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MAXIMUM LIKELIHOOD AND PSEUDO SCORE APPROACHES
FOR PARAMETRIC TIME-TO-EVENT ANALYSIS WITH

INFORMATIVE ENTRY TIMES1
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We develop a maximum likelihood estimating approach for time-to-event
Weibull regression models with outcome-dependent sampling, where sam-
pling of subjects is dependent on the residual fraction of the time left to de-
veloping the event of interest. Additionally, we propose a two-stage approach
which proceeds by iteratively estimating, through a pseudo score, the Weibull
parameters of interest (i.e., the regression parameters) conditional on the in-
verse probability of sampling weights; and then re-estimating these weights
(given the updated Weibull parameter estimates) through the profiled full like-
lihood. With these two new methods, both the estimated sampling mechanism
parameters and the Weibull parameters are consistently estimated under cor-
rect specification of the conditional referral distribution. Standard errors for
the regression parameters are obtained directly from inverting the observed
information matrix in the full likelihood specification and by either calcu-
lating bootstrap or robust standard errors for the hybrid pseudo score/profiled
likelihood approach. Loss of efficiency with the latter approach is considered.
Robustness of the proposed methods to misspecification of the referral mech-
anism and the time-to-event distribution is also briefly examined. Further, we
show how to extend our methods to the family of parametric time-to-event
distributions characterized by the generalized gamma distribution. The mo-
tivation for these two approaches came from data on time to cirrhosis from
hepatitis C viral infection in patients referred to the Edinburgh liver clinic.
We analyze these data here.

1. Introduction. The modeling of the time from disease onset or infection
(i.e., initiating event) to an outcome of relevance is of considerable importance
in studies of the natural history of a disease and in projection of disease burden.
Prospective studies which recruit and follow an appropriate cohort of subjects from
disease onset to the event of interest are ideal for this purpose. However, these stud-
ies are inefficient in terms of resources if the event of interest tends to occur well
after disease onset, as is the case for hepatitis C virus (HCV) studies of progression
to cirrhosis from initial infection. The alternative is to follow a prevalent cohort of
cross-sectionally sampled subjects who, prior to recruitment, have already expe-

Received March 2013; revised September 2013.
1Supported in part by the Medical Research Council (Unit Programme numbers U105261167,

U105260794).
Key words and phrases. Biased data, generalized gamma distribution, outcome-dependent sam-

pling, pseudo score, robust standard error, survival analysis, Weibull distribution.

726

http://www.imstat.org/aoas/
http://dx.doi.org/10.1214/14-AOAS725
http://www.imstat.org


TIME-TO-EVENT ANALYSIS WITH INFORMATIVE ENTRY TIMES 727

rienced the initiating event (e.g., HCV infection) but not yet the event of interest
(e.g., cirrhosis). The left truncated time-to-event data obtained from such a study
provide a length-biased sample of the incident population, if sampling is such that
an assumption of stationarity over calendar time for the occurrence of the initiat-
ing event can be made. Methods for handling both incidence data and such length-
biased prevalence data have been well described in the (bio)statistics literature
[Andersen et al. (1993), Wang, Brookmeyer and Jewell (1993), Kalbfleisch and
Prentice (2002), Brookmeyer (2005), Keiding (2005), Wang (2005), Tsai (2009),
Qin and Shen (2010)].

A less explored situation is the analysis of prevalence data arising from a refer-
ral cohort where entry into the cohort is dependent on a subject’s residual fraction
of time remaining to the event of interest, and inference on the incident popu-
lation is required. Such data are believed to occur in HCV studies conducted in
tertiary care settings, where HCV patients are more likely to be referred to special-
ist clinics at later stages of disease [Fu et al. (2007)]. The conventional truncation
likelihood approach which simply conditions on the time of entry into the cohort
does not work here, as the referral time and the time to the event are correlated. The
ignoring of this referral bias has led to higher rates of progression to cirrhosis be-
ing reported in studies in specialist clinics compared to those in community-based
settings [Freeman et al. (2001)]. As cirrhosis linked to HCV infection is a major
epidemic of the 21st century, it is extremely important to get an accurate picture
of the present and future disease burden facing affected regions in order to inform
public health decisions and actions.

The aforementioned type of referral or outcome-dependent sampling bias is par-
ticularly difficult to deal with unless a full specification (up to unknown parame-
ters) of the probability sampling generating mechanism is provided. In practice,
this mechanism will rarely be known and, instead, an approximate formulation of
the sampling distribution, which is reasonably robust to misspecification, would
be sought.

Previously, Fu, Tom and Bird (2009) proposed a weighted pseudo score
[Lawless (1997), Cook and Lawless (2007)] or inverse probability weighted
method for estimating the parameters of a Weibull regression model for the in-
cubation period from infection to cirrhosis for the community of hepatitis C virus-
infected individuals, when there is cirrhosis-related referral bias to the studied
prevalent cohort. The method assumed that everyone in the community would
come to clinical attention at or before cirrhosis, so that cirrhosis events are not
missed. Therefore, the target community population was assumed “immortal” (in
the sense of no competing events), and individuals observed in the study sample
to have experienced a cirrhotic event were associated with a weight of one in the
estimation procedure. However, for other individuals, Fu, Tom and Bird (2009)
used approximate weights and, therefore, consistency of these estimated weights,
and, consequently, the regression parameter estimates of interest, was, in general,
not guaranteed.
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Here we outline a full likelihood approach to this outcome-dependent referral
problem in which the likelihood for the joint distribution of the time to referral and
the time to outcome of interest, both from the initiating event, is fully specified.
In practice, depending on the dimensionality of the joint parameter space, the full
likelihood may be difficult to maximize over both the regression parameters of in-
terest and the parameters associated with the time-to-entry process. Therefore, we
also investigate another strategy based on a hybrid two-stage approach that iter-
atively alternates between estimating the parameters associated with the time-to-
outcome distribution (i.e., regression and shape parameters) from a pseudo score
with fixed weights and then estimating the parameters associated with the time-to-
entry/referral process from the profiled full likelihood assuming the regression and
shape parameters are known. We retain the assumption of an immortal cohort, al-
though this can be relaxed [Copas and Farewell (2001)]. Primarily, we describe the
approaches where the time-to-event distribution is assumed Weibull. However, we
show how the methods can be extended to the family of parametric time-to-event
distributions characterized by the generalized gamma distribution [Stacy (1962),
Stacy and Mihram (1965), Prentice (1974), Farewell and Prentice (1977), Lawless
(1980), Cox et al. (2007)], for which the Weibull is an important special case.

