to perform the selection of genes that
are strongly associated with the clinical outcome. The choice of the statistics is
crucial to the performance of our methods. To model the relationship between
the clinical outcome and gene expression data, much literature suggests a linear
regression model [Li and Li (2008); Pan, Xie and Shen (2010); Li and Zhang
(2010); Stingo et al. (2011)], from which we produce testing statistics or coef-
ficient estimates as the candidates. For instance, as we suggest in Section D in
the supplemental article [Zhao, Kang and Yu (2014)], the most straightforward
approach is to fit simple linear regression on each gene and use the t-statistics
as the input data to our methods. However, there is no scientific evidence that
the relationship between gene expression profiles and the clinical outcome should
follow a linear regression model. Without making this assumption, we may test
the independence between each gene expression profile and the clinical outcome
via a nonparametric model suggested by Einmahl and Van Keilegom (2008) and
use our model to fit the testing statistics. Other potential choices of statistics for
the nonlinear problems include mutual information statistics [Peng, Long and
Ding (2005)] and maximal information coefficient (MIC) statistics [Reshef et al.
(2011)].

Although the development of our method is motivated by gene selection prob-
lems, our method can conduct variable selection for a general purpose and it
has broad applications. For example, functional neuroimaging studies (e.g., fMRI
and PET) usually produce large-scale statistics, one for each voxel in the brain.
Those statistics are used to localize the brain activity regions related to partic-
ular brain functions. This essentially is a voxel selection problem to which our
method is applicable, where the networks may be defined according to the spa-
tial locations of the voxels. In addition to this, we discuss two future direc-
tions:

(1) It is common that we have multiple hypothesis tests for each gene, and
we have interest in jointly analyzing these statistics. This motivates an extension
of the current NET-DPM model from one dimension to multiple dimensions for
multivariate large-scale statistics.

(2) The selection of one gene might be affected by not only the genes that
are directly connected to it, but also the genes close to it over the network. It
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would be interesting to extend the prior specifications of the class label by incor-
porating a network distance. This should provide more biologically meaningful
results.
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SUPPLEMENTARY MATERIAL

Supplement to “A Bayesian nonparametric mixture model for selecting
genes and gene subnetworks” (DOI: 10.1214/14-AOAS719SUPP; .pdf). In this
online supplemental article we provide (A) derivations of the proposed methods,
(B) details of the main algorithms for posterior computations, (C) details of poste-
rior inference for hyperparameters, (D) additional simulation studies and (E) sen-
sitivity analysis.
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