2. Notation, framework and assumptions. For individuals in the target/inci-
dent population, let the calendar time of the initiating event be Y and the calen-
dar period of interest for inference on this population be between calendar times
d1 and d2. Therefore, d1 ≤ Y ≤ d2. Clinical observation of an individual will be
left truncated at their time of referral to the clinic which is the time of entry into
the cohort for those referred before d2. Let the time intervals from Y to potential
referral and to the event of interest be R and T , respectively, and denote by Z the
p × 1 vector of explanatory variables. We assume that the time-to-event T from Y

in the incident population comes from a Weibull distribution with support on the
positive real line and with positive shape and scale parameters, γ and λ, respec-
tively, where λ = exp(βT z) for given Z = z and β is a vector of regression param-
eters associated with z. More explicitly, the density and distribution functions of T

from an initiating event calendar time Y = y, and given the vector of explanatory
variables Z = z, are fT (t |y, z) = {γ exp(−γβT z)} exp[−{t/ exp(βT z)}γ ]tγ−1 and
FT (t |y, z) = 1 − exp[−{t/ exp(βT z)}γ ], respectively. As there is no dependence
on the actual value of y in these functions, we simplify the notation for the density
and distribution functions of T to fT (t |z) and FT (t |z), respectively. Additionally,
we assume, as is done for length-biased sampling problems, that within the calen-
dar period [d1, d2], the rate of occurrence of the initiating event remains constant.
The independence of the distribution of T from when its initiating event occurred
and the stationarity of the initiating event process within the calendar period of
interest are together referred to as the steady state or equilibrium condition [Wang
(2005)].
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An individual is assumed to be included in the studied prevalent cohort if
0 < R < d2 − Y , with S = I (0 < R < d2 − Y) the indicator variable denoting
selection/inclusion. In addition to the assumption that selected patients will expe-
rience the event of interest and be referred prior to the time of the event, we assume
the following for the individuals in the target population.

ASSUMPTION 1 (Truncation before outcome). The truncation (or potential
referral or entry) time of an individual is always less than the time to outcome and
so R < T .

ASSUMPTION 2 (Conditional truncation time). For a known vector ν =
(ν0, . . . , νm+1)

T , with ν0 = 0, νm+1 = 1 and νj < νj+1 (j = 0, . . . ,m), and un-
known mixture probability vector π ′ = (π0, . . . , πm)T with

∑m
j=0 πj = 1, the dis-

tribution of R given T = t (for t > 0) is a mixture of independent uniform random
variables with support in the interval [0, t), density function

fR|T (r|t) =
m∑

j=0

πj

(νj+1 − νj )t
I (νj < r/t ≤ νj+1)

and cumulative distribution function

FR|T (r|t) =
m∑

j=0

πj {min(r, νj+1t) − max(0, νj t)}
(νj+1 − νj )t

I (νj < r/t).

The form chosen for this conditional density reflects the belief that the residual
fraction, 1 − r/t , of time remaining to the event of interest (or, alternatively, the
fraction, r/t , of event time elapsed) drives whether a subject is referred [Fu, Tom
and Bird (2009)]. It is constructed as a mixture of uniforms so as to allow flexibility
in the shape of distribution that can be captured. A notable feature of the random
variable V = R/T (for T > 0), corresponding to the fraction of time elapsed to
the event of interest, is its independence from T (see theorem in the supplementary
material [Tom, Farewell and Bird (2014)]). We will subsequently investigate the
impact of misspecifying the partitioning of ν on results obtained.

For selected subjects (S = 1), denote by C the censoring time from entry into
the cohort, and let X = min(T ,R + C) be the observed follow-up time until the
outcome event or censoring, with � = I (T − R < C) the “right censoring” in-
dicator taking the value 1 when uncensored. As the calendar period of interest
for inference on this population is between d1 and d2, then for selected subjects,
d2 −Y ≥ X. That is, follow-up beyond d2 is not planned. Additionally, we assume
that (T ,R) is independent of C [conditional on either Z or (Z,Y )] and that the
parameters governing the distribution of C are distinct from those governing the
joint distribution of (T ,R). That is, the censoring process is ignorable.

To proceed with estimation, we make the following further simplifying assump-
tion:
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FIG. 1. Prevalent referral cohort sampling setup.

ASSUMPTION 3 (Known initiation time). The calendar time of the initiating
event can be determined for those subjects selected for inclusion in the cohort.

In Section 4 we discuss how one would proceed if the time of the initiating
event is best known to within an interval. Figure 1 presents pictorially the salient
features of our prevalent referral cohort design setup.

3. Estimation methods.

3.1. Maximum likelihood approach. Let n be the number of individuals who
have been selected into the cohort. For an included individual i ∈ {1, . . . , n}, let
the observed data be (ri, xi, δi, yi, zi), which are assumed to be independent re-
alizations of (Ri,Xi,�i, Yi,Zi). Under Assumptions 1 and 3, the ignorability of
the censoring process and conditional on {Zi} and {Yi}, the full likelihood for
θT = (γ,βT ,πT ), where π = (π1, . . . , πm)T , can be written (with, for concise-
ness, some abuse of notation for continuous variables) as

L(θ) =
n∏

i=1

{
pr(Ri = ri, Ti = xi |Yi = yi,Zi = zi, Si = 1)δi

× pr(Ri = ri, Ti ≥ xi |Yi = yi,Zi = zi, Si = 1)1−δi
}

(1)

=
n∏

i=1

Li(θ).
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The first term in the product is the likelihood contribution if xi corresponds to the
true time-to-event ti (i.e., δi = 1) and the second when a right censored event time
is observed (i.e., δi = 0).

When δi = 1 and setting ui = d2 − yi , it can be shown that

pr(Ri = ri, Ti = xi |Yi = yi,Zi = zi, Si = 1)

= fR|T (ri |xi)fT (xi |zi)

pr(0 < Ri < ui)
.

In the situation where γ > 1 (i.e., the hazard rate of T increases over time), and
defining ϕ = (γ − 1)/γ , the denominator, pr(0 < Ri < ui), can be analytically
evaluated and is found to be

m∑
j=0

πj

(νj+1 − νj )

[ {
νj+1FT (ui/νj+1|zi) − νjFT (ui/νj |zi)

}

+ uie
−βT zi�(ϕ)

{
FG

(
(ui/νj )

γ ; e−γβT zi , ϕ
)

− FG

(
(ui/νj+1)

γ ; e−γβT zi , ϕ
)}]

(2)

=
m∑

j=0

πj

(νj+1 − νj )

[ {
νj+1FT (ui/νj+1|zi) − νjFT (ui/νj |zi)

}

+ uie
−βT zi

{
�

(
ϕ, e−γβT zi (ui/νj+1)

γ )

− �
(
ϕ, e−γβT zi (ui/νj )

γ )}]

with FG(u; r, s) = γ (s, ru)/�(s) = {�(s) − �(s, ru)}/�(s) the cumulative dis-
tribution function of a gamma random variable with rate r > 0 and shape
s > 0, evaluated at u (0 < u < ∞), where γ (s, u) = ∫ u

0 t s−1e−t dt and �(s,u) =∫ ∞
u ts−1e−t dt denote the lower and upper incomplete gamma functions and

�(s) = ∫ ∞
0 t s−1e−t dt the ordinary gamma function. Details of the derivation are

provided in the supplementary material [Tom, Farewell and Bird (2014)] for the
family of parametric time-to-event distributions characterized by the generalized
gamma distribution with either monotonically increasing or arc shaped (upside-
down bathtub) hazards [Glaser (1980), Cox et al. (2007)].

For selected individuals with δi = 0, the likelihood contribution in (1), pr(Ri =
ri, Ti ≥ xi |Yi = yi,Zi = zi, Si = 1), can be written as

pr(Ri = ri, Ti ≥ xi |Yi = yi,Zi = zi)

pr(0 < Ri < ui)
,

where it can be shown (see the supplementary material [Tom, Farewell and Bird
(2014)]) that when γ > 1, the numerator, pr(Ri = ri, Ti ≥ xi |Yi = yi,Zi = zi) =
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pr(Ri = ri, Ti ≥ xi |Zi = zi), takes the closed form
m∑

j=0

πj

(νj+1 − νj )

[
�(ϕ)e−βT zi I

(
νj < min(ri/xi, νj+1)

)

× {
FG

(
(ri/νj )

γ ; e−γβT zi , ϕ
)

− FG

((
ri/min(ri/xi, νj+1)

)γ ; e−γβT zi , ϕ
)}]

(3)

=
m∑

j=0

πj

(νj+1 − νj )

[
e−βT zi I

(
νj < min(ri/xi, νj+1)

)

× {
�

(
ϕ, e−γβT zi

(
ri/min(ri/xi, νj+1)

)γ )

− �
(
ϕ, e−γβT zi (ri/νj )

γ )}]
.

For the case where γ < 1 (i.e., the hazard rate of T is monotonically de-
creasing over time), similar closed-form expressions for pr(0 < Ri < ui) and
pr(Ri = ri, Ti ≥ xi |Zi = zi) can be obtained but with the upper incomplete gamma
function of the form �(ϕ, (u/λ)γ ) replaced with (u/λ)γϕE1−ϕ((u/λ)γ ) in (2)
and (3), where Ep(z) denotes the generalized exponential integral with p > 1 and
z ≥ 0. However, for this present paper, we consider only γ > 1, as it is difficult to
envisage in our context a situation where an initially decreasing hazard rate over
time would arise.

The maximum likelihood estimates, θ̂ , for θ can now be obtained by sub-
stituting these various expressions for the terms in (1) into L(θ) = ∏n

i=1 Li(θ)

and then maximizing l(θ) = logL(θ) = ∑n
i=1 li(θ) over θ . Estimates of the stan-

dard errors for θ̂ are obtained from inverting the observed information matrix,
−∂2l(θ)/∂θ ∂θT , evaluated at θ̂ .

3.2. Hybrid pseudo score/profile likelihood approach. As an alternative to
the full likelihood approach, a pseudo score method based on inverse probability
weights can be developed [Cook and Lawless (2007)]. We assume that the incident
population has N individuals with initiating event times occurring in the period d1

to d2. The weighted pseudo score, U1(ψ,π), with ψT = (γ,βT ), is constructed
by weighting the Weibull score contributions, ∂lWi /∂ψ for selected subjects by
wi = 1/pi (i = 1, . . . , n), where pi is the selection probability for subject i. This
weighted pseudo Weibull score, which has expectation zero, takes the form

U1(ψ,π) =
N∑

i=1

Siwi

∂lWi

∂ψ

=
N∑

i=1

Si

pi

∂

∂ψ

[
δi logfT (xi |zi) + (1 − δi) log

(
1 − FT (xi |zi)

)]
.
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For a selected study subject i (i.e., Si = 1), pi is either pr(0 < Ri < ui =
d2 − yi |Ti = xi) if δi = 1 or pr(0 < Ri < ui |Ti ≥ xi) if δi = 0, with xi ≤ ui . The
former probability expression evaluates to 1, as a subject who is observed to have
experienced the event of interest would have ti = xi ≤ ui and since Ti > Ri (by
Assumption 1), then, with probability 1, Ri < ui . The latter probability expres-
sion is shown in the supplementary material [Tom, Farewell and Bird (2014)] to
be {pr(0 < Ri < ui)−FT (xi |zi)}/{1 −FT (xi |zi)}, which is a function of θ . These
expressions are derived under the supposition that no further follow-up informa-
tion on referred individuals beyond d2, the close of the study, is available. This
reflects the situation in our application. However, these expressions can be eas-
ily modified to take account of further follow-up information beyond the close of
study, as shown in the supplementary material [Tom, Farewell and Bird (2014)] for
selected individuals with δi = 0 and xi > ui . The former probability expression for
an uncensored selected individual i is trivially FRi |Ti

(ui |xi), where xi can now be
greater than ui .

Estimation of θT = (γ,βT ,πT ) under this second approach proceeds in two
stages. First, ψ , the vector of Weibull shape and regression parameters, is esti-
mated by setting the pseudo score, U1(ψ,π), to zero and solving for ψ with given
{pi} to get the maximum weighted pseudo score estimates of ψ . Next, the inclu-
sion probabilities {pi} for selected subjects with δi = 0 are reevaluated at these
maximum weighted pseudo score estimates and at the maximum profile likeli-
hood estimate of π obtained after maximizing l(θ) over π with ψ set in (1) to its
maximum weighted pseudo score estimates. These two steps are iterated until con-
vergence of the estimates for θ to θ̃ . Initially the inclusion probabilities {pi} are all
assumed to take the value 1 and, therefore, the initial estimate of ψ is from the stan-
dard (unweighted) Weibull regression model. This iterative estimation procedure
is similar to that used by Hardin and Hilbe (2003) for longitudinal data, although,
to minimize efficiency loss, we do not adopt their assumption of orthogonality of
the estimating equations.

Estimated standard errors based on this approach can be obtained either through
a standard bootstrap procedure or determined based on Taylor series expansion ar-
guments applied to the set of unbiased estimating equations U1(ψ,π) = 0 and
U2(ψ,π) ≡ ∂l(θ)/∂π = 0. Under appropriate regularity conditions, the asymp-
totic joint distribution of ((ψ̃ − ψ)T , (π̃ −π)T ) is Gaussian with expectation zero
and variance–covariance matrix consistently estimated by the robust sandwich ma-
trix ���T evaluated at θ̃ , where �−1 is

−

⎛
⎜⎜⎝

∂U1

∂ψT

∂U1

∂πT

∂U2

∂ψT

∂U2

∂πT

⎞
⎟⎟⎠

and � = ∑
{i : Si=1} U0iU

T
0i , where UT

0i = (UT
1i ,U

T
2i ) = (wi(θ) ∂lWi /∂ψT , ∂li/∂πT )

for Si = 1, with the dependency of wi(θ) on θ explicitly shown. With this extra
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notation, it is easily seen that U1(ψ,π) = ∑n
i=1 U1i and U2(ψ,π) = ∑n

i=1 U2i ,
and

∂U1

∂ψT
=

n∑
i=1

(
∂lWi
∂ψ

∂wi

∂ψT
+ wi

∂2lWi
∂ψ ∂ψT

)
,

∂U1

∂πT
=

n∑
i=1

∂lWi
∂ψ

∂wi

∂πT
,

∂U2

∂ψT
=

n∑
i=1

∂2li

∂π ∂ψT
and

∂U2

∂πT
=

n∑
i=1

∂2li

∂π ∂πT
.

3.3. Simulation study: Consistency, efficiency and robustness considerations.
To illustrate the performance of the proposed methods, in particular, with regard
to efficiency, bias and robustness, we conducted a small-scale simulation with a
design similar to that in Fu et al. (2007), Fu, Tom and Bird (2009). We performed
500 simulation runs and generated, in each of the runs, a community sample size of
N = 5000. We considered three different time-to-event distributions from which
to simulate our data. These were (i) the Weibull, (ii) the gamma and (iii) the
log-normal. The parameter configurations for these three distributions were
(i) ψT

W = (γW ,β0, β1, β2) = (4,4.6,−0.03,−0.4), (ii) ψT
G = (γG,β0, β1, β2) =

(12.71,1.96,−0.03,−0.4), and (iii) ψT
LN = (σLN,β0, β1, β2) = (0.275,4.464,

−0.03,−0.4), corresponding to the shape parameters, γW and γG, scale param-
eter, σLN , and the regression parameters β = (β0, β1, β2)

T associated with the
covariate vector z comprising of an intercept, a continuous variable, z1, generated
from a log-normal distribution with location and scale parameters taking the val-
ues 3 and 0.3, respectively, and a binary variable, z2, generated from a Bernoulli
distribution with success probability of 1/3. These covariates are included through
a log-linear regression model on the Weibull’s and gamma’s scale parameters and
a linear model on the log-normal’s location parameter. The parameters β0, γW , γG

and σLN were chosen to make the log baseline means from the regression mod-
els corresponding to the three distribution all equal to 4.50. The truncation times
(in years), which are entry times for those selected, are generated from the con-
ditional distribution proposed earlier with π ′ = (0.1, 0.06, 0.12, 0.24, 0.48)T and
ν = (0, 0.5, 0.625, 0.75, 0.875, 1)T . For simplicity in interpretation of the various
simulation results to be presented, we assume everyone in the community expe-
rienced the initiating event at the same calendar date and those whose truncation
time was less than d0 = 15 years entered the referral cohort. Administrative right
censoring of sampled subjects occurred at c0 = 15 years from the calendar date
of the initiating event. This was the only type of censoring considered here. The
parameters of the Weibull distribution were informed by the data that arose from
the Edinburgh Royal Infirmary’s hepatitis C virus liver clinic, which are analyzed
later.

Correct specification of the time-to-event distribution. Table 1 presents the
findings from the aforementioned simulation. Both approaches produce consis-
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TABLE 1
Full and hybrid pseudo score/profiled Weibull likelihood simulation results

Hybrid pseudo score/
Full likelihood profile likelihoodTrue

distribution
Para-
meters Mean SE ESE Mean RSE ESE RE

Weibull β0 4.635 0.289 0.287 4.631 0.386 0.397 0.525
β1 −0.031 0.005 0.006 −0.030 0.007 0.007 0.604
β2 −0.405 0.093 0.090 −0.404 0.109 0.112 0.645
γW 4.041 0.345 0.342 4.062 0.361 0.401 0.729
π1 0.060 0.020 0.020 0.061 0.018 0.019 1.011
π2 0.120 0.030 0.031 0.120 0.029 0.031 0.998
π3 0.241 0.041 0.040 0.240 0.040 0.040 1.011
π4 0.480 0.047 0.047 0.479 0.050 0.049 0.929

Gamma β0 4.378 0.276 0.307 4.325 0.277 0.335 0.838
β1 −0.028 0.005 0.006 −0.027 0.005 0.006 0.839
β2 −0.405 0.091 0.091 −0.402 0.103 0.111 0.677
γW 6.658 0.772 0.779 6.821 0.646 0.883 0.779
π1 0.059 0.022 0.022 0.060 0.019 0.022 1.066
π2 0.114 0.039 0.041 0.113 0.037 0.039 1.080
π3 0.233 0.054 0.056 0.231 0.053 0.054 1.063
π4 0.482 0.066 0.071 0.475 0.066 0.070 1.046

Log-normal β0 4.344 0.269 0.308 4.338 0.276 0.392 0.617
β1 −0.028 0.004 0.005 −0.028 0.005 0.007 0.671
β2 −0.402 0.094 0.101 −0.416 0.113 0.136 0.554
γW 7.919 0.993 1.071 8.027 0.767 1.230 0.757
π1 0.062 0.023 0.025 0.062 0.020 0.025 1.007
π2 0.108 0.042 0.043 0.109 0.040 0.041 1.088
π3 0.225 0.061 0.062 0.224 0.059 0.060 1.053
π4 0.492 0.076 0.078 0.484 0.076 0.075 1.073

Mean, average of the estimate; SE, average of the estimated standard error; ESE, empirical stan-
dard error; RSE, average of the estimated robust standard error; RE, the empirical variance of the
maximum likelihood estimator divided by the empirical variance of the maximum hybrid pseudo
score/profile likelihood estimator.

tent estimates of the parameters from the Weibull model and the sampling mecha-
nism when the time-to-event distribution was Weibull. As expected, more efficient
estimates of the shape and regression parameters were obtained from the full like-
lihood approach than the hybrid pseudo score/profile likelihood approach. Similar
estimated standard errors were obtained from both approaches for the correspond-
ing estimates of π . This perhaps reflects the near optimality of the hybrid approach
when estimating π since the relevant part of the full likelihood is being used.

Misspecification of the time-to-event distribution. Table 1 also shows the re-
sults when the true time-to-event distributions are gamma and log-normal but the
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full likelihood and hybrid pseudo score/profile likelihood approaches were fitted
assuming the time-to-event distribution was Weibull. Here we see that the impact
of this incorrect assumption for the time-to-event distribution is negligible for the
estimation of the regression parameters β1 and β2 and minor for the estimation
of π . The estimates of the log baseline mean under misspecification of the true
gamma and log-normal distributions by the Weibull [i.e., log(�(1 + 1/γW)) + β0]
were approximately 4.31 and 4.28, respectively. As earlier mentioned, the true
log baseline mean is 4.50. Therefore, for these particular cases of misspecification
there is underestimation of the log baseline mean. This underestimation of the log
baseline mean would result in an underestimation of the tail probabilities of the
marginal population time-to-event distribution, which would lead to underestima-
tion of the population size.

Misspecification of the referral mechanism. To investigate the relative ro-
bustness of the proposed mixture of uniforms for the conditional distribution of
the truncation times given the time to event, we began by rerunning our sim-
ulation study as before, except with the conditional distribution of the trunca-
tion time now generated from a single uniform distribution in the interval zero
to the true time to event instead of the five-component mixture of uniforms.
However, the less parsimonious five-component mixture of uniforms, with ν =
(0,0.5,0.625,0.75,0.875,1)T , was assumed as the working conditional distribu-
tion of the truncation times when fitting the full likelihood and hybrid approaches
to the simulated data at each simulation run. The results are shown in Table 2. The
less parsimonious working conditional distribution for the truncation times has no

TABLE 2
Full and hybrid pseudo score/profiled likelihood Weibull simulation results under a less

parsimonious representation of the truncation time conditional distribution

Hybrid pseudo score/
Full likelihood profile likelihood

Parameters Mean SE ESE Mean RSE ESE

β0 4.606 0.255 0.258 4.604 0.238 0.252
β1 −0.030 0.005 0.005 −0.030 0.005 0.005
β2 −0.400 0.085 0.087 −0.400 0.084 0.086
γ 4.057 0.394 0.385 4.056 0.363 0.380
π1 0.125 0.027 0.026 0.125 0.026 0.026
π2 0.125 0.030 0.030 0.125 0.030 0.031
π3 0.127 0.032 0.031 0.127 0.031 0.031
π4 0.125 0.032 0.032 0.125 0.032 0.031

Mean, average of the estimate; SE, average of the estimated standard error; ESE, empirical standard
error; RSE, average of the estimated robust standard error.
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apparent impact, as would be expected, on consistent estimation of the regression
and shape parameters of the Weibull distribution. This suggests that finer parti-
tions of ν than needed do not impact on consistency of estimated regression and
shape parameters, although may inflate the standard errors of these estimates and
the mixture probability estimates.

To explore the impact of misspecification due to the incorrect partitioning of ν,
we again repeated the simulation study but now allowing the truncation times to be
generated from an eight-component mixture of uniform conditional distribution,
with ν = (0,0.125, . . . ,0.875,1)T and π ′ = (0.025,0.05,0.1,0.1,0.125,0.15,

0.2,0.25)T , mimicking a strong preference for referrals to occur in the last half
of individuals’ incubation period. Additionally, we considered three scenarios for
recruitment and administrative censoring, which reflected an increasing number
of individuals referred and observed experiencing the event of interest and thus
providing more information to the analysis: (i) c0 = d0 = 15; (ii) c0 = d0 = 20;
and (iii) c0 = d0 = 30. We fitted the simulated data sets assuming the working
five-component conditional truncation time distribution mentioned earlier, which
is based on a coarser partitioning of ν than the true generating mechanism. The
results are shown in Table 3. Here, we see a noticeable negative impact of mis-
specification, from a cruder partitioning of ν, on the estimates of the regression
parameters and shape parameter (and mixture probabilities) when using the full
likelihood approach (i.e., bias), which diminishes as the amount of information
from the sample increases (as reflected by the diminishing standard errors). There
is, however, no noticeable bias observed in the estimates of the regression param-
eters and shape parameter obtained using the hybrid approach. Moreover, there is
no apparent bias, under this hybrid approach, in the mixture probabilities, except
for π1, where the bias decreases as the information content increases. This result
suggests that the hybrid approach is significantly more robust to misspecification
than the full likelihood approach under various data scenarios, but at the cost of
being less efficient in general. This perhaps is due to the hybrid approach being a
two-stage method.

3.4. Application to Edinburgh Royal Infirmary’s hepatitis C virus liver clinic.
The hepatitis C virus epidemic is a major public health concern in the UK and
across the world. To project national hepatitis C virus burden, unbiased estimation
of the progression rate from infection to liver cirrhosis is required for the whole
community of hepatitis C viral infected individuals. Often, however, the available
data on progression to cirrhosis are from a biased sample of the population of in-
terest. In the application we consider here, the data on 387 individuals infected
with the hepatitis C virus prior to 2000 (i.e., within the calendar period 1950 to
2000) arose from the Edinburgh Royal Infirmary’s hepatitis C virus liver clinic,
a tertiary referral hospital clinic whereby patients with more rapid disease pro-
gression, or symptomatic disease, would be preferentially referred, with referral
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TABLE 3
Full and hybrid pseudo score/profiled Weibull likelihood simulation results under misspecification

of the truncation time conditional distribution by a cruder partitioning

Hybrid pseudo score/
Full likelihood profile likelihood

Parameters Mean SE ESE Mean RSE ESE

c0 = d0 = 15
β0 3.841 0.133 0.156 4.790 0.383 0.388
β1 −0.018 0.003 0.004 −0.033 0.007 0.007
β2 −0.211 0.052 0.056 −0.427 0.107 0.108
γ 5.231 0.391 0.470 4.048 0.341 0.392
π1 0.244 0.030 0.028 0.252 0.032 0.037
π2 0.132 0.030 0.029 0.156 0.035 0.035
π3 0.169 0.032 0.033 0.193 0.037 0.038
π4 0.214 0.036 0.038 0.244 0.041 0.043

c0 = d0 = 20
β0 4.224 0.100 0.112 4.654 0.158 0.174
β1 −0.023 0.002 0.003 −0.031 0.003 0.004
β2 −0.290 0.039 0.041 −0.417 0.059 0.062
γ 4.565 0.227 0.253 4.020 0.212 0.230
π1 0.199 0.018 0.018 0.196 0.019 0.019
π2 0.146 0.019 0.019 0.153 0.020 0.020
π3 0.184 0.020 0.020 0.194 0.022 0.022
π4 0.230 0.023 0.023 0.247 0.024 0.025

c0 = d0 = 30
β0 4.527 0.051 0.048 4.603 0.056 0.054
β1 −0.028 0.001 0.001 −0.030 0.002 0.001
β2 −0.374 0.023 0.023 −0.402 0.025 0.025
γ 4.114 0.112 0.111 4.013 0.109 0.112
π1 0.151 0.009 0.010 0.150 0.009 0.010
π2 0.152 0.010 0.010 0.152 0.010 0.011
π3 0.197 0.011 0.011 0.199 0.011 0.011
π4 0.245 0.012 0.013 0.249 0.013 0.013

Mean, average of the estimate; SE, average of the estimated standard error; ESE, empirical standard
error; RSE, average of the estimated robust standard error.

increasingly likely to be closer to onset of cirrhosis. Thus, it is important to ac-
count for this outcome-dependent recruitment when analyzing these data so as to
provide realistic estimates of the progression rates and the effects of risk factors on
time to cirrhosis from infection for the Edinburgh’s community (of unknown size)
of hepatitis C virus-infected individuals.

To investigate the pattern of referral over patients’ cirrhosis incubation period,
we model the referral time R given the cirrhosis time T as coming from the prob-
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ability density function
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where {πj : j = 0, . . . ,5} are the unknown mixture probabilities, summing to 1,
that are required to be estimated. This distribution is chosen because of the clinical
belief that patients are more likely to be referred in the last half of their cirrhosis
incubation period and we therefore decided to model this half in more detail.

Furthermore, we assume that, for the ith hepatitis C virus patient in the com-
munity, the time to cirrhosis from known infection time follows a Weibull dis-
tribution with unknown shape and scale parameters, γ and λi , respectively. The
scale parameter, λi , is related to the ith patient’s continuous and binary ex-
planatory variables, age at hepatitis C viral infection (x1i) and excessive alcohol
consumption (x2i ), through the relationship logλi = β0 + β1x1i + β2x2i , where
βT = (β0, β1, β2) is the vector of regression parameters.

Table 4 shows the results obtained on fitting the Edinburgh Royal Infirmary
data using both the full likelihood and hybrid pseudo score/profile likelihood ap-
proaches. The bootstrap standard errors are obtained from a bootstrap sample
of 500. Relatively similar regression parameter estimates and corresponding es-
timated standard errors are obtained from the two approaches. The belief by clini-
cians that referral was more likely in the last half of the cirrhosis period is borne out

TABLE 4
Full and hybrid pseudo score/profile likelihood results for time to cirrhosis from hepatitis C virus

(HCV) infection data from Edinburgh Royal Infirmary’s liver clinic prior to 2000

Hybrid pseudo score/
Full likelihood profile likelihood

Parameters Estimate s.e. Estimate Robust s.e. Bootstrap s.e.

β0 4.410 0.123 4.380 0.174 0.181
β1 −0.022 0.004 −0.023 0.004 0.004
β2 −0.521 0.082 −0.494 0.109 0.111
γ 4.948 0.408 5.256 0.441 0.467
π1 0.096 0.020 0.093 0.014 0.015
π2 0.065 0.055 0.060 0.050 0.046
π3 0.126 0.076 0.139 0.070 0.065
π4 0.064 0.036 0.062 0.035 0.036
π5 0.639 0.055 0.635 0.051 0.041

Log-likelihood −1259.78
N (bootstrap IQR) 4196 (3414–5139)

s.e., standard error; N, estimated size of Edinburgh’s hepatitis C virus community prior to 2000; IQR,
inter-quartile range; β1 and β2, regression coefficients corresponding to age at HCV infection and
excessive alcohol consumption status.
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with about 90% of infected individuals estimated to be referred then. Strikingly,
about 64% of infected individuals are estimated to have been referred in the last
one eighth of their cirrhosis period. On repeating the analysis with a cruder repre-
sentation of the referral mechanism based on partitioning ν only into halves pro-
duced fairly similar regression estimates under both approaches (data not shown)
to those in Table 4. However, for the more variable Weibull shape parameter, there
are noticeable differences in the estimates from this cruder referral mechanism to
those previously obtained, in particular, for the full likelihood approach. The es-
timates (with standard errors) of the shape parameter are now 3.833 (0.360) and
4.755 (0.400) for the full likelihood and hybrid approaches, respectively. Addi-
tionally, the estimates of the probability of being referred in the last half of the
incubation period, obtained assuming the cruder referral mechanism, are roughly
equal under the two approaches but now calculated to be approximately 98% as
opposed to the 90% previously estimated.

From the hybrid method, we obtain an estimate (bootstrap inter-quartile range)
of 4196 (3414–5139) infected individuals in Edinburgh’s hepatitis C virus commu-
nity prior to 2000, through the summation of the inverse probability weights. Both
older age at onset of infection and excessive alcohol consumption are found statis-
tically significantly to increase the rate of progression to cirrhosis. The correspond-
ing relative risk estimates (with 95% confidence intervals) for age at infection onset
and for excessive alcohol consumption are 1.13 (1.09, 1.18) and 13.4 (5.1, 35.3),
respectively. The (inverse probability weighted) estimates of the mean age at HCV
infection (with standard deviation) and the proportion consuming excessive alco-
hol in the Edinburgh HCV community prior to 2000 are 20.3 (6.3) years and 6.7%,
respectively. For comparison, the mean age at HCV infection (with standard devi-
ation) and the proportion consuming excessive alcohol from the Edinburgh Royal
Infirmary clinic data are 22.4 (9.8) years and 30%, respectively. There is a striking
difference in the community’s and clinic’s estimates of the proportion consuming
excessive alcohol.

An estimated marginal 30-year progression rate (with sampling uncertainty) to
cirrhosis from infection in the Edinburgh HCV community can also be calculated
through a fast parametric bootstrap-like approach [Aalen et al. (1997)]. Here we re-
peatedly sample θT = (γ,βT ,πT ) from the asymptotic distribution of θ̃ , specified
by a multivariate normal distribution with mean vector and variance–covariance
matrix given by θ̃ and the robust sandwich matrix, ���T evaluated at θ̃ . For
each of these sampled parameter vectors, we define a corresponding hypothetical
Edinburgh HCV community (prior to 2000) that can be entirely followed up to cir-
rhosis. The size, mean and standard deviation of the age at HCV infection and the
excessive alcohol consumption proportion for each of these hypothetical commu-
nities are calculated by applying the inverse probability weights, calculated using
the sampled θ ’s, to the Edinburgh Royal Infirmary data. The communities’ cirrho-
sis data can be constructed by generating the times to cirrhosis from the proposed
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Weibull model using the sampled regression and shape parameters, after first sim-
ulating the explanatory variables, age at HCV infection and alcohol consumption
status, for the created communities. We assume that the age at HCV infection and
alcohol consumption status distributions are independent from one another and
are log-normal and Bernoulli, respectively, with mean and standard deviation (for
the log normal) and excessive alcohol consumption proportion parameters arising
from the application of the sampled θ , through the generated inverse probability
weights, to the Edinburgh Royal Infirmary data. Our assumption of marginal in-
dependence is based on an estimated Pearson’s correlation between age at HCV
infection and excessive alcohol consumption status of 0.012 in the actual collected
data, which we do not anticipate to change dramatically when translated to the
community.

The application of this fast parametric bootstrap-like approach, over 500 runs,
gave a mean 30-year progression rate to cirrhosis in the hypothetical communities
of 14% with a standard deviation of 6% and a 95% range of 6% to 29%. Figure 2
provides an example of a marginal Kaplan–Meier curve for one hypothetical Ed-
inburgh community generated at the maximum weighted pseudo score estimates.

FIG. 2. Marginal Kaplan–Meier curves for hypothetical Edinburgh HCV communities derived un-
der the assumption that the time-to-cirrhosis distribution is either Weibull (solid line) or generalized
gamma (dashed line). The vertical dotted lines correspond to time from infection of 30 years and
the last observed time in the Edinburgh liver clinic data of 42.4 years, which corresponds to an
(uncensored) cirrhotic event.
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The estimated 30-year Kaplan–Meier progression rate (with 95% confidence
interval) to cirrhosis based on the actual Edinburgh Royal Infirmary data, ignor-
ing the outcome-dependent referral and left truncation, is 42% (31%, 52%). The
corresponding conditional Kaplan–Meier estimate (conditioning on not experienc-
ing cirrhosis at least roughly 1 year after infection), assuming that the Edinburgh
Royal Infirmary data is a length-biased sample of the Edinburgh HCV commu-
nity, is 86% with a 95% confidence interval of (75%, 92%). Both of these standard
estimates dramatically overestimate the 30-year progression rate, as they do not
account for the correlation between the referral time and the time to cirrhosis of a
referred patient.

To check the robustness of our findings for the Edinburgh data, we implemented
our two approaches replacing the assumption of a Weibull time-to-event distri-
bution with the generalized gamma distribution (see the supplementary material
[Tom, Farewell and Bird (2014)] for its formulation), which has one extra pa-
rameter and includes the Weibull, gamma and log-normal all as special cases.
Although a likelihood ratio test on 1 degree of freedom (p = 0.02) rejected the
Weibull in favor of the generalized gamma, the maximum likelihood estimates
for the regression parameters of interest were similar to those previously obtained
(β̂1 = −0.021 and β̂2 = −0.546) and the estimate of the proportion of infected in-
dividuals referred to in the last one eighth of their cirrhosis period was again 64%.
Furthermore, the estimated mean 30-year progression rate to cirrhosis was similar.
On closer inspection, we found that the differences between the assumption of a
generalized gamma and that of a Weibull for the time-to-event distribution was
noticeable only in the upper tails of the estimated marginal time-to-event distribu-
tions of the Edinburgh HCV community, past the actual largest observed time to
cirrhosis (i.e., an uncensored event of 42.4 years) seen from the Edinburgh Royal
Infirmary’s liver clinic. Similar to the marginal Kaplan–Meier curve presented un-
der the assumption that the time-to-event distribution is Weibull, Figure 2 also
displays the equivalent Kaplan–Meier curve under the assumption of the general-
ized gamma, and thus provides an illustration of the discrepancy between curves
being evident in the upper tail beyond 42.4 years.

4. Discussion. A weighted pseudo score method is commonly suggested for
handling response-biased observations, where specifying the full likelihood is dif-
ficult. Provided that the inverse probability weights can be consistently estimated,
then consistency of regression parameter estimates will be achieved using this ap-
proach. However, if the full likelihood is available, then it is generally preferable
to use it to estimate the parameters of interest, as these estimates will be more effi-
cient than those obtained from the weighted pseudo score method. This preference
for the full likelihood over the weighted pseudo score method also holds when
the time-to-event distribution is misspecified. In the context of misspecification,
we would advocate fitting the more flexible generalized gamma time-to-event dis-
tribution (or an alternative such as a semi-parametric piecewise exponential-type



TIME-TO-EVENT ANALYSIS WITH INFORMATIVE ENTRY TIMES 743

distribution), instead of the Weibull, in order to get better estimates of the marginal
progression rates. Nevertheless, it is worth noting that a by-product of the weighted
pseudo score approach, which makes it appealing, is the straightforward estima-
tion of the total incident population size. This is not directly available (although
calculable) from the full likelihood approach. In public health terms, estimation
of the total number of HCV carriers and the “true” impact of covariates on HCV
progression are key.

In the informative entry time problem addressed here, we were able to develop
both a full likelihood approach and a hybrid two-stage pseudo score/profile like-
lihood approach for outcome-dependent referral where sampling is dependent on
the residual fraction of time remaining to develop the event. Under correct speci-
fication of the referral mechanism, we found that the full likelihood approach was
indeed more efficient than the hybrid approach in the estimation of the regression
parameters of interest and the shape parameter. The former approach, however, ap-
peared to be more susceptible to bias if the outcome-dependent referral mechanism
was misspecified through a coarser representation and the “information content”
of the data (in terms of number of referrals, number of events and length of follow-
up) was low. In the situation where the “information content” is considered to be
relatively high, it perhaps would be more appealing to adopt the hybrid method
over the full likelihood approach, as it could be significantly more robust and the
decrease in the resulting efficiency may still be acceptable. In general, we would
recommend that when using either approach, and, in particular, the full likelihood
one, analysts should begin by specifying a reasonably fine partitioning of the ν

which can then be refined to obtain a more parsimonious representation of the re-
ferral mechanism. This strategy would allow checking for sensitivity/robustness
to misspecification of the referral mechanism. However, convergence issues may
arise if the partitioning is too fine or if the selection probability for a subject is too
small. We have not investigated these convergence issues here.

The application of these methods to data from the Edinburgh Royal Infirmary’s
hepatitis C virus liver clinic allowed us to characterize realistically the extent of
Edinburgh’s HCV epidemic prior to 2000 in terms of progression rate to cirrhosis
and the impact of alcohol consumption and age at HCV infection on this pro-
gression. Standard survival analysis methods severely overestimated the 30-year
progression rate and underestimated the relative risks for the explanatory vari-
ables.

In our present analysis of the Edinburgh HCV data, we assumed that the time
of infection was known. This simplifying assumption was thought reasonable in
our case, since even when the times of HCV infection in the Edinburgh liver clinic
were uncertain, this uncertainty tended to be only in the determination of the exact
date of infection within a calendar year or two. As the mean incubation period to
cirrhosis is several orders of magnitude greater than the size of this interval, we
expect that, for the analysis of our data set, the added uncertainty in estimation
due to this imprecision in timing of infection will be inconsequential. However,
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in other applications where the timing of the initiation event (e.g., cancer or HIV
infection onset) is known only to within an interval, which may be quite large,
and where either the mean time to the event of interest (e.g., death or AIDS) or
the mean follow-up time are not of an appreciably long enough length compared
to the mean width of these intervals, the implications for analyses of assuming-
known initiation time (e.g., by choosing the mid-point of the interval) can be major.
Struthers and Farewell (1989) discuss an approach to account for unknown onset
times, when the time of onset is known only to be in an interval, say, (a, b). This
approach requires the specification of a density, say, g, for the time of infection
(e.g., a uniform distribution) over the interval (a, b). The likelihood to be opti-
mized over the parameters then takes the form

∏n
i=1

∫ bi
ai

Li(θ)gi(y; τ) dy, where
Li(θ) is the likelihood contribution from the ith subject, given known infection
time, and the density, gi(·), for this subject’s time of infection may be specified
up to an unknown parameter vector, τ . Therefore, it can be seen that this approach
can be adapted to our situation where the sampling is dependent on the residual
fraction of time left to developing the event of interest and the onset time is known
only to within an interval. However, careful thought is required on the most appro-
priate form for g. For example, in HCV studies where the majority of subjects are
injecting drug users and when time of HCV infection is unknown, there is evidence
to suggest that infection occurs earlier in a subject’s injecting career [Hutchinson,
Bird and Goldberg (2005), Hagan et al. (2008), De Angelis et al. (2009)].

Future application of these methods to the HCV epidemic in Scotland, more
generally, is planned with Health Protection Scotland. Health Protection Scotland
has developed a clinical database on referrals of HCV patients to liver clinics
across all regions of Scotland. Application of our methodology should provide
regional estimates for the number of HCV carriers in Scotland and will allow us to
examine if the “true” impact of covariates (such as age at HCV infection and heavy
alcohol use) are stable across regions although the covariate distribution may differ
between regions.
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SUPPLEMENTARY MATERIAL

Appendix: Derivations of the expressions based on the generalized gamma
and mixture of uniforms (DOI: 10.1214/14-AOAS725SUPP; .pdf). Proofs of the
various expressions required in the constructing of the likelihood and pseudo score
based on the assumption that the time-to-event distribution is from a generalized
gamma distribution and the conditional referral distribution is a mixture of inde-
pendent uniforms.

http://dx.doi.org/10.1214/14-AOAS725SUPP
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